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Abstract

A hybrid Monte Carlo method with adaptive temperature choice is presented, which
exactly generates the distribution of a mixed-canonical ensemble composed of two
canonical ensembles at low and high temperature. The analysis of resulting Markov
chains with the reweighting technique shows an efficient sampling of thecanonical dis-
tribution at low temperature, whereas the high temperature component facilitates con-
formational transitions, which allows shorter simulation times.

The algorithm was tested by comparing analytical and numerical results for the
small n-butane molecule before simulations were performed for a triribonucleotide.
Sampling the complex multi-minima energy landscape of this small RNAsegment, we
observe enforced crossing of energy barriers.

Introduction

The efficient sampling of phase space for complex biologicalsystems remains to be the spe-
cific problem in theoretical biochemistry. This problem canonly be solved with Monte Carlo
(MC) or molecular dynamics (MD) simulations, if it is possible to overcome energy barriers,
which are large compared to the thermal energy. MC algorithms, that are based on local
conformational changes of functional groups, can enforce barrier crossing by significant dis-
tortions. Unfortunately, large local distortions are often energetically unfavourable and the
corresponding MC proposals will be rejected. One way to overcome this problem is to use
hybrid Monte Carlo (HMC) techniques [7, 6, 16], which allow to combine global updates in
position space with reasonable acceptance rates. Another way is to sample in so-called gen-
eralized ensembles [12], where the canonical ensemble is replaced by a probability density,
which supports an extended energy range. Higher energy regions will be visited more often
and enable conformational changes more easily. In this casethe resulting Markov chain has
to be reweighted according to the canonical ensemble of interest. For the construction of a
generalized ensemble different techniques can be applied [4].

The classical Ferrenberg–Swendsen scheme [8] uses resultsfrom a canonical distribu-
tion at one temperature to extrapolate to expectation values of another distribution at a dif-
ferent temperature. But a small difference between the temperatures is necessary to receive
statistically reliable results. The reweighting method can be extended to mix data from in-
dependent runs [9]. More recently, algorithms were proposed, which sample over the whole
energy range [12], like the multicanonical algorithm [3], simulations in a 1/k-sampling [13]
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and simulated tempering [15]. Similar ideas to overcome energy barriers are tested by using
Tsallis statistics [2] and in the J–walking method [11].

Another approach is to sample in the canonical ensemble witha modified potential, e.g.,
umbrella sampling [18], fluctuating-potential methods [14] and other potential smoothing
techniques [4]. With these techniques energy barriers can be lowered, but artefacts could be
introduced by the deformation of the original potential.

The methods listed above exhibit the following characteristics: Firstly, any of the gener-
alized ensembles has to be adapted to the system of interest either by connecting distribution
parameters to the simulation protocol or making a physically motivated initial modifica-
tion of the energy function. Secondly, nearly all strategies are based on conventional MC
methods. Therefore, pecularities of the HMC scheme, like availibility of momenta or the
possibility of modifications in the acceptance step, are notconsidered.

In this paper we present a specific generalized ensemble, which allows to exploit the ad-
vantageous features of HMC. In particular, we propose a mixed-canonical ensemble, which
uses the momentum information for introducing an adaptive temperature function and allows
a statistical reasonable reweighting to canonical ensemble averages. The resulting method
is called adaptive temperature HMC (ATHMC). The only characteristic parameter of the
new distribution function can be interpretated in terms of the average potential energy of
the canonical ensemble and has to be approximated by an initial simulation. ATHMC still
satisfies the detailed balance condition and guarantees statistical convergence.

An oligoribonucleotide, a small RNA segment, serves as an interesting model system,
because of its structural flexibility. Although the generalproperties of the proposed algo-
rithm can be tested very easily and fast on small molecules asn-butane, the application to a
triribonucleotide should indicate, whether the method caninduce conformational transitions
in macromolecules with a remarkable number of degrees of freedom.

Method

HMC and generalized ensembles

A large class of molecular systems can be described by a separated Hamiltonian of the formH(x; p) = T (p) + V (x) = 12pTM�1p+ V (x): (1)T denotes the kinetic,V the potential energy andM the diagonal matrix of the atom masses.
If an observableA is a function of the coordinates only, the canonical ensemble average is
given by <A>% = R A(x) exp[�� V (x)] dxR exp[�� V (x)] dx
where %(x) = %�(x)Z% = exp[�� V (x)] dxR exp[�� V (x)] dx
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is the corresponding canonical probability density at temperatureT with partition sumZ%
and so-called inverse temperature� = 1=kBT 1.

A Metropolis MC method can be used to generate Markov chains of configurationsx(k)
with k = 1; : : : ; n, from which expectation values<A>% of observablesA can be calculated
by <A>% = limn!1 1n nXk=1A(x(k)): (2)

Using HMC as a special Metropolis MC algorithm with global updates, the momenta
serve as the random variable generally, i.e., new momentap have to be drawn from a given
distribution before each MC step. If we draw the momenta froma Gaussian distribution/ exp[�� T (p)] according to (1), and propose new coordinatesx0 and new momentap0
by integrating the system through phase space with a reversible and volume preserving dis-
cretized flow	� (e.g., the Verlet discretization [20]), the new coordinates x0 are accepted
with a probability ofPacc = min �1; exp[�� (H(x0; p0)�H(x; p))]�= min�1; %�(x0) exp[�� T (p0)]%�(x) exp[�� T (p)] � :

If we want to use the HMC scheme to sample a generalized ensemble�(x) = ��(x)=Z�,
we have to adjust the acceptance probability toPacc = min�1; ��(x0) exp[�� T (p0)]��(x) exp[�� T (p)] � (3)

in order to satisfy the detailed balance condition. Generally, the inverse temperature�
is not given directly by�, but has to be chosen appropriately. Thermodynamical aver-
ages have now to be calculated by the reweighting method. If the Markov chain gener-
ated due to (3) is used to calculate the averages of the quantities exp[�� V (x)]=��(x) andA(x) exp[�� V (x)]=��(x), the quotient of these averages results inlimn!1 1nPnk=1A(x(k)) exp[�� V (x(k))]��(x(k))1nPnk=1 exp[�� V (x(k))]��(x(k)) = R A(x) exp[�� V (x)]��(x) �(x) dxR exp[�� V (x)]��(x) �(x) dx (4)= R A(x) exp[�� V (x)] dxR exp[�� V (x)] dx =<A>% :

Thus, the scalar quantitiesexp[�� V (x(k))]=��(x(k)) are reweighting factors applied
on the configurationsx(k) generated from a generalized distribution�. In contrast to (2)
canonical averages ofA have to be calculated according to (4). The relative magnitude
of the reweighting factors along the Markov chain indicatesthe statistical reliability of the
reweighting scheme, which can be evaluated with histogram techniques [8].

1kB=Boltzmann’s constant

3



Mixed-canonical ensemble

To achieve an improved sampling of coordinate space, we propose a mixed-canonical ensem-
ble with a weighting factor composed as the arithmetic average of two Boltzmann factors at
inverse temperatures�� and�+:��(x) = 12 �exp[���(V (x)� c)] + exp[��+(V (x)� c)]� :

The principal idea is, to enforce barrier crossing by the high temperature part, whereas
the low temperature part is important for the statistical reliability of the reweighting. LetT ,T � andT + denote the corresponding temperatures for�, �� and�+. For T � = T +, �
is identical to the canonical ensemble. Moreover,� converges to the low or high temper-
ature canonical ensemble, ifc tends to1 or �1, respectively. Although the shift in the
potential energy introduced byc has no influence on a canonical ensemble, it determines
an energy level in the mixed-canonical density, at which weighting according to the low or
high temperature changes: IfV (x) � c < 0, the contribution of�� will dominate and forV (x) � c > 0 the contribution of�+. The persistence in a certain temperature state is con-
trolled by the relation of the parameterc to the potential energy. Because we are interested
in expectation values with respect to%, T � should be chosen close toT , whereas theT +
contribution should facilitate energy barrier crossing. Therefore, we can conclude, that the
sampling prefers the distribution toT �, if c will be greater than< V >% . The difference
betweenc and<V >% determines the amount of sampling atT +.

HMC with adaptive choice of temperature

For the implementation of the proposed generalized distribution into ATHMC based sam-
pling we have used the following recipe for one update step. Modifications compared to
HMC are discussed below. Fixed parameters at the beginning of the procedure are the tem-
perature of interest, the minimal and the maximal temperature of the generalized distribution.

1. Initialization of momenta p at the inverse temperature �(x), which is assumed to be
known from the previous step, i.e.,p / exp24��(x) sXj=1 p2j2mj35 :

2. Calculation of new coordinates and momenta (x0; p0) = (	� )n (x; p).
3. Computation of �(x0) due to (6).

4. Acceptance of new coordinates x0 with a probabilityPacc = min 1; ��(x0) exp[��(x0)T (p0)]��(x) exp[��(x)T (p)] � �(x)�(x0)�s=2! ; (5)

otherwise stay in old coordinates x; s denotes the number of degrees of freedom.
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Figure 1:Choice of temperatureT (x) in dependence of the potential energy withT � = 295K,T + = 400K and c = 0. Note, that the temperature function is directly connectedto �� and
reflects the density of the mixed-canonical ensemble. A change of c induces a change in the
density of� and a shift of the temperature function.

In contrast to (3), the acceptance probability in (5) is oncemore generalized exploiting the
special structure of the mixed-canonical ensemble and taking advantage of the fact, that
detailed balance is satisfied for any arbitrary temperature. Instead of using a constant tem-
perature at each step, we search for a temperature function� = �(x), which depends on the
actual potential energy in such a way, that the Boltzmann factor at�(x) is equal to��(x).
This results in the temperature function (Fig. 1)2�(x) = � ln��(x)V (x)� c : (6)

With this choice of temperature we can sample from� in a way which reflects the “local”
behavior of the density: Starting a trajectory atx with momenta drawn from a Gaussian dis-
tribution corresponding to�(x) and arriving at a configurationx0 with �� = �(x0)��(x) �0, results in an acceptance rate as typically achieved in HMC.Especially, the sampling in low
energy regions is dominated by the Boltzmann factor corresponding to�� with �(x) � ��
and vice versa in high energy regions with�(x) � �+. In these cases,�� is low, even if
larger changes in the potential energy occur. For other values of�� the potential and mo-
menta part of the acceptance step (5) fit together and result also in a reasonable acceptance
rate. Therefore, we can expect an acceptance rate close to the corresponding one in a HMC
scheme.

Another modification of the acceptance probability (5) comes along with the adaptive
temperature. The additional factor(�(x)=�(x0))s=2 in (5) results from the normalization of
the two different momentum distributions for�(x) and�(x0), which differ in their standard
deviation. Because� remains fixed in HMC, this factor simplifies to1, see e.g.(3).

2For statesx with V (x) = c the temperature�(x) has to be evaluated by interpolation
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The temperature function and the mixed canonical ensemble are simultaneously influ-
enced by the parameterc. Let us assume thatc is somewhat larger than the average potential
energy with respect to%. Then, the density of the generalized ensemble will enclosethe
canonical one, but also covers higher energy regions, whichhas no significance in%. In our
case this means, that whenever the potential energy increases in the vicinity ofc, kinetic
energy is pumped into the system according to the choice of higher temperature for the gen-
eration of momenta. Additionally, proposals with higher energy are accepted more easily in� and the system can move towards higher energy regions, whereconformational changes
happen more often. Conversely, the system can move from highto low energy regions and
eventually arrive in another conformation. Therefore, thefluctuations of�(x) serve as a
good indicator for the desired behavior and can be used in preliminary runs to find a suitable
value forc.
Model systems

The proposed method was tested on two model systems. The n-butane molecule is a very
small organic compound. The linear chain consists of four carbons and ten hydrogens. The
configuration of the heavy atoms can be described by one torsion angle, two bond angles
and three bonds. Significant conformational changes are especially effected by torsion angle
rotations. The semiemperical Hamiltonian, which is conventionally used to mimic covalent
and non-covalent energy contributions of this kind of macromolecules consists of terms for
the kinetic energy, and in its simplest form for bond- and angle oscillations, and torsion angle
rotations: H(q;p) = 12pTM�1p+ XbondsVbonds + XanglesVangles + XtorsionsVtorsions+ Xatompairs(VLennard�Jones + VCoulomb)

!
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Figure 2: Left: Extended atom model of n-butane with the torsion angle!. Right: Torsion
angle potential. The main minimum corresponds to thetrans orientation of the angle, the two
side minima to the�gauche orientations.
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For n-butane we have used the extended atom model of Ryckaertand Bellemans [17]
(Fig. 2), which reduces the representation of the chain to the carbon atoms. Moreover, the
so-called non-bonded Lennard-Jones and Coulomb interactions play no role for n-butane,
because interactions up to the third neighbors are totally covered by the covalent terms.
The n-butane molecule with its one torsion angle! serves as an ideal test system for the
proposed ATHMC scheme. Firstly, the three orientations of! describe also the three possible
conformations (see Fig. 2). Secondly, as was shown in [10], the expectation value for the
torsion angle potentialVtorsion can be computed analytically. Therefore, we can compare
our results with analytically exact values.

The physical representation of the triribonucleotide (Fig. 3) adenylyl(3’-5’)cytidylyl(3’-
5’)cytidin [r(ACC)] is based on the GROMOS96 extended atom force field [19]. Comparable
to the n-alkane model, some non-polar hydrogens are coveredby the corresponding heavy
atoms. Moreover, GROMOS96 contains an extra covalent energy term for out-of-plane os-
cillations. The global structure ofr(ACC) can be roughly described by eight parameters per
nucleotide (Fig. 3). The torsion angles� around the glycosyl bond and the puckering of the
ribose ring described by the pseudorotation angleP and its phase� [1] are of special interest
for the conformational analysis.
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Figure 3:The triribonucleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin [r(ACC)] in the extended
atom representation of GROMOS96 [19]. A and C denote the bases adenine and cytosine. Small
greek letters refer to the set of torsion angles, which is necessary for a rough reconstruction
of the molecule’s configuration. The torsion angles of the ribose can be approximated by the
pseudorotation angleP and the phase� [1].
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Results and Discussion

The n-butane molecule

For simulations of n-butane, we used the Verlet scheme [20] with n = 40 iterations and a
time step of� = 15 fs, which results in a trajectory length of600 fs for each update step.
Performing a simulation over105 steps at a temperature ofT = 100K with HMC (not shown
here), we observed a trapping of the Markov chain in the +gauche conformation, where we
started the simulation. The energy barrier towards the trans conformation seems to be too
high at this low temperature to be overcome in a reasonable simulation time.
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Figure 4: ATHMC run for n-butane. The simulation was performed for104 steps withT =100K, T � = 90K, T + = 500K andc = 1:5. The flat line in the first subplot indicates the
analytically computed expectation value.

Sampling the position space with ATHMC with only104 steps (Fig. 4) and carrying out
the reweighting (4) to the temperature of interest atT = 100K, leads us to a distribution
of the three conformations of! and to an expectation value of< Vtorsion > close to the
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analytic values: <Vtorsion> �gauche in % trans in % +gauche in %

analytic values 0:571 2:40 95:20 2:40
HMC 3:353 0 0 100

ATHMC (reweighted) 0:580 3:15 94:24 2:61
The simulations on n-butane in� were easily adapted to a suitable parameter set by short

preliminary runs without the need of fine tuning. The acceptance rate decreased only slightly
from 83:1% to75:3% by changing from HMC to the ATHMC scheme.

Figure 4 illustrates, that a change of the torsion angle orientation is directly correlated to
the choice of temperature. We can observe the behavior as described in the previous section.
Note, that most of the time the Markov chain samples atT � T �, which guarantees the
statistical reliability of the reweighting.

The triribonucleotide r(ACC)

HMC simulations onr(ACC) were performed over5 � 105 steps. The discretized flow was
again realized by the Verlet integrator [20] with a time stepof � = 2 fs overn = 40 it-
erations between two HMC updates. Compared to n-butane, a much smaller time step and
MD-trajectory is required to guarantee an acceptance rate of 58.7%. Thec parameter for the
ATHMC calculations was first adjusted to an approximated averaged potential energy, which
results from preliminary short HMC cycles. In subsequent short test calculationsc was then
slowly shifted towards higher energies. The preprocessingwas finished at a total shift of50 kJ/mol. At this point a temperature fluctuation betweenT � = 295K andT + = 400K is
reached, which basically prefers the low temperature (Fig.5). The adjustment ofc depends
strongly on the difference between the two temperatures andthe expected energy fluctua-
tions of the simulation. The butane molecule with only a few degrees of freedom allows
larger jumps in temperature or kinetic energy, respectively. It appears, that the ATHMC finds
pathways from low to high energy regions. Test calculationsfor the triribonucleotide on the
other hand show, that atT + = 500K, r(ACC) could be brought into a high energy state
during the simulation, but will not relax again. Large temperature differences will narrow
the range aroundc, in which a moderate transition between the two corresponding energy
regions can take place.

The development of the averaged potential energy in ATHMC (Fig. 5) and HMC (Fig.
6) demonstrates the superiority of the adaptive temperature choice in the mixed-canonical
ensemble. The averaged energy converges faster to a slightly lower value. Although the tem-
perature difference of105K is smaller than in the n-butane case and the global updates are
based on shorter MD simulations, Fig. 6 illustrates the ability of the method to induce global
conformational changes. This behavior should be examined on some selected parameters of
the cytidylyl group. The torsion angle around the glycosyl bond� mainly oscillates in the
range between -160� and -80�, but is shifted at least four times towards the range between
40� and 100�. Even more conformational transitions can be observed in the backbone for the
torsion angle
.
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Figure 5: ATHMC run for r(ACC). The simulation was performed forT � = 295K, T + = 400K andc = �1121: kJ/mol. The averaged potential energy< V >, the temperatureT , and for the cytidylyl group the
torsion angles� and
 and the pseudorotation angleP are displayed at every twentieth step.
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The backbone transitions are clearly uncoupled from the glycosyl transitions, but highly
correlated to the dynamics of the other internal coordinates of the backbone,�, � and� (not
shown here). In our simulations the torsion angle� shows no distinguishable transitions,
whereas the pseudorotation angleP is spread over its whole definition range.

These results of ATHMC are in contrast to normal HMC, which should be discussed on

andP (Fig. 6). In HMC
 remains almost in the initial state. The only exception at the begin-
ning between 50000 and 80000 steps probably results from theequilibration of the system,
which is not finished at this stage. Additionally, the ribosering described by the pseudorota-
tion angleP and the phase� clearly occupies only one preferred conformation. The averaged
potential energy converges very slow and stays slightly above the value of ATHMC. Again
HMC is not able to enforce the necessary conformational changes, which bring the system
into more preferable conformations. Moreover, Fig. 5 and Fig. 6 demonstrates, that ribose
puckering is very sensible to the temperature.
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Figure 6: HMC for r(ACC) in the canonical ensemble. The simulation was performed forT = 300K. The
averaged potential energy< V > and for the cytidylyl group the torsion angle
 and the pseudorotation angleP are displayed at every twentieth step.

To investigate the dependence between the temperature choice and conformational tran-
sitions in more detail, we now zoom to the first 10000 steps of the ATHMC run (Fig. 7). The
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averaged potential energy in Fig. 5 and 6 indicate, that the arbitrarily chosen initial confor-
mation of the simulation belongs to an energy below the average, which makes a transition to
another more realistic conformation desirable. The
 torsion at this starting point is around
120�. Normal HMC (Fig. 6) is unable to induce a necessary transition to another state. Only
the heating of the system due to the choice of momenta according to higher temperature
induces the necessary transition of
 around step 4500.
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Figure 7: ATHMC for r(ACC) in the mixed-canonical ensemble. The simulation was performed forT � =295K, T + = 400K andc = �1121 kJ/mol. The temperatureT , and for the cytidylyl group the torsion angle

are displayed at every tenth step over the first 10000 steps.

The fact, that ATHMC samples at different temperatures withsufficient rates, is further-
more illustrated by the probability distribution of energybefore and after the reweighting
(Fig. 8). Without reweighting (equation 4) we observe a maximum around the averaged
potential energy, but another distribution peak for higherenergies, exactly enforced by the
choice of higher temperatures and the non-negligible acceptance at higher energies. Fig. 8
makes the strategy of generalized ensembles very clear, that is to overcome energy barriers
by sampling not only low but also high energy areas. The idea of equalizing the energy dis-
tribution over an extended energy range finds its extreme realization in the multi-canonical
approach [12], which is orientated on a constant distribution. ATHMC also stretches the
energy distribution, but is conceptionally still connected to the physical properties of the
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system, indicated by the great overlap of canonical and mixed-canonical distribution.
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Figure 8: ATHMC for r(ACC) in the mixed-canonical ensemble. Probability distribution of energy before
(dashed line) and after (solid line) reweighting. Computedaccording to equation (4).

Conclusion

The ATHMC method presented herein permits to realize an adaptive temperature choice in a
generalized ensemble. The crucial detailed balance condition remains to be valid in ATHMC,
because the separation of coordinates and momenta in the acceptance step is possible.

The comparision of conventional HMC and ATHMC exhibits the superiority of the lat-
ter with respect to the conformational analysis of biomolecules. The adaptive temperature
choice coupled with a generalized, mixed-canonical ensemble was discussed to be respon-
sible for the efficient sampling properties. Like all other strategies based on generalized en-
sembles the proposed algorithm cannot relinquish pre- and postprocessing procedures. But
preprocessing in ATHMC needs only one parameter,c, which corresponds to the averaged
potential energy of the system. The simplicity of this approach may be advantegeous for
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applications to larger molecules, because even an insufficient determination ofc will give
reliable statistical results: Ifc deviates too much from its optimal value one of the canonical
distributions will dominate the sampling. Moreover, the influence ofc on the temperature
fluctuations can even control the equilibration state of thesystem.

In a forthcoming work it will be of special interest to include the solvent environment into
ATHMC in order to investigate its influence on temperature choice, determination ofc and
acceptance rate. Again oligoribonucleotides can serve as agood model system, because the
availibility of theoretical as well as experimental data from NMR measurements [5] makes
quantitative predictions possible.
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