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Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a
means of efficient sampling of the configurations of biomolecular systems. Recent work has demon-
strated how the short physical trajectories generated in PT simulations of biomolecules can be used
to construct the Markov models describing biomolecular dynamics at each simulated temperature.
While this approach describes the temperature-dependent kinetics, it does not make optimal use of
all available PT data, instead estimating the rates at a given temperature using only data from that
temperature. This can be problematic, as some relevant transitions or states may not be sufficiently
sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further,
the comparison of temperature-dependent properties can suffer from the false assumption that data
collected from different temperatures are uncorrelated. We propose here a strategy in which, by a
simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data
from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical
uncertainty in the kinetic model relative to the single temperature approach and provides estimates
of transition probabilities even for transitions not observed at the temperature of interest. Further,
the method allows the kinetics to be estimated at temperatures other than those at which simulations
were run. We illustrate this method by applying it to the generation of a Markov model of the con-
formational dynamics of the solvated terminally blocked alanine peptide. © 2011 American Institute
of Physics. [doi:10.1063/1.3592153]

I. INTRODUCTION

Biological macromolecules are not static structures but
are driven by thermal motion and interactions with their
molecular environment undergoing conformational fluctu-
ations and changing conformational states. The charac-
terization of the statistical conformational dynamics of
biomolecules is essential to understand how these molecules
work as molecular machines.

Often, a separation of timescales of characteristic dynam-
ical relaxation times gives rise to the existence of metastable
conformational states such that the biomolecule remains in
any one of these states for a long time before making a
rapid transition to another state. A wealth of experimen-
tal data now supports the existence of such states, includ-
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ing NMR,1–3 fluorescence emission,4, 5 energy transfer,6, 7 cor-
relation spectroscopy,8, 9 and non-equilibrium perturbation
experiments.5 Developing a quantitative understanding of
what gives rise to these conformational states and the inter-
actions that govern transitions between them will have a sig-
nificant impact on our understanding of many biological pro-
cesses, such as signaling events, enzyme regulation, allostery,
and drug design with conformationally flexible molecules.

Sampling the underlying phase space by straightforward
molecular dynamics simulation often suffers from the prob-
lem that the timescales of conformational changes can be
orders of magnitude larger than simulation times accessi-
ble using current computational resources. Parallel tamper-
ing (PT) molecular dynamics simulation has been an effective
and thus popular approach to overcome the issue of con-
vergence in molecular simulations, by allowing replicas to
heat up and overcome enthalpic barriers as the simulation
proceeds while still sampling from an appropriate equi-
librium distribution.10–13 At the same time this approach
permits an analysis of the temperature dependence of proper-
ties of interest, which is especially important for comparisons
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with certain experimental results (e.g., melting curves, heat
capacities).14 Although PT molecular dynamics produces un-
physical replica trajectories, the short physical trajectories in
between the exchanges can provide useful dynamical infor-
mation. If the PT simulation is well equilibrated, these ini-
tial configurations of the short trajectory segments will be
sampled from the equilibrium at their corresponding temper-
atures.

The Markov models provide a way of modeling the slow
conformational dynamics of biomolecules based on short
simulations.15–23 In these models, conformational states are
envisioned as disjoint but connected regions of configura-
tion space. The biomolecule spends long times within indi-
vidual regions before undergoing rapid stochastic transitions
between them. If a separation of timescales exists between
fast relaxation times within and slow equilibration between
regions, the inter-state dynamics can be well described by a
Markov model in discrete timesteps τ , where coarse graining
in time is required as the discretization in space prohibits the
characterization of relaxation processes faster than τ . If the
system is partitioned into its metastable states, τ is related to
the time required to overcome internal barriers within each
conformational state. However, it has been recently shown
that, even in the absence of many metastable states, a Marko-
vian model can well approximate the dynamics at long times,
with this approximation error decreasing as the number of
states is increased.24

Recently, Buchete and Hummer have shown that both
thermodynamic and kinetic properties can be estimated over
the range of temperatures by constructing the Markov mod-
els using the short physical trajectories generated from PT
simulations.25 However, if a complete description of dynam-
ics across the entire thermodynamically relevant configura-
tional space at a given temperature is desired, one quickly
runs into problems if use is made of trajectories only from
the temperature of interest, as some states that are sampled
at other temperatures may not be well-sampled at the single
temperature.25 One would like to make use of the data col-
lected at all temperatures to characterize the kinetic behav-
ior in all regions sampled over the full range of temperatures
spanned by the PT simulation in a manner similar to equilib-
rium reweighting.26–31

Here, we propose a method for integrating MD data from
all temperatures by making use of dynamical reweighting
(DR),32 thus allowing a smooth, continuous, and differen-
tiable estimate of the transition probabilities at any temper-
ature without requiring the assumption of any kinetic model
(such as Arrhenius kinetics18) and taking advantage of the
increased transition rates at higher (or, for transitions with
entropic barriers, lower) temperatures. Reweighting meth-
ods (such as histogram-based26–29 or histogram-free30, 31 ap-
proaches) allow the use of samples collected from multiple
distributions to provide an improved estimate of the expecta-
tion value of some static property at the distribution of interest
and have been used extensively in the analysis of equilibrium
thermodynamic properties in replica-exchange simulations.33

Dynamical reweighting has recently been proposed as
a way of estimating dynamical properties (such as corre-
lation functions) using an asymptotically optimal estimator,

simultaneously providing a good estimate of the statistical
error.32 Here, we show how dynamical reweighting can be
used to estimate transition probabilities (and their statistical
uncertainties) for the construction of a Markov model as a
smooth function of temperature, making use of data from all
temperatures. This has the advantage of producing a useful
Markov model at any temperature containing the dependence
of kinetic properties on temperature, and providing an assess-
ment of the error in the model.

We illustrate this approach for the standard test case of
the terminally blocked alanine peptide in explicit solvent. A
Markov model constructed from short (6 ps) trajectories from
each state has been previously shown to accurately describe
the kinetics of this system at 302 K.17 This peptide system
presents a challenge for estimators based on individual tem-
peratures due to the presence of highly metastable states with
very high free energies relative to the most populated states.
These states are poorly sampled at temperatures near 300 K,
even though their temporal behavior can dominate the non-
equilibrium relaxation kinetics at this temperature. Finally, we
determine whether using all the data using reweighting pro-
duces substantially improved kinetic models at this particular
temperature and across the full range of temperatures in the
PT simulation.

This paper is organized as follows: In Sec. II, we review
the theory behind the Markov models of multistate conforma-
tional dynamics. We then show in Sec. II D how dynamical
reweighting can be used to estimate temperature-dependent
transition probabilities and rates for a given state decompo-
sition. Finally, we illustrate the method in Sec. III by apply-
ing it to a six-state decomposition of the terminally blocked
alanine peptide and compare the results to the approach of
Buchete and Hummer25 in which Bayesian estimates of tran-
sition probabilities are obtained from individual temperatures
extracted from the PT simulation.

II. THEORY

A. Markov models

Consider a system that evolves according to some sta-
tionary dynamical process. Let � be the configuration space
with a complete decomposition22 into M disjoint sets �i ⊂ �,
i ∈ {1, . . . , M}, such that

M⋃
i=1

�i = �; �i ∩ � j = ∅, i �= j. (1)

For convenience, we also define indicator functions χi (q) for
points in configuration space q ∈ � such that

χi (q) ≡
{

1, if q ∈ �i

0, otherwise
, (2)

i.e., the function assumes the value of unity if q belongs to set
�i , and zero otherwise.

Based on this discretization of configuration space, we
can define an M × M row-stochastic transition matrix T(τ )
with conditional probabilities of finding the system in state j
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a time τ after it was originally in state i ,

Ti j (τ ) ≡ P (q(τ ) ∈ � j | q(0) ∈ �i ) (3)

= 〈χi (0)χ j (τ )〉
〈χi 〉 , (4)

and introduce the notation χi (t) ≡ χi (q(t)), where the dy-
namics is assumed to be governed by a stationary (time-
independent) process. We aim here to construct a discrete-
time, discrete-space Markov model that approximates the
long-time dynamics of the system by virtue of

p(t + kτ ) ≈ p(t)Tk(τ ), (5)

with p being the projection of some continuous distribution
ρ(q) onto the discrete subsets �i .

Equation (5) is only an approximation to the real dynam-
ics due to the introduction of the coarse-graining of configu-
ration space into M discrete sets.22, 23 Despite this, recent the-
oretical work has demonstrated that the approximation error
introduced by the discretization can be made arbitrarily small
by increasing the number of states M , increasing the lagtime
τ , or both.24 As a result, we can ensure that the true dynam-
ics is reproduced by a discrete-time, discrete-space Markov
model to arbitrary desired precision through careful choice
of M and the sets �i . Although this is a crucial step in the
construction of a Markov model of dynamics, the process of
finding an optimal decomposition of state space and appropri-
ate lagtime τ is beyond the scope of this paper and has been
extensively discussed elsewhere.16, 19

B. Estimating transition probabilities vs estimating
transition rates

Coarse-grained dynamics is equivalently described by the
discrete-state, continuous-time master equation

ṗ(t) ≈ p(t) K, (6)

where K denotes the M × M phenomenological rate ma-
trix. For i �= j , Ki j > 0 is the rate constant associated with
the transition i → j , while the diagonal elements are set to
Kii = −∑

j �=i Ki j for conservation of probability.25, 34, 35 It
is noteworthy that, although Eq. (6) is defined for all times
t ≥ 0, the time evolution of p(t) is accurately modeled only
for times t larger than the same Markov time τ appearing in
Eq. (5).

While T(τ ) can be straightforwardly estimated from a
trajectory using Eq. (4), K cannot, because inversion of the
matrix exponential in equation

T(τ ) = exp(Kτ ) (7)

is not unique for stochastic matrices unless T(τ ) is also posi-
tive definite and reversible, and even in these cases, numerical
issues can frustrate the computation of the matrix logarithm
of a positive-definite reversible T(τ ). One potential solution
to these issues is to use the Bayesian inference to estimate
the likely rate matrix given data15—we discuss this issue fur-
ther in Sec. II G 2. For simplicity, we focus here on the esti-
mation of temporally discrete transition probabilities T(τ ) in
the following sections.

C. Estimation from temporally discrete trajectories

Consider a configuration-space trajectory q(t) ∈ �, t
∈ [0, tmax], sampled at time intervals of �t . We construct a
temporally discrete version of the trajectory, qn ≡ q(n�t),
and introduce the discrete Markovian lagtime, s ≡ τ/�t
∈ N, and discrete trajectory length, L ≡ tmax/�t ∈ N.

If the lagtime τ is long enough, the statistical dynam-
ics over times τ and longer can be well approximated by a
Markov chain,23, 24, 36 and can we define the count matrix B(τ )
by

Bi j (τ ) ≡ 1

s

L−s∑
n=0

χi (qn)χ j (qn+s) (8)

as the effective number of (potentially fractional) transitions
observed among the states for a fixed lagtime τ . The associ-
ated likelihood L that a given transition matrix T produces
the observations stored in the count matrix B is given by the
multinomial distribution

L(T) = P (B|T) ∝
M∏

i, j=1

T
Bi j

i j , (9)

where, as a representative, we choose the unique transition
matrix T̂(τ ), which maximizes this likelihood

T̂i j (τ ) =
[

argmax
T

L(T)
]

i j
= Bi j (τ )∑

k
Bik(τ )

. (10)

Alternatively, we can use the state-to-state time-correlation
function Ci j (τ )22, 23 given by

Ci j (τ ) ≡ 〈χi (0) χ j (τ )〉, (11)

which can be estimated by Ĉi j (τ ) in a similar fashion

Ĉi j (τ ) = 1

L − s

L−s∑
n=0

χi (qn)χ j (qn+s) = s

L − s
Bi j (τ ). (12)

Although dynamical reweighting can be formulated for dif-
ferent dynamical models,32 the present approach is based on
Hamiltonian dynamics in the canonical ensemble, which is
time reversible, and thus equilibrium molecular dynamics ful-
fills detailed balance in state space. Consequently, for trajec-
tories sampled from equilibrium, the correlation matrix will
have a symmetric form Ci j (τ ) = C ji (τ ). In this case, we can
use the estimator

Ĉi j = s

2(L − s)
(Bi j + B ji ) = Ĉ ji (13)

and write the transition matrix estimate T̂(τ ) in terms of the
correlation matrix estimate Ĉ(τ ) as

T̂i j (τ ) = Ĉi j (τ )
M∑

k=1
Ĉik(τ )

, (14)

which will also fulfill detailed balance.22, 23
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D. Transition probabilities from dynamical
reweighting

We now demonstrate how transitions observed at all tem-
peratures can be used to infer transition probabilities at any
temperature of interest through the use of a reweighting pro-
cedure. We consider the specific case of a system in the canon-
ical ensemble at inverse temperature β ≡ (kB T )−1, where dy-
namics from a canonical distribution of initial phase space
points obeys Hamiltonian dynamics over the observed lagtime
τ . This corresponds to the case of “canonical distribution of
Hamiltonian trajectories” examined in detail in Ref. 32.

With this definition of dynamics, the (now temperature-
dependent) state-to-state correlation functions Ci j (τ ; β) can
be expressed as Boltzmann-weighted expectation functions.
Defining z ≡ (q, p) as a point in phase space, we can write

Ci j (τ ; β) = 1

Z (β)

∫
dz e−βH(z 0)χi (q0)χ j (qτ ), (15)

where Z (β) is the complete partition function of both kinetic
and potential energies and z τ ≡ (qτ , pτ ) is the phase space
point produced by evolving Hamiltonian dynamics at time τ

from an initial phase space point z 0 ≡ (q0, p0).
Suppose we have a set of N Hamiltonian phase

space trajectories z n(t), n ∈ {1, . . . , N } of length tmax,
t ∈ [0, tmax] sampled from equilibrium at K temperatures βk ,
k ∈ {1, . . . , K }. For convenience, we group the N trajectories
into subsets Qk ⊂ {1, . . . , N } according to which tempera-
ture βk and their initial phase space points z n(0) were drawn
from. For the reweighting procedure, only the number of tra-
jectories Nk ≡ |Qk | sampled from the temperature βk is rele-
vant, and not the direct association of a specific trajectory z n

with the temperature βk it was sampled from.31, 32

By the application of dynamical reweighting,32 a correla-
tion function Ci j (τ ; β) can then be estimated using the entire
set of trajectories at all temperatures with

Ĉi j (τ ; β) ≈
N∑

n=1

wn(β) · Ĉ (n)
i j (τ ; β), (16)

where the individual trajectory contributions Ĉ (n)
i j (τ ; β) are es-

timated using Eq. (13), and the normalized trajectory weights
wn(β) can be computed by

wn(β) = Ẑ (β)−1

[
K∑

k=1

Nk Ẑ−1
k e−(βk−β)En

]−1

, (17)

where the normalization constants Ẑ (β) are chosen such that

N∑
n=1

wn(β) = 1 (18)

holds and En ≡ H (z n(0)) denotes the total energy of the sys-
tem in trajectory z n , which is constant over trajectories for
Hamiltonian dynamics.

The constants Ẑk need to be determined from the so-
lution of a set of K self-consistent equations indexed by

i ∈ {1, . . . , K },

Ẑi =
N∑

n=1

[
K∑

k=1

Nk Ẑ−1
k e−(βk−βi )En

]−1

(19)

which can be obtained efficiently in a number of ways (see
Appendix A), although it is often necessary to work with log-
arithmic representations to avoid numerical instability. The
choice of weights wn in Eq. (17) gives an asymptotically op-
timal (i.e., lowest variance) estimate of the correlation func-
tion in Eq. (15). A detailed exposition of dynamical reweight-
ing for the estimation of correlation functions is presented in
Ref. 32.

Finally, the row-stochastic transition matrix estimate
T̂(τ ; β) is computed from Eq. (16) using Eq. (14), where the
symmetry of Ĉ(τ ; β) results in a reversible transition matrix
estimate T̂(τ ; β) (i.e., it will satisfy detailed balance).

E. Estimation of uncertainties in transition
probabilities

For a given temperature β and lagtime τ , the statistical
uncertainty in Ĉab ≡ Ĉab(τ ; β) can be estimated in a straight-
forward manner.31, 32 We start with the N × K weight matrix
W, the elements of which are given by

wnk ≡ wn(βk), (20)

where k ∈ {1, . . . , K } runs over the set of temperatures βk

and n ∈ {1, . . . , N } over all trajectories. Augmenting W by
three additional columns, indexed by the letters A, X, and Y,
defined as

wnA = wn(β), (21)

wnX = wn A
Ĉ (n)

ab

Ĉab
, (22)

wnY = wn A
Ĉ (n)

a′b′

Ĉa′b′
, (23)

the covariance of two correlation matrix elements Ĉab and
Ĉa′b′ can be estimated by32

δĈabδĈa′b′ ≈ Ĉab Ĉa′b′
[

̂AA − 
̂AY − 
̂X A + 
̂XY

]
, (24)

where the covariance matrix estimate �̂ is computed as32

�̂ ≡ WT [IN − WNWT ]+W, (25)

with IN being the identity matrix of rank N , N
= diag(N1, . . . , NK , 0, 0, 0) and the generalized inverse
denoted by []+.

The uncertainty in the estimated transition probabilities
δ2T̂i j can be approximated as a function of the uncertainty in
the correlation matrix elements, δĈabδĈa′b′ , by a first-order
Taylor expansion about the mean 〈T̂i j 〉,

δ2T̂i j ≡ 〈(T̂i j − 〈T̂i j 〉)2〉

≈
M∑

a,a′
,b,b′ =1

[
∂ T̂i j

∂Ĉab

] [
∂ T̂i j

∂Ĉa′b′

]
δĈabδĈa′b′ . (26)
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Using Eq. (4), the sensitivity of T̂i j to the correlation matrix
element Ĉab is given by

∂ T̂i j

∂Ĉab
= δajδbi + δaiδbj − δab

Ĉi
− Ĉi j (−Mδab + δai + δbi )

Ĉ2
i

,

(27)
with Ĉi ≡ ∑M

j=1 Ĉi j representing the row sums of the corre-

lation matrix Ĉ.
The complete expression for the variance in the transi-

tion probabilities δ2T̂i j in Eq. (26) can be evaluated using
Eqs. (24), (25) and (27). The final result is complex but still
calculable, as demonstrated in Sec. III. A detailed description
of the procedure for computing statistical uncertainties for ar-
bitrary properties can be found in Refs. 31 and 32.

F. Modified parallel tempering protocol

We employ a modified PT protocol in which a set of K ×
N Hamiltonian trajectory segments z kn(t) of uniform length
tmax is generated32 with temperature index k ∈ {1, . . . , K }
and iteration n ∈ {1, . . . , N }. For the Markov property to
hold in the later estimation, the length tmax between pro-
posed exchanges in the PT protocol needs to exceed the lag-
time tmax ≥ τ . We start by assuming that some process was
used to generate the initial phase space points z k0(0) for
the first set of trajectories (n = 0) from equilibrium within
the canonical (NVT) ensemble at each corresponding inverse
temperature βk

P (z k0(0); βk) = 1

Z (βk)
e−βkH(z k0(0)). (28)

These initial phase space points may be obtained, for exam-
ple, by a standard PT protocol, or by running the modified
protocol for a number of iterations starting from one or more
arbitrary initial configurations.

In each subsequent iteration (n > 0), Hamilton’s equa-
tions of motion are used to propagate all replicas using a
symplectic integrator with sufficiently small timesteps to gen-
erate trajectories z kn(t) of length tmax. At t = tmax, we pro-
pose exchanges between the final configurations z in(tmax) and
z jn(tmax) of neighboring temperatures βi and βi±1, starting
from the highest temperature down to the lowest one in odd
iterations and in reverse order in even ones.17 [Note that other
exchange proposal schemes can be used, provided the re-
sulting algorithm satisfies the condition of “balance” (which
is less strict than detailed balance).37] The Metropolis-like
probability13 for accepting or rejecting the exchange Pexch

depends on the potential energies of the final configurations
Uk ≡ U (z kn(tmax)) with

Pexch(Ui , βi ; U j , β j ) = min{1, e−(βi −β j )(U j −Ui )}. (29)

Regardless of whether the exchange is accepted or re-
jected, we reassign the velocities according to the Maxwell–
Boltzmann distribution38 at the new (or old, if rejected) tem-
peratures, and denote the new phase space points from which
the next iteration can be carried out as z k(n+1)(0) (see proof in
Appendix B). This satisfies the conditions defined by Sugita
and Okamoto13 in order for the kinetic energies not to ap-
pear in Pexch and is equivalent to rescaling the velocities for

accepted exchanges and then applying a massive collision
for the Andersen thermostat.38 The reason for reassignment
of velocities instead of rescaling is that when using Hamil-
tonian trajectories to propagate dynamics, no thermostatting
would otherwise take place. Without this velocity reassign-
ment, the use of Hamiltonian trajectories (even if velocity
rescaling were performed after exchanges) would mean that
no or minimal thermostatting would take place, generating an
improper ensemble; velocity reassignment ensures the canon-
ical ensemble is generated.

G. Bayesian estimation of transition probabilities
from a single temperature

We also consider two Bayesian methods for estimation
of the transition matrices and rate matrices using data col-
lected from a single temperature. Both methods sample tran-
sition probabilities or rates according to the same likelihood
function in Eq. (9), but employ different model parameteriza-
tions and, more importantly, different prior probability distri-
butions.

1. Reversible transition matrices

We first consider the approach described in Ref. 39 to
infer transition matrices that satisfy detailed balance. Starting
with an observation represented by the fractional count matrix
B, the posterior probability a transition matrix T was respon-
sible for generating this observation is given by

P (T|B) ∝ P (B|T) P (T) =
M∏

i, j=1

T
Bi j

i j P (T). (30)

As the prior, P (T), we choose a Dirichlet distribution for each
row, which adds no additional observations to the likelihood
probability

P (T) ≡
M∏

i, j=1

T −1
i j . (31)

Furthermore, we restrict ourselves to transition matrices that
fulfill detailed balance, i.e., reversible with respect to the sta-
tionary distribution π

πi Ti j = π j Tji . (32)

Here, the distribution in Eq. (30) was sampled using a Markov
chain Monte Carlo procedure described in Ref. 39.

2. Reversible rate matrices

We also consider a second approach to estimate transition
probabilities from individual temperatures using Bayesian
estimation. Here, we sample rate matrices K (discussed
in Sec. II B) with elements Ki j > 0, for i �= j and Kii

= −∑
j �=i Ki j using the approach described in Ref. 25. This

approach does not estimate the transition probabilities di-
rectly, but instead uses a parametric form of a reversible
rate matrix K, that uses the logarithms of the elements
in the upper-right triangular matrix Ki j for j > i (without
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TABLE I. Table of methods used for transition probability or rate esti-
mation with their corresponding abbreviations and colors used consistently
throughout this paper.

Method Abbreviation Color

Transition matrix estimationa [TE] RED
Rate matrix estimationb [RE] GREEN
Dynamical reweightingc [DR] BLUE
Shooting trajectories at 302 Kd [ST] BLACK

aReference 39.
bReference 25.
cReference 32.
dReference 17.

diagonal entries) and the equilibrium distribution πi , thus as-
suring a rate matrix with non-positive eigenvalues and also
positive off-diagonal rates.

The posterior in Eq. (30), written in terms of the rate ma-
trix K, is given by

P (K|B) ∝ P (B|K)P (K) =
M∏

i, j=1

exp (τK)
Bi j

i j P (K), (33)

where the prior is uniform in ln Ki j , j > i and ln πi and the
detailed balance constraint

πi Ki j = π j K ji (34)

holds. After sampling rate matrices with a Metropolis Monte
Carlo scheme25 the related set of transition matrices with the
lagtime τ is computed by

T(τ ) = exp (τK) . (35)

All methods with their abbreviations and colors used con-
sistently in the text and figures in this article are listed in
Table I.

III. APPLICATION TO TERMINALLY-BLOCKED
ALANINE DIPEPTIDE

A. System setup

To illustrate the construction of temperature-dependent
Markov models using dynamical reweighting, we estimated
the transition probabilities between conformational states

TABLE II. Standard deviation (SD) and drift of the total energy over 20 ps
leapfrog trajectories, averaged over all trajectories at selected temperatures.

Temp [K] SD [kcal/mol] Drift [kcal/(ps mol)]

302 0.214 ± 0.014 0.0056 ± 0.0006
426 0.280 ± 0.019 0.0073 ± 0.0006
600 0.376 ± 0.026 0.0097 ± 0.0011

for the terminally blocked alanine peptide (Ace-Ala-Nme)
(see Fig. 2) in explicit solvent from a PT molecular dy-
namics simulation. This dataset (the alanine dipeptide paral-
lel tempering and kinetics datasets are available online for
download at https://simtk.org/home/alanine-dipeptide/) was
published previously as part of a study that explored the
suitability of a Markov model for describing dynamics at
302 K;17 here, we make use of this dataset to facilitate
comparison to an independent trajectory set that appears in
Ref. 17. The PT dataset consists of an ensemble of 501 Hamil-
tonian trajectories 20 ps in length at each of 40 tempera-
tures, spanning from 273 to 600 K, with peptide configura-
tions stored every 0.1 ps. The temperatures were exponen-
tially spaced to ensure good overlap in the potential and total
energy distributions between neighboring temperatures and
reasonably high exchange probabilities (see Fig. 1).

A leapfrog Verlet integrator40–42 (with bonds involving
hydrogen atoms constrained) was used to produce the dynam-
ical trajectories. The fluctuation in total energy averaged over
all 20 ps trajectories at each temperature was minimal and the
drift negligible (see Table II). The production run followed
a 1 ns equilibration phase during which exchanges were at-
tempted at 1 ps intervals, ensuring that all initial configura-
tions were drawn from equilibrium at their respective temper-
atures. Previous work has demonstrated that a Markov model
based on a six-state decomposition, as depicted in Fig. 2, can
accurately describe the dynamics of this peptide for lagtimes
longer than τ = 6 ps.17 We employ the same state decompo-
sition for all temperatures with the suggested minimal lagtime
of τ = 6 ps.

To evaluate the accuracy of the methods for estimat-
ing transition probabilities, we compare the separate es-
timates obtained using DR, TE, and RE with a separate
dataset of 6 × 10 000 short (10 ps) trajectories (ST) ini-

600 K
426 K

302 K

3500 3000 2500 2000 1500
Energy kcal mol

P
ro

ba
bi

li
ty

FIG. 1. Distribution of trajectory total energies from parallel tempering simulation. Distributions for trajectories sampled at temperatures 302 K, 425 K, and
600 K— for which single-temperature Bayesian analysis convergence properties are shown in Fig. 9— are highlighted.
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FIG. 2. Terminally blocked alanine peptide and potential of mean force with Markov state definitions. Left: The terminally blocked alanine peptide with
(φ, ψ) torsions labeled. Right: The potential of mean force as a function of (φ, ψ) torsions at 302 K in units of kB T , estimated from the PT simulation using
weighted histogram analysis method (WHAM),28, 43 truncated at 10 kB T (white regions). The six manually identified states are labeled in black (note periodic
boundaries).17

tiated from the equilibrium ensemble within each state at
302 K, also taken from Ref. 17. The PT simulation, in com-
parison, furnishes a total of 501 independent trajectories at
that temperature.

The system is small enough that reasonable statistics can
be obtained with moderate CPU requirements, while com-
plex enough that some transitions (and even some states) are
sampled only at high temperatures. In what follows, the re-
sults from the Markov model obtained from the dynamical
reweighting method are compared to the model computed by
Bayesian analyses using data from individual temperatures
from the parallel tempering simulation, as in Buchete and
Hummer.25

B. Estimated transition probabilities as a function of
temperature

A comparison of various approaches to estimate the tran-
sition probabilities between all 6 × 6 pairs of states as a func-
tion of temperature is given in Fig. 3. The blue lines give the
estimates from DR (Ref. 17) using all available data at all tem-
peratures, as described in Sec. II. To obtain the normalization
constants Ẑk , we solved the set of self-consistent equations in
Eq. (19) with a relative convergence tolerance in the residual
of 10−7 (see Appendix A). Transition probabilities were also
estimated at one intermediate temperature between each pair
of simulated temperatures.

The red lines in Fig. 3 show transition probabilities for
the reversible single temperature estimation of transition ma-
trices (TE).39 For each of the 40 temperatures the sampler
was run to collect a total of 10 000 samples. For the sam-
pling of reversible rate matrices (RE) the same amount of
data was collected using the sampling proposed in Ref. 25.

Diagnostics of convergence for both methods appear as sup-
plementary Fig. 9. For reasons of clarity, the performance
of the RE is only shown in the detailed comparison plots in
Fig. 4 discussed in the section III C. The black cross-hair in
Fig. 3 refers to the reference values (ST) at 302 K estimated
from the shooting trajectories.

Qualitatively, both methods agree, especially for transi-
tions among highly populated states (1,2,3,4). However, the
DR estimate, which uses the combined data from all temper-
atures, has smaller uncertainties than the estimators that use
only individual temperatures. In addition, the general agree-
ment with the reference simulation is best for DR.

C. Detailed comparison of transition probability
estimates at 302 K

For a detailed comparison with precisely known tran-
sition probabilities, the Bayesian analysis method with re-
versibility constraint for transition matrices39 (TE) was also
applied to a large set of shooting trajectories at 302 K, in
which the trajectories were initiated from an equilibrium dis-
tribution within each state. The results of this comparison at
302 K at a lagtime of τ = 6 ps between the distributions of
transition probabilities Ti j (τ ) of the different estimation meth-
ods are shown in Fig. 4. All colors are consistent with Fig. 3
and Table I.

Overall, the reweighting method performs very well com-
pared to the single-temperature estimates. Even transition
probabilities that are sampled very poorly at 302 K (such
as transitions involving high free energy states 5 and 6)
are in good agreement with the reference values at 302 K.
Table III shows the standard deviation in the absolute dif-
ference of the estimation methods compared to the reference
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FIG. 3. Comparison of all inter-state transition probabilities at a lagtime of τ = 6 ps as a function of temperature. Shaded regions denote 95% confidence
intervals about the estimated mean. Blue lines show the transition probabilities estimated using DR. Red lines show the estimates from TE computed from only
single temperature data. The black cross-hair indicates the reference using the shooting trajectory data (ST) at 302 K only.

simulation (ST) using a lagtime of τ = 6ps. The DR estimates
have a smaller deviation than both Bayesian methods for both
high and low free-energy states.

For transitions that are not sampled at certain tempera-
ture ranges, the maximum-likelihood estimates obtained with
the present reweighting method are close to zero (see Fig. 3).
Generally, for transition probabilities close to zero or unity,
the asymptotic normal distribution assumed in the statistical
error estimate of dynamical reweighting is a poor approxi-
mation to this highly asymmetric distribution and therefore
tends to overestimate the true uncertainties in these cases (see
Fig. 4).

TABLE III. Root-mean squared error (RMSE) computed from the absolute
difference of transition probabilities for τ = 6ps to the reference simulation
dataset (ST) at 302 K for the three methods of Markov model estimation and
high and low free-energy subsets of transitions.

RMSE at 302 K

(DR ) (TE) (RE)

Low free-energy states (1,2,3,4) 0.007 0.019 0.020
High free-energy states (5,6) 0.140 0.223 0.162

All Transitions 0.079 0.126 0.092

Comparing the two Bayesian methods, we find they be-
have almost identically for transitions among states, where
many transition counts are observed, but differ for transitions
in which few transition events were observed (those involv-
ing states 5 and 6). Recall that these methods utilize the same
likelihood functions, but different parameterizations and pri-
ors; the influence of this difference is expected to be most
prominent when statistics are poor, which is exactly as ob-
served here.

D. Comparison of temperature dependence of
eigenvalues

Dynamical reweighting can also be applied to estimate
properties derived from the transition probabilities. For ex-
ample, the eigenvalues λi of a transition matrix are related to
the timescales of processes t∗

i by

t∗
i = −τ/ ln(λi ), (36)

where we assume that the eigenvalues λi are sorted in order
of descending absolute value (λ1 = 1 > |λ2| > · · · > |λM |
> 0).23 Note that Eq. (36) implies that eigenvalues close to
unity are related to slow processes—those we are generally
most interested in.

We investigated the dependence of the eigenvalues on
the temperature in the present system. Fig. 5 compares es-
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FIG. 4. Detailed comparison of the distribution of transition probabilities Ti j (τ ) for τ = 6 ps at 302 K for different estimation methods. Red: Single temperature
estimation of TE; Green: Single temperature estimation of rate matrix (RE); Blue: DR estimation, Black: reference using ST.

timates for the second and third eigenvalues (λ2 and λ3) of
the transition matrix at each temperature with the different
methods. The variance in the (TE) case was estimated from
the set of eigenvalues of each sampled transition matrix. To
estimate the statistical error in the estimates produce by DR,
we used a first-order Taylor expansion to propagate the sta-
tistical uncertainties in the transition matrix to uncertainties
in the eigenvalues.20 At low temperatures (below 350 K), the
second eigenvalue is estimated correctly by DR, but not by
single-temperature estimations. This is due to the fact that the
transition process corresponding to this slowest timescale is
not sampled at these low temperatures. Thus, estimates us-
ing only data collected at that temperature are erroneous. The
agreement of dynamical reweighting timescales with the ref-
erence simulation is very good, although the error bars of
the reweighted estimate are still very large compared to the
good agreement of the estimated values with the reference
values from the shooting trajectories. We speculate that the
inappropriate approximation of the asymmetric posterior dis-
tributions with normal distributions used for the linear error
propagation may lead here as well to an overestimation of the
errors in the transition probabilities.

The third largest eigenvalue is predicted by both meth-
ods equally well (see Fig. 5), although it occurs as the second
largest eigenvalue in the single-temperature estimates, which
missed sampling the slowest process (described by λ2) com-
pletely. A direct comparison of the predicted eigenvectors (see
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FIG. 5. Temperature dependence of estimated eigenvalues. Red: Single tem-
perature estimation of transition matrix (TE), Blue: DR estimation, Black:
reference second and third eigenvalue at 302 K using ST. Upper: Compari-
son of the second largest eigenvalue vs temperature, Lower: Comparison for
third eigenvalue. The third reference eigenvalue is well predicted by both
estimation methods at all temperatures although it matches only the second
eigenvalue in the TE. The second reference eigenvalue at low temperatures
(below 350 K) is only detected by dynamical reweighting.
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FIG. 6. Similarity matrices S (scalar product) of eigenvectors from symmetrized transition matrices estimated with different methods at 302 K. The eigenvectors
indicate the states involved in the process, and thus high similarity (black) indicates a good approximation to the reference process (ST). Eigenvectors are sorted
as descending eigenvalues. The second eigenvector is found most reliably by DR.

Fig. 6) reveals that the slowest process (given by the sec-
ond eigenvector of the reference transition matrix (ST)) is not
detected by any of the single temperature methods. However,
dynamical reweighting successfully finds all the processes,
although the matching eigenvalues, and thus timescales, are
permuted for faster processes.

The comparison of Markov models is a nontrivial task44

for which we use a symmetrized form of the transition matrix
Tsym and expand it into a sum of rank one matrices spanned
by an outer product of the eigenvectors of Tsym by

Tsym = diag(π1/2) T diag(π−1/2), (37)

= R diag(λ1, . . . , λM ) RT, (38)

=
M∑

i=1

λi r i rT
i . (39)

Here, diag(π1/2) means the diagonal matrix with the square
root of the equilibrium distribution π = {π1, . . . , πM} on
the diagonal, R = {r1, . . . , rM} is the matrix of normalized
eigenvectors of Tsym, and λi the corresponding eigenval-
ues. Neglecting the timescales (i.e., the eigenvalues λi ), two

10 10 10 8 10 6 10 4 10 2 100

FIG. 7. Relative contribution w̄kl in Eq. (41) to the estimates at inverse tem-
perature βk from simulations at inverse temperature βl summed over all tra-
jectories at the same temperature. On average, seven temperatures contribute
more than 1% each to the estimation.

Markov models are similar, if their inherent processes, de-
scribed by the right eigenvectors r i , are similar. Thus, we de-
fine the similarity matrix S for two transition matrices T and
T′ by the mutual scalar product of their eigenvectors rT

i and
r ′

j by

Si j [T, T′] = rT
i r ′

j , (40)

the results of which are presented in Fig. 6.

E. Contributions from different temperatures to the
estimates of expectation values

The relative contribution from each temperature to the
estimation of any expectation value at a given temperature is
presented in Fig. 7. We plot the relative total contribution from
the subset of trajectories Qk sampled from the distribution at
βk to estimates at βl given by

w̄(βl |βk) =

∑
n∈Qk

wn(βl)∑
n∈Ql

wn(βl)
, (41)

FIG. 8. Contributions to the estimation of the correlations Ĉ65 for the tran-
sition 6 → 5 as defined in Eq. (12). The sum of one row (rightmost column),
equal to the total counts estimated by the method at the desired temperature,
provides a smoother estimate than the single temperature estimation (topmost
column).
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FIG. 9. 95% confidence intervals of Transition probabilities sampled by the TE (upper plot) and rate matrix estimation (lower plot) (RE) versus number of
drawn samples. Color indicates performance by temperature. Blue: 302 K, Yellow: 426 K, Red: 600 K. After about 5000 samples the confidence intervals
stabilize suggesting reasonably well sampled transition probabilities.
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where the normalized trajectory weights wn(β) are defined
in Eq. (17). On average, seven temperatures contribute more
than 1% to the expectation.

Figure 8 illustrates the contribution from the sampled
data at βk to the computed expectation of the time-correlation
function (see Eq. (12)) for the rarely sampled transition
6 → 5. This can be written as

Ĉ65(βl | βk) =
∑

n∈Qk

wn(βl)Ĉ
(n)
65 , (42)

with k indicating the temperature contributed from and
l the temperature estimated at. The weighted combina-
tion of estimations from multiple temperatures provides a
much smoother and continuous estimation (rightmost col-
umn) than the estimation from a single temperature (topmost
column).

IV. DISCUSSION

We have presented a method that provides an estimate
of Markov state transition probabilities from PT molecular
dynamics simulations of biomolecules as a continuous func-
tion of temperature. This allows the Markov models to be
constructed for intermediate temperatures not included in the
simulation. In addition, transition matrix estimates at temper-
atures included in the simulation are much more precise than
those obtained with the methods examined here that make
use of data from a single temperature alone. At low temper-
atures, even when some transitions are not at all observed at
the temperature of interest, corresponding transition probabil-
ities can still be estimated by incorporating dynamical infor-
mation from higher temperatures without resorting to approx-
imate rate laws, such as Arrhenius.

Additionally, the estimates of transition probabilities can
be differentiated with respect to the inverse temperature β

because the trajectory weights wn(β) in Eq. (17) are differ-
entiable functions of temperature. This allows, in principle,
kinetic and thermodynamic properties that depend on temper-
ature derivatives (e.g., heat capacities) to be computed, pro-
vided care is taken in dealing with numerical issues since the
trajectory weights wn(β) can easily span hundreds of orders
of magnitude.

In our illustrative calculations, we chose to employ a
modified PT protocol to produce a series of Hamiltonian
trajectories with initial configurations drawn from the NVT
ensemble. However, the approach itself is not limited to
Hamiltonian trajectories, but can be extended to other dy-
namics (e.g., Brownian and Langevin dynamics) provided a
temperature-independent dynamical analogue of the Hamil-
tonian can be computed, as described in Ref. 32.

The way in which the transition probabilities are esti-
mated in terms of equilibrium correlation functions requires
that the trajectory segments sampled during the PT simulation
are drawn from equilibrium, which is ensured by the modi-
fied PT protocol provided the simulation is sufficiently long
(see Appendix B). For systems with long correlation times,
there may be very few uncorrelated trajectories sampled from
global equilibrium, but mixing within the Markov states may
be sufficiently fast for many uncorrelated phase space config-

urations to be generated within each state. In this case, it is
conceivably advantageous to apply dynamical reweighting to
the trajectories originating from each set �i ⊂ � separately
to estimate each row of the transition matrix T(τ ) separately,
though the resulting matrix is no longer guaranteed to satisfy
detailed balance.

The degree to which the use of PT can enhance the
thermodynamic sampling efficiency is limited. Although ac-
tivated processes will be sampled more often at higher tem-
peratures, it becomes less so that entropic bottlenecks will
be penetrated. Lower temperatures, on the other hand, lead
to an increased sampling of entropic barriers, while at the
same time decreasing transitions across enthalpic barriers.
This effectively limits the possible improvement in sam-
pling and the range of temperatures that contribute substan-
tial weight to transitions at a given temperature of interest.
Despite this, dynamical reweighting allows information about
activated processes to be transferred from higher to lower
temperatures and, for entropic barriers, from lower to higher
temperatures.

Both single-temperature methods give similar results for
transitions with good statistics, differing mostly for transi-
tions that were only rarely or not at all sampled, presum-
ably due to the dependence on the choice of a Bayesian prior.
The RE assumes, in addition to the detailed balance con-
straint present in both methods, positivity of all transition ma-
trix eigenvalues and non-negative off-diagonal rate matrix en-
tries. The uniform distribution of parameters in logarithmic
space leads most likely to favoring of low transition proba-
bilities in states with poor transition statistics. Surprisingly,
the reversibility constraint seems to enable the Bayesian es-
timates to provide a reasonable bound on transition probabil-
ities to and from a state, even when the state is not sampled
at all.

The general predictions of dynamical reweighting are
very good, while the quality of the statistical error estima-
tion is limited near extremely small or large transition proba-
bilities due to the reliance on asymptotic normality in the er-
rors. Some combination of Bayesian and reweighting methods
[such as T-WHAM (Ref. 29)] may provide the best of both
types of estimators by yielding more accurate uncertainties at
the expense of introducing some bias from the introduction
of energy histograms or some other parametric distributions
for describing the energy density of states (now transitions).
Finally, the enhanced estimates of mean values and their re-
spective statistical uncertainties may be used to guide subse-
quent (potentially adaptive) sampling strategies, as described
in Ref. 21.
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APPENDIX A: EFFICIENT SOLUTION OF THE
SELF-CONSISTENT EQUATIONS FOR CANONICAL
DISTRIBUTION OF HAMILTONIAN TRAJECTORIES

For the case of a canonical distribution of Hamilto-
nian trajectories, the normalization constants Ẑk or alterna-
tively the dimensionless free energies f̂i ≡ − ln Ẑi are de-
fined through a set of K coupled nonlinear equations

f̂i = − ln
N∑

n=1

[
K∑

k=1

Nk exp[ f̂k − (βk − βi )En]

]−1

, (A1)

where all symbols are defined as for Eq. (19). Any numer-
ically stable method for solving a set of coupled nonlinear
equations can, in principle, be used to obtain the f̂i . A scheme
for solving a more general form of these equations by self-
consistent iteration or Newton–Raphson is described in Ap-
pendix C of Ref. 31.

Because of the structure of this specific case, we can
rapidly obtain a close initial guess for the f̂i by using a
form inspired by the WHAM.28 Instead, by constructing M
bins in the total energy E spanning a range (Emin, Emax), we
can approximate Eq. (A1) with a sum over histograms (as in
Eqs. (19) and (20) of Ref. 28)

f̂ (n+1)
i = − ln

M∑
m=1

Hm

[
K∑

k=1

Nk exp
[

f̂ (n)
k − (βk − βi )Em

]]−1

,

(A2)

where Hm denotes the number of samples En falling in his-
togram bin m, and Em represents the energy at the midpoint of
that bin. For the number of bins, typically, a value of M ≈ 100
can be used. Since Eq. (A1) is linear in the Ẑk , the f̂k are
unique up to an additive constant and we can fix one value,
say f1, by subtracting off the computed value of f (n+1)

1 after
each iteration in order to avoid numerical drift.

After the initial guess has been reached, self-consistent
iteration can rapidly refine the free energies to the desired
tolerance while eliminating the bias arising from the use of
histograms

f̂ (n+1)
i = − ln

N∑
n=1

[
K∑

k=1

Nk exp
[

f̂ (n)
k − (βk − βi )En

]]−1

.

(A3)

Again, we fix f̂1 = 0 and terminate iterations when a rel-
ative tolerance maxi=2,...,K | f̂ (n+1)

i − f̂ (n)
i |/| f̂ (n+1)

i + f̂ (n)
i | is

less than some given tolerance that ensures the computed ex-
pectations of properties of interest are no longer changing. We
find that 10−7 is often a safe choice.

Cautions observed in Appendix C of Ref. 31 regarding
sums of logarithms and numerical over/underflow in the eval-
uation of exponentials should be observed in implementation
of this, or any, algorithm for obtaining the f̂i .

APPENDIX B: PROOF THAT MODIFIED PT PROTOCOL
GENERATES CANONICAL DISTRIBUTION

Here, we prove that the modified PT protocol described
in Sec. II F samples from the canonical stationary distribution
at all temperatures.

Define stationary distributions for momenta p and coor-
dinates q in Cartesian space R3N at inverse temperature β

πp(p|β) = [P(β)]−1 e−βT ( p) ; P(β) =
∫

d p e−βT ( p),

πq (q|β) = [Q(β)]−1 e−βU (q) ; Q(β) =
∫

dq e−βU (q),

(B1)

where T ( p) denotes the kinetic energy and U (q) the poten-
tial energy function. Suppose we have two replicas whose
current phase space points are denoted by z 1 = (q1, p1) and
z 2 = (q2, p2), initially at equilibrium at their respective in-
verse temperatures β1 and β2, such that

p1 ∼ πp( p1|β1) ; q1 ∼ πq (q1|β1),

p2 ∼ πp( p2|β2) ; q2 ∼ πq (q2|β2). (B2)

We now consider what happens to the distributions of z 1 and
z 2 after an exchange attempt. Define “post-exchange attempt”
coordinates and momenta for inverse temperature β1

q ′
1 ←

{
q1, with prob. 1 − θ (q1, q2|β1, β2) (rejected),

q2, with prob. θ (q1, q2|β1, β2) (accepted),

p′
1 ∼ πp( p′

1|β1) (velocity randomization),

where the exchange acceptance probability θ (q1, q2|β1, β2) is
given by

θ (q1, q2|β1, β2) = min{1, exp[−β1U (q2) − β2U (q1)

+β1U (q1) + β2U (q2)}. (B3)

We now compute the distribution of q ′
1, the configuration sup-

posedly at temperature β1 after the exchange attempt
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ρ1(q ′
1) =

∫
dq2 [1 − θ (q ′

1, q2|β1, β2)] πq (q ′
1|β1) πq (q2|β2) +

∫
dq2 θ (q2, q ′

1|β1, β2) πq (q2|β1) πq (q ′
1|β2)

=
∫

dq2 [1 − min{1, e−β1U (q2) e−β2U (q ′
1) e+β1U (q ′

1) e+β2U (q2)}] e−β1U (q ′
1)

Q(β1)

e−β2U (q2)

Q(β2)

+
∫

dq2 min{1, e−β1U (q ′
1) e−β2U (q2) e+β1U (q2) e+β2U (q ′

1)} e−β1U (q2)

Q(β1)

e−β2U (q ′
1)

Q(β2)

= e−β1U (q ′
1)

Q(β1)
−

∫
dq2 min

{
e−β1U (q ′

1)

Q(β1)

e−β2U (q2)

Q(β2)
,

e−β1U (q2)

Q(β1)

e−β2U (q ′
1)

Q(β2)

}

+
∫

dq2 min

{
e−β1U (q2)

Q(β1)

e−β2U (q ′
1)

Q(β2)
,

e−β1U (q ′
1)

Q(β1)

e−β2U (q2)

Q(β2)

}
= πq (q ′

1|β1). (B4)

Therefore, after the exchange attempt, the new configu-
ration q ′

1 is still at equilibrium at inverse temperature β1. (A
similar series of steps can be applied for the temperature β2.)

Redrawing the momentum from the Maxwell–
Boltzmann distribution at inverse temperature β1 will,
of course, not change the equilibrium distribution and can be
shown to only support the canonical distribution at inverse
temperature β1, and no other stationary distribution.38 Evolu-
tion by Hamiltonian dynamics for any length of time does not
alter the stationary canonical distribution.45 Therefore, the
proposed protocol samples from the canonical distribution at
the desired temperatures, provided sufficient time is allowed
for equilibration.

APPENDIX C: CONVERGENCE OF TRANSITION
PROBABILITIES IN BAYESIAN METHODS

The convergence of transition probabilities from
Bayesian sampling methods is presented in Fig. 9 for various
temperatures. Therefore, the proposed protocol generates the
canonical distribution at the desired temperature.
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