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Higher-Dimensional Population Balances in
Polymerization Kinetics
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Population balance models describing not only the chain-length distribution of a polymer but
also additional properties like branching or composition are still difficult to solve numerically.
For simulation of such systems two essentially different approaches are discussed in the

literature: deterministic solvers based on rate

equations and stochastic Monte-Carlo (MC) strat- ;.
egies based on chemical master equations. The |’
paper presents a novel hybrid approach to poly-
mer reaction kinetics that combines the best of
these two worlds. We discuss the theoretical con-
ditions of the algorithm, describe its numerical
realization, and show that, if applicable, it is more
efficient than full-scale MC approaches and leads
to more detailed information in additional prop-

erty indices than deterministic solvers.

Introduction

The modeling and simulation of polymer reactions
still bears various challenges regarding formulation and
numerical solution of the underlying population balances.
A recent overview is given in ref An issue of special
interest of such systems is the treatment of more than
one property coordinate, ie, a description of polymer
chains including not only the chain length, but also
composition, branching, etc. Even then it is straightforward
to derive rate equations, however, these systems will
form a higher-dimensional set of countable systems
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prohibitively complex for more than two or three
independent properties. Apart from direct higher-dimen-
sional discretization approaches for such systems,[l_3] a
special calculus (based on so-called balance distributions or
distributed moments) has been developed in the context of
the discrete Galerkin h-p-method,**! where the additional
properties are computed as averages with respect to chain-
length. This leads to very detailed and often sufficient
information within reasonable computation times, since
the original n-dimensional system can be replaced by n
one-dimensional countable systems (where a countable
systemitselfis represented by aninfinite or verylarge set of
differential equations). A disadvantage of this approach is
the fact, that the preparation of such distributed moment
systems requires some insight regarding the population
balances and a sophisticated use of the discretization
method handling the single reaction steps. Regarding the
results, sometimes it would be helpful to get information
not only on chain-length dependent mean values of
additional properties, but full distributions of such, e.g.,
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in order to examine a composition drift in a copolymer
system.

Therefore for a long while as an alternative to the
deterministic approaches sketched above, stochastic meth-
ods are applied to polymer systems (°®! to name very few).
The advantage of the resulting Monte-Carlo (MC) methods
is, that they are (or at least seem to be) relatively simple to
implement and provide quite general information. How-
ever, even on modern, parallelized systems, stochastic
results of a sufficient accuracy (something which is
naturally required from deterministic methods), still cost
a lot of computing time.®! Furthermore, error controls
for MC methods are hardly to obtain without lengthy
convergence tests. On the other hand, deterministic
methods are superior in view of identification and
optimization purposes, where it is necessary to deal with
smooth, differentiable structures.

Summarizing we can state, that there are accurate
deterministic (very efficient for one property) and compre-
hensive stochastic methods available, but mostly applied
usedinaquite separated manner. One exceptionisthe work
described in ref,®! where a MC simulation is used as a
postprocessing to results obtained by the balance distribu-
tion approach. In contrast to that approach, in this paper we
will apply deterministic and stochastic methods in parallel,
sometimes even depending on each other. We will show,
how a skillful combination of both types of techniques can
overcome the disadvantages of the single approaches and
lead to detailed and efficient simulations. One basic idea is,
that for polymer systems there is one special property — the
chain length. There will always be more, often much more,
monomer units along a polymer chain than counts for any
other property. In our hybrid algorithm, the chain-length
axis and the related chain-length distributions are treated
by means of a deterministic approach, whereas all other
property coordinates are represented by an ensemble of
molecules of a MC method. As a consequence, only arelative
small number of chains is necessary for the MC method,
since the reaction rates can be obtained from the
deterministic results within high accuracy. In order to
develop this algorithm on a mathematical basis, the
coupling has to be done by carefully studying the under-
lying chemical master equations (CMEs). Then—using
certain limit processes—we can derive the coupling
between deterministic and stochastic parts of the algo-
rithm.

In contrast to refs.'* "l and other comparable approaches,
where the aim is to calculate the polymer chain length
distribution (and sometimes additional properties) from
probabilistic models, the hybrid approach suggested herein
addresses the distribution of other properties (e.g., branch-
ing) by MC techniques. The chain length distribution,
however, is computed by reaction kinetics using PREDICI or
similar solvers.
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In Section Theoretical Considerations of this article, the
mathematical basics of master and rate equations for
polymer kinetics are summarized and the theory of the
coupling is derived. The distinction between the basic
objects of master equation and reaction kinetics is essential
for the comprehension of the hybrid approach; in particular
it is essential to understand that the entire chain length
distribution is the first (marginal) moment of the prob-
ability distribution underlying the master equation. Our
hybrid approach contains the full chain length distribution
and the associated marginal probability distribution for the
other properties. It thus, at least in principle, allows to
compute, e.g, all the moments of the chain length
distribution as well as all the moments of the distributions
of other properties. In order to work this out as clearly as
possible, we added an overview over the basic aspects of the
different modeling layers at the end of Section Hybrid
Model.

In Section Algorithm, some technical issues of the
algorithm, already implemented in a prototypical version
of the program package Predici, are discussed. Finally some
illustrative examples are presented in Section Numerical
Experiments.

Theoretical Considerations

Modeling polymer reaction kinetics basically means to
describe certain phenomena occurring on a microscopic
level and affecting the single monomeric units of a polymer
chain —for example, the process of adding a monomer to a
polymer molecule. The probability of such a single reaction,
the position along the chain, the type of monomer and
chain, etc, are all under consideration. The common
notation for a propagation reaction:

k
P+ M-EPq,5=1,2,... (1)

refers to the types of molecules involved: Ps to the type
polymer of chain length s, M to the type monomer. If one
wants to distinguish between polymers of type chain
length s with different additional properties, one has to
add additional property indices. For example, we can
distinguish between polymers with different branching
index j by introducing the polymer type Ps;. For a given
instance in time let us denote the number of copies of
polymers of type Ps; by n, ;. Summation over the branching
index j yields the copy number Ny = }; ns; of polymers of
type Ps. If required we can introduce several additional
property indices j1,...,jm and different types of polymers
P¥ such that in general we would have to consider
molecular types P 1....jm- FOI the sake of simplicity we will
however restrict the following considerations to types Pg;
or P;.
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At time t the ensemble of molecules is completely
characterized by the state n = (ng),.,;., of all copy
numbers of all types of polymers. The reactions that change
the state of the ensemble happen statistically such that the
temporal evolution of the state is a stochastic process.
Consequently, we in general cannot assume to know the
present state of the ensemble but just the probability P¢(n)
to find the ensemble at time t in state n. The Chemical
Master equation (CME) describes the evolution of this
probability. It is driven by the possible reactions
R, = (a,,v,), where p is the index that enumerates the
reactions, a, is the reaction rate of reaction R, (the so-called
propensity function), and v, the associated stoichiometric
vector. The CME then has the following form:

apt(n) = 2;; (alt(n - V/t)[pt(n - V/L)

— a,(n)Pt(n)). ()

This means, withratea, (n — v,) thereaction R, happens
in a state n —v, of the ensemble that has probability
P¢(n —v,) and brings the ensemble to state n and thus
increases P:(n). Simultaneously the same reaction, if
happening in state n with rate a,(n), generates a state
n + v, thus decreasing [P¢(n). Consequently, the solution of
the CME is a probability distribution on an enormously
large state space that contains all possible combinations of
copy numbers ng;. For example, the typically considered
polymer chain length distributions are just one expectation
value of Pt(n):

Z nSJIPt nS]

Ngj,
s fixed

ZN Pt (N, (3)

where Vis the reference volume. For molar concentrations
as mostly used in polymer reactions we would have to
divide c¢(Ps) by the Avogadro number, but this does not
matter here.

For the case of the simple reaction scheme (1), the
state is N = (Ns),., and the possible reactions consist of
one reaction R; = (a5, vs) per polymer type P, where the
stoichiometric vector v; = e; has just one nonzero entry
at position s, while the reaction rate has the form
as(n) = Nykp,M (assumption: k,M=const, unit 1/s) such
that the CME reads:

d
prill _pMZ s — 1)P(N —e)

_NSPt’(N)) (4)

This is easily understood: the change dP:(N)/dt in the
probability that the copy number vector is N, results from
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all the reactions P; + M — Ps,; for all s. For fixed s this
reaction shifts the copy number vector from N to N + e
(death of particle Py) with rate Nsk,M and probability P;+(N)
(second term on the RHS) and simultaneously from N — e; to
N (birth of particle P;) with probability P;(N — e;) and rate
(Ny — 1)kpM (first term on RHS).

In terms of simulations, a solution of the CME for many
different types of molecules (here polymers of all possible
chain lengths) is infeasible. The Stochastic Simulation
Algorithm (SSA) as going back to Gillespie (:>*)) does not
solve (2) but simulates single realizations of the stochastic
process underlying the CME. Consequently, the solution
P(n) of the CME strictly speaking can only be approxi-
mated by many SSA simulations. Even in view of SSA
simulations, the CME approach is rather unrealistic in
applications where 10> — 102 molecules of one type of
molecules have to be taken into account and several types
of molecules are present. Fortunately, one can show that for
large reaction rate a, (more precisely for a, — oo), the
solution of the CME gets the form of a delta distribution in
state space that evolves along the deterministic solution of
the associated reaction kinetics. In order to express this in
more detail let us consider the polymer types P again and
assume that (as in the example above) the reaction rates
a,(N) scales with the copy numbers N as follows: let N
denote some reference number, then a, (N) = Noa, (N/Np),
ie., the reaction rates are large for large copy numbers.
Then, if the copy numbers of a system are large, we can
expand the CME (2) in powers of the small number 1 /Ny and
consider just the terms in lowest order in 1/Np. In lowest
order, ie., in the limit of large copy number N,, the
probability distribution is just a delta distribution in state
space:

Pe(N) = 8(N — Ve (P)), (5)
that evolves along the concentration trajectory c;(Ps) that
is given by:

- Ct Z Vﬂall« Ct (6)

n

where «,, results from the reaction rate a, by switching
from copy numbers to concentrations, «,(c) = a,(Vc)/V.
For the above example, this results in the rate equation:

%Ct( ) k MCt( ) — kpMCt(Ps). (7)

Taking higher ordersin 1 /N into account leads to further
resolution of the probability distribution, e.g., the next order

results in information on the variance of P;(N;) around its
mean Ve (Ps).
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Hybrid Model

In general we cannot assume that all copy numbers in a
system are large. For example, this may be true if additional
property indices like the branching index are considered.
Wewillnow consider cases in which the state (ny;); .. ; ;- o of
the ensemble can be partitioned into two different parts, in
the sense that the state of the ensemble can be written in
the form n = (x,y). Later we will consider cases in which
the copy numbers in the y-part are large while the copy
numbers in the x-part are low (or, in general, cannot be
assumed to be large). For example, we could consider in the
notation used above, y = (Nj); ., and X = (Ngj)s- 150
Due to thelaws of conditional probabilities we can write:

Pe(x,y) = Pe(x]y)Pt(y), (8)

where P:(x|y) denotes the probability of state x condi-
tional on y. Inserting this into the CME (2) we get:

TPixy)= Pely) SPY) + Prlxly) S P)
= Z [@u(x =V, y —§)Pe(X —Vuly — §,)P:(y — &)

—a,(x,y)P:(x|y)P:(y)],
(9)

where we split the stoichiometric vectors v, = (v,,§,)
in analogy to the splitting n = (x,y). Because of
> Pi(x]y) = 1, we get directly from (9) by summing both
sides over x and using (d/dt) Y, P:(x|y) = 0:

2P) = Y @~ £0P )

n

- 4,()Pt )], (10)

with averaged rates:

@) =) au(x.y)Pe(xly). (11)

Now, we assume that for the y-part thelimit of large copy
numbers is justified such that in the limit of large copy
numbers we get Py(y) =y, (y) with a concentration
trajectory C; given by the rate equation:

d _
3= EM: £,0,(t,Ct). (12)

The usual properties of the delta distribution 8y, (y)
allow to compute expectation values in y in the sense of
>y f)dve,(v) = f(VC¢) for all smooth enough functions f;
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we can use this particularly to introduce:

> PeX[y)dve, (v) = Pe(X|Co).
y
When inserting these results back into (9) we find:

d
apt(x‘ct)

— Z (@, (X — v, VGt — §,)Pe(x — v, |Cy)

n

- al‘-(x7 VCT)Pt(X|CT)]a (13)
which in turn implies for the averaged rates:

a, (y, t) = Z ay (va)Pt(X|Ct)v
X (14)

a(t,C) = a(VCe, t)/V.

In particular, if there are rates that do not depend on the
low copy number part of state space, we simply get:

a,(y)=a,. (15)

Summarizing one gets a system of two coupled
equations, a rate equation (12) for the concentrations of
thelarge copy number particles in ythat does depend onthe
low copy numbers in x just via the averaged rates and the
CME (13) for the low copy number particles that depends on
the concentrations C;. This allows to restrict the stochastic
CME simulations via SSA to the dimension of the low copy
number variables while thelarge copy number particles can
be handled much more efficiently via deterministic rate
equation solvers like Predici.

Overview Over the Different Modeling Layers

Table 1 shows the different description layers. The basic
quantity P¢(ng;) of the CME layer is the probability
distribution over all possible copy numbers ny; of chains
with property (s, j). Its marginal moments pcim (s) for sthus
are averages over an ensemble of chains with identical
property s distributed according to P(n;;). In deterministic
reaction kinetics the basic quantity is the chain length
distribution c¢;(Ps) that is proportional to the first of
the marginal moments of the CME, i.e, Mgl) (s). Moments
of the chain length distribution are thus averages over the
property s (and not averages over copy number distribu-
tions since those have already been partially averaged out
by switching to chain length distributions).

The hybrid model layer considers the marginal prob-
ability distribution of copy numbers conditioned to the
chain length distribution being fixed. Its basic quantities
are the full chain length distribution (no moments taken
w.rt. the chain length property) and the remaining
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Table 1. Overview over the different modeling layers.

C. Schitte, M. Wulkow

Models Basic quantities Algorithms Moments
CME Probabilities SSA Marginal moments
Pr(ns)) ") = X nfPing)
Ny j
sfixed
! ! !
Hybrid model Chain length distribution PREDICI

and branching index
probab. P¢(n;|ct(Ps))
T T

Deterministic Concentrations, chain
reaction kinetics

marginal probability distributions of copy numbers of
chains with length s and distributed additional properties j
(no moments here either). Thus, we still are able to compute
all higher moments of chain length distribution and/or
additional property indices if required.

Concept of Hybrid Algorithm

However, in many realistic cases the distinction between
large and low copy number particle will be difficult or even
impossible. Nevertheless, the above derivation can help to
reduce CME simulations drastically. In order to explain this
let us return to our polymer system with types Ps; where s
denote the chainlength index and j another property index,
e.g., some branching index. If we suppress the additional
property index and consider just the polymer types Ps in the
y-part (that is, set y = N), then copy numbers will in general
be large and the associated CME can be replaced by its large
copy number rate equation limit. Returning to the desired
level of resolution including the additional property indexj,
the associated CME contains low copy numbers. A
partitioning of its state space into low and large copy
number subspaces is impossible in general. However, we
can do a SSA simulation of the full CME but with averaged
reaction rates as in (13) (which is particularly simple
wherever they contain the copy numbers N; that just
depend on chain lengths). The general scheme of such a
hybrid algorithm is illustrated in Scheme 1: after identifica-
tion of the part of the systems for which (due to large copy
numbers) a description in terms of concentrations is
possible, one solves (12) with a deterministic solver like
Predici, whilein parallel a SSA according to Gillespie solves a
CME of form (13) which includes the present concentrations
of the deterministic solver in its reaction rate evaluations.

Macromol. React. Eng. 2010, 4, 562-577
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coupled to SSA

T
PREDICI Chain length

moments 3 s™ct(Ps) = A"
s

Algorithm

The following algorithm is based on the assumption, that
an approximation method is available that allows to
represent all chain-length distributions of a kinetic model.
Such single distributions are naturally induced by writing
the kinetics in terms of active, inactive, dormant, branched
species, etc., (e.g, Rs,Ds,Qs,). The Galerkin h-p-method
implemented in Predici allows a pointwise evaluation
(e, for each single chain-length s) of all distributions
within a controlled accuracy. Any other method leadingtoa
full distribution might also serve as deterministic part of
the hybrid algorithm. Here we follow the notation of ref.[*!
and assume, that all distributions P! of a scheme can be
approximated on grids A; using r; degrees of freedom
allowing evaluation of single concentrations P.. In the
following we will switch between the notations s, c(Ps), or
simply P for the concentrations of the polymer type Ps and
likewise for Py; if additional property indices have to be
addressed; mostly we suppress the explicit dependence of
all these objects on time.

Master SSA-
equation algorithm
. Hybrid
Reactions method
Rate Predici /
equation Solver

Scheme 1. Structure of the hybrid-algorithm. Reactions can be
described on different levels requiring different solution
techniques. The hybrid algorithm combines the underlying
equations as well as the numerical strategies.

DOI: 10.1002/mren.200900073
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Ensemble of Chains

As described before, within the hybrid algorithm we solve
the kinetic rate equations and in parallel compute single
realizations of the CME with MC method, i.e., a modification
of the SSA algorithm. Therefore each distribution P! is not
only represented by the d; degrees of freedom of the
deterministic method, but also by an ensemble E consisting
of m; chains e with chain-length e; and further properties
e1,es,.... This number m; can be fixed or chosen
adaptively. A main task of the present algorithm is to
keep m; “small,” e.g., at values between 102 and 103. This
implies, that a typical chain-length distribution from
radical polymerization, where the maximal chain-lengths
range up to 10* or even 10° will not be approximated
sufficiently well by the MC ensemble, but this does not
matter in the hybrid approach, where dependencies on
the chain-length axis are treated by the deterministic part
of the algorithm.

The complexity of the information of one chain can be
chosen in view of the problem to be considered. Typical
numbers are chain length, number of monomers of all
types, number of branches, length of branches, position of
active unit, etc, but also the full chain could be stored as
linear or branched structure. Another important aspect
is the definition of concentrations in the context of the
MC method. Usually a control volume V is taken and
the molar concentrations of the single species are given

by:

n;

= - (16)

Ci

Since the new approach should be used in a technical
reactor setting, the volume might be in the range of liters or
more, such that even forlow-concentrated radical polymers
(e.g, 1078 moll™") more than 10'° chains have to be
considered. Since the total number of MC chains is limited
by storage and computer speed, the control volume is often
set to very small values. Then it can happen, that certain
populations (like radical polymer chains) are represented
by a few MC chains only. Here we use a different approach:
for each distribution P! we know the overall concentration
from the deterministic method and assign it to the MC
ensemble. Thus in the present approach a natural choice
is to use a reasonable, even equal number m; for all
distributions P! and scale all interactions with respect to the
assigned, time-dependent concentration level obtained by
the deterministic part of the algorithm.

Time Discretization

The MC method is used within the time discretization
scheme of the deterministic approach. There, time steps ©
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are chosen, such that the overall accuracy is kept within a
prescribed tolerance. At first, the full deterministic system
is solved using the approximation method for chain-length
distribution (Rothe’s method, see Figure 3 in ref.l! Within
such a time step, many single reactions take place and have
to be performed by the MC method in parallel. Both —the
deterministic and the stochastic part —use the results of
the previous time step of the global time evolution. For
example, starting with a chain-length distribution Ps(t) at
time t, described by a h-p-grid A; and a MC ensemble E¢, the
time step t leads to an approximation Ps(t + r) and an
updated MC ensemble E; ..

For the MC part we follow the algorithm by Gillespie as
used in ref.”] At time t stochastic time intervals At, are
consecutively computed in terms of the total rate of
reactions rr:

Aty = 1n (i) (17)

T Zk

with random numbers z, € (0,1). A total number of MC
steps nyc for the outer time step 7 at time t is chosen such
that:

nmc nmc+1
ZAtk < 7 and Z Aty > 1. (18)
k=1 k=1

This means, that two tasks have to be solved:

e Computation of the total rate.
e Selection of one operation in the single MC steps.

Computation of Total Rate and Selection of Reaction

In a bimolecular reaction R, with species A and B and rate
constant k; the MC rate is given by (see ref.l”):

k
— VIGA Nang. (19)

The actual total rates for the most important reaction
types are listed in Table 2 below. At start of a z-step, the
individual reaction rates and the sum rr =3 r, are
computed and assigned to sub-intervals I, of [0, 1] given by:

n—1

Iu=(23,§;,’—;]- (20)

T

InaMCtimestep At areactionR), is selected, ifz € I, fora
random number z € (0, 1]. All this is quite similar to the
algorithm used in ref.[”) By the above scheme, the MC part of
the algorithm is treated in an explicit way. This means, that
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the concentrations and rates available at the begin of the
time step t are used for the whole step. This aspect has only
an effect on the local accuracy of the MC method. By using
mean values or interpolation of the deterministic results
along the time step, an improvement is possible. However,
after trying different approaches, we decided to use the
sufficiently good explicit scheme for all simulations
presented in Section Numerical Experiments.

Treatment of Reaction Steps

Apart from the computation of rates based on results of the
deterministic method, up to this point the MC part of the
algorithm looks quite similar to well-known approaches.
This will change when we consider the treatment of the
single reaction steps. For an illustration we choose a
propagation step of a copolymerization scheme:

kp12

Pl +M, S P2, (21)

selected at some time, where a monomer M, adds to a
chain with a different end-group such that this character-
istic property of the molecule changes (typical terminal
model). Related to P* and P? are overall concentrations
ho(PY) =3 P! and Ao(P?) = 5, P? as well as MC ensem-
bles E; and E, with numbers m; and m,. At first, a single
chain e* has to be chosen randomly from the P*-ensemble
E;. Now one could simply shift e' to the other ensemble,
however, this would disregard the different concentration
levels and ensemble numbers. Instead, the reaction has
different effects on the two ensembles. The number m2 of
affected chains of type P? is given by:

m? = —=. (22)

For P! = P? we have m2 =1 leading to the classical
treatment. For the general case m2z1 the update of the
ensembles involved requires some consideration. Firstly,
the chain e* has to be removed from the P'-ensemble. Since
we want to keep m? constant, then some other chain e? has
to be chosen and copied. The simplest way to do this is to
select an entity e” out of an ensemble E; by using another
random number zs € [1,m;]. Actually, if the ensemble
is large and represents the chain-length distribution
rather accurately, a random selection will automatically
be proportional to the actual concentrations of the single
polymer molecules. More complex copy strategies have
been tested and will be discussed elsewhere. For P? a certain
number of chainshas to bereplaced by et If mﬁ < 1,weuse
another random number z, to replace a chain if z, < mfr
For that, one chain of ensemble E, is randomly deleted and
replaced by e®. If m2 > 1, a respective number of chains in
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E, is replaced by copies of e'. Summarizing, for a single
reaction R, the algorithm works as follows:

1. Select a chain e* from the ensemble E;.

2. If R, is a bimolecular polymer reaction, select a partner
chain e? € E,.

3. If only one distribution is affected: change selected
chains accordingly.

4. Otherwise: Compute the ensemble factor(s) m., replace
the selected chain(s) in ensembles of distributions
on the left-hand side and copy them. Apply weighting
replacement to the ensembles on the right-hand side.

For some reaction step patterns a MC module has
been implemented in a prototype version of Predici
(compare Table 4 in ref.) The MC rates per deterministic
step length r use the molar concentrations of low molecular
specieslike monomers, initiators and transferagent and the
statistical moments 1;(P) = 3" s'P; of polymer species. The
following Table 2 lists those rates when the first reactant on
the left-hand side is selected first.

Interpolation

If we want to use results from the MC part of the algorithm
for output or even the computation of deterministic
reaction rates, a technique to compute relatively smooth
chain-length dependent informationisrequired. Each chain
e € E provides (not unique) relations between chain-length
s and the property indices ij,iz,.... However, in the
numerical examples we require an average i, (number of
comonomers in a chain) for a given s. In Figure 7 an
automaticregression of the graphic software has been used
to compute the mean values, but such a regression
requires some prescribed, parameterized function (linear,
polynomial, exponential, etc.) and is only suited for a post-
processing. During the time step evolution, we apply amore
sophisticated algorithm:

Table 2. Monte-Carlo reaction rates for selected elemental reac-
tion steps.

Pattern Name MC-rate/t
I+A—P Initiation k;g—z‘g) mp
P+ A — Q541 Propagation kcamp
P;,+A—Q;+B Transition kcamp
Ps+ Qy — Dgyy Recombination kio(Q)mp
Py +0Q,—Ds;+D, Disproportionation kio(Q)mp
Pi+A— Qs+ T; Transfer kcamp
P, +D, 50, + 1, Long-chain branching kii(D)mp
P+ D, 50, Cross-linking kr1(D)mp
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Table 3. Rate constants for schemes (24) and (31).

Name Value Unit
ka 10°* :
1

kpl 100 — s
4 1

kp 2 10 mol's
1
k4 10 1
1

ktr 150 ol

The rate constant k; will only be needed in (31).

1. For a given chain-length s the h-p-grid representation of
the polymer species P is taken to find an interval I, such
that s eI

2. Then we compute

= - ZeeEteSEI €i

[ ‘23’

which simply is the average value of property i on
interval I.

3. Since step 2 would lead to a piecewise constant
function, the average is assigned to the mean of
the interval and then interpolated linearly between
neighbored intervals.

Using this strategy, the results in Figure 6 and the back-
coupling of averages into the reaction rate of the transfer
step used below have been realized. Of course, the h-p-grid
has been used as basis for the average, since the h-p-
algorithm automatically detects where a distribution has
important structures.

Numerical Experiments

In this section we want to show how the hybrid algorithm,
formally described by (12) and (13) works in typical
situations. The used models are artificially designed to
study the convergence behavior and some particular
challenges of real-life models. Such applications —includ-
ing adiscussion of the chemical aspects of the results — will
be considered in forthcoming papers and in cooperation
with chemists and chemical engineers. Here we want to
concentrate on the numerical issues. In Section Copolymer-
ization with Drift and Section Additional Long-Chain
Branching with Forward Coupling we realize the CME
(13) by a stochastic method using overall concentrations
obtained by the rate Equation (12), which in parallel is

Macromol. React. Eng. 2010, 4, 562-577
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Macromolecular

R Journals

Macromolecular
Reaction Engineering

solved by the Galerkin method of Predici. In Section Long-
Chain Branching with Backward Coupling we extend the
model set-up and couple back results of the CME, here the
average number of branches per chain-length, to the rate
equations. In other words, in the first two examples, the
averagedrated, (y) appears inits simple form (15), whereas
in Section Long-Chain Branching with Backward Coupling
we apply the general expression (11).

Copolymerization with Drift

In order to get some confidence in the algorithm, we
consider a simple copolymerization based on two mono-
mers M;, M,. The reaction scheme consists of activation,
propagation and deactivation only (one may think of a basic
catalytic system):

13
C—=>Pig

K
Pyi+M; = Pgp;+Cy (24)

k
Pyi+ My 2 Pgi1i41 + G
k
Ps,i _d> Ds,i

P;; denotes (the concentration of) a polymer of length s
with i units of comonomer M,. The initial values are:
€(0)=10""mol1™* M;(0)=9.8mol1™*, M,(0)=0.1moll*,
where we assume the molecular weights of all species to
be 0.1kgmol™* (all simplifying assumptions and restric-
tions —here and below —are only made to focus on the
main aspects of this examination and not induced by
the method). The reaction rates are given as shown in
Table 3:

It is easily seen that by choice of the propagation
parameters k, ,k,,, and the low initial concentration of
monomer M, we will generate a broad chemical distribu-
tion. Atthe begin of the reaction, the instantaneous fraction
fo(t) of incorporated monomer M, will be:

szMZ(O)

= ~ 0.5, 25
Rp, M1 (0) + kp,M(0) (25)

f2(0)

where after consumption of M, we will have f,(t)~0.
The “balance species” C; and C, are used to compute the
time-dependent cumulated fractions of the monomers in
the polymer (Ci(t) > 0 for one i and t > 0):

_ G
CGi(t) +Co(t)’

Cy(t)

B BECEG)

Fy(t) (26)

In order to check the results, a reference solution is
required. For that, we apply the technique of balance
distributions developed and applied in refs[*>*?! The
general idea is to write down the full two-dimensional
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rate equations of system (24) and then derive the
differential equations for the boundary sums:

P = ZPS,UQS = Zipsjv D; := ZDSJHTS :

i=0 1=0 =0

- fj iDs.;. (27)

For example, the distribution D, denotes the concentra-
tion of all dead chains of length s (independent of their
composition), T; describes the concentration of all M,-units
in all such chains. Thus the pointwise ratio:

Fz(s, t) = TS(t)

.Ds(t) > 0, (28)

describes the average number of M,-units in chains of
length s. The derivation of the overall balance for O;(t) and
Ts(t) is straightforward in this simple case (e.g., the
additional balances for propagation steps are derived in
ref,!* Equation 8). In Predici, there are prepared modules
for such balance equations and it is possible to compute
F,(s,t) within high accuracy as reference result.

Within the hybrid algorithm we solve the balances of
only the overall chain-length distributions Py and D, by the
deterministic algorithm (Predici). The underlying standard
kinetic scheme is:

ckp,
P, +M1kil>Ps+1 +G
Py + M, kiz’PsH +G
P, XD,

(29)

In parallel the MC-algorithm is used to compute refined
results regarding the composition of single chains —using
MC reaction rates based on the solution of (29). For that, let
us consider a single, randomly chosen hybrid MC simula-
tionforthe present model using ensembles of mp = 200 and
mp = 2000 chains. All simulations are performed up to end
time t = 600 s. The choice of those numbers is mostly
suggested by computing time issues. We do not want to
spend too much additional computing time for the MC-part
of the algorithm. At the same time, we want to show that
even a small number of chains will provide reasonable
results. Additionally, in systems with “living” and “dead”
species, where it is obvious, that the living species will stay
at concentration levels orders of magnitude smaller than
the dead species, we use smaller sizes for the living MC
population. Actually, all tests have shown, that in such
systems the accuracy is mainly controlled by the number of
dead chains.
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Figure 1. Comparison between chain-length distributions D(s) at
t= 6005 obtained by our Galerkin method and one single Monte-
Carlo realization.

In Figure 1 we present the dead polymer chain-length
distribution computed by the h-p-method and the MC
method (range reduced to chain-length interval [1,500] in
order to amplify differences).

Significant concentrations range up to chain length
s = 103, such that we cannot expect to get a very accurate
description of the CLD with mp = 2000 single chains, but
using the interpolation technique of MC results (Section
Ensemble of Chains) on the h-p-intervals, the results are in
good agreement with the h-p-method. For comparison, the
relative numbers of the MC method are normalized such
that the maximal mean concentration of the h-p-method
and the MC method on the intervals of the h-p-grid A are
identical. Running different ensemble sizes or using an
average of several MC simulations (each only one realiza-
tion of the underlying master equation) leads to similar
distributions, but since the differences are beyond visibi-
lity, we need a measure for the error. Since we have a point-
wise solution from the h-p-method, we can compute the
error induced by the MC method by:

o\ 1/2
eve = <Z <(512 B S{L + 1) (D(Sg\/f) _A{\AC)) ) ) (30)

IeA )”O(D)

Here s} and s} are the bounds of interval I of the h-p-grid A,
sh;, and Al - denote the mean chain-length and the average
normalized MC-based concentration on .

Figure 2 shows the time evolution of the error for some
realizations and for three different scenarios: mp = 100, mp =
1000; mp = 200, mp = 2000; mp = 500, mp = 5000 (in the
following abbreviated by MC 100-1 000, MC 200-2 000, etc.).

Obviously the increase of the number of molecules leads
to better results, whereas the improvement decreases for
larger numbers. The linear regressions indicate relative
errors of about 0.02,0.03,0.06 for the three simulations.
It should be emphasized that the existence of an error
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Figure 2. Error estimates for the MC-method regarding full
chain-length distributions (full time-dependent curves and linear
average).

estimate has valuable consequences when working with a
numerical method.

Also the mean values M,,, M, of D are captured relatively
well by the MC ensemble. Figure 3a and b present the results
for the same three realizations as studied above.

However, we are not particularly interested in the CLD
here, but rather want to compute information on the
chemical distribution in an efficient way. As a first check we
consider the overall fraction of the monomers and compare
to the very exact results given in terms of (26). The MC
results are so close to the deterministic curve (Figure 4), that
one can hardly see a difference between the single
simulations. Only at the end of the reaction there may be
a slight underestimation of F,(t). The reason is, that the
longest chains have the highest M,-fraction and just these
chains become less prominent in the MC ensemble. In the h-
p-method we use a special weighting to keep track of long
chains and such a control can also be added to the MC
method later.

Next we examine the inner structure of the chains. At
first, we can use the single-chain information in the MC
ensemble to compute the chemical composition, which is
here defined as the molar fraction of monomer units in
chains with a certain fraction of monomer M,. In Figure 5
the chemical distributions at t = 10, 50, 100, 200, 400, and
600s reaction time are plotted using a small smoothing
index. As expected, the peaks move fromtheright totheleft,
whereas for t = 600 s (dotted line) there is a significant
amount of polymer without monomer M, (a bit decreased
in the graphic because of the smoothing).

Avery important product index is provided by F(s, t), the
time-dependent average number of comonomers in chains
of a certain chain length s (we will make use of this
distribution in the next example). In Figure 6 results for the
h-p-method (straight line, based on balance distributions)
and three MC scenarios are summarized, where we have
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Figure 3. Comparison between deterministic and stochastic
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Figure 4. Polymer composition as cumulative molar fraction of
the comonomer M2 in all chains. Good agreement between
deterministic (reference) and MC-results.
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Figure 5. Chemical distribution at t=10, 50, 100, 200, 400, and
6005 (peaks move from right to left) of polymer obtained by
MC-method. A slight smoothing has been applied.

set down the smallest ensembles to only 100 living and
500 dead chains.

Again, the simulation with the largest ensembles
delivers slightly better results (and would even be more
accurate if we had averaged several runs), but also for
the smallest number of chains, the obtained profile will
provide valuable information in many applications. The
additional computing time induced by the MC method for
this example (h-p-method, tolerance 0.003), is only 75% for
the smallest scenario, but 200 and 800% (summing up to
500s CPU on a 2.66 GHz processor) for the mean and the
largest ensembles.

As expected, for the consideration of the copolymeriza-
tion aspects, the longest simulation is not necessary, since
the MC results for the fractions are much more accurate

h-p-method
———-=MC-100-500
77777 MC-200-2000
------- MC-500-5000

fraction F2(s)

0 100 200 300

chain length

400 500 600

Figure 6. Chain-length dependent molar fraction F2(s) of
comonomer in polymer. Comparison between results of Galerkin
h-p-method using balance calculus (can be considered as
reference) and different realizations of the MC-method.
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Figure 7. Plot of comonomer fraction in all single chains of the
MC-ensemble (a) at early reaction time t=60's, MC-500-5 0oo.
The straight line describes the average; (b) at final reaction
time t=600s, MC-soo-5000 and (c) at final reaction
time t=600s for a small MC-ensemble, setting MC-100-500.
The thick straight line describes the average obtained by

regression; the thin straight line is the average from the Galerkin
method.
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than for the CLD itself and this is a main argument for this
hybrid algorithm.

For the computation of the MC averages we again have
applied a grid-based interpolation technique. Actually, one
should not base the convergence analysis on single runs of
the MC method, but use mean values of several realizations.
In practice, however, a modeler will try to get important
structure information from one or very few simulations.
Therefore we try to mimic this behavior in our numerical
experiments. In the next example we will see, that
sometimes at least a few realizations have to be averaged.

At last we take a look at the full ensemble of chains. The
three graphics of Figure 7 show, how nicely the hybrid MC
algorithm behaves here. For t = 60s, the distribution of
fractions vs. chain-length is relatively narrow (scenario
MC 500-5000), and the average (automatic polynomial
regression) is very close to the average F,(s,60) of the
h-p-method. For t = 600s the single chains are broadly
distributed, but again the average is nicely captured. In
Figure 7c one can see, that if only 100 and 500 chains are
used, the structure of the full distribution is still visible
with very accurate average. Besides, for this simple curve-
structure a polynomial regression might be sufficient, but
the h-p-interval-based approach (used in Figure 6) is more
general and can be done automatically.

In retrospect, we have seen that with the hybrid
approach we have combined the advantages of both
worlds by computing the basic chain-length distributions
deterministically and add further properties using a MC
(SSA) based on relatively small ensembles of chains. In
particular we could present the full chemical distribution
with much less effort than in a full-scale SSA.

Additional Long-Chain Branching with Forward
Coupling

For our second examination we extend the previous
example by a transfer-to-polymer reaction and assume,
that each transfer step will lead to a long-chain branch
(LCB). A more practical example including the formation of
secondary radicals and subsequent g-scission might be
considered in a forthcoming article. For now, we add
another index j to the system counting the number of LCBs
in chains of length s with i comonomer units, ie., we
consider polymer species Ps;; and D;;;. The basic reaction
scheme then is:

C E’Pl,O,O
k
Psij+ M 3 Psi1j+C1

B
Psij+ M; = Psiaiy1j+C2 (31)
k
Pyij =5 Dsjj
(rk D) Ry

g
Psij+Drri” —  Dsij+Prera
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with reaction rate coefficient k;, from Table 3. Its value has
been set in order to generate a final polydispersity of about
7, which is fairly (but not too) broad. A reduction to an only
chain-length-based description reads (introducing another
counter species Cjp):

ckp,
k
Ps + M E’PSJrl +C
k
Pi+ M, 3Py +Co
k
P, -4 D
g(r) ker
Ps+D,” — Dg+ Py + Ciep

(32)

The rate function g(r,k,I) of the three-dimensional
model is crucial for the reaction rate of the transfer-to-
polymer step. For example, if the transfer can only occur
(once) at comonomer units, we have g(r, k,1) = k — L. If the
transfer is possible along the whole chain, one often sets
g(r,k,1) =r —1=~r. For the reduced system (32), the rate
function has to be replaced by an average. Here typical
settings are g(r) = Fy(t), F2(t) the accumulated fraction of
monomer M, in the whole polymer, or more accurately:

Go(t) — Ciap(t)

GET O (33)

g(r.t)

This means, that we count the overall number of
incorporated comonomer molecules and the number of
branches and assume, that all chains have an average
composition and branching structure. Despite this strong
assumption, such models have turned out to be quite
successfulinapplications. However, it is one major aspect of
the hybrid method to study and validate (or falsify) such
assumptions without too much mathematical and numer-
ical effort. In Figure 7a—c we could observe, that with
increasing reaction time the average number of comono-
mer units describes the full distribution of chains less and
less. Thus the task of this example is to check the effect of
distributed fractions. Since the number of transfer-reac-
tions is small compared to the number of comonomers (i.e.,
C2 < Cjp) in this example, for ease of presentation we will
not consider the aspect of “consumed bonds” used
described in numerator of (33). If one applies the balance
distribution calculus to the full system (31), one can define a
refined rate function by:

g(r,t) =Fy(r,t)r, (34)
with F,(r,t) again the chain-length dependent fraction of
the comonomer. Before we discuss the results, we have
to explain, how the chain-length dependency has been
realized within the MC method. Assume that at a
certain stage for a given chain P a partner chain for the
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transfer-to-polymer step has to be selected. Instead of
randomly choosing one chain out of the ensemble of
dead polymers, we have to consider that —in the current
averaged setting, where we assume, that the incorporated
number of comonomers is proportional to the chain
length —longer chains have a higher probability in view of
the transfer. The following algorithm will support this:
1. Compute Siota) = Z?ﬁl eé, ie, we compute the total
chain length of all chains €' in the ensemble E with np
chains.
2. Take a new random number z € (0,1].
3. Choose 1 < j < np such that ssub(j —1)/Stotal < z and

Ssub(j) /Stotal > z, Where squp(j) = S el.

This is quite similar to the selection of the reaction
steps in the modified Gillespie algorithm and leads to
the required statistical behavior. For a validation of the
extended system we perform simulations with ensembles
sizes mp = 200, mp = 1000. In Figure 8a and b the mean
values are compared. In this example, the perturbations are
much bigger than before. The explanation is simple: due to
the high dispersity, a few, very long chains affect the mean
values drastically. In the deterministic approach, this
induces not much problems (except that it requires a
careful error control), but for the MC method there is some
sensitivity. Nevertheless, if we perform three subsequent
simulations, the obtained averages give a good estimate
of the “real” mean values. This is improved, if we run
ten consecutive simulations and compare M, to the
MC-average and its standard deviation in Figure 8c. For
the full distribution, a comparison of the concentration
distribution looks similar to Figure 1 and the respective
error estimates are also comparable, therefore we omit
these pictures here.

Instead, we concentrate onthe new aspect, the branching
index. Figure 9a presents the fraction of branched monomer
units per chain molecule (ie., j/s) of all dead chains, the
averages obtained from the MC method (thin line) and by
the balance calculus of h-p-method (thick straight line) at
the end of the reaction. Here we present the results of the
myp = 500, mp = 5000 scenario.

The average of the hybrid MC method is very accurate,
but we can observe, that there are many chains even
without a branch (black box at the left bottom), actually in
this single simulation we have 3325 out of 5000 chains
without a branch. One can easily compute such a ratio with
the purely deterministic method too by introducing
additional polymer species describing branched polymer
only (*)). However, we note again, that we want to keep the
basic model as simple as possible and try to get as much as
information as possible out of the hybrid approach. In
Figure 9b the same kind of results are summarized for a
simulation with mp = 200, mp = 1000.
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Figure 8. Comparison between deterministic and stochastic
method for the (a) number mean value of the polymer in
LCB example and (b) the weight mean value of the polymer
in LCB example. The average describes the mean of three
MC-realizations. (c) Refined comparison between deterministic
and stochastic method for the number mean value of the
polymer in LCB example. The average describes the mean of
ten MC-realizations. An estimate of the standard deviation s is
added.
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Figure 9. Plot of branching fraction in all single chains of the
MC-ensemble (a) at final reaction time for the LCB case at
t=600s, setting MC-500-5 000. The thick straight line describes
the average obtained by regression; the thin straight line is the
average obtained by our Galerkin method; (b) at final reaction
time for the LCB case and small MC-ensemble at t = 6005, setting
MC-200-1000. The thick straight line describes the average
obtained by regression; the thin straight line is the average from
the Galerkin method. It can be seen, that many chains have no
branching point at all. (c) Plot of comonomer fraction in all single
chains of the MC-ensemble at final reaction time for the LCB
case and large MC-ensemble at t =600, setting MC-500-5 000.
The thick straight line describes the average obtained by
regression; the thin straight line is the average obtained by
our Galerkin method. Due to the transfer-to-polymer, the como-
nomer is more distributed in the ensemble than in Figure 7a.
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Figure 10. (a) Fraction of chains for proportional chain transfer
with a certain number of branches in a logarithmic scale indi-
cating an exponential decay of branches. (b) Fraction of chains
with a certain number of branches for the case with back
coupling of MC-results to kinetic rate equations. Dotted line:
proportional case.

As for the comonomer fraction in the copolymerization
example, averages and overall structure are nicely kept. A
comparison of Figure 9c (M, fraction vs. chain-length for the
LCB-case) with Figure 7a reveals, that due to the transfer-
to-polymer process the comonomer fraction is more
equilibrated.

In Figure 10a we plot the percentage of chains with a
certain number of branches in a logarithmic scale. The
roughly linear decrease indicates that we can expect an
exponential decay of the branching number in such
systems. This could already be shown in deterministic
systems by introducing polymer populations for each
branching number (numerical fractionation), but such a
treatment tends to be complicated from a number of about
ten branches per chain.

www.mre-journal.de

575



Macromolecular
Reaction Engineering

Long-Chain Branching with Backward Coupling

In the previous part of this example, the MC part of the
algorithm has only been used to produce additional results
without a feedback to the deterministic system. This will be
done now. For that we perform the MC transfer-to-polymer
step with a slight variation of the algorithm described
above: instead of the chain-length we use the comonomer
index of each chain. By that we select chains for transfer
according to the number of available comonomers —not as
average, but individually for each single transfer step. On
the deterministic side of the algorithm, where such a
detailed treatment is not available in the basic formulation
with only one property (chain-length), we have to use an
averaged rate again, but now we can apply a chain-length
dependent transfer rate (34) instead of the general average
(33). In a purely deterministic system we could also apply
the balance distribution approach again (and have for
comparison), but here we restrict to minimal effort by
evaluating the average F,(r,t) directly from the MC
population, oriented again on the current h-p-grid of the
deterministic population. Instead of repeating all kind of
results for this modified example, we only take a look at
some differences.

e The polydispersity index is smaller (Figure 11).

e There seem to be more chains without branches
(plausible) and more chains with many branches (range
up to 60 instead 23 in the proportional example,
Figure 10D).

e This is backed by Figure 12, where again (for MC 200-
1000) the branching fraction is shown. The straight line
is the result from the proportional approach (Figure 9b).

The mostimportant aspect in view of the development of
the hybrid algorithm is, that both parts of the algorithm

‘ e
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Figure 11. Comparison of polydispersity between the two LCB
models (averaged and MC-based).
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Figure 12. Plot of branching fraction in all single chains of the
MC-ensemble at final reaction time t=600s, MC-200-1000, for
the LCB case with back-coupling for small MC-ensemble. The
thick straight line describes the average obtained by regression;
the thin straight line is the average obtained by the Galerkin
method.

affect each other and all results go together. In particular,
the overall branching rate obtained from the counter
species Cip has the same time evolution as the direct
number of branches of the MC method. Also the full
distributions and their mean values have been used to
validate the accuracy of the feedback of MC results into the
deterministic equations.

Conclusion

Summarizing, we have seen again, that deterministic
solvers like Predici can efficiently and accurately compute
chain-length distributions and even averages of polymer
properties with respect to additional property indices, if we
apply the balance distribution approach. However, the
resolution of details of distributions of additional property
indices is necessarily limited and a lot of mathematical and
numerical preparations have to be done.

On the other hand, a pure MC method like SSA would be
inefficient in comparison to Predici for all results Predici can
obtain, but allows much more complete insight into details
(which cannot be gained by Predici).

With the hybrid approach we have combined the
advantages of both worlds by computing the basic chain-
length distributions deterministically and add further
properties using a variant of SSA based on relatively small
ensembles of chains. The ensembles are small, since the
chain-length distribution is already approximated by
the deterministic solver. Therefore, there is no need to
increase the size of the ensemble in order to balance the
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statistical weighting due to the chain-length distribution,
which, in turn, reduces the task to the approximation of the
low copy number statistics along the additional property
indices. In particular, we could present the full chemical
distribution with small additional effort and efficiently
compute related expectation values.

We have shown that the hybrid approach is based on a
derivation of the hybrid model in which a rate equation for
some part of the system with large copy numbers is coupled
to a CME for the remainder of the system (or even the
entire system again). In the hybrid model considered
herein the two equations are coupled via averaged rates in
lowest order of the smallness parameter 1 /N, where Ny is a
reference number for the large copy numbers. Considering
higher orders will result in more elaborated couplings.
However, such refined couplings and their application
to polymerization processes will be covered in future
investigations.
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