Garbuno Inigo, A. and Nüsken, N. and Reich, S. (2019) Affine invariant interacting Langevin dynamics for Bayesian inference. SFB 1114 Preprint in arXiv:1912.02859 . pp. 1-29. (Unpublished)
|
PDF
534kB |
Official URL: https://arxiv.org/pdf/1912.02859.pdf
Abstract
We propose a computational method (with acronym ALDI) for sampling from a given target distribution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covariance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require taking the inverse or square root of the empirical covariance matrix, which enables application to high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of non-degeneracy and ergodicity. Furthermore, we study its connections to diffusions on Riemannian manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a gradient-free implementation in the spirit of the ensemble Kalman filter. A computational comparison between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse problem.
Item Type: | Article |
---|---|
Subjects: | Mathematical and Computer Sciences > Mathematics > Applied Mathematics |
ID Code: | 2394 |
Deposited By: | Monika Drueck |
Deposited On: | 05 Feb 2020 14:32 |
Last Modified: | 07 Jul 2022 09:15 |
Repository Staff Only: item control page