Shadrack Jabes, B. and Krekeler, C. and Klein, R. and Delle Site, L.
(2018)
*Probing Spatial Locality in Ionic Liquids with the Grand Canonical Adaptive Resolution Molecular Dynamics Technique.*
The Journal of Chemical Physics, 148
(19).
ISSN online: 1089-7690

PDF
838kB |

Official URL: https://dx.doi.org/10.1063/1.5009066

## Abstract

We employ the Grand Canonical Adaptive Resolution Molecular Dynamics Technique (GC-AdResS) to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level, thus if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably {reproduced} thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other {researchers} and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.

Item Type: | Article |
---|---|

Additional Information: | SFB 1114 Preprint in arXiv:1710.05593 |

Subjects: | Mathematical and Computer Sciences Mathematical and Computer Sciences > Mathematics Mathematical and Computer Sciences > Mathematics > Applied Mathematics |

Divisions: | Department of Mathematics and Computer Science > Institute of Mathematics > Geophysical Fluid Dynamics Group |

ID Code: | 2308 |

Deposited By: | Ulrike Eickers |

Deposited On: | 15 Mar 2019 15:21 |

Last Modified: | 17 May 2019 11:21 |

Repository Staff Only: item control page