Repository: Freie Universität Berlin, Math Department

A Koopman-Takens theorem: Linear least squares prediction of nonlinear time series

Koltai, Péter and Kunde, Philipp (2024) A Koopman-Takens theorem: Linear least squares prediction of nonlinear time series. Preprint . (In Press)

Full text not available from this repository.

Official URL: https://doi.org/10.48550/arXiv.2308.02175

Abstract

The least squares linear filter, also called the Wiener filter, is a popular tool to predict the next element(s) of time series by linear combination of time-delayed observations. We consider observation sequences of deterministic dynamics, and ask: Which pairs of observation function and dynamics are predictable? If one allows for nonlinear mappings of time-delayed observations, then Takens' well-known theorem implies that a set of pairs, large in a specific topological sense, exists for which an exact prediction is possible. We show that a similar statement applies for the linear least squares filter in the infinite-delay limit, by considering the forecast problem for invertible measure-preserving maps and the Koopman operator on square-integrable functions.

Item Type:Article
Subjects:Mathematical and Computer Sciences
Mathematical and Computer Sciences > Mathematics
Mathematical and Computer Sciences > Mathematics > Applied Mathematics
Divisions:Department of Mathematics and Computer Science > Institute of Mathematics
ID Code:3134
Deposited By: Lukas-Maximilian Jaeger
Deposited On:03 Apr 2024 09:30
Last Modified:04 Apr 2024 10:34

Repository Staff Only: item control page