Remmler, S. and Hickel, S. (2012) Direct and large-eddy simulation of stratified turbulence. International Journal of Heat and Fluid Flow, 35 . pp. 13-24. ISSN 0142-727X
Full text not available from this repository.
Official URL: http://www.sciencedirect.com/science/article/pii/S...
Abstract
Simulations of geophysical turbulent flows require a robust and accurate subgrid-scale turbulence modeling. To evaluate turbulence models for stably stratified flows, we performed direct numerical simulations (DNSs) of the transition of the three-dimensional Taylor–Green vortex and of homogeneous stratified turbulence with large-scale horizontal forcing. In these simulations we found that energy dissipation is concentrated within thin layers of horizontal tagliatelle-like vortex sheets between large pancake-like structures. We propose a new implicit subgrid-scale model for stratified fluids, based on the Adaptive Local Deconvolution Method (ALDM). Our analysis proves that the implicit turbulence model ALDM correctly predicts the turbulence energy budget and the energy spectra of stratified turbulence, even though dissipative structures are not resolved on the computational grid.
Item Type: | Article |
---|---|
Subjects: | Mathematical and Computer Sciences > Mathematics > Applied Mathematics |
ID Code: | 1435 |
Deposited By: | Ulrike Eickers |
Deposited On: | 01 Aug 2014 12:50 |
Last Modified: | 01 Aug 2014 12:50 |
Repository Staff Only: item control page