Repository: Freie Universität Berlin, Math Department

On the statistics of the free-troposphere synoptic component. Part I: An evaluation of skewnesses and estimation of the third-order moments contribution to the synoptic-scale dynamics and meridional fluxes of heat and humidity

Petoukhov, V. and Eliseev, A. and Klein, R. and Oesterle, H. (2008) On the statistics of the free-troposphere synoptic component. Part I: An evaluation of skewnesses and estimation of the third-order moments contribution to the synoptic-scale dynamics and meridional fluxes of heat and humidity. Tellus, 60 (1). pp. 11-31.

Full text not available from this repository.

Official URL: http://www.ingentaconnect.com/content/mksg/tea/200...

Abstract

Based on the ERA40 data for 1976-2002 we calculated skewnesses and mixed third-order statistical moments (TOMs) for the synoptic variations [with (2.5-6) d timescales] of horizontal winds, temperature, vertical velocity and the specific humidity in Eulerian coordinates. All these variables show skewnesses which markedly deviate from zero, basically at the entries and the outlets of the mid-latitude storm tracks. In these regions, high values of skewness for vertical velocity, temperature and the specific humidity are revealed throughout the entire free troposphere, while the marked skewnesses for horizontal winds are traced in the lower free troposphere. We found a notable deviation of the synoptic-component statistics from the Gaussian statistics. We also made an estimate of the contribution from TOMs to the prognostic equations for the synoptic-scale kinetic energy and the meridional fluxes of sensible and latent heat, which appeared to be non-negligible, mainly in the storm tracks in winter. Our analysis attests that the most pronounced contribution of TOMs to the aforementioned equations comes from the self-advection by the horizontal synoptic-scale motions, while the TOMs induced by the metric terms in the original equations, and specifically the TOMs associated with the vertical self-advection by the synoptic-scale motions, are much less important.

Item Type:Article
Subjects:Mathematical and Computer Sciences > Mathematics > Applied Mathematics
Divisions:Department of Mathematics and Computer Science > Institute of Mathematics > Geophysical Fluid Dynamics Group
ID Code:548
Deposited By: Ulrike Eickers
Deposited On:16 Jul 2009 14:14
Last Modified:16 Jul 2009 14:14

Repository Staff Only: item control page