Arts, Marloes and Garcia Sattorras, Victor and Huang, Chin-Wei and Zuegner, Daniel and Federici, Marco and Clementi, Cecilia and Noé, Frank and Pinsler, Robert and van den Berg, Rianne (2023) Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics. JCTC - Journal of Chemical Theory and Computation, 19 . pp. 6151-6159.
Full text not available from this repository.
Official URL: https://doi.org/10.1021/acs.jctc.3c00702
Abstract
Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular dynamics to learn a CG force field without requiring any force inputs during training. Specifically, we train a diffusion generative model on protein structures from molecular dynamics simulations, and we show that its score function approximates a force field that can directly be used to simulate CG molecular dynamics. While having a vastly simplified training setup compared to previous work, we demonstrate that our approach leads to improved performance across several small- to medium-sized protein simulations, reproducing the CG equilibrium distribution, and preserving dynamics of all-atom simulations such as protein folding events.
Item Type: | Article |
---|---|
Subjects: | Mathematical and Computer Sciences Mathematical and Computer Sciences > Mathematics Mathematical and Computer Sciences > Mathematics > Applied Mathematics |
Divisions: | Department of Mathematics and Computer Science > Institute of Mathematics |
ID Code: | 2956 |
Deposited By: | Monika Drueck |
Deposited On: | 20 Apr 2023 08:31 |
Last Modified: | 01 Feb 2024 12:08 |
Repository Staff Only: item control page