Repository: Freie Universität Berlin, Math Department

The Effect of Scale on the Applicability of Taylor's Frozen Turbulence Hypothesis in the Atmospheric Boundary Layer

Higgins, C. W. and Froidevaux, M. and Simeonov, V. and Vercauteren, N. and Barry, C. and Parlange, M. B. (2012) The Effect of Scale on the Applicability of Taylor's Frozen Turbulence Hypothesis in the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 143 (2). 379 -391. ISSN Print: 0006-8314 Online: 1573-1472

Full text not available from this repository.

Official URL: http://link.springer.com/article/10.1007%2Fs10546-...

Abstract

Taylor’s frozen turbulence hypothesis is the central assumption invoked in most experiments designed to investigate turbulence physics with time resolving sensors. It is also frequently used in theoretical discussions when linking Lagrangian to Eulerian flow formalisms. In this work we seek to quantify the effectiveness of Taylor’s hypothesis on the field scale using water vapour as a passive tracer. A horizontally orientated Raman lidar is used to capture the humidity field in space and time above an agricultural region in Switzerland. High resolution wind speed and direction measurements are conducted simultaneously allowing for a direct test of Taylor’s hypothesis at the field scale. Through a wavelet decomposition of the lidar humidity measurements we show that the scale of turbulent motions has a strong influence on the applicability of Taylor’s hypothesis. This dependency on scale is explained through the use of dimensional analysis. We identify a ‘persistency scale’ that can be used to quantify the effectiveness of Taylor’s hypothesis, and present the accuracy of the hypothesis as a function of this non-dimensional length scale. These results are further investigated and verified through the use of large-eddy simulations.

Item Type:Article
Subjects:Mathematical and Computer Sciences > Mathematics > Applied Mathematics
Divisions:Department of Mathematics and Computer Science > Institute of Mathematics > Geophysical Fluid Dynamics Group
ID Code:1335
Deposited By: Ulrike Eickers
Deposited On:22 Nov 2013 15:05
Last Modified:22 Nov 2013 15:05

Repository Staff Only: item control page