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Abstract

The effect of the dynamics of proteins and peptides has long been

suspected to be of great importance when explaining their function.

The influence of their dynamical behavior remains mostly unknown as

the vast majority of studies are restricted to the static structure deter-

mination of biomolecules. Recent advancement on computer simula-

tion techniques as well as profound analysis carried out with the help of

Markov state models allows to study the dynamics of a peptide ligand

that is bound to a MHC-I protein. We are interested in finding out

how the dynamics of the ligand is influenced when complexed with a

protein compared to its uncomplexed dynamics. Starting from a crys-

tal structure of the complex that hints to several stable conformations

of the ligand, the ligand’s dynamics will be investigated.

Several long-lived, “metastable” states and their corresponding prob-

abilities as well as important transition pathways between those states

could be extracted for the uncomplexed case. In comparison, when

complexed with the MHC-I protein, the ligand’s dynamics were much

more restrained but conformational changes between different metastable

states occurred so rarely, that the simulations that could be performed

until now turned out to be insufficient in order to construct a reliable

model of its dynamics. This is where future work using advanced adap-

tive sampling techniques or simulations an order of magnitude longer

should be able to provide more insight.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

Understanding the function of the human immune system on a molecular
level is a very important subject of current research. Especially autoimmune
diseases, which are related to a malfunction of the adaptive immune sys-
tem, leading to an immune reaction against the healthy cells are not fully
understood, yet.

This study is concerned with a few specific proteins that are important
in this immune reaction, which belong to the class of MHC-I molecules.
Each of these MHC proteins can bind smaller molecules, called peptides.
We were provided with data gained from X-ray crystallography carried out
on different MHC-I molecules complexed with various peptides. These ex-
periments were not able to fully resolve the atomic structure. Specifically
this was data from three crystallography experiments of MHC-I complexes
(also called Human leukocyte antigen, abbr. HLA) which are all subtypes of
HLA*B27 (B*2705:pB27, B*2705:pCP and B*2704:pB27).

The aim of this study is to assist the crystallographers by analyzing the
dynamics of these complexes. By comparing the dynamics of the different
complexes it will hopefully be possible to gain a deeper understanding of
the autoimmune disease called ankylosing spondylitis, which is known to
be related to these subtypes for more than 35 years [25, 5]. Even though
many studies have been conducted on these subtypes complexed with various
subtypes [12, 11, 18, 27, 29, 35, 44, 43], this issue is still puzzling.

Using the Molecular dynamics (MD) simulation software gromacs [17],
simulations of all three system were executed.

Beyond standard MD analysis techniques performed on similar systems
[33], we are attempting to perform a more substantial analysis of the peptides
conformation dynamics with the help of a so called Markov state model. This
approach should allow us to obtain important information regarding these
systems that cannot be derived using the traditional approaches. This in-
cludes the identification of long-lived, also called metastable states and the

1



1.2 Amino acids, peptides and proteins 1 INTRODUCTION

derivation of molecular observables of interest, such as stationary probabil-
ities, free energies, transition rates and transition pathways, including their
errors [34, 32].

While this technique has been applied to protein folding recently [31, 4, 3],
it has not, to our knowledge, been used to study the dynamics of a peptide
bound by a MHC protein. We also attempted to compare the dynamics of
the pB27 peptide in water to the case where it resides in the MHC’s binding
pocket.

1.2 Amino acids, peptides and proteins

Amino acids are a class of organic molecules characteristically built of an
amino group (NH2), a carboxyl group (COOH) and a side chain. There
are about 20 different standard amino acids encoded directly into the genetic
code. When amino acids form peptide bonds, they are referred to as peptides,
polypeptides or proteins. These words are a bit ambiguous, one generally
refers to a protein when talking about a biomolecule consisting of many
amino acids, while a peptide is often referred to as a short chain of amino
acids (up to 30 amino acids). One individual amino acid of a protein is then
referred to as a residue. A peptide bond is a covalent binding where the
carboxyl group reacts with the amino group of another amino acid, releasing
a water molecule (H2O). This is illustrated in Fig. 1.

The end of a protein or peptide with a free amino group is referred to as
the N-terminus or amino terminus, while the end with free carboxyl group
is called the C-terminus. The amino acids sequence of a protein is generally
presented in the N-to-C direction, written from left to right. Each amino
acid can be abbreviated by either a three-letter or one-letter code. When
listing the amino acid sequence of peptides or proteins we usually use the
one-letter representation of a peptide. The so-called backbone of a protein is
the linked series of carbon, oxygen and nitrogen atoms. Figure 2 shows three
different representations of a peptide. pB27 peptide, its whose acid sequence
would read RRKSSGGKGGSY.

2



1 INTRODUCTION 1.2 Amino acids, peptides and proteins

Figure 1: Peptide bond of two amino acids (glycine and alanine) to form
the dipeptide glycylalanine. A water molecule is lost in the condensation
reaction. The different atom types are shown in different colors (H white, O
red, C green and N blue).

(a) Van-der-Waals (b) Bonds (c) Cartoon

Figure 2: Three representations of the pB27 peptide. The one-letter amino
acid code of pB27 is RRKSSGGKGGSY.

Proteins are produced in the cell as a long chain of amino acids linked by
peptide bonds. This amino acid sequence is known as the primary structure.
As a result of weaker bonds including hydrogen bonds, ionic bonds and van
der Waals attractions as well as hydrophobic side chains, proteins generally
have structures that are energetically favorable. The rearrangement into this
stable conformation is called folding while the three-dimensional alignment

3



1.3 The adaptive immune system 1 INTRODUCTION

is then called secondary structure. Two important patterns of secondary
structures often occurring in proteins include the formation of α-helices and
β-sheets which are shown in Fig 3.

1.3 The adaptive immune system

In the following section we shall briefly sketch the functionality of the human
immune system and in order to explain the function of the MHC complexes.
For a thorough explanation on this subject see standard textbooks on bio-
chemistry, e.g. Alberts [1].

The human immune system can be classified in two parts. The innate
immune system is a relatively simple defense strategy mostly made up of
protective barriers such as skin and mucosa as well as pagocytic cells that
can ingest and destroy invading microorganisms. This part of the immune
system is unspecific.

The adaptive part on the other hand is a highly sophisticated system
that serves the task of destroying invading pathogens and toxic molecules
they produce. These adaptive immune responses are highly specific to the
pathogen that induced them and can also provide long-lasting protection.
Because this is a destructive response it is very important that it only re-
sponds to molecules foreign to the host and not molecules of the host itself.
The ability to distinguish what is foreign and what is self is a fundamental
feature of the adaptive immune system. One speaks of an autoimmune dis-
ease when this distinction is incorrect, i.e. the system reacts destructively
against the host’s own molecules. Mounting of an adaptive immune response
against harmless foreign molecules is pointless and can be potentially dan-
gerous. This can lead to allergic conditions such as asthma.

The adaptive immune response is carried out by white blood cells called
lymphocytes. One can differentiate two classes of such an immune response.
The antibody response is carried out by B cells. The cell-mediated immune
response the other hand is mounted by T cells. We will take a closer look at
this cell-mediated response, since the MHC-I proteins under investigation in
this work play a very important role in this process.

4



1 INTRODUCTION 1.3 The adaptive immune system

In this cell-mediated response activated T cells react directly against a
foreign antigen that is presented to them on a host cell. It can either kill a
cell which has viral antigens presented on its surface directly, therefore elimi-
nating the infected cell before the virus had a chance to replicate. Otherwise
it can produce signal molecules that activate macrophages to destroy the
invading microbes.

Figure 3: A MHC-I protein in its native (folded) state. The backbone of the
protein aligns in such a way that it becomes very stable. We can see different
secondary structures such as α-helix (purple) and β-sheets (yellow).

MHC complexes The recognition of pathogens is tied to the recognition of
pathogen specific antigens. The Major Histocompatibility Complex (MHC)
molecules studied in this thesis play an important role in triggering a cellular
immune response and can be differentiated in two classes. Class I MHC-
molecules are found on the surface of (almost) all cells (containing a nucleus).
Class-II complexes are only found on antigen-presenting cells (APCs). When
a foreign virus infects a cell it typically abuses the host cells protein synthesis
for its own reproduction. Therefore an infected cell will produce non-self
proteins which are spread in the cytosol. Fractions of those non-self proteins
(peptides) can be bound and transported by the MHC-I complex to the cells
surface. Only the MHC-I bound non-self peptide is detected by the T-cells,

5



1.3 The adaptive immune system 1 INTRODUCTION

triggering an immune response. Therefore it is also called Human Leukocyte
Antigen (HLA) in humans. Figure 3 shows the secondary structure of a
MHC-I complex.

6



2 METHODS

2 Methods

This section will introduce the methods necessary to understand the analysis
following. Therefore, a brief introduction on how X-Ray crystallography is
used in order to provide an insight into the structure of many biomolecules is
given in the first part. Furthermore, it will be shown how molecular dynam-
ics simulation can be employed to extend that knowledge beyond the static
crystallography case to study the time-development of such a biomolecu-
lar system at physiological conditions. Lastly, the reader is introduced to
the mathematical tool set that can be used to investigate the conformation
dynamics of a biomolecule, including how a so called Markov State Model
(MSM) can be constructed from simulation data.

2.1 X-Ray crystallography

X-ray crystallography is the most-used method of examining the atomic
structure biomolecules. In 1962, Max Perutz and Sir John Cowedery Kendrew
received the Nobel Prize in Chemistry for their structure analysis of the myo-
globin molecule [24]. The Protein Data Bank, where results of such structure
analysis are published, currently lists 63,876 structures available, of which
more than 87 % where created using this method. We will first go into
describing why X-rays crystallography often is the method of choice to de-
termine 3-D structures of crystals, explain the physics involved and lastly
how we obtain a 3-D structure of a macromolecule using this experimental
method.

2.1.1 Why X-rays?

X-rays are well-suited for crystallography because their wavelength is in the
magnitude of Å (about 1-100 keV), whereas visible light has a wavelength
of ∼ 5000 Å. As we will see in the next subsection, the wavelength used
is directly related to the resolution of our image obtained. Furthermore, X-
rays are easily produced using X-ray tubes. X-rays are emitted when charged
particles such as electrons are accelerated and deflected by another particle

7



2.1 X-Ray crystallography 2 METHODS

Figure 4: Bragg diffraction

such as a neutron. This effect is known as Bremsstrahlung.

2.1.2 Physical background

In the typical X-Ray crystallography experiment the crystal is mounted on
a goniometer and rotated as a monochromatic X-ray beam is projected onto
a crystal. The X-ray radiation is scattered elastically at the atoms elec-
tron shell, meaning its wavelength does not change. A detector records a
diffraction pattern at different angles, giving us a function of intensity over a
2-D-angle of the reflected X-rays beams. Depending on the angle, peaks can
be measured. Using Bragg’s diffraction theory, the source of the peaks turn
out to occur when the beams, reflected at different lattice planes, interfere
constructively. For a Bravais crystal, whose lattice plane distance is d, peaks
can be measured when

2dsinθ = nλ . (1)

This is illustrated in Fig. 4.
The peaks intensity Ihkl is proportionally related to the structure factors

Fhkl by
Ihkl ∝ |Fhkl|

2
. (2)

The structure factor its self is the Fourier transform of the electron density
ρ

Fhkl =

ˆ a

0

ˆ b

0

ˆ c

0

ρ(x, y, z) exp

�
2πi

�
hx

a
+

ky

b
+

lz

c

��
dx dy dz , (3)
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2 METHODS 2.1 X-Ray crystallography

whereas h, k, l denotes the Miller indices, denoting crystal planes, a, b, c
the basis vectors and x, y, z the coordinates. Each peak has an associated
amplitude, wavelength and phase. Because we are measuring intensity as
the square absolute value of the complex structure factors, we lose all phase
information. This keeps us from doing a simple Fourier re-transformation
to obtain the original crystal structure and is known as the phase problem.
Multi-wavelength anomalous dispersion (MAD), Multiple isomorphous re-
placement (MIR) and Molecular replacement (MR) are all methods using
the Patterson map to work around this problem by using either heavy atoms
or similar previously solved structures (MR).

2.1.3 Protein crystallography

For a simple Bravais crystal the process of determining its structure is straight-
forward. When looking a biomolecules such as a protein on the other hand
one faces several challenges before X-ray crystallography can be applied.
First of all, the biomolecule has to be built into a crystal which has to be
large enough (about 0.1 mm in all dimensions). This process, known as crys-
tallization, is critical to obtaining good results. Proteins, which are mostly
grown in solution are crystallized by gradually lowering the solubility. Find-
ing good parameters that have an influence on crystallization such as tem-
perature, pH, solvent type and added ions or ligands can be a tedious task.
Impurity or non-uniform orientation can lead to a decrease in resolution or
fuzziness.

The general process of getting to the 3-D structure of a protein is il-
lustrated in Fig. 5. Once the protein has been crystallized, a diffraction
pattern is generated using the setup described above. Chemical informa-
tion or knowledge gained from previous experiments is used to produce and
iteratively refine a 3-D model.

Another problem which is of special interest in this thesis is the change
of conformations of a protein.When the crystal is produced, we tend to ran-
domly freeze the each protein at its current conformation. As we are measur-
ing an ensemble average, areas of the protein where the alignment of atoms

9
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Figure 5: Process of X-ray crystallography
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differs, will generally lead to blur in our X-ray image. Also we can imagine
that the crystallization temperature as well as other solutes employed to im-
prove the crystallization might have an effect on the behavior and alignment
of the molecule. In summary, it can be said that while X-ray crystallogra-
phy is the method of choice for producing a static three-dimensional atomic
model of a protein, we can hardly gain any insight on its dynamics.

11
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2.2 Molecular Dynamics

Molecular Dynamics (MD) is a computer simulation method to solve the
time development of a molecular system. Over the last few decades it, and
its enclosing scientific field molecular modeling, led to respectable progress on
important topics such as protein folding [23, 9] as well as practical applica-
tions such as drug design and giving insights into complex processes such as
human immune reactions. A brief overview on how MD simulation works and
what current shortcoming exist will be given, mostly based on the textbooks
by Frenkel and Smit [15] as well as Schlick [36].

2.2.1 Basics

MD simulations are similar to real experiments. We start out the the prepa-
ration of our sample and connect it to a measuring instrument. Then, we run
the experiment (simulation) as long as it takes to get reliable averages for the
quantities we want to measure. As in real experiments, the measurements
in simulations are disturbed by statistical noise. In an actual simulation one
prepares a sample and starts the equilibration process. Once the system is
equilibrated one can start to measure the physical quantities of interest.

From a physical point of view a first idea to simulate a molecular sys-
tem would be to solve the time-dependent Schrödinger equation numerically.
Such a method does exist and is called ab initio or quantum MD, but it is
computationally extremely demanding. Even when dealing with very small
model systems, which are hardly of any practical use, one force calculation
can take days or even weeks using modern hardware. Therefore it is desir-
able to simplify the model as much as possible while still producing realistic
results.

Classical MD simulations, based on Newtons equations of motion, have
often proven to be sufficiently accurate in order to tackle many problems in
biophysics, often showing a good agreement with experiments [38].

Structure data gained X-ray crystallography does usually not contain hy-
drogen atoms, which are added to the atoms first. Equilibration usually in-
volves minimizing the potential energy of the system, allowing the molecules

12



2 METHODS 2.2 Molecular Dynamics

to relax. After choosing the number of particles N , the density or the size
of the simulation box, the pressure and/or the temperature we can place the
particles into the simulation box. This can also involve placement of solvent
molecules in the system.

The next step is to distribute the initial velocities. The velocities are
related to the desired temperature through the equipartition theorem via

�
1

2
mv

2
α� =

1

2
kBT, (4)

where m is the particle mass, vα is the velocity, kB is the Boltzmann
constant and T is the temperature. We can connect this relation to the
current state of the system by

kBT (t) =
N�

i=1

mv
2
α(t)

Nf
(5)

with the simulation time t and the number of degrees of freedom Nf .
Using this relation we can assign the velocities in order to obtain a desired
temperature or we can measure the temperature by looking at the velocities.

2.2.2 Force calculation

From the initial state on we want to develop the system in time. To get the
time evolution of each single particle we need to compute the forces acting
on it. These forces can be computed by the relation

fα(r) = −
∂U(r)

∂rα
= −

�
rα

r

��
∂U(r)

∂r

�
. (6)

The value r is the distance between two particles. It is important to note
that we usually simulate a finite number of particles in a limited simulation
box. In order to omit large scale finite size effects one uses periodic boundary
conditions. These are applied by computing the shortest distance between
two particles from all their images. In Fig. 6 we show a simple realization
of periodic boundary conditions. The shaded box is the actual simulation

13



2.2 Molecular Dynamics 2 METHODS

Figure 6: Illustration of periodic boundary conditions

box, whereas all white boxes represent images of the simulation box. If one
computes the distance from the gray shaded particle to another particle the
closest particle in the same periodic box or the surrounding ones is taken.

Force field In order to compute the forces acting on each atom in reason-
able time, a force field is used. Here the Optimized Potentials for Liquid
Simulations all-atom (OPLS-aa) force field will be applied. It approximates
the potential energy of each atom, using different terms for bonded and non-
bonded terms as follows:

U = Ebonded + Enon-bonded. (7)

The bonded term can be split up into three terms:

Ebonded = Ebond-stretch + Eangle-bend + Erotate-along-bond, (8)

which are illustrated in Fig. 7.

14



2 METHODS 2.2 Molecular Dynamics

Figure 7: Illustration of the different terms contributing to the change of
potential energy

All three terms can be configured using a parameter k. The first term is
a harmonic potential representing the length displacement from their ideal
value b0 of atomic pairs that are covalently bound:

Ebond-stretch =
�

covalent bonds

kb(b− b0)
2
. (9)

The second term account for the alteration of bond angles θ from ideal
values θ0 and is also represented by a harmonic potential:

Eangle-bend =
�

angles

kθ(θ − θ0)
2 (10)

Lastly, the third term is assumed to be periodic and therefore often ex-
pressed by a cosine function and accounts for twisting a bond:

Erotate-along=bond =
�

torsions

kφ(1− cos(nφ)). (11)

The non-bonded term is the sum of Van der Waals and electrostatic in-
teraction:

Enon-bonded = Evan-der-Waals + Eelectrostatic. (12)

The van der Waals interaction is often modeled using the Lenard-Jones

15
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potential using atom-type dependent constants A and C:

Evan-der-Waals =
�

nonbonded pairs

�
Aik

r
12
ij

−
Cik

r
6
ij

�
. (13)

For electrostatic interaction the Coulomb potential is used, with D the
effective dielectric function for the medium and the atom distance r between
the two atoms charged with qi and qk:

Eelectrostatic =
�

nonbonded pairs

qiqk

Drik
. (14)

A detailed description of optimal parameters used can be found in the
work by Jorgensen et al. [21, 20].

Because the force field is a simplification of the quantum mechanical
description, we must also look at what limitations it imposes and in what
cases we assume the simplifications to bias the results.

Since we are using Newton’s mechanics to describe our system it should
be logical that no quantum-mechanical effects, such as proton tunneling, will
occur in the simulation. These classical approximations are suitable for many
atoms at normal temperatures, but problems are expected when dealing with
e.g. liquid helium at low temperatures.

More troublesome however is that classical mechanics delivers signifi-
cantly different results from a quantum mechanical calculation as at lower
temperatures and/or higher frequencies the discrete energy levels become
more and more relevant. As long as the vibration frequency ν is smaller, so
that

hν

kBT
� 1 (15)

is true, we can assume our approximation to hold. Here kB denotes Boltz-
mann’s constant, h Planck’s constant and T the temperature. For bonds with
a ratio hν

kBT of more than one (a O-H stretch has about 17 at 300K) we cannot
simply apply classical treatment. Workarounds for that problem can involve
applying quantum mechanical energy correction or putting constraints on
the bonds in the equations of motion.
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2 METHODS 2.2 Molecular Dynamics

When looking at the modeling of covalent bonds by harmonic oscillators
(Eq. 9) it should become clear that bonds will never break up. This means
that no chemical reactions will occur in our simulations.

The atoms are described only by their nuclear motion. The Born-Oppenheimer
approximation which separates electron movement from nucleus movement
(the lighter electrons follow the nucleus instantly) is applied. As a result,
no effects that need a more subtle electron model, e.g. polarization. Also
binding effects involving repositioning of electrons such as a delocalized π

electron cloud will not be modeled correctly.
A current review of the state and drawbacks of classical MD simulations

can be found in the work by Freddolino et al. [14].

2.2.3 Long range interactions

Long range interactions pose a special challenge in MD simulations. Interac-
tions are called long range when they decay slower than 1/r3. The Coulomb
interaction UCoul of a point charges qi decays with 1/r, making it long-range.
We have a total of N particles in our simulation box and we assume that the
total system is does not carry a net charge. The Coulomb interaction in the
system is then

Ucoul =
1

2

N�

i=1

qiΦ(ri) (16)

with

Φ(ri) =
��

j,n

qj

|rij + nL|
. (17)

This sum goes over all periodic images of the simulation box, indicated
by sum over nL since the interaction is not vanishing after the distance of
half the simulation box. The prime in the summation makes sure that we
do not sum over the particle i = j in the central simulation box n = 0, but
of itself with all its periodic images. This sum is poorly convergent and we
have to take into account a large number of periodic images. This is a major
problem, even for modern computers. Advanced summation techniques were
introduced to overcome this computational drawback when dealing with long
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range interactions.

One starts by introducing a charged cloud around all point charges. The
charged cloud is the opposite sign then the point charges and guarantees
a faster convergence of the potential of the point charges by screening it.
Obviously the new charges introduced into the system have to be corrected
in order to maintain the physical correctness. For this purpose additional
charged clouds are introduced to compensate the first clouds. Thus, we
extend the amount of charges by two components what leads finally to three
parts, the point charges qi, the screening clouds −qi and the counter screening
clouds qi. Usually one chooses a Gaussian distribution for the charged clouds.
The advantage of this new formulation is that the potential in the central
simulation box decays fast enough to cut it off and to separate the simulation
boxes from each other. The correction is periodic and can be expressed in
terms of a Fourier transform. The Fourier transform is rapidly convergent
compared to the original sum. The exact formulation of the so called Ewald
summation goes far beyond the scope of the work and can be found in the
work of Ewald [10].

For larger systems (N > 104) the Ewald summation becomes inefficient.
To improve the performance one can basically interpolate the particles on a
regular mesh by introducing a charge assignment function. By this means
a Fast Fourier Transformation can be applied instead of a normal Fourier
Transformation in the case of the Ewald summation technique. This method
is called the Particle Mesh Ewald summation and is applied in our simulations
to handle all long range interactions.

2.2.4 Integrating the equations of motion

Once the force acting on each particle is computed, Newton’s equations of
motion can used to get the new positions. We start by expanding the coor-
dinates in a Taylor series

r(t+∆t) = r(t) +∆t

�
ṙ(t) +

∆t

2
r̈(t)

�
+O(∆t

3) (18)
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and by using the simple equality ṙ(t) + ∆t
2 r̈(t) = ṙ(t + ∆t

2 ) as well as
r̈(t) = F (t)

m we obtain

r(t+∆t) = r(t) + ṙ(t+
∆t

2
)∆t (19)

and
ṙ(t+

∆t

2
) = ṙ(t−

∆t

2
) +

F (t)

m
∆t. (20)

The algorithm is called leap-frog, since it uses coordinates r at time t and
velocities ṙ at time t −

∆t
2 . It is a popular MD integration algorithm also

used by gromacs.

2.2.5 Thermostats

When simulating biomolecules we often want to simulate at constant temper-
ate to match the physiological conditions. Our simulations will be performed
at constant particle number, constant volume and constant temperature,
NV T which is the case of the canonical ensemble. This energy exchange
with the surrounding heat bath is ensured by using a thermostat. While
many different thermostats for simulations exist only the Langevin thermo-
stat, which is used in the simulations following, will briefly be described
here. A comprehensive review of current thermostat algorithms and their
applications can be found in the work of Hünenberger [19].

Langevin thermostat The Langevin equation describes the motion of a
large particle trough a continuum of small particles. The motion of the large
particle is changed accordingly to −γp, what describes actually the friction
produced by hits with the smaller particles. In MD simulations the Langevin
equation can be used if we assume that the particles we simulate are in a sea
of much smaller fictional particles, that we do not want to simulate explicitly,
but it can also be used as a heat bath. The Langevin equation changes the
momentum accordingly to

∆p = (f − γp+ δp)∆t. (21)
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The motion of the particles is damped by the factor −γp and δp is a
Gaussian distributed random number with probability

p(δp) =
1

√
2πσp

exp(−δp
2
/2σ2

p), (22)

where σp = 2γmkBT. This thermostat corrects the velocities in every
simulation step according to the correct canonical distribution. The force
of the thermostat can be adjusted by the parameter γ. When simulating a
good value for this parameter is 0.5 ps−1 since this results in a friction lower
than the internal friction of water.
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2.3 Mathematical description

The aim of this section is to give a brief overview of the mathematical back-
ground necessary in order to analyze the conformation dynamics of a protein.
Traditional analysis of MD simulations, that often involves visual inspection
of compound molecular trajectories and computing specific properties such
as the distance to a reference structure, often tend to oversimplify or hide
important dynamical properties of a molecule. By describing a molecule in
terms of a stochastic process, or more specific, a Markov process, many im-
portant statistical quantities, including their uncertainties, of interest can be
computed. The resulting Markov state model (MSM) can also be validated
and checked for errors afterwards.

Based on the textbooks by Gardiner [16] and Van Kampen [42], the
general stochastic process and the special case of the Markov process will
first be introduced. Following, fundamental stochastic equations, namely
the Chapman-Kolmogorov and Master equation are derived. Finally, based
on the reference on this subject by Prinz et al. [34], it is shown how this can
be applied to biomolecules in order to study the conformation dynamics.

2.3.1 Stochastic process

Definition

Given an experiment of outcome ω ∈ Ω, where Ω is the set of all possible
outcomes. A function ξ(ω, t) can be assigned to every outcome ω. In physical
systems t is referred to as time with t ∈ R0+. The family of all functions
ξ(ω, t) is called a stochastic process. The process is a function of two vari-
ables, ω, t. Such a process can be regarded in two different ways, either by
fixing ω or the time t. In the first case we obtain ξ(ω, t) = ξ

ω
(t), which is a

function of time and called a realization or sample function. By fixing t we
get ξ(ω, t) = ξt(ω). This is a function of a random variable depending upon
the time.

Now we can introduce some necessary formal definitions that allow us to
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deal with stochastic processes. The distribution function is defined by

P (x; t) = W{ξ(t) < x}. (23)

We note a state of the system by x ∈ Rn, because a physical process
can usually be described by a vector that describes the state of our system
completely. In the case of a protein this could be a vector of positions and
momenta of each atom. The distribution functions describes the probability
of the event {ξ(t) < x} that consists of all outcomes such that ξt(ω) < x.
Using the protein as an example again we could think of a set of structures
that are similar to a reference structure with respect to some metric and
a threshold. We also define the probability density corresponding to this
distribution

p(x; t) =
∂W (x; t)

∂x
. (24)

If we consider several outcomes of an experiment we need a joint proba-
bility distribution

P (x,y; t, t+ τ) = W{ξ(t) < x; ξ(t+ τ) < y} (25)

with the analogous probability density

p(x,y; t, t+ τ) =
∂
2
W (x,y; t, t+ τ)

∂2x
. (26)

In the same way higher joint probability distributions and densities can
be defined. An important quantity regarding stochastic processes is the con-
ditional probability density, that is defined by

p(y, t+ τ |x, t) =
p(x,y; t, t+ τ)

p(x, t)
. (27)

The conditional probability expresses the probability of being in state y

at a later time t + τ , given we were in state x at an earlier time t. Using
a straightforward rearrangement we can also express the joint probability
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density in terms of a conditional probability by

p(x,y; t, t+ τ) = p(y, t+ τ |x, t) · p(x, t). (28)

While the above concepts are shown for two realizations the extension to
n realizations straightforward.

In real physical systems we deal with many random variables or numerous
realizations. That is, we usually measure moments of a stochastic process.
The mean of a stochastic process is defined as follows

µ(t) = �ξ(t)� =

ˆ ∞

−∞
xp(x, t)dx. (29)

The correlation of two realizations is defined as

B(t, t+ τ) = �ξ(t), ξ(t+∆t)� =

ˆ ∞

−∞

ˆ ∞

−∞
xyp(x,y; t, t+ τ)dxdy, (30)

and the covariance as

C(t, t+ τ) = �{ξ(t)−µ(t)} · {ξ(t+ τ)−µ(t+ τ)}� = ��ξ(t), ξ(t+ τ)��. (31)

Stationary and Ergodic theorem

A stochastic process is called stationary if all possible distribution functions
defining ξ(t) remain unchanged for shifts in time

P (x1, . . . ,xn; t1 + τ, . . . , tn + τ) = P (x1, . . . ,xn; t1, . . . , tn). (32)

This statement leads for instance in a one dimensional distribution to
P (x, t) = P (x), a complete time independent distribution and in the two
dimensional case to a distribution that depends on the time difference only.
One important property of stationary stochastic processes is the Ergodic
Theorem. The theorem connects the mathematical averages defined in the
previous section with the real physical measurements. The theorem states
that for a stationary stochastic process the time average equals the average
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over all realizations
�ξ(t)� = lim

T→∞

1

T

ˆ T

0

ξ(t)dt, (33)

and
�ξ(t)ξ(t+ τ� = lim

T→∞

1

T

ˆ T

0

ξ(t)ξ(t+ τ)dt. (34)

The great importance of this theorem can is backed up by the fact that
physical measurements are usually taken as time averages.

2.3.2 Markov process

Assume an increasing time ordering for the stochastic process by t1 < t2 <

· · · < tn. We can identify several characteristic processes. The purely ran-
dom process is characterized by the fact that subsequent values of ξ(t) are
statistically independent

p(x1, . . . ,xn; t1, . . . , tn) = p(x1; t1) · · · · · p(xn; tn). (35)

This process is completely separable and all information is carried by the
first order density.

If the conditional probability density has the property

p(xn, tn|x1, . . . ,xn−1; t1, . . . , tn−1) = p(xn, tn|xn−1, tn−1) (36)

the stochastic process is called Markov process. The conditional proba-
bility density at time tn given the value at xn−1 at time tn−1 is not affected
by values at earlier times. This is why the Markov process is often described
as memoryless. A Markov process is thus determined by the two functions
p(x1, t1) and p(x2, t2|x1,t1) because the whole hierarchy can be constructed
from them

p(x1,x2,x3; t1, t2, t3) = p(x3, t3|x1,x2; t1, t2) · p(x2, t2|x1, t1) · p(x1; t1) (37)

= p(x3, t3|x2, t2) · p(x2, t2|x1, t1) · p(x1, t1). (38)

This makes the Markov process manageable and very important for the anal-
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ysis of stochastic processes in physical systems.

2.3.3 Chapman-Kolmogorov equation

In order to derive the Chapman-Kolmogorov equation, we start by noting
that we can obtain a joint probability density of less variables by integrating
over some variables, e.g.

p(x1,x3) =

ˆ ∞

−∞

ˆ ∞

−∞
p(x1,x2,x3,x4)dx2dx4. (39)

Now we turn to a Markov process, which is fully determined by p(x1; t1)

and p(x2; t2|x1; t1). These two functions describe completely a Markov pro-
cess, however have to obey two conditions. The first one is

p(x1,x2; t1, t2) = p(x2; t2|x1; t1) · p(x1; t1), (40)

where p(x2; t2|x1; t1) is called the transition probability, since it describes
the probability to be at state x2 at t2 if it was at state x1 at time t1. By
integrating over x1 we obtain

p(x2; t2) =

ˆ ∞

−∞
p(x2; t2|x1, t1) · p(x1; t1)dx1. (41)

The second condition we obtain by using Eqs. (38,40) which leads to

p(x3; t3|x1; t1) =

ˆ ∞

−∞
p(x3; t3|x2, t2) · p(x2; t2|x1; t1)dx2. (42)

This equation is called the Chapman-Kolmogorov equation. A process
that obeys these two conditions in Eqs. (41, 42) is markovian.

2.3.4 Master equation

The Chapman Kolmogorov equation allows us to build up the transition
probabilities iteratively at all times, if we know the transition probabilities
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at small times. For small times the transition probability can be written as

p(x|z, τ �) = (1− a0τ
�)δ(x− z) + τ

�
w(x|z) + σ(τ �) (43)

where τ
� is a small time step, w(x|z) is the transition probability from

z → x and a0(z) =
´∞
−∞ w(x|z)dx. By substituting this approximation into

the Chapman Kolmogorov equation we obtain

p(z|x, τ + τ
�) = (1− a0(z)p(z|x, τ) + τ

�
ˆ ∞

−∞
w(z|y)p(y|x, τ)dy. (44)

Some simple transformations lead to

∂

∂τ
p(z|x, τ) =

ˆ ∞

−∞
[w(z|y)p(y|x, τ)− w(y|z)p(z|x, τ)]dy. (45)

This is called the Master equation. For discrete systems the integral
becomes a sum:

d

dt
pn(t) =

�

m

[wnmpm(t)− wmnpn(t)]. (46)

This equation describes the gain loss in probability of all states noted by
n. The change of all probabilities of states n is determined by all transitions
into state n from all other states m (gain) and by all transitions out of state
n into all other states m (loss). This equation allows us to fully describe
the time evolution of a Markov process, even by knowing only transition
probabilities at small time scales.

In most cases a process can be described in discrete states. The Master
equation can be written in matrix notation for continuous time. We start
with

∂

∂t
pn =

�

n�

wnn�pn� − wn�npn, (47)

where pn ∈ Rn is the state vector that describes the probability to be in
state n and wnn� is the transition probability. By introducing W = wnn� −

26



2 METHODS 2.3 Mathematical description

δ (
�

n�� wn��n) we end up with

∂

∂t
pn = W · pn. (48)

Thus the time evolution can be written as

p(t) = Wt
p(0) (49)

and the steady state distribution p
s can be obtained from the correspond-

ing eigenvector to the eigenvalue λ = 1. The existence of a stationary dis-
tribution is guaranteed for a irreducible matrix by the Perron Frobenius
theorem.

Another very important condition for closed, isolated and finite physical
systems under certain restrictions is the condition of detailed balance. This
condition can be written as

wnn�p
s
n� = wn�np

s
n (50)

where wnn� , wn�n are the transition probabilities and p
s
n� , p

s
n are the sta-

tionary probabilities, respectively. This condition guarantees the time re-
versibility of a Markov process and says that no probability can be produced
or destroyed.

The Master equation for discrete state in Eq.(48) can be solved by ex-
pansion in Eigenfunctions, by

p(t) =
�

λ

cλφλe
−λt

, (51)

where λ are all possible eigenvalues and φλ the corresponding eigenvectors.
The coefficients can be determined by p(0) =

�
λ cλφλ. This solution shows

us that the time evolution at long time scales is determined by the largest
eigenvalues and they thus play a key role in analyzing Markov processes.
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2.3.5 Continuous dynamics

In the previous sections 2.3.3 - 2.3.4 general stochastical methods were de-
rived. Now we shall turn to the more specific application of conformation
dynamics to a biomolecule.

First, we consider a state space Ω that contains all dynamical variables
to describe the current state of the system which is still continuous in time.
Again Ω could contain all position and momenta of the atoms of molecules
under investigation, as well as surrounding bath particles. We define the
dynamical process that is considered by x(t) ∈ Ω. The state vector x(t) has
some important properties:

• x(t) is a Markov process as defined in Section 2.3.2. We write the
transition probability as

p(x,y; τ)dy = P [x(t+ τ) ∈ dy|x(t) = x], (52)

where x,y ∈ Ω, τ ∈ R0
+. This function describes the probability that

the system is at state x at time t and is in an infinitesimal region dy

around x at point y at time t+ τ .

• For a subset A ⊂ Ω the transition probability is defined as

p(x, A; τ) = P [x(t+ τ) ∈ A|x(t) = x] =

ˆ
y∈A

dyp(x,y; τ). (53)

• x(t) is ergodic, meaning that our state space Ω does not have dynami-
cally disconnected subsets. With t → ∞ we are able to visit all states
infinitely often. The stationary distribution in equilibrium is given by
µ(x) ∈ Ω. For molecular dynamics at constant temperature T the
stationary density is a function of T :

µ(x) = Z(β)−1
exp(−β)H(x)) (54)

with the Hamiltonian H(x) and β = 1/kBT , the Boltzmann constant
kB , the thermal energy kBT as well as the partition function Z(β) =
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´
exp(−βH(x))dx .

• x(t) is time reversible. As defined in Sec. 2.3.4 that is x(t) fulfills the
detailed balance condition

p(x,y; τ)µ(x) = p(y,x; τ)µ(y). (55)

These conditions are necessary to use the mathematical methods described
above and define the system in a physical reasonable sense.

2.3.6 Transfer operator

We consider an ensemble of molecular systems at time t described by the
probability density pt(x). After the time interval τ the probability density
has changed accordingly to the transition probability density p(x,y; τ). The
system has thus evolved or relaxed towards the equilibrium distribution,
which can be described by the action of a continuous operator

pt+τ (y) = Q(τ) ◦ pt(y) =

ˆ
x∈Ω

dxp(x,y; τ)pt(x). (56)

An equivalent form of this equation can be obtained by using the transfer
operator, which is defined as

ut+τ (y) = T (τ) ◦ ut(x) =
1

µ(y)

ˆ
x∈Ω

dxp(x,y; τ)µ(x)ut(x). (57)

The functions ut(x) are connected to the probability densities by

pt(x) = µ(x)ut(x). (58)

Both operators Q(τ) and T (τ) fulfill the Chapman-Kolmogorov equation
(Eq. 42) expressed by

pt+kτ (x) = [Q(τ)]k ◦ pt(x), (59)

ut+kτ (x) = [T (τ)]k ◦ ut(x), (60)
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where [T (τ)]k is the k-fold application of the operator. We note φi and λi

as the eigenvectors and the corresponding eigenvalues from the operator Q(τ)

and as ψi and λi the eigenvectors and eigenvalues of T (τ). The operators
can then be written as Q(τ) ◦ φi(x) = λiφi and T (τ) ◦ ψi(x) = λiψi. By the
condition of detailed balance the dynamics are reversible and thus all λi are
real and −1 < λi < 1 and the eigenvectors of both operator are connected by
φi(x) = µ(x)ψi(x). By the condition of detailed balance the existence of one
eigenvalue λ = 1 is guaranteed. The corresponding eigenvector represents
the stationary distribution of the operator.

By the decomposition in eigenvalues and eigenvalues we obtain a subset
of slow processes and one of the remaining fast processes. The decomposition
can be written as

ut+kτ (x) = Tslow(kτ) ◦ ut(x) + Tfast(kτ) ◦ ut(x) (61)

=
m�

i=1

λ
k
i �ut,φi�ψi(x) + Tfast(kτ) ◦ ut(x) (62)

=
m�

i=1

λ
k
i �ut,ψi�µψi(x) + Tfast(kτ) ◦ ut(x). (63)

In the above equation λi are the eigenvalues of Tslow(τ) and ψi, φi the
corresponding left and right eigenvectors, respectively. By �·� we denote the
normal scalar product and �·�µ denotes the weighted scalar product defined by
�f, g�µ =

´
µ(x)f(x)g(x)dx. The physical interpretation of the above equa-

tions is that the slow dynamics that are dominant in the system are describe
by the largest eigenvalues λi, i = 1, ...,m and the corresponding eigenvec-
tors ψi,φi. Each λi corresponds to a physical process with a timescale, that
indicates how fast this process equilibrating. This can be described by the
implied timescale that is defined as

ti = −
τ

lnλi
. (64)
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By using this definition we can write Eq. 63 as

ut+kτ (x) = 1 +
m�

i=2

exp

�
−
kτ

t

�
�ut,ψi�µψi(x) + Tfast(kτ) ◦ ut(x). (65)

This formulation can now be used to analyze data that is obtained from
simulation.

2.3.7 Discretization

When looking at the amounts of data generated by molecular dynamics sim-
ulation often consisting of hundreds of thousands atoms each with their po-
sitions and momenta at each time step, the need for a simplified model in
order to make it human understandable becomes obvious. A first step in this
simplification is a conversion of space-continuous (limited only by numerical
precision) trajectories to a discrete set of states, called microstates. The as-
signment of each frame of the trajectory to such a microstate if often solely
based on the atom positions of the molecules at interest, thus disregarding
velocities as well as bath molecules. While the full description of the system
markovian by construction, disregarding information such as velocity will
certainly affect the markovianty of our model. First we want to introduce
the discretization of the model.

We start by discretizing the state space Ω into n sets. These sets are
described by S = {S1, . . . , Sn} partitioning the state space by

�n
i=1 Si = Ω

without overlap Si ∩ Sj = ∅, ∀i �= j. We define functions {v1(x), . . . , vn(x)}

with vi(x) ≥ 0, ∀x ∈ Ω, that measure the similarity of points x to each of
the n sets. The probability of x belonging to set i is

χi(x) =
vi(x)�n
j=1 vj(x)

. (66)

Here we will use a crisp discretization by using simple step functions

vi(x) = χi(x) =





1 x ∈ Si

0 x /∈ Si

. (67)
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The stationary distribution πi to be in set i is then given as

πi =

ˆ
x∈Si

dxµ(x) (68)

and the local stationary distribution µi(x) in set i is

µi(x) =






µ(x)
πi

x ∈ Si

0 x /∈ Si

. (69)

2.3.8 Transition matrix

The discrete analogon to our transfer operator T (τ) as described in Sec. 2.3.6
can now be approximated via:

Tij(τ) = (χi · T (τ) ◦ χj). (70)

A element Tij(τ) can physically be interpreted as the conditional or trans-
fer probability that the system is in state j at time t + τ given that it was
in state i at time t. Using the definition of the conditional probability from
Eq. 27, we can express the transition matrix as:

Tij(τ) = P [x(t+ τ) ∈ Si|x(t) ∈ Si] (71)

=
P [x(t+ τ) ∈ Si ∩ x(t) ∈ Si]

P [x(t) ∈ Si]
(72)

=

´
x∈Si

dxµi(x)p(x, Si, τ)´
x∈Si

dxµi(x)
. (73)

Note that we only need the local equilibrium distribution µi(x) and not
the global distribution µ(x) what is very important from a practical point
of view. The transition matrix can be obtained by independent simulation
runs but we can construct the transition matrix from each subset using the
equations above.

This mathematical framework established here will be used in Sec. 3.2
in order to build a Markov state model of the conformation dynamics of a
peptide.
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Now we can show the relation between the transition matrix and the rate
matrix as used in Eq. 48. By writing Eq. 49 as

dpi(t)

d(t)
= p

T (t)W (74)

we can write the transition matrix as

T (τ) = exp(τW). (75)

By eigendecomposition of this equation we obtain finally

[ψ1, . . . ,ψn]diag{λ1, . . . ,λn}[ψ1, . . . ,ψn]
−1 = (76)

[ψ1, . . . ,ψn]diag{exp(τγ1), . . . , exp(τγn)}[ψ1, . . . ,ψn]
−1 (77)

The γi are the eigenvalues of W and have the physical meaning of rates
and are equivalent to the inverse time scales t

−1
i = −γi and we get the

relation exp(τ t−1
i ) = λi(τ) what leads to the form of the implied time scales,

see Eq. 64. By the eigenvalues we can thus identify the different timescales
underlying the system. The first m eigenvalues that are close to 1 represent
the slowest processes that dominate the system. Of special interest is the
second largest eigenvalue that generates the slowest relaxation time t2. This
value is the worst case of equilibration. If one wants to take an ensemble
average of an observable �A� out of a simulation one has to simulate the
trajectory many times t2 in order to get good estimates of �A�.

2.3.9 Perron cluster cluster analysis

Biomolecules often show to have long-lived, also called metastable states.
Identification and extraction of those metastable states based on the Markov
model has recently been addressed by Deuflhard et al. [8] with a method
called Robust Perron Cluster Cluster Analysis.

We assume that our transition matrix is a stochastic matrix. The Perron
Frobenius theorem states that for such a matrix an eigenvalue λ1 = 1 that
is simple and dominant, i.e. |λi| < 1 for all other eigenvalues, exists. This
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dominant eigenvalue is called the Perron root. The corresponding left eigen-
vector π1 represents the stationary distribution and the corresponding right
eigenvector is e1 = (1, ..., 1)T .

Uncoupled Markov chains We now assume that the underlying Markov
chain consists of k uncoupled aggregates or clusters. This means that there
are no transitions between these clusters. One can prove that such a matrix
can be transformed by decomposition into block diagonal form

T =





D11 0 . . . 0
... D22 . . . 0

0 0
. . . 0

0 0 . . . Dkk




, (78)

where each block Dii is a square stochastic matrix. Due to the Perron Frobe-
nius theorem, such a matrix has an k-fold eigenvalue λ = 1. Each block has
a corresponding right eigenvector ei = (1, . . . , 1)T with length dim(Dii). The
eigenvectors of matrix T corresponding to λ = 1 is spanned by the vectors

χAi = (0, . . . , 0, eTi , 0, . . . , 0)
T
, i = 1, . . . , k. (79)

The eigenvectors can be interpreted as characteristic functions of the uncou-
pled aggregates or clusters. Any basis {Xi}i=1,...,k of the eigenspace can be
written as linear combination of the eigenvectors

Xi =
k�

j=1

αijχAi , i = 1, . . . , k (80)

where αij ∈ R are the coefficients. With this expression we can analyze
the aggregates by a collection of states with a common sign structure.

Nearly uncoupled Markov chains The transition matrix generated from
simulations should never be fully uncoupled. When this is the case, we can
clearly assume that the trajectory is not ergodic, as there are states that
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cannot be reached from other states. In order to perform meaningful analysis,
we then either perform more simulations or adjust the discretization.

Using a coupled transition matrix, our aim is to reorder the elements so
that we have aggregates Dii with high transition probabilities within these
sets, whereas |Eij| ≤ O(�) are small transitions probabilities between these
blocks.

T = D + E =





D11 E12 . . . E1k

... D22 . . . E2k

Ei1 Ei2
. . . ...

Ek1 Ek2 . . . Dkk




. (81)

When � is sufficiently small, the eigenvalues are continuous in � and the
spectrum of T can be divided in three parts. First the Perron root λ = 1,
second a cluster of k−1 eigenvalues λ2(�), ...,λk(�) that approach 1 for � → 0

and the remaining spectrum which is smaller than 1 for � → 0. The Perron
Cluster Cluster Analysis (PCCA) algorithm then works as follows:

• Compute all eigenvalues of the transition matrix

• Find the cluster of eigenvalues close to the Perron eigenvalue λ = 1

• Analyze the sign structure of the corresponding right eigenvectors and
assign each microstate according to the signs of these eigenvectors

This method has shown to be numerically unstable when applied to real
data. That is why an improvement to this method known as Robust Perron
Cluster Cluster Analysis (PCCA+) was developed. PCCA+ performs the
assignment of microstates to cluster not based on the sign structure, but
by performing an optimization in such a way that the metastability of the
system is minimized. This means that it finds a decomposition into subsets
that minimizes transitions between these sets.

2.3.10 Transition-Path Theory (TPT)

Understanding how a molecules transitions between different metastable states
is one of the major challenges in protein folding today. This can be addressed
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with a method called Transition-Path Theory (TPT) [31]. Given two sets of
microstates, a base set A, and a target set B we want to know the probability
distribution of the trajectories leaving set A and entering set B.

First we define a forward-committor probability q
+
i which tells us, being

in a microstate i, what is the probability that the system will reach set B
rather than A. By definition we set

q
+
i =





0 i ∈ A

1 i ∈ B

. (82)

To compute q
+
i for all intermediate states not part of A or B, the following

system of equations has to be solved:

− q
+
i +

�

k∈I

Tikq
+
k = −

�

k∈B

Tik. (83)

The backward-committor q
−
i is the probability of when being at state i,

gives us the probability of having been in set A before, as opposed to B.
For a system in equilibrium this simply becomes q

−
i = 1 − q

+
i . Using both

committors, we can now define the effective flux fij as probability flux along
a edge i,j contributing to the transition A→ B as:

fij = πiq
−
i Tijq

+
j . (84)

Because the effective flux may contain unnecessary detours fij as well as fji

both will be positive for a pair i,j in the intermediate set of states, it is
reasonable to consider only the net flux f

+
ij given by

f
+
ij = max{0, fij − fji}. (85)

Using these equations, transition pathways between different sets can be
computed.
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3 Results

The following section will describe the simulations and analysis conducted on
the systems consisting of a MHC-I protein of class B27 as well as a peptide.
To assist the work of matching the electron density maps of these MHC-
I-bound peptides, simulations of 100 ns length were performed. The first
part will discuss these simulations and analyze them using standard MD
techniques. Furthermore, using the data of a long 2 µs simulation of the
pB27 peptide in water, a MSM could be constructed and many important
statistical properties could be derived. Lastly, I will discuss the attempt to
build a MSM of the MHC-I-bound pB27 peptide. Unfortunately it turned out
that the simulations performed during the time of this study were insufficient
to accomplish that task. Nevertheless, an outlook and estimation on how that
might be accomplished in the future will be given.

3.1 100 ns simulations of MHC complexes

3.1.1 Systems

The simulated systems are two human MHC class I subtypes (HLA-B*2704
and HLA-B*2705) complexed with two different peptides (pB27 and pCP).
pB27 and pCP are peptides built of 12 and 11 amino acids respectively.
In short amino acid sequence notation they can be written as RRKSSG-
GKGGSY (pB27) and RRFKEGGRGGK (pCP). While HLA-B*2704 and
HLA-B*2705 differ only in very few amino acids (see Table 1), X-ray crys-
tallography of both HLAs complexed with the same pB27 was performed
with varying resolution: While two peptide conformations could be fully re-
solved in HLA-B*2705:pB27, only few amino acids of pB27 could be resolved
in HLA-B*2704. Crystallography as well as simulation has previously been
performed on similar systems [28, 27, 43, 33], but the three combinations of
MHC molecules and peptides has not been simulated, yet.

It should be noted that the provided PDB files of HLA-B*2705 complexed
with pB27 did not contain the terminal Methionine residue, which is in con-
trast present in B*2705:pCP (Met277). Unfortunately, this difference was
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chain α2 α2 α3
residue id 77 152 211
B*2704 Ser Glu Gly
B*2705 Asp Val Ala

Table 1: Difference between HLA-B*2704 and HLA-B*2705

noticed only recently. However, as the residue is in far distance from the
binding groove, we expect it not to affect the peptide dynamics.

3.1.2 Molecular Simulations

As start structures we received different PDB files for HLA-B*2705:pB27 (in
two peptide conformations A and B, corresponding to chain C and D in the
given PDB file pB27_oct_6_refmac13.pdb) and HLA-B*2705:pCP. As for
HLA-B*2704:pB27, where the peptide structure could not be reconstructed,
we used the peptide from HLA-B*2705:pB27 in conformation A and aligned
it in the binding groove.

All simulation steps were performed using gromacs 4.0.5 [17]. A simi-
lar setup as described by Pöhlmann et al. [33] who previously simulated
HLA*B27 subtypes using gromacs. We set gromacs to use the OPLS all-
atom force field [22]. First, the system was prepared by running a short
250 step vacuum energy minimization using the steepest descent integrator.
Simulations where then performed in a periodic box sized 8.9 x 8.3 x 10.0
nm and solvated using TIP4P [21] water molecules, corresponding to a wa-
ter shell thickness of at least 1,4 nm around the protein. The whole system
consisted of around 97,000 atoms. To compensate the net negative charge
of the MHC molecules Na+- and Cl−-Ions were added. The solvated system
was also relaxed using a steepest descent integrator with 250 steps, followed
by a 2500-step position restrained simulation that fixed all bonds and allows
the water molecules align without clashes. To allow for a integration step of
2 fs we applied the SHAKE algorithm to all hydrogen bonds. Electrostatic
interactions were calculated explicitly within a cut-off radius of 1 nm and
using the Particle Mesh Ewald Method [6] for long-range interactions. Tem-
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perature coupling at 310 K was provided by the Langevin thermostat [7] by
using the stochastic dynamics (SD) integrator with a friction constant of 0 u

ps

and setting taut to 2 ps. The simulations were carried out on four nodes of
the biocomputing cluster in parallel, each node consisting of eight Intel Xeon
CPU cores clocked at 2.33 GHz. 100 ns simulations where completed for all
systems, except HLA-B*2705:pCP, for which 71 ns are currently completed.
For a detailed explanation of all steps executed and the reference of gromacs
parameter files, see Appendix A.

3.1.3 Visual analysis

A first visual analysis carried out using VMD showed very different outcomes
for the simulated systems. While the N-terminus (Argenine residue id 376) of
pB27 remains in place simulated both in HLA-B*2704 and HLA-B*2705, C-
terminus (Tyrosine) remains only in place in HLA-B*2704 and is much more
flexible in HLA-B*2705 (see Fig. (8)). While it still remains somewhat in
place in the simulation started from conformation A it is almost completely
flexible in the simulation started from conformation B. It appears that pB27
in B*2704 is stabilized by a H-bond at residue id 152.

3.1.4 Flexibility analysis

Minimal Root Mean Square Deviation

Going beyond the visual analysis it is necessary to back this information up
using a metric. When comparing two conformations of the same molecule
the minimal Root Mean Square Deviation (minimal RMSD) is the most
widely accepted distance measure. Given two structures x and y of the
same molecule consisting of N atoms, assuming that xi and yi represent the
position vector of the ith atom, the RMSD computes as follows

drmsd =

�
1

N

�
|xi − yi|

2. (86)

To account for the translation and rotation invariance of the complete molecule,
the minimal RMSD is computed by aligning both structures in a way that
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Figure 8: Backbone conformations visualized in MHC complex of HLA-
B*2705:pB27 (orange: conformation A, green: conformation B) HLA-
B*2704:pB27 and HLA-B*2705:pCP (from left to right). These images were
generated by showing the backbone of every 500th frame in VMD and show
the much greater flexibility of B*2705:pB27 compared to the two other sys-
tems.

this value becomes minimal.

Regular Spatial Clustering

We used EMMA [13] to convert the continuous simulation data into a tra-
jectory of discrete states. We employed the regular spatial algorithm using
minimal RMSD metric on the backbone atoms with a minimum distance
dmin = 1 Å. The algorithm works as follows:

• Use the coordinates in the first frame and assign it as the first element
of a list of cluster centers

• Compute minimum RMSD distance from coordinates of following frames
to all cluster centers

• if distance is larger dmin create a new cluster center add it to the list

• After all cluster centers have been found, assign each frame to its closest
cluster center

Table 2 outlines the number of clusters found for each simulation, as ex-
pected the most clusters occur in B*2705:pB27, indicating a high backbone
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system # clusters
B*2705:pB27 conformation A 240
B*2705:pB27 conformation B 298

B*2704:pB27 26
B*2705:pCP 13

Table 2: Regular Spacial Clustering

flexibility. In B*2704:pB27 and B*2705:pCP less clusters are found, suggest-
ing stronger restrained peptides. The number of unique clusters discovered
with progressing simulation time are shown in Fig. 9.

Peptide backbone flexibility

To analyze the peptides backbone flexibility, we computed average peptide
backbone root mean square deviation (RMSD) distances to a reference struc-
ture for simulation snapshots taken in nanosecond intervals. The results are
depicted in Fig. 10. As reference structure backbone coordinates of the
peptide after a 1 ns equilibration phase were used.

The RMSD plot shows that HLA-B*2705:pB27 is more flexible when
starting the simulations from conformation B than it is when starting from
conformation A and B*2705:pCP, while B*2704:pB27 as well as B*2705:pCP
are both less flexible. These results are in contrast to X-ray crystallography
experiments where B*2704:pB27 could not be reconstructed. Fig. 11 shows
the average root mean square fluctuation per amino acid during the 100
ns simulations. In B*2705:pB27 starting from conformation B especially
the Tyorsine at the C-terminus appears to be very flexible, with an average
RMSD of over 4 Å. On the contrary, B*2705:pCP and B*2704:pB27 do not
exhibit RMS fluctuations greater than 1 Å.

3.1.5 Highly populated structures

In order to examine which peptide conformations occur in the simulation
trajectories, they were again clustered spatially. For this purpose the full
trajectories were thinned out by considering only structures at every 100th
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Figure 9: Number of unique clusters over time as given by regular spatial
clustering. While B*2704:pB27 or B*2705:pCP look saturated after about
80 and 13 ns respectively, for B*2705:pB27 there still new unique clusters at
the very end of the simulation.
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(a) Backbone RMSD

(b) pB27 (RRKSSGGKGGSY) (c) pCP (RRFKEGGRGGK)

Figure 10: Peptide backbone RMSD and the peptides. The peptides amino
acid colors correspond to the line of the same color in the RMSD plot. It
is obvious that B*2705:pB27 exhibits a much higher flexibility than both
B*2704:pB27 and B*2705:pCP.
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Figure 11: Average RMSD per amino acid for all three simulated systems.
Note how the C-terminus of B*2705:pB27 in conformation B (12 Tyrosine)
has the largest RMSD, supporting the visual analysis that it can move freely
in this simulation.
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ps. Conformation A and B trajectories of B*2705:pB27 were concatenated
beforehand. The minimal distance in the regular spatial clustering algo-
rithm was set to dmin = 1.8 Å for all systems under consideration. For
B*2705:pCP and B*2704:pB27 this procedure resulted in a single cluster.
For B*2705:pB27 we selected the five highest populated clusters of the 32
found. The total number of structures in these five clusters corresponds to
51% of all structures in the thinned trajectory. These backbones of all three
systems are shown in Fig. 12.
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(a) B*2705:pB27 cluster 1 (b) B*2705:pB27 cluster 2

(c) B*2705:pB27 cluster 3 (d) B*2705:pB27 cluster 4

(e) B*2705:pB27 cluster 5 (f) B*2704:pB27

(g) B*2705:pCP

Figure 12: Clustered backbones of simulated systems
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3.2 Conformation dynamics of pB27 in water

3.2.1 Simulation parameters and data

In order to construct a Markov State Model (MSM) from simulation data,
a simulation of 2 µs length was started of the pB27 peptide in water. The
solvated system consisted of around 130,000 atoms. This simulation took
about 120 days to complete, using eight cores of one of the nodes at our
CMB cluster. The starting structure was the peptide extracted from the
B*2705:pB27 PDB file. Except for the smaller periodic box size, the same
parameters as in Sec. 3.1 were used. The following analysis was mostly
carried out using the EMMA software package [13].

3.2.2 Discretization

When converting the trajectory data (taken at every ps) into discrete states
the aim is to find a discretization that is just sufficiently fine in order to avoid
the assignment of distinct states into the same cluster, which would introduce
memory to our system. If discretization becomes too fine, leaving only very
few visits of each state, the error grows very large. The computational cost
of further analysis also grows with the number of clusters. The first 10 ns
were cut off from the beginning of the trajectory to allow the system to
equilibrate. Analysis was based on heavy atoms only, meaning the H-atoms
were removed from the trajectory.

It was found that regular spatial clustering combined with a distance
parameter of 3 Å computed using the minimal RMSD metric produced best
results. This resulted in a trajectory made up of 1348 discrete microstates.
This discrete trajectory was therefore used in all further analysis.

3.2.3 Count and transition matrix estimation

Using the discretized trajectory at time resolution ∆t (in our case 1 ps),
the next step is to estimate a transition matrix T̂ (τ). The method used
here, called window count, estimates a count matrix by sampling the discrete
trajectory using a window of width τ and shifting it along the trajectory:
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c
0
ij(τ) = c

0
ij(l∆t) =

N−l�

k=0

χi(xk)χj(xk+l). (87)

Here χi is a step function with xk being microstate the found in the
discrete trajectory at time k∆t:

χi(xk) =





1 xk = i

0 otherwise
. (88)

Here we are shifting a count window of width τ at intervals ∆t along the
trajectory and observe if a transition i → j occurs. This means that c

0
ij is

the number of times the trajectory was observed in state i at time t and in
state j at time t+ τ , summed over all times t. A estimation of the transition
matrix T̂ is given by the estimator

T̂ij =
c
0
ij

c
0
i

. (89)

Here, c0i denotes the row sums of our count matrix

c
0
i = c

0
i (τ) :=

n�

k=1

c
0
ik, (90)

which is the number or times the trajectory was in state i. It can be
shown that this estimator leads to the maximum probability matrix T̂ =

arg max p(T |C0) [34]. This estimator does however not necessarily fulfill the
detailed balance condition πiT̂ij = πjT̂ji even if the underlying dynamics is
in equilibrium [2]. When we can assume that we have achieved equilibrium
sampling, a simple way to ensure the detailed balance condition is met is
to add reverse counts as they would occur when reversing the trajectory, by
adding the transposition of the count matrix

Creversible = Cforward + C
T
forward. (91)

For simulations not in equilibrium this will lead to strong bias of our
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model. However, it is possible to derive an maximum probability optimal
reversible transition matrix from a non-symmetrical count matrix. Because
no closed-form solution exists this is done by using a constrained iterative
algorithm that is described in detail in the work of Prinz et al. [34].

3.2.4 Implied timescales

Since our discretization into microstates is solely based on the atom positions,
we want to know at what minimum lagtime τ our model can be assumed to
be markovian. Based on the eigenvalues of transition matrices computed for
different lagtimes and using on Eq. 64 we can plot the lagtime dependence of
the implied timescales. Markovianity can be assumed when these timescales
become constant. These implied timescale plots for regular spatial clustering
with the distance parameter of 3 Å. are shown in Fig. 13.

All three counting methods show a good convergence of the implied
timescales at a lag time of 5 to 8 ns. The method of forward counting seems
to estimate the real timescales of our system badly, while reversible counting,
as well as forward counting with the computation of the optimal reversible
transition matrix are consistent. All further analysis was thus carried out on
the optimal reversible calculated transition matrix based on forward counting
using a lagtime of 7 ns.

The slowest process in this model has a corresponding timescale of about
1 µs. While we did not expect the slowest process to be that slow, visual anal-
ysis of the trajectory confirmed that the peptide does indeed first contract
to a more compact structure and extract again once during the simulation,
at about 1 µs. Another test that can be carried in order to confirm the
timescales are not artificial (e.g. due to bad discretization) is the projec-
tion on the first right eigenvectors (see Fig. 14). The first eigenvector is
constant and the n + 1 right eigenvector corresponds to the nth slowest pro-
cess. It can be seen that the trajectory switches between different values of
the eigenvector (corresponding to different states) and relaxes there for some
time.
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3.2.5 Robust Perron Cluster Cluster Analysis (PCCA+)

In order to obtain a simple model that can be easily understood a classifica-
tion into long-lived, “metastable” states is desirable. Therefore the PCCA+
algorithm developed by Deuflhard et al. as explained in Sec was used. 2.3.9.
We chose to coarse-grain our model into 10 metastable sets. As this algorithm
is implemented in EMMA, it could be used directly.

The probability of being in a certain set A can be computed by using the
stationary probability π of the Markov model T̂ (τ) by

w
A
i =






πi�
j∈S πj

i ∈ A

0 i /∈ A

. (92)

Table 3 shows the PCCA+ sets with their probability and RMSD val-
ues. The probability is computed by summing up the stationary distribution
values of all microstates found in each set (Eq. 92). The average RMSD in
reference to the backbone complex structure is computed by averaging over
all RMSD values over each frame belonging to a set. For each microstate we
also computed an average RMSD per microstate. The table shows also the
minimum and maximum values of this computation per set. It can be seen,
that set #2 has the highest probability of 0,345. The set with the smallest
average RMSD, set #7, also has the smallest probability. This makes sense
since it the most extended structure which is very unstable due to the ab-
sence of a stabilizing secondary structure. For each set, we than extracted
100 random structures and visualized them using VMD. One representative
structure is shown for each set and the together with the conformational
flexibility of each set as indicated by the gray cloud in Fig. 15. Note how
the most probable sets 2, 8 and 6, which make up about 78% of the total
probability are stabilized by extensive secondary structures.

3.2.6 Chapman-Kolmogorov-Test

To validate our Markov model, it is essential to check if it is consistent with
the data in the trajectory. Given a transition matrix T̂ (τ) estimated from
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set# probability avg rmsd [Å] min rmsd [Å] max rmsd [Å]
0 0.020 5.37 3.39 5.87
1 0.019 5.32 3.22 5.92
2 0.345 5.37 2.62 7.40
3 0.036 5.65 2.38 6.29
4 0.075 6.34 2.77 7.22
5 0.025 5.18 4.44 6.13
6 0.192 6.39 4.00 7.39
7 0.016 4.21 2.67 5.09
8 0.245 5.81 2.74 7.10
9 0.029 6.75 4.50 7.04

Table 3: Probability and backbone RMSD values for the 10 PCCA+ sets.

data at lag time τ and T̂ (kτ) being the transition matrix estimated from the
same data a longer lagtime kτ we can check how well the approximation

[T̂ (τ)]k ≈ T̂ (kτ) (93)

holds within the statistical error. Since the estimated transition matrix
can be error-prone, especially at states rarely visited, the test is best carried
out on each of metastable sets identified by PCCA+. Using w

A as the initial
probability vector for each set (Eq. 92), the probability of being at that set
at a later times kτ is given by:

pMD(A,A, kτ) =
�

i∈A

w
A
i pMD(i, A, kτ) (94)

where pMD(i, A, kτ) is the estimation from trajectory data of the stochastic
transition function Eq. (53):

pMD(i, A, kτ) =

�
j∈A c

0
ij(kτ)�n

j=1 c
0
ij(kτ)

(95)

where c
0
ij(kτ) is the number of transitions from state i to state j using a lag
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time of kτ . The same probability can be defined for our Markov model by:

pMSM(A,A, kτ) =
�

i∈A

[wA
T

k(τ)]ii. (96)

Using the Chapman-Kolmogorov property, the Markov model can then be
validated by checking how well the equality of

pMD(A,A, kτ) = pMSM(A,A, kτ) (97)

holds. Due to the statistical uncertainties of the transitions probabilities from
MD trajectories depending on the number of observed transitions between
states this equality (97) cannot be expected to hold exactly. The error of the
transition probabilities can therefore be computed as:

�(A,A; kτ) =

�
k
p(A,A, kτ)− [p(A,A, kτ)]2�

i∈A
�n

j=1 cij(kτ)
. (98)

This test was carried out on all three counting methods for which the implied
timescales were computed (count forward, count reversible, count forward op-
timal reversible). Unfortunately the Markov test worked surprisingly bad for
both reversible counting as well as forward counting with optimal reversible
transition matrix estimation. The way this test should be carried out with
respect to different counting methods is still subject of current research.
However, for the forward counting the Markov test mostly agreed within the
statistical errors on the trajectory data as depicted in Fig. 16.

3.2.7 Transition-Path Theory (TPT)

The method of Transition-Path Theory as explained in Sec. 2.3.10 was also
applied. This allows us to understand, using what pathways does our peptide
transition from its most probable microstate, to the one most similar to the
structure found in the complex.

The most probable microstate is the one with the highest corresponding
stationary distribution value was found in set 2. This defined set A, and this
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state was removed from set 2. Because we wanted to extract 100 random
representative structures for each set and the microstate with the smallest
backbone RMSD to the complex reference structure was only found in 55
frames, set B was made up of the two closest microstates. These were both
found in set 3. Again, these two microstates were removed from set 3. The
other PCCA sets remained unchanged. Using these sets we computed the
net flux on the transition matrix from the source set A to target set B using
Eq. 85. This net flux per microstate was then course grained on the sets.
This allowed us to visualize the transition paths and their fluxes as shown
in Fig 17. The thickness of the arrows corresponds to the net flux along the
pathways.
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Figure 17: Most important transition pathways for the pB27 peptide going
from the most probable microstate (set A) to the one most similar to the
complex structure (set B). The thickness of the arrows correspond to the
flux along each path.
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Figure 13: Implied Timescale plots of pB27 in water for three different count-
ing methods. The blue line corresponds to the slowest process found in our
system represented by the second eigenvalue. Accordingly the green, red,
cyan, purple and beige lines are timescales given by the eigenvalues number
3, 4, 5, 6 and 7. There seems to be a good agreement of the count re-
versible method with count forward optimal reversible, estimating very simi-
lar timescales. The method of counting forward only seems to underestimate
the real timescales of our system.
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Figure 14: Trajectory of pB27 in water projected on right eigenvectors #2-
#5. Switches between metastable states can be observed. The trajectory
then relaxes in such a metastable state, which can be seen because the pro-
jection takes an almost constant value for several nanoseconds. The thin large
peaks are an indication of recrossing, resulting from imperfect separation of
states.
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Figure 15: Visualization of the 10 PCCA+ sets sorted by their probability.
For each set one representative structure was manually selected and is visu-
alized by the secondary structure of its backbone. The grey lines show the
expansion by 100 randomly selected backbone structures from each set. Note
how the probability is related to the structure of the peptide. The existence
of a secondary structure clearly leads to a higher probability for a set. The
less compact or folded a the structures in a set are, the less probable they
become.

(a) set 2, p = 34,5% (b) set 8, p = 24,5 % (c) set 6, p = 19,2 %

(d) set 4, p = 7,5 % (e) set 3, p = 3,6% (f) set 9, p = 2.9 %

(g) set 5, p = 2,5 % (h) set 0, p = 2.0 % (i) set 1, p = 1,9 %

(j) set 7, p = 1,6%
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Figure 16: Markov Test for four PCCA+ Sets
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3.3 Conformation dynamics of HLA-B*2705:pB27

The following section will focus on the HLA-B*2705:pB27 for which the 100
ns simulations were discussed previously in section 3.1. The aim of this anal-
ysis is to be able to generate a MSM of the peptide bound in the complex and
compare its conformation dynamics to the case, were the peptide is solvated
in water. Because of the much larger system size of around 96,000 atoms
in the solvated complex compared to around 6,000 of the peptide in water,
the simulation is much more time-consuming. Simulating one nanosecond
took about 1,4 and 18 hours for the solvated peptide and the complex re-
spectively. Using the same hardware, the simulation one continuous 2 µs tra-
jectory would therefore take more than four years. It should also be noted
that simulation of equilibrium trajectories contains large amounts of data
where no new transitions between states occur, therefore consuming large
amounts of computing resources where no additional information is gained.
It is therefore evident, that a long equilibrium trajectory simulation is un-
feasible and another approach has to be taken. It has previously been shown
[37, 3, 31] that the long-time dynamics can be reconstructed from running
short simulations, that sample different parts of conformational space.

3.3.1 Generation of random starting conformations using Win-
dowMove

While it can sometimes be sufficient to start simulations from the same con-
formational structure using different initial velocities, simulation time can be
further reduced by starting out from distinct conformations. For generation
of these conformations, we used a program called WindowMove developed
by Frank Noé during his PhD thesis [30].

The program reads in a structure PDB file of heavy atoms and treats
them as solid spheres each with their van der Waals radius combined with the
bonding information. One then defines a window in which the program will
try to reposition the molecule. This is done by first by adjusting the backbone
of molecule, using random adjustments of the dihedral angles. The sidechains
are placed afterwards. The resulting conformation is only accepted when all
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Figure 18: Different pB27 backbone conformations as generated by Window-
Move

non-bonded atoms are further apart than the sum of their van der Waals
radii. To ensure that no two conformations are too similar, I extended the
program to reject all conformations that are not at least 60◦ apart considering
RMSD of dihedral angles from every previously accepted structure. Using
this method, 1000 conformations were generated of which 200 representatives
are shown in Fig. 18.

3.3.2 Simulation and discretization

Each of these 1000 random conformations was prepared using a steepest de-
cent energy minimization. This was not possible for all conformations, 125 of
them turned out to be unstable and crashed during this energy minimization
step. This can be due to overlapping atoms in conformations generated by
WindowMove that produce clashes. From the remaining 875 starting con-
formations we started simulations of 1 ns length, after preparing them by
adding periodic boundary conditions and solvent as explained in Sec. 3.1.
Because these trajectories would only allow to carry out the analysis using
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Table 4: simulated trajectories of HLA*B 2705:pB27

trajectory length number of trajectories
100 ns 2
3 ns 86
1 ns 875

very short lagtimes (50% of the data would be disregarded using a lagtime
of 0,5 ns), 86 trajectories of length 3 ns were also simulated. Using about
ten nodes of the biocomputing cluster, these short simulations took about
three months to complete. The total simulation time for the complex was
therefore 1,333 ns of simulations of length as depicted in Table 4.

In order to be able to compare the peptides dynamics when complexed
with the HLA to the unbound case described in Sec. 3.2, these trajecto-
ries were discretized using regular spatial clustering on heavy-atoms with an
minimum RMSD distance of 3 Å as well. As the peptides movement is much
more restricted, this resulted in 97 clusters.

3.3.3 Connectivity and the implications of random starting con-
formations

Because the simulation was started from conformations generated by Win-
dowMove we cannot safely assume that the simulations start out from equilib-
rium starting points. Therefore only forward counting was used to construct
a count matrix. We started to construct this count matrix using a lag time
of 1 ps. From there we tested the connectivity of the count matrix. This is
done by checking if there are any isolated sets in the count matrix from which
no transitions to other states are observed. This would lead to a degenerated
transition matrix with isolated substates, leading to infinitely long transition
times. It turned out that tree trajectories contained one microstate each that
where isolated from the rest of the simulations. Disregarding these trajec-
tories resulted in a fully connected count matrix for a lag time of up to 300
ps.

A transition matrix was then computed from this count matrix. Then we
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projected the trajectory on the first four right eigenvectors. When looking at
the projection in Fig. 19 and comparing it to the same projection performed
for the free pB27 peptide in Fig. 14 one can see that hardy any real state
changes can be observed. To the contrary, we can see many small peaks,
called recrossings, which result from an imperfect separation of states. This
is an indication that the state switches that we observe are artificial and that
not enough simulation data is available to perform meaningful analysis.

This assumption was confirmed when looking a the implied timescales in
Fig. 20. Note that the implied timescale for eigenvector #2 is not shown in
this plot, because its timescale was so large, reaching about 4 µs. Even with
the slowest process omitted, which probably comes from an almost degener-
ated transition matrix, with two sets between which only very few transitions
are observed, the implied timescale plots are clearly not converging within
the 0,5 ns. This is another strong indication that more and longer trajec-
tories are necessary since the short 1 ns trajectories cannot be analyzed at
larger lagtimes.

In conclusion we can say that meaningful analysis cannot be carried out
on this system using the trajectories currently available.
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Figure 19: Projection of the concatenated trajectories on the first four non-
constant right eigenvectors. The small peaks are a indication of recrossings,
which are no real state changes but resulting from imperfect separation of
states. The range of 620 to 720 ns corresponds to the 100 ns simulation
started from conformation B. Here the projection does change its value for
a longer time, but since this is an isolated trajectory, it is not a real state
change.
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Figure 20: Implied timescales of the right eigenvectors #3 to #7 correspond-
ing to the 2nd to 6th slowest process. The timescale of eigenvector #2 (the
slowest process) is omitted here because at reaching about 4 µs it was so
large that it would hide all other timescales.
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4 Discussion and Outlook

Based on the structural data provided from X-ray crystallography experi-
ments MD simulation was carried out on three HLA-B27 complexes as well
as one free peptide. For all three complexes (B*2705:pB27, B*2705:pCP
and B*2704:pB27) I was able to provide the crystallographers with repre-
sentations of important conformations. These structures will hopefully be
of assistance in resolving a larger amount of the yet unexplained electron
density.

For the pB27 peptide in water a really profound analysis based on Markov
state models (MSM) could be conducted. This included the identification of
ten metastable states, which could also be visualized. We were also able to
derive the stationary distribution and use our metastable sets to compute
transition pathways from the most probable microstates to the ones most
similar to the structure found in the complex. One thing that remains to
be fully understood are the implications of different counting methods and
estimation of transition matrices. Right now we cannot be sure as to why the
Chapman-Kolmogorov test carried out in order to validate the markovianitiy
of our model is only in agreement for the model generated from forward
counting. The simulation is currently being extended to 4 µs. This additional
data should allow for further refinement of the model, as well as a reduction
of the sampling error. In summary we have shown, using this peptide as
a test case, that Markov models can greatly assist us in understanding the
conformation dynamics of peptides and proteins.

Secondly, we shall look at the analysis of the B*2705:pB27 complex, which
was the main system under investigation. The results of these simulations
delivered unexpected results. The C-terminus of the pB27 peptide was much
more flexible than expected, leading to a very high configurational space. We
also identified several important conformations which we gave the crystallo-
graphers. The usage of these conformations should support the structure
detection of their crystallographic models, thus matching a higher percent-
age of the electron density. The pathological implications with respect to
the autoimmune diseases of this flexibility will also be studied by them, and
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hopefully deliver new insights. Despite having simulated over 1,300 ns, the
attempt to construct a MSM of the peptides dynamics when bound to the
complex was not successful, yet, mainly due to this high flexibility. Several
hints lead to the conclusion that we need more and longer simulations in
order to generate a valid Markov model of the system. First there is the fact
that when taking data from all trajectories into account the resulting Markov
model was uncoupled, resulting in sets of isolated microstates from which no
transitions to other sets could be observed. This is a clear violation of the er-
godic theorem. But even when excluding these isolated trajectories from the
analysis, the eigenvector projection as well as the implied timescales further
backed up the the need for longer simulations. The eigenvector projection
showed no clear division between metastable states and the timescales where
not converging using the maximum lagtime of 500 ps for which we could con-
struct them. As we have seen that the regular spatial discretization works
good for the peptide, it might impose a problem when looking at the peptide
bound by the MHC complex: movement of the peptide within the MHC’s
binding pocket would not lead to distinct states. This might make it nec-
essary to cluster in such a way that we first align the MHC complexes of
the different simulations and use an euclidean distance metric (without fur-
ther alignment) on the peptide afterwards. Running of simulations orders of
magnitudes longer could be achieved in the future using resources of the Fold-
ing@home project in the near future [26]. This is a project developed at the
Stanford university where simulations are distributed to users over the Inter-
net using their workstations or even PlayStation systems to run thousands of
simulations in parallel. Also, recent development to perform MD calculations
on graphic cards shows considerable speedup and looks very promising [41].
Furthermore, adaptive sampling techniques can help to further reduce the
total simulation time needed. This could include the usage of metadynamics
to sample the complete energy landscape of the bound peptide much quicker
[39, 40] as well as the start of new simulations guided by the current model.
For metadynamics this usually involves a modification of the potential in
order to drive the peptide towards conformational changes while new simu-
lations could be started from points where little or no states changes can yet
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be observed.
For the other two systems, B*2704:pB27 and B*2705:pCP, one concise

conformation was identified for each peptide. This should be of great help for
the crystallographic studies, especially for B*2704:pB27, where the peptide
could hardly be resolved at all. The sampling technique of WindowMove
could also be applied to both these systems and could lead to either the
discovery of new metastable states that were not covered by the current sim-
ulations or verify that both these peptides really are much more restrained
in the MHC’s binding groove than in the case of B*2705:pB27. The investi-
gation of these two systems played only a side-role in my thesis however, as
the clear focus was to study B*2705:pB27.

When considering the bigger picture of explain autoimmune diseases at
a molecular level we must acknowledge that we are currently investigating
a fraction of the molecules involved when only simulating the MHC:peptide
complex. Computational resources are currently insufficient to simulate the
whole immune response including the T cell receptor. Conformation dynam-
ics might play a key role in understanding how these immune reactions really
work.
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A Gromacs MD simulation

This appendix shall give a detailed overview of how the molecular dynamics
simulations were performed using gromacs [17]. Using one system as an
example, all important commands executed as well as the used parameter
files are listed.

System preparation Using VMD, Glycerol residues originating from crys-
tallography had to be removed. For B*2705:pB27, which contained more than
one conformation in one PDB file, only one conformation had to be selected
and saved. Because the pB27 peptide in B*2704:pB27 could not be resolved,
the MHC complex B*2704:pB27 was aligned with the one from B*2705:pB27
and later saved using the B*2704 MHC molecule together with the pB27
peptide from B*2705.

Structure conversion The PDB files received from crystallography did
not contain any hydrogen atoms. Adding hydrogen atoms is done using the
gromacs routine pdb2gmx.

pdb2gmx -f 2705 pB27.pdb -ff oplsaa -water tip4p \
-o 2705 pB27.gro -p 2705 pB27.top -i 2705 pB27 -ignh

Here the usage of the opls all-atom force field is specified along with the the
tip4p water model.

Vacuum energy minimization A first energy minimization is the next
step. When the unconstrained production simulation run is started, there
should be no more large forces on any of the atoms. The programs grompp
and mdrun perform a first vacuum energy minimization.

Listing 1: Gromacs parameter file for vacuum energy minimization
; steepest descent minimization of solvated system in 250 steps

integrator = steep

emtol = 1.0

nsteps = 250

nstenergy = 0

energygrps = System
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; Parameters describing how to find the neighbors

; of each atom and how to calculate the interactions

ns_type = simple

coulombtype = PME

rcoulomb = 1.0

rvdw = 1.0

constraints = none

fourierspacing = 0.12

pme_order = 4

ewald_rtol = 1e-5

; no periodic boundary conditions

pbc = no

The vacuum energy minimization is performed using the steepest decent
integrator with a parameter file as given in Listing 1. Here forces that might
have been implied through the now removed residues or solutions will be
relaxed.

grompp -v -f parameters/vacuum.mdp -c 2705 pB27.gro \
-p 2705 pB27.top -o 2705pB27 -EM-vacuum.tpr

mdrun -v -deffnm 2705pB27 -EM-vacuum \
-c 2705pB27 -EM-vacuum.pdb

Periodic boundary conditions Periodic boundary conditions are applied
with the command editconf. Here, a cubic box with a minimum distance
of 1.4 nm from the protein is specified.

editconf -f 2705pB27 -EM-vacuum.pdb \
-o 2705pB27 -PBC.gro -d 1.4

Solvent addition The system is then solvated using the command genbox.

genbox -cp 2705pB27 -PBC.gro -cs tip4p.gro \
-p 2705 pB27.top -o 2705pB27 -water.pdb

grompp -v -f parameters/solvated.mdp -c 2705pB27 -water.pdb \
-p 2705 pB27.top -o 2705pB27 -water.tpr

Ion addition Because the MHC complex carries a net negative charge and
electrostatic forces are long ranged the system has to be neutralized. The
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genion command can be used to add Na+ and Cl− ions in order to ensure
the whole system is uncharged.

genion -s 2705pB27 -water.tpr -o 2705pB27 -solvated.pdb \
-conc 0.15 -neutral -pname NA+ -nname CL-

Solvent system energy minimization Once the ions are added, another
energy minimization step is performed. This is quite similar to the vacuum
energy minimization step except that we are now using the periodic boundary
conditions. This means that the parameter file used is almost identical to
the one in Listing 1 except the last line specifies pbc = xyz instead of no.
The following commands execute this minimization. The switch -np 8 tells
gromacs to use 8 CPU cores.

grompp -v -f parameters/solvated.mdp -c 2705pB27 -solvated.pdb \
-p 2705pB27 -ions.top -o 2705pB27 -EM-solvated.tpr \
-po 2705pB27 -solvated

mpirun -np 8 mdrun -v -deffnm 2705pB27 -EM-solvated \
-c 2705pB27 -EM-solvated.pdb -pd

Position restrained MD simulation After the solvent addition another
energy minimization step has to be performed. This time, a different set of
parameters is used.

Listing 2: Gromacs parameter file for position restrained energy minimization
; MD integrator with Reaction -Field electrostatics

integrator = md

dt = 0.0001

nsteps = 2500

nstenergy = 0

energygrps = Protein Non -Protein

coulombtype = PME

rcoulomb = 1.4

epsilon_rf = 78

vdw -type = Cut -off

rvdw = 1.4

; Temperature coupling using simple Berendsen thermostat

tcoupl = Berendsen

tc-grps = Protein Non -Protein

tau_t = 0.1 0.1
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ref_t = 310 310

; Treat all bonds as fixed

constraints = all -bonds

; Generate random velocities for 310K

gen_vel = yes

gen_temp = 310.0

Using the parameter file of Listing 2 we apply constraints to all bonds, fixing
the lengths and angles. This allows the solvent molecules to align around
the protein. We are also using a thermostat at physiological temperature of
310K.

grompp -v -f parameters/position_restrained.mdp \
-c 2705pB27 -EM-solvated.pdb \
-p 2705pB27 -ions.top -o 2705pB27 -PR.tpr

mpirun -np 8 mdrun -v -deffnm 2705pB27 -PR -pd

Production simulation run As our system is now in stable state where
no more large forces put strain on our protein, we are now ready to start
the production simulation run. Again we are simulating at physiological
temperature of 310 K. We are using the stochastic dynamics integrator to
act as a Langevin thermostat. We are writing out a complete trr trajectory
which allows us to resume the simulation every 50 ps. A compressed xtc
trajectory containing only the protein coordinates is written every ps. The
SHAKE algorithm is used to allow for a integration step of 2 fs.

Listing 3: Gromacs parameter file for production simulation in NVT ensem-
ble
; SD integrator with langevin thermostat at 310 K

integrator = sd

dt = 0.002

nsteps = 50000000

bd_fric = 0

tcoupl = no

tc-grps = Protein Non -Protein

tau_t = 2.0 2.0

ref_t = 310 310

nstlist = 5

ns-type = Grid

pbc = xyz

rlist = 1.0
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; No pressure coupling (NVT ensemble)

pcoupl = no

; PME electrostatics

coulombtype = PME

rcoulomb = 1.0

epsilon_rf = 78

vdw -type = Cut -off

rvdw = 1.0

; write data to resume simulation every 50 ps

; write compressed trajectory of protein every ps

nstxout = 50000

nstvout = 50000

nstfout = 50000

nstlog = 50000

nstenergy = 50000

xtc_precision = 1000

nstxtcout = 500

energygrps = Protein Non -Protein

xtc_grps = Protein

; use SHAKE algorithm for H-bonds

constraints = hbonds

constraint_algorithm = SHAKE

; Generate random velocities for 310K

gen_vel = yes

gen_temp = 310.0

Using the parameter file from Listing 3 the production simulation run is the
executed using the following command.

grompp -v -f parameters/nvt.mdp -c 2705pB27 -PR.gro \
-p 2705pB27 -ions.top -o 2705pB27 -NVT.tpr

mpirun -np 8 mdrun -v -deffnm 2705pB27 -NVT
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