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Abstract

A hybrid Monte Carlo method with adaptive temperature choice is presemtach
exactly generates the distribution of a mixed-canonical ensemble compbsed o
canonical ensembles at low and high temperature. The analysis of resultingWMark
chains with the reweighting technique shows an efficient sampling afethenical dis-
tribution at low temperature, whereas the high temperature componentai@sicon-
formational transitions, which allows shorter simulation times.

The algorithm was tested by comparing analytical and numerical results dor th
small n-butane molecule before simulations were performed for &dnricleotide.
Sampling the complex multi-minima energy landscape of this small Régment, we
observe enforced crossing of energy barriers.

Introduction

The efficient sampling of phase space for complex biologigatems remains to be the spe-
cific problem in theoretical biochemistry. This problem canty be solved with Monte Carlo
(MC) or molecular dynamics (MD) simulations, if it is posi&ilto overcome energy barriers,
which are large compared to the thermal energy. MC algosthtinat are based on local
conformational changes of functional groups, can enfoetédr crossing by significant dis-
tortions. Unfortunately, large local distortions are oftenergetically unfavourable and the
corresponding MC proposals will be rejected. One way to @& this problem is to use
hybrid Monte Carlo (HMC) techniques [7, 6, 16], which allowdombine global updates in
position space with reasonable acceptance rates. Anotheisvwio sample in so-called gen-
eralized ensembles [12], where the canonical ensembl@lsced by a probability density,
which supports an extended energy range. Higher energgrmegyill be visited more often
and enable conformational changes more easily. In thistbasesulting Markov chain has
to be reweighted according to the canonical ensemble afesite For the construction of a
generalized ensemble different techniques can be ap@ljed [

The classical Ferrenberg—Swendsen scheme [8] uses résualtsa canonical distribu-
tion at one temperature to extrapolate to expectation gatfi@nother distribution at a dif-
ferent temperature. But a small difference between the ¢eatpres is necessary to receive
statistically reliable results. The reweighting method b& extended to mix data from in-
dependent runs [9]. More recently, algorithms were progpadich sample over the whole
energy range [12], like the multicanonical algorithm [3inalations in a 1/k-sampling [13]



and simulated tempering [15]. Similar ideas to overcomeggniarriers are tested by using
Tsallis statistics [2] and in the J-walking method [11].

Another approach is to sample in the canonical ensembleanitiodified potential, e.g.,
umbrella sampling [18], fluctuating-potential methods][&ad other potential smoothing
techniques [4]. With these techniques energy barriers edoveered, but artefacts could be
introduced by the deformation of the original potential.

The methods listed above exhibit the following charactiess Firstly, any of the gener-
alized ensembles has to be adapted to the system of intérestl®y connecting distribution
parameters to the simulation protocol or making a physicaibtivated initial modifica-
tion of the energy function. Secondly, nearly all strategige based on conventional MC
methods. Therefore, pecularities of the HMC scheme, lilalillity of momenta or the
possibility of modifications in the acceptance step, arecnasidered.

In this paper we present a specific generalized ensemblehvaliows to exploit the ad-
vantageous features of HMC. In particular, we propose adabanonical ensemble, which
uses the momentum information for introducing an adapéweperature function and allows
a statistical reasonable reweighting to canonical ensemgrages. The resulting method
is called adaptive temperature HMC (ATHMC). The only cheegstic parameter of the
new distribution function can be interpretated in termstef tiverage potential energy of
the canonical ensemble and has to be approximated by aal iitiulation. ATHMC still
satisfies the detailed balance condition and guarantei&stistd convergence.

An oligoribonucleotide, a small RNA segment, serves as tarasting model system,
because of its structural flexibility. Although the gengpabperties of the proposed algo-
rithm can be tested very easily and fast on small moleculestagane, the application to a
triribonucleotide should indicate, whether the methodicalice conformational transitions
in macromolecules with a remarkable number of degrees etifra.

Method

HMC and generalized ensembles

A large class of molecular systems can be described by asegddamiltonian of the form

1 _
H(z,p) = T(p) + V(z) = 5p"' M 'p+V(z). 1)
T denotes the kinetid/ the potential energy antll the diagonal matrix of the atom masses.
If an observabled is a function of the coordinates only, the canonical enserabskrage is
given by
4, = LA@) Dl BV (2)]da
[ exp[-BV (z)] dz

where
_0'(x) _ exp[-BV(z)]dz
Z,  [exp[-BV(x)|dx




is the corresponding canonical probability density at terafure7” with partition sumZ,
and so-called inverse temperatyte= 1/kz7T L.

A Metropolis MC method can be used to generate Markov chdinsmfigurationsz (%)
withk = 1,...,n, from which expectation values A >, of observablesi can be calculated

by
<A>, = lim —ZA 2)

n—oc M,

Using HMC as a special Metropolis MC algorlthm with globaldapes, the momenta
serve as the random variable generally, i.e., new momehtve to be drawn from a given
distribution before each MC step. If we draw the momenta fedpiBaussian distribution
o« exp[—BT(p)] according to (1), and propose new coordinatt@nd new momenta’
by integrating the system through phase space with a réersnd volume preserving dis-
cretized flowU” (e.g., the Verlet discretization [20]), the new coordisaté are accepted
with a probability of

Pyee = min (1 eXp[ B(H( ) H(x,p))})
2 expl_ 810"
- (l “(2) expl_BT(p)] ) ‘

If we want to use the HMC scheme to sample a generalized etse@ita) = p*(z)/Z,,
we have to adjust the acceptance probability to

p(z') exp[ﬁT(p’)})
p*(z) exp[—BT(p)]
in order to satisfy the detailed balance condition. Gemhgr#he inverse temperaturg

is not given directly byu, but has to be chosen appropriately. Thermodynamical aver-
ages have now to be calculated by the reweighting methodhelfMarkov chain gener-

Pace = min (17 )

ated due to (3) is used to calculate the averages of the tjgawtip[—(3 V (z)]|/p* (z) and
A(x)exp[—BV(z)]/u*(z), the quotient of these averages results in
n exp|— ’I‘(k) X b'd
o i e I 0 B N i i
T BV - exp[ AV (x)] “)
7 k=l ] | =y n(x) dx
[ A(z) exp[—BV (z)]dx
= =<A>, .
Jespl-pV@lde 7"
Thus, the scalar quantitiescp[—3 V (z(¥))]/u*(z*)) are reweighting factors applied

on the configurations:(*) generated from a generalized distribution In contrast to (2)
canonical averages o have to be calculated according to (4). The relative magdaitu
of the reweighting factors along the Markov chain indicates statistical reliability of the
reweighting scheme, which can be evaluated with histogearniques [8].

1k s=Boltzmann’s constant



Mixed-canonical ensemble

To achieve an improved sampling of coordinate space, wepgmp mixed-canonical ensem-
ble with a weighting factor composed as the arithmetic ayeiaf two Boltzmann factors at
inverse temperature$™ ands™:

() = 5 (exp[—6 (V(2) — ] + exp[~5* (V(2) — )]
The principal idea is, to enforce barrier crossing by thenhhigmperature part, whereas
the low temperature part is important for the statisticéibimlity of the reweighting. LetT,
7~ and7 " denote the corresponding temperaturesdos~ ands*. For7T— =T, i
is identical to the canonical ensemble. Moreoyeonverges to the low or high temper-
ature canonical ensemble, dftends toco or —oc, respectively. Although the shift in the
potential energy introduced hyhas no influence on a canonical ensemble, it determines
an energy level in the mixed-canonical density, at whichgiviéeng according to the low or
high temperature changes: f(x) — ¢ < 0, the contribution of3~ will dominate and for
V(x) — ¢ > 0 the contribution of3*. The persistence in a certain temperature state is con-
trolled by the relation of the parameteto the potential energy. Because we are interested
in expectation values with respect @07~ should be chosen close 1, whereas the *
contribution should facilitate energy barrier crossincghefefore, we can conclude, that the
sampling prefers the distribution ®~, if ¢ will be greater than< V' >, . The difference
betweerc and <V >, determines the amount of samplingZat .

HMC with adaptive choice of temperature

For the implementation of the proposed generalized digioh into ATHMC based sam-
pling we have used the following recipe for one update stemdifitations compared to
HMC are discussed below. Fixed parameters at the beginrfitigerocedure are the tem-
perature of interest, the minimal and the maximal tempegatfithe generalized distribution.

1. Initialization of momenta p at the inverse temperature (), which is assumed to be
known from the previous step, i.e.,

poxexp |[—f(z) )

2. Calculation of new coordinates and momenta (', p') = (¥7)" (z,p).
3. Computation of 3(z') dueto (6).

4. Acceptance of new coordinates z’ with a probability

w(z') exp[—B(a") T(p)] (ﬁ(w) >S/2
p*(z) exp[-B(z) T(p)] \B(x) ’

otherwise stay in old coordinates z; s denotes the number of degrees of freedom.

Piee = min (1, (5)
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Figure 1:Choice of temperatur () in dependence of the potential energy with = 295K,
T+ = 400K andc = 0. Note, that the temperature function is directly connedted* and
reflects the density of the mixed-canonical ensemble. A ghaf ¢ induces a change in the
density ofy, and a shift of the temperature function.

In contrast to (3), the acceptance probability in (5) is ome#re generalized exploiting the
special structure of the mixed-canonical ensemble anchga&dvantage of the fact, that
detailed balance is satisfied for any arbitrary temperatlnstead of using a constant tem-
perature at each step, we search for a temperature fungtierts(z), which depends on the
actual potential energy in such a way, that the Boltzmantofeat 5(x) is equal tou*(x).
This results in the temperature function (Fig.?1)

In p*(z)
B(z) = Vi —c (6)

With this choice of temperature we can sample freim a way which reflects the “local”
behavior of the density: Starting a trajectoryzavith momenta drawn from a Gaussian dis-
tribution corresponding t@(x) and arriving at a configuratiaf with Ag = 3(z') —3(z) ~
0, results in an acceptance rate as typically achieved in H&@ecially, the sampling in low
energy regions is dominated by the Boltzmann factor comedipg tog— with 5(x) ~ 5~
and vice versa in high energy regions witiz) ~ 3. In these cases\j is low, even if
larger changes in the potential energy occur. For otheregabf A3 the potential and mo-
menta part of the acceptance step (5) fit together and rdsaoliraa reasonable acceptance
rate. Therefore, we can expect an acceptance rate close tottesponding one in a HMC
scheme.

Another modification of the acceptance probability (5) ceraong with the adaptive
temperature. The additional fact8(z)/3(z'))*/? in (5) results from the normalization of
the two different momentum distributions f6{::) and(z'), which differ in their standard
deviation. Becausg remains fixed in HMC, this factor simplifies g see e.g.(3).

%For states: with V (z) = ¢ the temperaturg(z) has to be evaluated by interpolation



The temperature function and the mixed canonical ensemblsimultaneously influ-
enced by the parameterLet us assume thatis somewhat larger than the average potential
energy with respect tp. Then, the density of the generalized ensemble will enclbee
canonical one, but also covers higher energy regions, wiashno significance ip. In our
case this means, that whenever the potential energy ireséaghe vicinity ofc, kinetic
energy is pumped into the system according to the choicegbienitemperature for the gen-
eration of momenta. Additionally, proposals with higheergy are accepted more easily in
u and the system can move towards higher energy regions, wbefermational changes
happen more often. Conversely, the system can move fromtbilghw energy regions and
eventually arrive in another conformation. Therefore, tluetuations of3(z) serve as a
good indicator for the desired behavior and can be used Imprary runs to find a suitable
value forc.

Model systems

The proposed method was tested on two model systems. Th&nebmolecule is a very

small organic compound. The linear chain consists of fouo@as and ten hydrogens. The
configuration of the heavy atoms can be described by oneotoesigle, two bond angles
and three bonds. Significant conformational changes aex&sly effected by torsion angle

rotations. The semiemperical Hamiltonian, which is cotiaeally used to mimic covalent

and non-covalent energy contributions of this kind of mawstecules consists of terms for
the kinetic energy, and in its simplest form for bond- andawgcillations, and torsion angle
rotations:

1 _
H(q,p) = EPTM 'p

+ Z ‘/bonds_’_ Z Vangles+ Z ‘/torsirms

bonds angles torsions

+ Z (VLennardeones + VCoulomb)

atompairs

[kd/mol]
tofgon " ¢y IS
o o o

V
i
o

0 -150 -100 -50 (? 50 100 150
w[°

Figure 2: Left: Extended atom model of n-butane with the torsion angleRight: Torsion
angle potential. The main minimum corresponds tottiaes orientation of the angle, the two
side minima to thetgauche orientations.



For n-butane we have used the extended atom model of RycagBellemans [17]
(Fig. 2), which reduces the representation of the chainéoctirbon atoms. Moreover, the
so-called non-bonded Lennard-Jones and Coulomb interecplay no role for n-butane,
because interactions up to the third neighbors are totaliyei@d by the covalent terms.
The n-butane molecule with its one torsion angleerves as an ideal test system for the
proposed ATHMC scheme. Firstly, the three orientations déscribe also the three possible
conformations (see Fig. 2). Secondly, as was shown in [b@]ekpectation value for the
torsion angle potentiaV;,.sion Can be computed analytically. Therefore, we can compare
our results with analytically exact values.

The physical representation of the triribonucleotide (Bgadenylyl(3'-5")cytidylyl(3'-
5)cytidin [r(ACC)] is based on the GROMOS96 extended atom force field [19]. Goatybe
to the n-alkane model, some non-polar hydrogens are colsrelde corresponding heavy
atoms. Moreover, GROMOS96 contains an extra covalent griergn for out-of-plane os-
cillations. The global structure afACC) can be roughly described by eight parameters per
nucleotide (Fig. 3). The torsion anglgsaround the glycosyl bond and the puckering of the
ribose ring described by the pseudorotation arigkend its phasé [1] are of special interest
for the conformational analysis.

Figure 3:The triribonucleotide adenylf® -5 )cytidylyl (3’ -5 )cytidin [r(ACC)] in the extended
atom representation of GROMOS96 [19]. A and C denote thesbadenine and cytosine. Small
greek letters refer to the set of torsion angles, which iseasary for a rough reconstruction
of the molecule’s configuration. The torsion angles of thmse can be approximated by the
pseudorotation angl® and the phaseé [1].



Results and Discussion

The n-butane molecule

For simulations of n-butane, we used the Verlet scheme [20] w = 40 iterations and a
time step ofr = 15fs, which results in a trajectory length 660 fs for each update step.
Performing a simulation ovei)® steps at a temperature Bf= 100 K with HMC (not shown
here), we observed a trapping of the Markov chain in the Hgawonformation, where we
started the simulation. The energy barrier towards thest@mformation seems to be too
high at this low temperature to be overcome in a reasonatnielation time.

IN

w
1

> [kJ/mol]

'lgrsionN

<V

500
400 i}

& 300
= 200 .
100 -

200

1001

w[]
o

-100 '

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ATHMC steps

-200

Figure 4: ATHMC run for n-butane. The simulation was performed fof steps with7 =
100K, 7~ = 90K, 7T = 500K andc = 1.5. The flat line in the first subplot indicates the
analytically computed expectation value.

Sampling the position space with ATHMC with orllg* steps (Fig. 4) and carrying out
the reweighting (4) to the temperature of interes7at= 100K, leads us to a distribution
of the three conformations @ and to an expectation value &f Viyon > close to the



analytic values:

‘ < Viorsion > ‘ —gauche in %( trans in %‘ +gauche in %

analytic value 0.571 2.40 95.20 2.40
HMC 3.353 0 0 100
ATHMC (reweighted) 0.580 3.15 94.24 2.61

The simulations on n-butane jinwere easily adapted to a suitable parameter set by short
preliminary runs without the need of fine tuning. The acceptarate decreased only slightly
from 83.1% to 75.3% by changing from HMC to the ATHMC scheme.

Figure 4 illustrates, that a change of the torsion anglentai@n is directly correlated to
the choice of temperature. We can observe the behavior asluksin the previous section.
Note, that most of the time the Markov chain sample§ at 7, which guarantees the
statistical reliability of the reweighting.

The triribonucleotide r(ACC)

HMC simulations orr(ACC) were performed oves * 10° steps. The discretized flow was
again realized by the Verlet integrator [20] with a time stdpr = 2fs overn = 40 it-
erations between two HMC updates. Compared to n-butane,ch srmaller time step and
MD-trajectory is required to guarantee an acceptance f&i8.3%. The: parameter for the
ATHMC calculations was first adjusted to an approximatedaged potential energy, which
results from preliminary short HMC cycles. In subsequemtrstest calculationg was then
slowly shifted towards higher energies. The preprocessiag finished at a total shift of
50 kJ/mol. At this point a temperature fluctuation betwden = 295K and7 ™ = 400K is
reached, which basically prefers the low temperature (5jg.The adjustment of depends
strongly on the difference between the two temperaturestiamexpected energy fluctua-
tions of the simulation. The butane molecule with only a fesgreées of freedom allows
larger jumps in temperature or kinetic energy, respegtiiébppears, that the ATHMC finds
pathways from low to high energy regions. Test calculatimmghe triribonucleotide on the
other hand show, that 8t = 500K, r(ACC) could be brought into a high energy state
during the simulation, but will not relax again. Large temrgiare differences will narrow
the range around, in which a moderate transition between the two correspanénergy
regions can take place.

The development of the averaged potential energy in ATHMG. (B) and HMC (Fig.
6) demonstrates the superiority of the adaptive temperathoice in the mixed-canonical
ensemble. The averaged energy converges faster to agligiveér value. Although the tem-
perature difference of05 K is smaller than in the n-butane case and the global updeges a
based on shorter MD simulations, Fig. 6 illustrates thetsdof the method to induce global
conformational changes. This behavior should be examinesbme selected parameters of
the cytidylyl group. The torsion angle around the glycosyhtd xy mainly oscillates in the
range between -1680and -80, but is shifted at least four times towards the range between
40° and 100. Even more conformational transitions can be observeddiéitkbone for the
torsion angley.
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The backbone transitions are clearly uncoupled from theaglyl transitions, but highly
correlated to the dynamics of the other internal coordmatehe backbone?, e and¢ (not
shown here). In our simulations the torsion anglshows no distinguishable transitions,
whereas the pseudorotation andgflés spread over its whole definition range.

These results of ATHMC are in contrast to normal HMC, whictudt be discussed on
andP (Fig. 6). InHMC~ remains almost in the initial state. The only exception atibgin-
ning between 50000 and 80000 steps probably results froraghitibration of the system,
which is not finished at this stage. Additionally, the riboisg described by the pseudorota-
tion angleP and the phase clearly occupies only one preferred conformation. The aged
potential energy converges very slow and stays slightlyatbe value of ATHMC. Again
HMC is not able to enforce the necessary conformational @esrwhich bring the system
into more preferable conformations. Moreover, Fig. 5 angl B demonstrates, that ribose
puckering is very sensible to the temperature.
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Figure 6: HMC for r(ACC) in the canonical ensemble. The simulation was performedTes 300 K. The
averaged potential energy V' > and for the cytidylyl group the torsion angleand the pseudorotation angle
P are displayed at every twentieth step.

To investigate the dependence between the temperatureecéiod conformational tran-
sitions in more detail, we now zoom to the first 10000 steps®&THMC run (Fig. 7). The
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averaged potential energy in Fig. 5 and 6 indicate, that thigrarily chosen initial confor-
mation of the simulation belongs to an energy below the @esrahich makes a transition to
another more realistic conformation desirable. Hh®rsion at this starting point is around
120¢°. Normal HMC (Fig. 6) is unable to induce a necessary tramsitb another state. Only
the heating of the system due to the choice of momenta acgptdi higher temperature
induces the necessary transitiomadéround step 4500.
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Figure 7: ATHMC for r(ACC) in the mixed-canonical ensemble. The simulation was pexéorfor7 ~ =
295K, 7+ = 400K andc = —1121 kd/mol. The temperaturg, and for the cytidylyl group the torsion angle
are displayed at every tenth step over the first 10000 steps.

The fact, that ATHMC samples at different temperatures witfiicient rates, is further-
more illustrated by the probability distribution of energfore and after the reweighting
(Fig. 8). Without reweighting (equation 4) we observe a mmaxin around the averaged
potential energy, but another distribution peak for higbeergies, exactly enforced by the
choice of higher temperatures and the non-negligible daoep at higher energies. Fig. 8
makes the strategy of generalized ensembles very cleaiisttmovercome energy barriers
by sampling not only low but also high energy areas. The idemoalizing the energy dis-
tribution over an extended energy range finds its extremizadi@n in the multi-canonical
approach [12], which is orientated on a constant distributi ATHMC also stretches the
energy distribution, but is conceptionally still connett® the physical properties of the
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system, indicated by the great overlap of canonical and drdeaonical distribution.
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Figure 8: ATHMC for r(ACC) in the mixed-canonical ensemble. Probability distribataf energy before
(dashed line) and after (solid line) reweighting. Compuedording to equation (4).

Conclusion

The ATHMC method presented herein permits to realize antagsi@mperature choice in a
generalized ensemble. The crucial detailed balance ¢ondémains to be valid in ATHMC,
because the separation of coordinates and momenta in teptance step is possible.

The comparision of conventional HMC and ATHMC exhibits tlsperiority of the lat-
ter with respect to the conformational analysis of biomoles. The adaptive temperature
choice coupled with a generalized, mixed-canonical entembs discussed to be respon-
sible for the efficient sampling properties. Like all othtmagegies based on generalized en-
sembles the proposed algorithm cannot relinquish pre- astbpcessing procedures. But
preprocessing in ATHMC needs only one parametewhich corresponds to the averaged
potential energy of the system. The simplicity of this apmto may be advantegeous for
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applications to larger molecules, because even an in&rffidetermination of will give
reliable statistical results: K deviates too much from its optimal value one of the canonical
distributions will dominate the sampling. Moreover, théuence ofc on the temperature
fluctuations can even control the equilibration state ofsystem.

In a forthcoming work it will be of special interest to inclathe solvent environment into
ATHMC in order to investigate its influence on temperatureicl, determination of and
acceptance rate. Again oligoribonucleotides can servega®d model system, because the
availibility of theoretical as well as experimental datarfr NMR measurements [5] makes
quantitative predictions possible.
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