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Introduction

The modeling and simulation of polymer reactions

still bears various challenges regarding formulation and

numerical solution of the underlying population balances.

A recent overview is given in ref.[1] An issue of special

interest of such systems is the treatment of more than

one property coordinate, i.e., a description of polymer

chains including not only the chain length, but also

composition, branching, etc. Even then it is straightforward

to derive rate equations, however, these systems will

form a higher-dimensional set of countable systems

prohibitively complex for more than two or three

independent properties. Apart from direct higher-dimen-

sional discretization approaches for such systems,[1–3] a

special calculus (based on so-called balance distributions or

distributedmoments) has been developed in the context of

the discrete Galerkin h-p-method,[4,5] where the additional

properties are computed as averages with respect to chain-

length. This leads to very detailed and often sufficient

information within reasonable computation times, since

the original n-dimensional system can be replaced by n

one-dimensional countable systems (where a countable

system itself is representedbyan infinite orvery large set of

differential equations). A disadvantage of this approach is

the fact, that the preparation of such distributed moment

systems requires some insight regarding the population

balances and a sophisticated use of the discretization

method handling the single reaction steps. Regarding the

results, sometimes it would be helpful to get information

not only on chain-length dependent mean values of

additional properties, but full distributions of such, e.g.,
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Population balance models describing not only the chain-length distribution of a polymer but
also additional properties like branching or composition are still difficult to solve numerically.
For simulation of such systems two essentially different approaches are discussed in the
literature: deterministic solvers based on rate
equations and stochastic Monte-Carlo (MC) strat-
egies based on chemical master equations. The
paper presents a novel hybrid approach to poly-
mer reaction kinetics that combines the best of
these two worlds. We discuss the theoretical con-
ditions of the algorithm, describe its numerical
realization, and show that, if applicable, it is more
efficient than full-scale MC approaches and leads
to more detailed information in additional prop-
erty indices than deterministic solvers.
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in order to examine a composition drift in a copolymer

system.

Therefore for a long while as an alternative to the

deterministic approaches sketched above, stochastic meth-

ods are applied to polymer systems ([6–8] to name very few).

The advantage of the resulting Monte-Carlo (MC) methods

is, that they are (or at least seem to be) relatively simple to

implement and provide quite general information. How-

ever, even on modern, parallelized systems, stochastic

results of a sufficient accuracy (something which is

naturally required from deterministic methods), still cost

a lot of computing time.[8] Furthermore, error controls

for MC methods are hardly to obtain without lengthy

convergence tests. On the other hand, deterministic

methods are superior in view of identification and

optimization purposes, where it is necessary to deal with

smooth, differentiable structures.

Summarizing we can state, that there are accurate

deterministic (very efficient for one property) and compre-

hensive stochastic methods available, but mostly applied

used inaquite separatedmanner.Oneexception is thework

described in ref.,[9] where a MC simulation is used as a

postprocessing to results obtained by the balance distribu-

tionapproach. In contrast to that approach, in this paperwe

will apply deterministic and stochasticmethods in parallel,

sometimes even depending on each other. We will show,

how a skillful combination of both types of techniques can

overcome the disadvantages of the single approaches and

lead to detailed and efficient simulations. One basic idea is,

that forpolymer systems there is one special property—the

chain length. There will always bemore, oftenmuchmore,

monomer units along a polymer chain than counts for any

other property. In our hybrid algorithm, the chain-length

axis and the related chain-length distributions are treated

by means of a deterministic approach, whereas all other

property coordinates are represented by an ensemble of

moleculesofaMCmethod.Asaconsequence, onlya relative

small number of chains is necessary for the MC method,

since the reaction rates can be obtained from the

deterministic results within high accuracy. In order to

develop this algorithm on a mathematical basis, the

coupling has to be done by carefully studying the under-

lying chemical master equations (CMEs). Then—using

certain limit processes—we can derive the coupling

between deterministic and stochastic parts of the algo-

rithm.

In contrast to refs.[6–8] and other comparable approaches,

where the aim is to calculate the polymer chain length

distribution (and sometimes additional properties) from

probabilisticmodels, the hybrid approach suggestedherein

addresses the distribution of other properties (e.g., branch-

ing) by MC techniques. The chain length distribution,

however, is computed by reaction kinetics using PREDICI or

similar solvers.

In Section Theoretical Considerations of this article, the

mathematical basics of master and rate equations for

polymer kinetics are summarized and the theory of the

coupling is derived. The distinction between the basic

objects ofmaster equation and reaction kinetics is essential

for the comprehensionof thehybrid approach; inparticular

it is essential to understand that the entire chain length

distribution is the first (marginal) moment of the prob-

ability distribution underlying the master equation. Our

hybrid approach contains the full chain length distribution

and theassociatedmarginal probability distribution for the

other properties. It thus, at least in principle, allows to

compute, e.g., all the moments of the chain length

distribution as well as all themoments of the distributions

of other properties. In order to work this out as clearly as

possible,weaddedanoverviewover thebasic aspects of the

different modeling layers at the end of Section Hybrid

Model.

In Section Algorithm, some technical issues of the

algorithm, already implemented in a prototypical version

of the program package Predici, are discussed. Finally some

illustrative examples are presented in Section Numerical

Experiments.

Theoretical Considerations

Modeling polymer reaction kinetics basically means to

describe certain phenomena occurring on a microscopic

level and affecting the singlemonomeric units of apolymer

chain—for example, the process of adding amonomer to a

polymermolecule. The probability of such a single reaction,

the position along the chain, the type of monomer and

chain, etc., are all under consideration. The common

notation for a propagation reaction:

Ps þM!kp Psþ1; s ¼ 1; 2; . . . (1)

refers to the types of molecules involved: Ps to the type

polymer of chain length s, M to the type monomer. If one

wants to distinguish between polymers of type chain

length s with different additional properties, one has to

add additional property indices. For example, we can

distinguish between polymers with different branching

index j by introducing the polymer type Ps;j. For a given

instance in time let us denote the number of copies of

polymers of type Ps;j by ns;j. Summation over the branching

index j yields the copy number Ns ¼
P

j ns;j of polymers of

type Ps. If required we can introduce several additional

property indices j1; . . . ; jm and different types of polymers

Pk such that in general we would have to consider

molecular types Pk
s;j1 ;...;jm

. For the sake of simplicity we will

however restrict the following considerations to types Ps;j
or Ps.
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At time t the ensemble of molecules is completely

characterized by the state n ¼ ðns;jÞs�1;j�0 of all copy

numbers of all types of polymers. The reactions that change

the state of the ensemble happen statistically such that the

temporal evolution of the state is a stochastic process.

Consequently, we in general cannot assume to know the

present state of the ensemble but just the probabilityPtðnÞ
to find the ensemble at time t in state n. The Chemical

Master equation (CME) describes the evolution of this

probability. It is driven by the possible reactions

Rm ¼ ðam; nmÞ, where m is the index that enumerates the

reactions, am is the reaction rate of reactionRm (the so-called

propensity function), and nm the associated stoichiometric

vector. The CME then has the following form:

d

dt
PtðnÞ ¼

X

m

ðamðn� nmÞPtðn� nmÞ

� amðnÞPtðnÞÞ: (2)

Thismeans,with rateamðn� nmÞ the reactionRm happens

in a state n� nm of the ensemble that has probability

Ptðn� nmÞ and brings the ensemble to state n and thus

increases PtðnÞ: Simultaneously the same reaction, if

happening in state n with rate amðnÞ, generates a state

nþ nm thus decreasingPtðnÞ. Consequently, the solution of

the CME is a probability distribution on an enormously

large state space that contains all possible combinations of

copy numbers ns;j. For example, the typically considered

polymer chain length distributions are just one expectation

value of PtðnÞ:

ctðPsÞ ¼ 1

V

X

ns;j;

s fixed

ns;jPtðns;jÞ ¼ 1

V

X

Ns

NsPtðNsÞ; (3)

where V is the reference volume. For molar concentrations

as mostly used in polymer reactions we would have to

divide ctðPsÞ by the Avogadro number, but this does not

matter here.

For the case of the simple reaction scheme (1), the

state is N ¼ ðNsÞs�1 and the possible reactions consist of

one reaction Rs ¼ ðas; nsÞ per polymer type Ps where the

stoichiometric vector ns ¼ es has just one nonzero entry

at position s, while the reaction rate has the form

asðnÞ ¼ NskpM (assumption: kpM¼ const, unit 1=s) such

that the CME reads:

d

dt
PtðNÞ ¼ kpM

X

s

ððNs � 1ÞPtðN � esÞ

� NsPtðNÞÞ (4)

This is easily understood: the change dPtðNÞ=dt in the

probability that the copy number vector is N, results from

all the reactions Ps þM ! Psþ1 for all s. For fixed s this

reaction shifts the copy number vector from N to N þ es
(death of particle Ps) with rateNskpM and probabilityPtðNÞ
(secondtermontheRHS)and simultaneously fromN � es to

N (birth of particle Ps) with probability PtðN � esÞ and rate

ðNs � 1ÞkpM (first term on RHS).

In terms of simulations, a solution of the CME for many

different types of molecules (here polymers of all possible

chain lengths) is infeasible. The Stochastic Simulation

Algorithm (SSA) as going back to Gillespie ([10,11]) does not

solve (2) but simulates single realizations of the stochastic

process underlying the CME. Consequently, the solution

PtðnÞ of the CME strictly speaking can only be approxi-

mated by many SSA simulations. Even in view of SSA

simulations, the CME approach is rather unrealistic in

applications where 1015 � 1023 molecules of one type of

molecules have to be taken into account and several types

ofmolecules are present. Fortunately, one can showthat for

large reaction rate am (more precisely for am ! 1), the

solution of the CME gets the form of a delta distribution in

state space that evolves along the deterministic solution of

the associated reaction kinetics. In order to express this in

more detail let us consider the polymer types Ps again and

assume that (as in the example above) the reaction rates

amðNÞ scales with the copy numbers N as follows: let N0

denote some reference number, then amðNÞ ¼ N0amðN=N0Þ,
i.e., the reaction rates are large for large copy numbers.

Then, if the copy numbers of a system are large, we can

expand theCME (2) inpowersof thesmallnumber1=N0 and

consider just the terms in lowest order in 1=N0. In lowest

order, i.e., in the limit of large copy number N0, the

probability distribution is just a delta distribution in state

space:

PtðNÞ ¼ dðN � VctðPsÞÞ; (5)

that evolves along the concentration trajectory ctðPsÞ that
is given by:

d

dt
ctðPsÞ ¼

X

m

nmamðctðPsÞÞ; (6)

where am results from the reaction rate am by switching

from copy numbers to concentrations, amðcÞ ¼ amðVcÞ=V .
For the above example, this results in the rate equation:

d

dt
ctðPsÞ ¼ kpMctðPs�1Þ � kpMctðPsÞ: (7)

Takinghigher orders in1=N0 intoaccount leads to further

resolutionof theprobabilitydistribution, e.g., thenextorder

results in information on the variance of PtðNsÞ around its

mean VctðPsÞ.

C. Schütte, M. Wulkow
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Hybrid Model

In general we cannot assume that all copy numbers in a

systemare large. For example, thismaybe true if additional

property indices like the branching index are considered.

Wewillnowconsider cases inwhich thestate ðns;jÞs�1;j� 0 of

the ensemble can be partitioned into two different parts, in

the sense that the state of the ensemble can be written in

the form n ¼ ðx; yÞ. Later we will consider cases in which

the copy numbers in the y-part are large while the copy

numbers in the x-part are low (or, in general, cannot be

assumed to be large). For example, we could consider in the

notation used above, y ¼ ðNsÞs� 1, and x ¼ ðns;jÞs� 1;j� 0.

Due to the lawsof conditional probabilitieswe canwrite:

Ptðx; yÞ ¼ PtðxjyÞPtðyÞ; (8)

where PtðxjyÞ denotes the probability of state x condi-

tional on y. Inserting this into the CME (2) we get:

d

dt
Ptðx;yÞ¼ PtðyÞ d

dt
PtðxjyÞ þPtðxjyÞ d

dt
PtðyÞ

¼
X

m

½amðx� vm;y� jmÞPtðx� vmjy� jmÞPtðy� jmÞ

�amðx;yÞPtðxjyÞPtðyÞ�;
(9)

where we split the stoichiometric vectors nm ¼ ðvm; jmÞ
in analogy to the splitting n ¼ ðx; yÞ. Because of
P

x PtðxjyÞ ¼ 1, we get directly from (9) by summing both

sides over x and using ðd=dtÞPx PtðxjyÞ ¼ 0:

d

dt
PtðyÞ ¼

X

m

½amðy � jmÞPtðy � jmÞ

� amðyÞPtðyÞ�; (10)

with averaged rates:

amðyÞ ¼
X

x

amðx; yÞPtðxjyÞ: (11)

Now,weassume that for they-part the limit of large copy

numbers is justified such that in the limit of large copy

numbers we get PtðyÞ ¼ dVCt ðyÞ with a concentration

trajectory Ct given by the rate equation:

d

dt
Ct ¼

X

m

jmamðt;CtÞ: (12)

The usual properties of the delta distribution dVCt ðyÞ
allow to compute expectation values in y in the sense of
P

y f ðyÞdVCt ðyÞ ¼ f ðVCtÞ for all smooth enough functions f;

we can use this particularly to introduce:

X

y

PtðxjyÞdVCt ðyÞ ¼ PtðxjCtÞ:

When inserting these results back into (9) we find:

d

dt
PtðxjCtÞ

¼
X

m

½amðx� vm;VCt � jmÞPtðx� vmjCtÞ

� amðx;VCtÞPtðxjCtÞ�; (13)

which in turn implies for the averaged rates:

amðy; tÞ ¼
X

x

amðx; yÞPtðxjCtÞ;

aðt;CtÞ ¼ aðVCt; tÞ=V:
(14)

In particular, if there are rates that do not depend on the

low copy number part of state space, we simply get:

amðyÞ ¼ am: (15)

Summarizing one gets a system of two coupled

equations, a rate equation (12) for the concentrations of

the large copynumberparticles iny thatdoesdependonthe

low copy numbers in x just via the averaged rates and the

CME (13) for the lowcopynumber particles that depends on

the concentrations Ct . This allows to restrict the stochastic

CME simulations via SSA to the dimension of the low copy

numbervariableswhile the largecopynumberparticles can

be handled much more efficiently via deterministic rate

equation solvers like Predici.

Overview Over the Different Modeling Layers

Table 1 shows the different description layers. The basic

quantity Ptðns;jÞ of the CME layer is the probability

distribution over all possible copy numbers ns;j of chains

with property ðs; jÞ. Itsmarginalmomentsm
ðmÞ
t ðsÞ for s thus

are averages over an ensemble of chains with identical

property s distributed according toPtðns;jÞ. In deterministic

reaction kinetics the basic quantity is the chain length

distribution ctðPsÞ that is proportional to the first of

the marginal moments of the CME, i.e., m
ð1Þ
t ðsÞ. Moments

of the chain length distribution are thus averages over the

property s (and not averages over copy number distribu-

tions since those have already been partially averaged out

by switching to chain length distributions).

The hybrid model layer considers the marginal prob-

ability distribution of copy numbers conditioned to the

chain length distribution being fixed. Its basic quantities

are the full chain length distribution (no moments taken

w.r.t. the chain length property) and the remaining
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marginal probability distributions of copy numbers of

chains with length s and distributed additional properties j

(nomoments here either). Thus,we still are able to compute

all higher moments of chain length distribution and/or

additional property indices if required.

Concept of Hybrid Algorithm

However, in many realistic cases the distinction between

large and low copy number particle will be difficult or even

impossible. Nevertheless, the above derivation can help to

reduce CME simulations drastically. In order to explain this

let us return to our polymer systemwith types Ps;j where s

denote the chain length index and j another property index,

e.g., some branching index. If we suppress the additional

property index and consider just thepolymer typesPs in the

y-part (that is, sety ¼ N), then copynumberswill in general

be large and the associated CME can be replaced by its large

copy number rate equation limit. Returning to the desired

level of resolution including the additional property index j,

the associated CME contains low copy numbers. A

partitioning of its state space into low and large copy

number subspaces is impossible in general. However, we

can do a SSA simulation of the full CME but with averaged

reaction rates as in (13) (which is particularly simple

wherever they contain the copy numbers Ns that just

depend on chain lengths). The general scheme of such a

hybrid algorithm is illustrated in Scheme 1: after identifica-

tion of the part of the systems for which (due to large copy

numbers) a description in terms of concentrations is

possible, one solves (12) with a deterministic solver like

Predici,while inparallel aSSAaccording toGillespie solvesa

CMEof form(13)which includes thepresent concentrations

of the deterministic solver in its reaction rate evaluations.

Algorithm

The following algorithm is based on the assumption, that

an approximation method is available that allows to

represent all chain-length distributions of a kinetic model.

Such single distributions are naturally induced by writing

the kinetics in terms of active, inactive, dormant, branched

species, etc., (e.g., Rs;Ds;Qs,). The Galerkin h-p-method

implemented in Predici allows a pointwise evaluation

(i.e., for each single chain-length s) of all distributions

withina controlledaccuracy.Anyothermethod leading toa

full distribution might also serve as deterministic part of

the hybrid algorithm. Here we follow the notation of ref.[1]

and assume, that all distributions Pi of a scheme can be

approximated on grids Di using ri degrees of freedom

allowing evaluation of single concentrations Pis. In the

followingwewill switch between the notations cs, cðPsÞ, or
simply Ps for the concentrations of the polymer type Ps and

likewise for Ps;i if additional property indices have to be

addressed; mostly we suppress the explicit dependence of

all these objects on time.

C. Schütte, M. Wulkow

Table 1. Overview over the different modeling layers.

Models Basic quantities Algorithms Moments

CME Probabilities SSA Marginal moments

Ptðns;jÞ m
ðmÞ
t ðsÞ ¼ P

ns;j

s fixed

nm
s;jPtðns;jÞ

# # #
Hybrid model Chain length distribution

and branching index

probab. Ptðns;jjctðPsÞÞ

PREDICI

coupled to SSA

" " "
Deterministic

reaction kinetics

Concentrations, chain

length distribution ctðPsÞ ¼ m
ð1Þ
t ðsÞ=V

PREDICI Chain length

moments
P

s
smctðPsÞ ¼ l

ðmÞ
t

Scheme 1. Structure of the hybrid-algorithm. Reactions can be
described on different levels requiring different solution
techniques. The hybrid algorithm combines the underlying
equations as well as the numerical strategies.
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Ensemble of Chains

As described before, within the hybrid algorithm we solve

the kinetic rate equations and in parallel compute single

realizations of theCMEwithMCmethod, i.e., amodification

of the SSA algorithm. Therefore each distribution Pi is not

only represented by the di degrees of freedom of the

deterministicmethod, but also by an ensemble E consisting

ofmi chains ewith chain-length es and further properties

e1; e2; . . .. This number mi can be fixed or chosen

adaptively. A main task of the present algorithm is to

keep mi ‘‘small,’’ e.g., at values between 102 and 103. This

implies, that a typical chain-length distribution from

radical polymerization, where themaximal chain-lengths

range up to 104 or even 106 will not be approximated

sufficiently well by the MC ensemble, but this does not

matter in the hybrid approach, where dependencies on

the chain-length axis are treated by the deterministic part

of the algorithm.

The complexity of the information of one chain can be

chosen in view of the problem to be considered. Typical

numbers are chain length, number of monomers of all

types, number of branches, length of branches, position of

active unit, etc., but also the full chain could be stored as

linear or branched structure. Another important aspect

is the definition of concentrations in the context of the

MC method. Usually a control volume V is taken and

the molar concentrations of the single species are given

by:

ci ¼ ni

VNA
: (16)

Since the new approach should be used in a technical

reactor setting, the volumemight be in the range of liters or

more, such that even for low-concentrated radical polymers

(e.g., 10�8 mol l�1) more than 1015 chains have to be

considered. Since the total number of MC chains is limited

by storage and computer speed, the control volume is often

set to very small values. Then it can happen, that certain

populations (like radical polymer chains) are represented

by a fewMC chains only. Herewe use a different approach:

for each distribution Pi
s we know the overall concentration

from the deterministic method and assign it to the MC

ensemble. Thus in the present approach a natural choice

is to use a reasonable, even equal number mi for all

distributionsPi
s andscaleall interactionswith respect to the

assigned, time-dependent concentration level obtained by

the deterministic part of the algorithm.

Time Discretization

The MC method is used within the time discretization

scheme of the deterministic approach. There, time steps t

are chosen, such that the overall accuracy is kept within a

prescribed tolerance. At first, the full deterministic system

is solved using the approximationmethod for chain-length

distribution (Rothe’s method, see Figure 3 in ref.[1] Within

such a time step,many single reactions take place andhave

to be performed by the MC method in parallel. Both—the

deterministic and the stochastic part—use the results of

the previous time step of the global time evolution. For

example, starting with a chain-length distribution PsðtÞ at
time t, described by a h-p-gridDt and aMC ensemble Et , the

time step t leads to an approximation Psðt þ tÞ and an

updated MC ensemble Etþt .

For the MC part we follow the algorithm by Gillespie as

used in ref.[7] At time t stochastic time intervals Dtk are

consecutively computed in terms of the total rate of

reactions rT :

Dtk ¼ 1

rT
ln

1

zk

� �

(17)

with random numbers zk 2 ð0; 1Þ. A total number of MC

steps nMC for the outer time step t at time t is chosen such

that:

XnMC

k¼1

Dtk < t and
XnMCþ1

k¼1

Dtk � t: (18)

This means, that two tasks have to be solved:

� Computation of the total rate.

� Selection of one operation in the single MC steps.

Computation of Total Rate and Selection of Reaction

In a bimolecular reaction Rm with species A and B and rate

constant ki the MC rate is given by (see ref.[7]):

rm ¼ km
VNA

nAnB: (19)

The actual total rates for the most important reaction

types are listed in Table 2 below. At start of a t-step, the

individual reaction rates and the sum rT ¼P rm are

computed andassigned to sub-intervals Im of ½0; 1�givenby:

Im ¼ ð
Xm�1

l

rl
rT

;
Xm

l

rl
rT
�: (20)

InaMCtimestepDtk areactionRm is selected, ifz 2 Im fora

random number z 2 ð0; 1�. All this is quite similar to the

algorithmused in ref.[7] By theabove scheme, theMCpartof

the algorithm is treated in an explicitway. Thismeans, that

A Hybrid Galerkin–Monte-Carlo Approach to Higher-Dimensional Population . . .

Macromol. React. Eng. 2010, 4, 562–577

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mre-journal.de 567



the concentrations and rates available at the begin of the

time step t are used for thewhole step. This aspect has only

an effect on the local accuracy of the MCmethod. By using

mean values or interpolation of the deterministic results

along the time step, an improvement is possible. However,

after trying different approaches, we decided to use the

sufficiently good explicit scheme for all simulations

presented in Section Numerical Experiments.

Treatment of Reaction Steps

Apart from the computation of rates based on results of the

deterministic method, up to this point the MC part of the

algorithm looks quite similar to well-known approaches.

This will change when we consider the treatment of the

single reaction steps. For an illustration we choose a

propagation step of a copolymerization scheme:

P1
s þM2 !kp12 P2

sþ1 ; (21)

selected at some time, where a monomer M2 adds to a

chain with a different end-group such that this character-

istic property of the molecule changes (typical terminal

model). Related to P1 and P2 are overall concentrations

l0ðP1Þ ¼Ps P
1
s and l0ðP2Þ ¼Ps P

2
s as well as MC ensem-

bles E1 and E2 with numbers m1 and m2. At first, a single

chain e1 has to be chosen randomly from the P1-ensemble

E1. Now one could simply shift e1 to the other ensemble,

however, this would disregard the different concentration

levels and ensemble numbers. Instead, the reaction has

different effects on the two ensembles. The number m2
a of

affected chains of type P2 is given by:

m2
a ¼ l0ðP1Þ

l0ðP2Þ
m2

m1
: (22)

For P1 ¼ P2 we have m2
a ¼ 1 leading to the classical

treatment. For the general case m2
a„1 the update of the

ensembles involved requires some consideration. Firstly,

the chain e1 has to be removed from the P1-ensemble. Since

wewant to keepm1 constant, then some other chain e2 has

to be chosen and copied. The simplest way to do this is to

select an entity e2 out of an ensemble E1 by using another

random number z3 2 ½1;m1�. Actually, if the ensemble

is large and represents the chain-length distribution

rather accurately, a random selection will automatically

be proportional to the actual concentrations of the single

polymer molecules. More complex copy strategies have

been testedandwill be discussed elsewhere. ForP2 a certain

number of chainshas tobe replacedby e1. Ifm2
a < 1,weuse

another random number z4 to replace a chain if z4 < m2
a.

For that, one chain of ensemble E2 is randomly deleted and

replaced by e2. Ifm2
a � 1, a respective number of chains in

E2 is replaced by copies of e1. Summarizing, for a single

reaction Rm the algorithm works as follows:

1. Select a chain e1 from the ensemble E1.

2. If Rm is a bimolecular polymer reaction, select a partner

chain e2 2 E2.

3. If only one distribution is affected: change selected

chains accordingly.

4. Otherwise: Compute the ensemble factor(s) mi
a, replace

the selected chain(s) in ensembles of distributions

on the left-hand side and copy them. Apply weighting

replacement to the ensembles on the right-hand side.

For some reaction step patterns a MC module has

been implemented in a prototype version of Predici

(compare Table 4 in ref.[1] The MC rates per deterministic

step length t use themolar concentrations of lowmolecular

species likemonomers, initiatorsand transferagentandthe

statistical moments liðPÞ ¼
P

siPs of polymer species. The

followingTable 2 lists those rateswhen thefirst reactant on

the left-hand side is selected first.

Interpolation

If wewant to use results from theMC part of the algorithm

for output or even the computation of deterministic

reaction rates, a technique to compute relatively smooth

chain-lengthdependent information is required. Eachchain

e 2 E provides (not unique) relations between chain-length

s and the property indices i1; i2; . . .. However, in the

numerical examples we require an average i2 (number of

comonomers in a chain) for a given s. In Figure 7 an

automatic regression of the graphic software has beenused

to compute the mean values, but such a regression

requires some prescribed, parameterized function (linear,

polynomial, exponential, etc.) and is only suited for a post-

processing.During the timestepevolution,weapplyamore

sophisticated algorithm:

C. Schütte, M. Wulkow

Table 2. Monte-Carlo reaction rates for selected elemental reac-
tion steps.

Pattern Name MC-rate/t

I þ A ! P1 Initiation k cI cA
l0ðOÞmP

Ps þ A ! Qsþ1 Propagation kcAmP

Ps þ A ! Qs þ B Transition kcAmP

Ps þ Qr ! Dsþr Recombination kl0ðQÞmP

Ps þ Qr !Ds þ Dr Disproportionation kl0ðQÞmP

Ps þ A ! Qs þ T1 Transfer kcAmP

Ps þ Dr !r Qs þ Tr Long-chain branching kl1ðDÞmP

Ps þ Dr !r Qsþr
Cross-linking kl1ðDÞmP
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1. For a given chain-length s the h-p-grid representation of

the polymer species P is taken to find an interval I, such

that s 2 I.

2. Then we compute

iiðsÞ ¼
P

e2E;es2I eiP
e2E;es2I 1

(23)

which simply is the average value of property i on

interval I.

3. Since step 2 would lead to a piecewise constant

function, the average is assigned to the mean of

the interval and then interpolated linearly between

neighbored intervals.

Using this strategy, the results in Figure 6 and the back-

coupling of averages into the reaction rate of the transfer

step used below have been realized. Of course, the h-p-grid

has been used as basis for the average, since the h-p-

algorithm automatically detects where a distribution has

important structures.

Numerical Experiments

In this section wewant to show how the hybrid algorithm,

formally described by (12) and (13) works in typical

situations. The used models are artificially designed to

study the convergence behavior and some particular

challenges of real-life models. Such applications—includ-

ing a discussion of the chemical aspects of the results—will

be considered in forthcoming papers and in cooperation

with chemists and chemical engineers. Here we want to

concentrate on the numerical issues. In Section Copolymer-

ization with Drift and Section Additional Long-Chain

Branching with Forward Coupling we realize the CME

(13) by a stochastic method using overall concentrations

obtained by the rate Equation (12), which in parallel is

solved by the Galerkin method of Predici. In Section Long-

Chain Branching with Backward Coupling we extend the

model set-up and couple back results of the CME, here the

average number of branches per chain-length, to the rate

equations. In other words, in the first two examples, the

averaged rateamðyÞappears in its simple form(15),whereas

in Section Long-Chain Branching with Backward Coupling

we apply the general expression (11).

Copolymerization with Drift

In order to get some confidence in the algorithm, we

consider a simple copolymerization based on two mono-

mers M1;M2. The reaction scheme consists of activation,

propagationanddeactivationonly (onemaythinkofabasic

catalytic system):

C!ka P1;0
Ps;i þM1 !

kp1
Psþ1;i þ C1

Ps;i þM2 !
kp2

Psþ1;iþ1 þ C2

Ps;i !kd Ds;i

(24)

Ps;i denotes (the concentration of) a polymer of length s

with i units of comonomer M2. The initial values are:

Cð0Þ¼10�1mol l�1;M1ð0Þ¼9:8mol l�1;M2ð0Þ¼0:1mol l�1,

where we assume the molecular weights of all species to

be 0:1 kgmol�1 (all simplifying assumptions and restric-

tions—here and below—are only made to focus on the

main aspects of this examination and not induced by

the method). The reaction rates are given as shown in

Table 3:

It is easily seen that by choice of the propagation

parameters kp1 ; kp2 ; and the low initial concentration of

monomer M2 we will generate a broad chemical distribu-

tion.At thebeginof the reaction, the instantaneous fraction

f2(t) of incorporated monomer M2 will be:

f2ð0Þ ¼ kp2M2ð0Þ
kp1M1ð0Þ þ kp2M2ð0Þ � 0:5; (25)

where after consumption of M2 we will have f2(t)� 0.

The ‘‘balance species’’ C1 and C2 are used to compute the

time-dependent cumulated fractions of the monomers in

the polymer (CiðtÞ > 0 for one i and t > 0):

F1ðtÞ ¼ C1ðtÞ
C1ðtÞ þ C2ðtÞ ; F2ðtÞ ¼ C2ðtÞ

C1ðtÞ þ C2ðtÞ : (26)

In order to check the results, a reference solution is

required. For that, we apply the technique of balance

distributions developed and applied in refs.[4,5,12] The

general idea is to write down the full two-dimensional

A Hybrid Galerkin–Monte-Carlo Approach to Higher-Dimensional Population . . .

Table 3. Rate constants for schemes (24) and (31).

Name Value Unit

ka 10�4 1
s

kp1 100 l
mol s

kp2 104 l
mol s

kd 10 1
s

ktr 150 l
mol s

The rate constant ktr will only be needed in (31).
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rate equations of system (24) and then derive the

differential equations for the boundary sums:

Ps :¼
X1

i¼0

Ps;i;Qs :¼
X1

i¼0

iPs;i; Ds :¼
X1

i¼0

Ds;i; Ts :

¼
X1

i¼0

iDs;i: (27)

For example, the distribution Ds denotes the concentra-

tion of all dead chains of length s (independent of their

composition), Ts describes the concentration of allM2-units

in all such chains. Thus the pointwise ratio:

F2ðs; tÞ ¼ TsðtÞ
DsðtÞ ;DsðtÞ > 0; (28)

describes the average number of M2-units in chains of

length s. The derivation of the overall balance for QsðtÞ and
TsðtÞ is straightforward in this simple case (e.g., the

additional balances for propagation steps are derived in

ref.,[4] Equation 8). In Predici, there are prepared modules

for such balance equations and it is possible to compute

F2ðs; tÞ within high accuracy as reference result.

Within the hybrid algorithm we solve the balances of

only the overall chain-length distributions Ps and Ds by the

deterministic algorithm (Predici). The underlying standard

kinetic scheme is:

C!ka P1
Ps þM1 !

kp1
Psþ1 þ C1

Ps þM2 !
kp2

Psþ1 þ C2

Ps !kd Ds

(29)

In parallel the MC-algorithm is used to compute refined

results regarding the composition of single chains—using

MC reaction rates based on the solution of (29). For that, let

us consider a single, randomly chosen hybrid MC simula-

tion for thepresentmodelusingensemblesofmP ¼ 200and

mD ¼ 2000 chains. All simulations are performed up to end

time t ¼ 600 s. The choice of those numbers is mostly

suggested by computing time issues. We do not want to

spend toomuch additional computing time for theMC-part

of the algorithm. At the same time, we want to show that

even a small number of chains will provide reasonable

results. Additionally, in systems with ‘‘living’’ and ‘‘dead’’

species, where it is obvious, that the living specieswill stay

at concentration levels orders of magnitude smaller than

the dead species, we use smaller sizes for the living MC

population. Actually, all tests have shown, that in such

systems the accuracy ismainly controlled by thenumber of

dead chains.

In Figure 1 we present the dead polymer chain-length

distribution computed by the h-p-method and the MC

method (range reduced to chain-length interval ½1; 500� in
order to amplify differences).

Significant concentrations range up to chain length

s ¼ 103, such that we cannot expect to get a very accurate

description of the CLD with mD ¼ 2000 single chains, but

using the interpolation technique of MC results (Section

Ensemble of Chains) on the h-p-intervals, the results are in

good agreement with the h-p-method. For comparison, the

relative numbers of the MC method are normalized such

that the maximal mean concentration of the h-p-method

and the MC method on the intervals of the h-p-grid D are

identical. Running different ensemble sizes or using an

average of several MC simulations (each only one realiza-

tion of the underlying master equation) leads to similar

distributions, but since the differences are beyond visibi-

lity, we need ameasure for the error. Sincewe have a point-

wise solution from the h-p-method, we can compute the

error induced by the MC method by:

eMC ¼
X

I2D

ðsI2 � sI1 þ 1Þ DðsIMÞ � AI
MC

� �

l0ðDÞ
� �2

 !1=2

: (30)

Here sI1 and sI2 are the bounds of interval I of the h-p-grid D,

sIM , andAI
MC denote themean chain-length and the average

normalized MC-based concentration on I.

Figure 2 shows the time evolution of the error for some

realizations and for three different scenarios:mP ¼ 100;mD ¼
1000;mP ¼ 200;mD ¼ 2000;mP ¼ 500;mD ¼ 5000 (in the

followingabbreviatedbyMC100–1000,MC200–2000, etc.).

Obviously the increase of the number of molecules leads

to better results, whereas the improvement decreases for

larger numbers. The linear regressions indicate relative

errors of about 0:02; 0:03; 0:06 for the three simulations.

It should be emphasized that the existence of an error

C. Schütte, M. Wulkow
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Figure 1. Comparison between chain-length distributions D(s) at
t¼600 s obtained by our Galerkinmethod and one singleMonte-
Carlo realization.
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estimate has valuable consequences when working with a

numerical method.

Also themean valuesMn;Mw ofD are captured relatively

wellby theMCensemble. Figure3aandbpresent the results

for the same three realizations as studied above.

However, we are not particularly interested in the CLD

here, but rather want to compute information on the

chemical distribution inanefficientway.Asafirst checkwe

consider the overall fraction of themonomers and compare

to the very exact results given in terms of (26). The MC

results are so close to thedeterministic curve (Figure4), that

one can hardly see a difference between the single

simulations. Only at the end of the reaction there may be

a slight underestimation of F2ðtÞ. The reason is, that the

longest chains have the highestM2-fraction and just these

chainsbecome lessprominent in theMCensemble. In theh-

p-method we use a special weighting to keep track of long

chains and such a control can also be added to the MC

method later.

Next we examine the inner structure of the chains. At

first, we can use the single-chain information in the MC

ensemble to compute the chemical composition, which is

here defined as the molar fraction of monomer units in

chains with a certain fraction of monomer M2. In Figure 5

the chemical distributions at t ¼ 10; 50; 100; 200; 400, and

600 s reaction time are plotted using a small smoothing

index.Asexpected, thepeaksmove fromthe right to the left,

whereas for t ¼ 600 s (dotted line) there is a significant

amount of polymer without monomer M2 (a bit decreased

in the graphic because of the smoothing).

A very important product index is provided by Fðs; tÞ, the
time-dependent average number of comonomers in chains

of a certain chain length s (we will make use of this

distribution in the next example). In Figure 6 results for the

h-p-method (straight line, based on balance distributions)

and three MC scenarios are summarized, where we have

A Hybrid Galerkin–Monte-Carlo Approach to Higher-Dimensional Population . . .
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set down the smallest ensembles to only 100 living and

500 dead chains.

Again, the simulation with the largest ensembles

delivers slightly better results (and would even be more

accurate if we had averaged several runs), but also for

the smallest number of chains, the obtained profile will

provide valuable information in many applications. The

additional computing time induced by the MC method for

this example (h-p-method, tolerance 0.003), is only 75% for

the smallest scenario, but 200 and 800% (summing up to

500 s CPU on a 2.66GHz processor) for the mean and the

largest ensembles.

As expected, for the consideration of the copolymeriza-

tion aspects, the longest simulation is not necessary, since

the MC results for the fractions are much more accurate

C. Schütte, M. Wulkow

0,00

0,02

0,04

0,06

0,08

0,10

0,12

706050403020100
fraction M2

m
ol

 fr
ac

tio
n 

de
ad

po
ly

m
er
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than for the CLD itself and this is a main argument for this

hybrid algorithm.

For the computation of the MC averages we again have

applied a grid-based interpolation technique. Actually, one

should not base the convergence analysis on single runs of

theMCmethod, butusemeanvaluesof several realizations.

In practice, however, a modeler will try to get important

structure information from one or very few simulations.

Therefore we try to mimic this behavior in our numerical

experiments. In the next example we will see, that

sometimes at least a few realizations have to be averaged.

At last we take a look at the full ensemble of chains. The

three graphics of Figure 7 show, how nicely the hybrid MC

algorithm behaves here. For t ¼ 60 s, the distribution of

fractions vs. chain-length is relatively narrow (scenario

MC 500–5 000), and the average (automatic polynomial

regression) is very close to the average F2ðs; 60Þ of the

h-p-method. For t ¼ 600 s the single chains are broadly

distributed, but again the average is nicely captured. In

Figure 7c one can see, that if only 100 and 500 chains are

used, the structure of the full distribution is still visible

with very accurate average. Besides, for this simple curve-

structure a polynomial regression might be sufficient, but

the h-p-interval-based approach (used in Figure 6) is more

general and can be done automatically.

In retrospect, we have seen that with the hybrid

approach we have combined the advantages of both

worlds by computing the basic chain-length distributions

deterministically and add further properties using a MC

(SSA) based on relatively small ensembles of chains. In

particular we could present the full chemical distribution

with much less effort than in a full-scale SSA.

Additional Long-Chain Branching with Forward
Coupling

For our second examination we extend the previous

example by a transfer-to-polymer reaction and assume,

that each transfer step will lead to a long-chain branch

(LCB). A more practical example including the formation of

secondary radicals and subsequent b-scission might be

considered in a forthcoming article. For now, we add

another index j to the system counting the number of LCBs

in chains of length s with i comonomer units, i.e., we

consider polymer species Ps;i;j and Ds;i;j. The basic reaction

scheme then is:

C!ka P1;0;0
Ps;i;j þM1 !

kp1
Psþ1;i;j þ C1

Ps;i;j þM2 !
kp2

Psþ1;iþ1;j þ C2

Ps;i;j !kd Ds;i;j

Ps;i;j þ Dr;k;l !gðr;k;lÞ ktr
Ds;i;j þ Pr;k;lþ1

(31)

with reaction rate coefficient ktr from Table 3. Its value has

been set in order to generate a final polydispersity of about

7, which is fairly (but not too) broad. A reduction to an only

chain-length-based description reads (introducing another

counter species Clcb):

C!ka P1
Ps þM1 !

kp1
Psþ1 þ C1

Ps þM2 !
kp2

Psþ1 þ C2

Ps !kd Ds

Ps þ Dr !~gðrÞ ktr Ds þ Pr þ Clcb

(32)

The rate function gðr; k; lÞ of the three-dimensional

model is crucial for the reaction rate of the transfer-to-

polymer step. For example, if the transfer can only occur

(once) at comonomer units, we have gðr; k; lÞ ¼ k� l. If the

transfer is possible along the whole chain, one often sets

gðr; k; lÞ ¼ r � l � r. For the reduced system (32), the rate

function has to be replaced by an average. Here typical

settings are ~gðrÞ ¼ F2ðtÞ; F2ðtÞ the accumulated fraction of

monomer M2 in the whole polymer, or more accurately:

~gðr; tÞ ¼ C2ðtÞ � ClcbðtÞ
C1ðtÞ þ C2ðtÞ r: (33)

This means, that we count the overall number of

incorporated comonomer molecules and the number of

branches and assume, that all chains have an average

composition and branching structure. Despite this strong

assumption, such models have turned out to be quite

successful inapplications.However, it isonemajoraspectof

the hybrid method to study and validate (or falsify) such

assumptions without too muchmathematical and numer-

ical effort. In Figure 7a–c we could observe, that with

increasing reaction time the average number of comono-

mer units describes the full distribution of chains less and

less. Thus the task of this example is to check the effect of

distributed fractions. Since the number of transfer-reac-

tions is small compared to the number of comonomers (i.e.,

C2 � Clcb) in this example, for ease of presentationwewill

not consider the aspect of ‘‘consumed bonds’’ used

described in numerator of (33). If one applies the balance

distribution calculus to the full system (31), one candefinea

refined rate function by:

gðr; tÞ ¼ F2ðr; tÞr; (34)

with F2ðr; tÞ again the chain-length dependent fraction of

the comonomer. Before we discuss the results, we have

to explain, how the chain-length dependency has been

realized within the MC method. Assume that at a

certain stage for a given chain Ps a partner chain for the

A Hybrid Galerkin–Monte-Carlo Approach to Higher-Dimensional Population . . .
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transfer-to-polymer step has to be selected. Instead of

randomly choosing one chain out of the ensemble of

dead polymers, we have to consider that—in the current

averaged setting, where we assume, that the incorporated

number of comonomers is proportional to the chain

length—longer chains have a higher probability in view of

the transfer. The following algorithm will support this:

1. Compute stotal ¼
PnP

i¼1 e
i
s, i.e., we compute the total

chain length of all chains ei in the ensemble E with nP

chains.

2. Take a new random number z 2 ð0; 1�.
3. Choose 1 � j � nP such that ssubðj� 1Þ=stotal < z and

ssubðjÞ=stotal � z, where ssubðjÞ ¼
Pj

i¼1 e
i
s.

This is quite similar to the selection of the reaction

steps in the modified Gillespie algorithm and leads to

the required statistical behavior. For a validation of the

extended system we perform simulations with ensembles

sizes mP ¼ 200;mD ¼ 1000. In Figure 8a and b the mean

values are compared. In this example, the perturbations are

much bigger than before. The explanation is simple: due to

the high dispersity, a few, very long chains affect themean

values drastically. In the deterministic approach, this

induces not much problems (except that it requires a

careful error control), but for the MC method there is some

sensitivity. Nevertheless, if we perform three subsequent

simulations, the obtained averages give a good estimate

of the ‘‘real’’ mean values. This is improved, if we run

ten consecutive simulations and compare Mn to the

MC-average and its standard deviation in Figure 8c. For

the full distribution, a comparison of the concentration

distribution looks similar to Figure 1 and the respective

error estimates are also comparable, therefore we omit

these pictures here.

Instead,weconcentrateonthenewaspect, thebranching

index. Figure9apresents the fractionofbranchedmonomer

units per chain molecule (i.e., j=s) of all dead chains, the

averages obtained from the MC method (thin line) and by

the balance calculus of h-p-method (thick straight line) at

the end of the reaction. Here we present the results of the

mp ¼ 500;mD ¼ 5 000 scenario.

The average of the hybrid MC method is very accurate,

but we can observe, that there are many chains even

without a branch (black box at the left bottom), actually in

this single simulation we have 3 325 out of 5 000 chains

without a branch. One can easily compute such a ratiowith

the purely deterministic method too by introducing

additional polymer species describing branched polymer

only ([1]). However,wenote again, thatwewant to keep the

basic model as simple as possible and try to get as much as

information as possible out of the hybrid approach. In

Figure 9b the same kind of results are summarized for a

simulation with mP ¼ 200;mD ¼ 1000.
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Figure 8. Comparison between deterministic and stochastic
method for the (a) number mean value of the polymer in
LCB example and (b) the weight mean value of the polymer
in LCB example. The average describes the mean of three
MC-realizations. (c) Refined comparison between deterministic
and stochastic method for the number mean value of the
polymer in LCB example. The average describes the mean of
ten MC-realizations. An estimate of the standard deviation s is
added.

574
Macromol. React. Eng. 2010, 4, 562–577

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/mren.200900073



As for the comonomer fraction in the copolymerization

example, averages and overall structure are nicely kept. A

comparisonofFigure9c (M2 fractionvs. chain-length for the

LCB-case) with Figure 7a reveals, that due to the transfer-

to-polymer process the comonomer fraction is more

equilibrated.

In Figure 10a we plot the percentage of chains with a

certain number of branches in a logarithmic scale. The

roughly linear decrease indicates that we can expect an

exponential decay of the branching number in such

systems. This could already be shown in deterministic

systems by introducing polymer populations for each

branching number (numerical fractionation), but such a

treatment tends to be complicated from a number of about

ten branches per chain.
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Figure 9. Plot of branching fraction in all single chains of the
MC-ensemble (a) at final reaction time for the LCB case at
t¼600 s, setting MC-500–5000. The thick straight line describes
the average obtained by regression; the thin straight line is the
average obtained by our Galerkin method; (b) at final reaction
time for the LCB case and smallMC-ensemble at t¼600 s, setting
MC-200–1000. The thick straight line describes the average
obtained by regression; the thin straight line is the average from
the Galerkin method. It can be seen, that many chains have no
branching point at all. (c) Plot of comonomer fraction in all single
chains of the MC-ensemble at final reaction time for the LCB
case and large MC-ensemble at t¼600 s, setting MC-500–5000.
The thick straight line describes the average obtained by
regression; the thin straight line is the average obtained by
our Galerkin method. Due to the transfer-to-polymer, the como-
nomer is more distributed in the ensemble than in Figure 7a.
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Figure 10. (a) Fraction of chains for proportional chain transfer
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cating an exponential decay of branches. (b) Fraction of chains
with a certain number of branches for the case with back
coupling of MC-results to kinetic rate equations. Dotted line:
proportional case.
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Long-Chain Branching with Backward Coupling

In the previous part of this example, the MC part of the

algorithm has only been used to produce additional results

without a feedback to thedeterministic system. Thiswill be

done now. For thatwe perform theMC transfer-to-polymer

step with a slight variation of the algorithm described

above: instead of the chain-length we use the comonomer

index of each chain. By that we select chains for transfer

according to the number of available comonomers—not as

average, but individually for each single transfer step. On

the deterministic side of the algorithm, where such a

detailed treatment is not available in the basic formulation

with only one property (chain-length), we have to use an

averaged rate again, but now we can apply a chain-length

dependent transfer rate (34) instead of the general average

(33). In a purely deterministic system we could also apply

the balance distribution approach again (and have for

comparison), but here we restrict to minimal effort by

evaluating the average F2ðr; tÞ directly from the MC

population, oriented again on the current h-p-grid of the

deterministic population. Instead of repeating all kind of

results for this modified example, we only take a look at

some differences.

� The polydispersity index is smaller (Figure 11).

� There seem to be more chains without branches

(plausible) and more chains with many branches (range

up to 60 instead 23 in the proportional example,

Figure 10b).

� This is backed by Figure 12, where again (for MC 200-

1 000) the branching fraction is shown. The straight line

is the result from the proportional approach (Figure 9b).

Themost importantaspect inviewof thedevelopmentof

the hybrid algorithm is, that both parts of the algorithm

affect each other and all results go together. In particular,

the overall branching rate obtained from the counter

species Clcb has the same time evolution as the direct

number of branches of the MC method. Also the full

distributions and their mean values have been used to

validate the accuracy of the feedback ofMC results into the

deterministic equations.

Conclusion

Summarizing, we have seen again, that deterministic

solvers like Predici can efficiently and accurately compute

chain-length distributions and even averages of polymer

propertieswith respect to additional property indices, ifwe

apply the balance distribution approach. However, the

resolution of details of distributions of additional property

indices is necessarily limited and a lot ofmathematical and

numerical preparations have to be done.

On the other hand, a pure MCmethod like SSA would be

inefficient in comparison toPredici for all results Predici can

obtain, but allowsmuchmore complete insight into details

(which cannot be gained by Predici).

With the hybrid approach we have combined the

advantages of both worlds by computing the basic chain-

length distributions deterministically and add further

properties using a variant of SSA based on relatively small

ensembles of chains. The ensembles are small, since the

chain-length distribution is already approximated by

the deterministic solver. Therefore, there is no need to

increase the size of the ensemble in order to balance the
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models (averaged and MC-based).
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576
Macromol. React. Eng. 2010, 4, 562–577

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/mren.200900073



statistical weighting due to the chain-length distribution,

which, in turn, reduces the task to the approximation of the

low copy number statistics along the additional property

indices. In particular, we could present the full chemical

distribution with small additional effort and efficiently

compute related expectation values.

We have shown that the hybrid approach is based on a

derivation of the hybridmodel in which a rate equation for

somepart of the systemwith large copynumbers is coupled

to a CME for the remainder of the system (or even the

entire system again). In the hybrid model considered

herein the two equations are coupled via averaged rates in

lowest order of the smallness parameter 1=N0 whereN0 is a

reference number for the large copy numbers. Considering

higher orders will result in more elaborated couplings.

However, such refined couplings and their application

to polymerization processes will be covered in future

investigations.
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[3] A. D. Peklak, A. Butté, G. Storti, M. Morbidelli, Macromol.

Symp. 2004, 206, 481–494.
[4] P. D. Iedema, M. Wulkow, H. C. J. Hoefsloot, Macromolecules

2000, 33, 7173–7184.
[5] R. A. Hutchinson,Macromol. Theory Simul. 2001, 10, 144–157.
[6] H. Tobita, Polym. React. Eng. 1993, 3, 379.
[7] J. B. P. Soares, A. E. Hamielec, Macromol. React. Eng. 2007, 1,

53–67.
[8] H. Chaffey-Millar, D. B. Stewart, M. T. Chakravarty, G. Keller,

C. Barner-Kowollik, Macromol. Theory Simul. 2007, 16, 575–
592.

[9] P. Iedema, H. Hoefsloot,Macromolecules 2006, 39, 3081–3088.
[10] D. T. Gillespie, J. Comput. Phys. 1976, 22, 403–434.
[11] D. T. Gillespie, J. Phys. Chem. 1977, 81, 2340.
[12] M. Busch, K. Becker, Macromol. Symp. 2007, 259, 295.

A Hybrid Galerkin–Monte-Carlo Approach to Higher-Dimensional Population . . .

Macromol. React. Eng. 2010, 4, 562–577

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mre-journal.de 577


