Durumeric, Alexander E.P. and Charron, Nicholas E. and Templeton, Clark and Musil, Félix and Bonneau, Klara and Pasos-Trejo, Aldo S. and Chen, Yaoyi and Kelkar, Atharva and Noé, Frank and Clementi, Cecilia (2023) Machine learned coarse-grained protein force-fields: Are we there yet? Current Opinion in Structural Biology, 79 .
Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.sbi.2023.102533
Abstract
The successful recent application of machine learning methods to scientific problems includes the learning of flexible and accurate atomic-level force-fields for materials and biomolecules from quantum chemical data. In parallel, the machine learning of force-fields at coarser resolutions is rapidly gaining relevance as an efficient way to represent the higher-body interactions needed in coarse-grained force-fields to compensate for the omitted degrees of freedom. Coarse-grained models are important for the study of systems at time and length scales exceeding those of atomistic simulations. However, the development of transferable coarse-grained models via machine learning still presents significant challenges. Here, we discuss recent developments in this field and current efforts to address the remaining challenges.
Item Type: | Article |
---|---|
Subjects: | Mathematical and Computer Sciences Mathematical and Computer Sciences > Mathematics Mathematical and Computer Sciences > Mathematics > Applied Mathematics |
Divisions: | Department of Mathematics and Computer Science > Institute of Mathematics |
ID Code: | 2952 |
Deposited By: | Monika Drueck |
Deposited On: | 20 Apr 2023 08:11 |
Last Modified: | 20 Apr 2023 08:11 |
Repository Staff Only: item control page