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Abstract
Background: The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart
disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study
is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and
consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological
situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting
cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow
separation and secondary motions, which are difficult to calculate and analyse.

Methods: Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a
network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the
pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well
described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the
idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke
(FSC) family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan
equation and the transient von-Kármán integral momentum equation.

Results: The model was used to investigate the relative importance of several physical parameters present in
myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85%
diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the
left anterior descending coronary artery (LAD). The pressure derived FFR of fixed and dynamic lesions has shown
that the flow is less affected in the dynamic case, because the distal pressure partially recovers during re-opening
of the vessel in diastole. We have further calculated the wall shear stress (WSS) distributions in addition to the
location and length of the flow reversal zones in dependence on the severity of the disease.

Conclusion: The described boundary layer method can be used to simulate frictional forces and wall shear
stresses in the entrance region of vessels. Earlier models are supplemented by the viscous effects in a quasi three-
dimensional vessel geometry with a prescribed wall motion. The results indicate that the translesional pressure
drop and the mean FFR compares favourably to clinical findings in the literature. We have further shown that the
mean FFR under the assumption of Hagen-Poiseuille flow is overestimated in developing flow conditions.
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Background
The incomplete understanding of the pathophysiology
and clinical relevance of myocardial bridges has been the
subject of debate for the last quarter century. An overview
of physiological relevant mechanisms of myocardial
bridging, the current diagnostic tools and treatment strat-
egies are found in [1-8]. Despite extensive studies on this
subject there is no consensus on its clinical significance to
myocardial ischaemia or angina pectoris.

A variety of models concerned with arterial stenoses [9-
12] and series of stenoses [13-15] are found in the litera-
ture. Theoretical studies have been done to predict the
location of maximum wall shear stress [16-18] and the
extent of flow separation located distal to fixed stenoses
[19-21]. There are a few models, which discuss flow in a
time dependent two-dimensional flow geometry [22-25].
These models assume rigid walls and are mainly focused
on vortex formation and the wall shear stress distribution.
However, [26] discussed the extent of the separation zone
in a one-dimensional empirical parameter model using
the concept of dividing streamline. They found good
agreement with experiments in two-dimensional (partly)
flexible indented channels [27].

The interesting dynamic phenomena of collapsible tubes
are discussed in [28-31]. When the tube wall is partially
collapsed strong oscillations may occur, even under
steady flow conditions. The non-linear coupling between
the fluid pressure and tube wall deformation can produce
conditions in which high-grade stenoses may collapse
[32]. We note that in the late systole the compression of
the artery in a myocardial bridge may cause conditions
where the vessel is entirely closed and where the flow lim-
iting effect during re-opening becomes significant.

Clinical situation
Under normal circumstances, coronary arteries have
diameters large enough to transport sufficient amounts of
oxygen to myocardial cells. Increases in myocardial oxy-
gen demand, e.g. during exercise, are met by increases in
coronary artery blood flow because – unlike in many
other organs – extraction of oxygen from blood cannot be
increased. This is in part mediated by increases in diame-
ters of small intra-myocardial arteries. The large proximal
(epicardial) coronary arteries contribute only a small frac-
tion of total vascular resistance and show little variation in
diameter during the cardiac cycle in any given metabolic
steady state. Under maximum arteriolar vasodilation, the
resistance imposed by the myocardial bed is minimal and
blood flow is proportional to the driving pressure.

The most common cause of an impaired ability to match
oxygen supply and demand is coronary atherosclerosis, a
disease that eventually leads to fixed coronary artery

lumen narrowing, impaired coronary blood flow and
potentially myocardial infarction. However, some people
present with chest pain caused by phasic lumen obstruc-
tion due to myocardial bridging, first mentioned by Rey-
man in 1737 [33]. In this anatomic variant, a coronary
artery segment courses underneath myocardial fibres
resulting in vessel compression during systole, i.e. the
myocardial contraction phase [6]. Myocardial bridges are
most commonly found in the mid LAD, 1 mm to 10 mm
below the surface of the myocardium with typical length
of 10 mm to 30 mm. An angiogram of two myocardial
bridges in series shown in Figure 1(a).

Although coronary blood flow occurs predominantly dur-
ing diastole, i.e. the filling phase of the hearts chambers,
total blood flow may nonetheless be reduced partly
because vascular relaxation may extend significantly into
diastole, the myocardial relaxation phase. Within the
bridged segments permanent diameter reductions of 22 –
58% were found during diastole, while in systole the
diameters were reduced by 70 – 95% [5]. A schematic
drawing of the increased flow velocities (cm/s) during sys-
tole (31.5 within versus 17.3 proximal and 15.2 distal) is
given in Figure 1(b).

From a medical point of view coronary angiography is
limited in its ability to determine the physiologic signifi-
cance of coronary stenosis [34,35]. As a result, intracoro-
nary physiologic measurement of myocardial fractional
flow reserve was introduced and has proven to be a relia-
ble method for determining the functional severity of cor-
onary stenosis. Previous studies have shown that the cut-
off value of 0.75 reliably detects ischaemia-producing
lesions for patients with moderate epicardial coronary ste-
nosis [36]. The assessment of the FFR is independent of
changes in systemic blood pressure, heart rate, or myocar-
dial contractility and is highly reproducible [37]. The con-
cept of coronary pressure-derived FFR has been
extensively studied [13,38-40], clinically validated [41]
and was found to be very useful in identifying patients
with multi-vessel disease [42], who might benefit from
catheter-based treatment instead of surgical revascularisa-
tion. As in [38], we have defined the pressure derived FFR
as the ratio between the pressures measured distal to and
proximal to the myocardial bridge during maximal hyper-
aemia. The exact locations of pressure measurement are
given later in the text.

In summary myocardial bridges are characterised by a
phasic systolic vessel compression with a persistent
diastolic diameter reduction, increased blood flow veloci-
ties, retrograde flow, and a reduced flow reserve [5]. The
underlying mechanisms are fourfold. Firstly the disconti-
nuity causes wave reflections, secondly the dynamic
reduction of the vessel diameter produces secondary flow,
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thirdly there is evidence for flow separation in post sten-
otic regions [43,44] and finally at severe deformations (or
elevated flow velocities) the artery may temporally col-
lapse [32].

Objective
To ascertain the severity of the disease it is often desirable
to have simple models to predict the pressure drop char-
acteristics. A review of the available literature reveals that
a few models exist, which are able to predict pressure drop
(or friction factor) in non-circular ducts [45] (and refer-
ences therein). However, the available models are for fully
developed flow in non-circular ducts with fixed walls and
mostly require tabulated coefficients.

In this study we intend to investigate physiological rele-
vant cases of developing blood flow through a myocardial
bridge located in the middle segment of the LAD. A prior
model with similar geometry [46], but based on the
assumption of fully developed Hagen-Poiseuille flow, was
used to determine the influence of severity, length and
degree of deformation and vascular termination on the

flow. The results, however, indicated that the pressure
drop was not realistic, which we assume is mainly due to
negligence of entrance and separation losses. The system
studied herein is the developing flow of an incompressi-
ble, viscous fluid through a network of elastic tubes in
response to the aortic pressure. The tube characteristics
and fluid properties are known, the developing flow con-
ditions, the pressure response and mean FFR are desired
quantities. We primarily substantiate the influence of fric-
tional losses and separation losses on the translesional
pressure drop and we calculate the mean fractional flow
reserve to determine the haemodynamic relevance of the
myocardial bridge. Further, we examine the consequence
of external deformation on the wall shear stress distribu-
tion along the vessel.

Methods
The fluid mechanics involved in flow through a myocar-
dial bridge is complex, because of the three dimensional-
ity of the deformations, coupling of the fluid with the
arterial wall and flow separation. To understand the com-
plicated behaviour of the tube flow, it is convenient to

Coronary angiogram of two myocardial bridges in the LADFigure 1
Coronary angiogram of two myocardial bridges in the LAD. (a) Coronary angiogram of two myocardial bridges in the 
left anterior descending (LAD) branch (arrows) in diastole (left) and systole (right). Compression of the artery during the 
hearts contraction phase, i.e. systole, is a characteristic finding in myocardial bridging (see text and [6] for details), (b) Diastolic 
lumen dimensions and flow velocity are normal, while systolic flow velocities are increased within the bridged segments.

u (x, t)

(a)

(b)

t
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start with a one-dimensional approximation, which qual-
itatively predicts the overall aspects in spatially averaged
flow variables. It is commonly derived by using equations
for mass and momentum conservation and can be found
in several places [47-50]. Because the equations are in
common use, we will shortly repeat the main assump-
tions made. However, we will point out the differences
introduced by the wall deformation, the entrance type of
flow and flow separation. Firstly, we assume that blood
flow in reasonably large vessels can be modelled as
incompressible, Newtonian fluid with constant density ρ0
= 1055 kg/m3 and constant dynamic viscosity μ = 4 mPa s;
the kinematic viscosity is defined as ν = μ/ρ0. The Rey-
nolds number Red = ud/ν, based upon the vessel diameter,
d and the mean flow velocity u, is below 2000 in non-dis-
eased locations of the coronary arteries, so that the flow
can be assumed to be laminar [9].

The basic geometry
Theories of longitudinal waves in tubes, with or without
non-uniformities, non-linearity and frictional dissipation,
are based on the idea that variation of the pressure in an
axial cross-section is negligible. If the internal and external
pressure along the main flow axis, x, of the artery at time t
are given by pint (x, t) and pext (x, t) respectively, the trans-
mural pressure across the wall of a tube is ptm = pint - pext.
Henceforth we assume that the external pressure is con-
stant in space and time and consequently it is the internal
pressure whose gradients produce fluid acceleration. Our
first geometrical simplification for modelling blood flow
in arteries is that the curvature along the axis of the tube is
assumed to be small everywhere and that the flow in the

cardiovascular system is unidirectional, so that the prob-
lem can be defined in one space dimension along the x-
axis. According to this we have simplified the anatomy of
the myocardial bridge as shown in Figure 2.

The two arrows in Figure 2 denote the location of either
circular (B - B) or oval (C - C) cross-section of the tube.
Due to the fact that the wall thickness, h0, is small com-
pared to the bending radius Rd (h0/Rd << 1), we assume
that the bending stress inside the wall is negligible. Con-
sequently the cross-section of a circular tube (Figure 3
(left)) under deformation in z-direction, is given by the
composition of a rectangle with two semicircular ends as
illustrated in Figure 3 (right). This is consistent with the
predominately eccentric deformation of bridged segments
found in [3]. We note that negligence of bending stress
causes the tube to collapse significantly earlier, i.e. the
assumption is only satisfied if ptm ≥ 0.

The deformation distance between the squeezing muscles
and the breadth of the flat portion are denoted by D (x)
and B (x, t) respectively. The equilibrium geometry of the
cylindrical tube in Figure 3 (left) is characterised by the
inner radius, R0, the circumference U0 = 2 π R0 and the
cross-section A0 = π  R0

2.

However the equilibrium cross-sectional area of the
deformed tube is Ad(x, t) (see Figure 3 (right)). The total
cross-sectional area in the yz-plane of the tube is defined
by A (x, t) = ∫A da and the actual circumference is Up(x, t) =
2(π Rd + B). Consequently the average flow velocity u (x,
t) = 1/A ∫Aνxda, where νx is the local value of the flow veloc-

Simplified geometry of the myocardial bridgeFigure 2
Simplified geometry of the myocardial bridge. Schematic anatomy of a double myocardial bridge. The control segments 
Ωn are equally spaced. Observation locations for haemodynamic properties are in the centre of each segment at xsn, transitions 
between the segments are at xtn. The transitions length between the segments is denoted by tln. The graphs above each seg-
ment illustrate the mean flow velocity usn. To illustrate the deformation we have indicated two cross-sections B - B and C - C in 
the circular and non-circular segments respectively (see Figure 3).
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ity in axial direction. The volume flux across a given sec-
tion therefore is q (x, t) = A u.

As shown in the angiography 1 and Figure 2 the coronary
arteries in myocardial bridges are structured by several
wall deformations. Their number, degree and extension
may independently vary with time, so that the axial curva-
ture of the arterial wall for each of the n = 1...N myocardial
bridges in series is characterised by N functions. The
deformation is specified by a parameter ζ, defined as ζ =
Rd/R0, which is chosen in the stenosis n to vary with time
as

where gn(t) are periodic functions describing the temporal
contraction of the muscle fibres. ζsystole and ζdiastole are fixed
geometrical parameters between 0 and 1, specifying the
degree of systolic and diastolic deformation respectively.
We note that in the centre of the deformation ζ (x = xs2) =
ζ0 = Rd/R0, i.e. the degree of deformation increases with
decreasing ζ0 and consequently ζsystole <ζdiastole. To repre-
sent the time dependence of the deformation found in
intra-vascular ultra-sound (IVUS) measurements [51], a
synthetic deformation waveform gn(t) given by m = 1..3
sine/cosine harmonics is used.

Here Δtn is the time shift for each deformation with respect
to the cardiac cycle (see Figure 4) and φm are the phases in
radian, chosen to be φ1 = 3.5, φ2 = 1.5, and φ3 = 3.9. The
axial curvature of each deformation is approximated by
two hyperbolic tangent functions, so that

where x is the axial coordinate and xtn are the transition
locations. Equation (3) smoothes the transition between
the segmental domains Ωn by a transition length 1tn. The
actual state of deformation can also be expressed by the
ratio, ε, based upon the half-axes of the non-circular duct.

The pressure-area relationship
Due to its complicated structure, it is difficult to provide a
synthetic mathematical description for the mechanical
behaviour of vessel walls. Here, we focus on the most rel-
evant structural features and the simplest mathematical
model for arterial tissues. In the following we derive an
algebraic pressure-area relationship for a vessel under
external deformation. In this context the distensibility
characterises the relative change in cross-sectional area
with respect to the pressure increment for a given defor-
mation according to A = A (ζ, p). If we assume that A' is
the perturbation about the equilibrium area Ad, the total
cross-sectional area can be written as A (ζ, p) = A' (ζ, p) +
Ad (ζ). For a homogeneous, thin-walled (h0/R0 << 1), lin-
ear elastic tube, the stresses in circumferential direction
are large compared to stresses in longitudinal direction
and the hoop stress per unit length of the tube is

where E is the elastic modulus and σ is the Poisson ratio,
which for practically incompressible biological tissue is
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Deformation cross-sectionFigure 3
Deformation cross-section. This figure illustrates the deformation geometry of a circular, linear elastic tube neglecting the 
bending stress inside the wall. Cross-section B - B (left) shows circular expansion under pressure and the cross-section C - C 
illustrates the geometry under external deformation (right). The equilibrium cross-sectional area Ad is shaded in light grey, 
while the perturbation area A' is shaded in dark grey. The dashed lines indicate expansion under pressure.
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approximately 0.5. The circumferential strain in the vessel
wall is

Equation (5) can be rearranged into the form

whereas Equation (6) leads to an expression for the pres-
sure dependence of the breadth, B, of the flat portion of
the tube.

The total cross-sectional area is

A (Rd, p) = π R2
d + 2 B (Rd, p) Rd.  (9)

In the unperturbed state, the cross-section is

Ad (Rd) = Rd U0 - π R2
d.  (10)

We can finally write the pressure induced perturbation as

It should be noted that under the assumption of linear
elastic material with constant elastic modulus, equation
(9) and (11) have the property that the area increases lin-
early with transmural pressure. Real arteries, however,
resist over-expansion by having an incremental elastic
modulus, E(ε), that increases with increasing strain [52].
It should be further noted that the area perturbation in
equation (11) is not only dependent on pressure variation
but also on the degree of deformation through Rd. By
using equation (7) and (9) we can finally write the pres-
sure-area relation

Elastic properties of the coronary arteries
The elastic properties for a given section of the circular
tube are obtained by using estimates for the volume com-
pliance as suggested in [53], where the empirical approxi-
mation in exponential form is
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Deformation function. The variation of the bending radius Rd(xS2, t) in the centre of the deformation is plotted with respect 
to the cardiac cycle, represented by a EKG trace. The time shift with respect to the cardiac cycle is denoted by Δt, i.e. the solid 
line has zero time shift, while the dotted and dashed lines are shifted by ± 100 ms respectively. The periodic function g(t) in 
equation 3, was chosen according to IVUS measurements in [51].
Page 6 of 25
(page number not for citation purposes)



BioMedical Engineering OnLine 2006, 5:42 http://www.biomedical-engineering-online.com/content/5/1/42
In these estimates k1, k2, and k3 are constants. With data
for the volume compliance from Westerhof [54], Stergiopu-
los [55] and Segers [56] we obtain k1 = 2.0 * 106 Kg s-2m-1,
k2 = -2.253 * 103 m-1, and k3 = 8.65 * 104 Kg s-2m-1. A func-
tional relationship for the wall thickness subject to the
vessel radius can be found in [57], where

h0 = a R0
b.  (14)

The parameters for a = 3.87 and b = 0.63 were obtained by
a logarithmic fit to data including vessel radii between
100 μm and 3000 μm. Equations (13) and (14) are used
to determine the wall thickness and elastic properties of
the vessel, if the radius is known. The assumption of small
bending resistance is well satisfied if a R0

(b-1) << 1, which
for typical vessels under consideration is below 0.21.

Interaction of viscous boundary layer and inviscid core 
flow
In the following we investigate the solutions of the
unsteady boundary layer equations by using an approxi-
mate integral method proposed by Veldman [58]. For this
purpose, the potential flow of the two-dimensional equa-
tions governing the unsteady incompressible laminar
boundary layer flow in axial symmetry is assumed to be in
power-law form. By the introduction of similarity varia-
bles and the assumption that the evolution of the velocity
profile is weakly dependent on x, the boundary layer
equations reduce to the Falkner-Skan equation. Based on
this ordinary differential equation, closed form solutions
to the von Kármán integral momentum equation are
obtained by a curve fit representation. The steady skin fric-
tion coefficients and the non-linear momentum correc-
tion coefficients corresponding to the velocity
distributions are obtained and compared with known
results. In particular the results of the steady solution are
found to compare favourably with the Blasius solution
and values for fully developed flow.

Boundary layer equations
The notion of the boundary-layer approximations was
first developed by Ludwig Prandtl in the early 1900's.
These well-known approximations [59] are applied
widely in fluid mechanics. As the flow rate in the tube
increases (i.e. high Reynolds number) the boundary-layer
approximations become increasingly valid. The deriva-
tion of the axial boundary layer equations was first given
by Mangler (1945) and can be found in [60]. In cylindri-
cal coordinates (x, r, φ) with the corresponding velocity
components (νx, νr, νφ) and circumferential velocity νφ = 0
(no swirl in S), they are

with  νx(x, Rd, t) = 0  νr(x, Rd, t) = νw(x, t),  (18)

where Rd(x, t) is the body shape along a xr-section of the

tube or local surface radius measured from the axis and τ
represents the shear stress, which is defined as τ = μ ∂VX/

∂r. The derivation assumes that Rd is much larger than the

boundary layer thickness δ. The three-dimensionality of
deformation generally makes it difficult to find a satisfac-
tory solution for every compartment of the neither circu-
lar nor flat duct. However, considering severe

deformation (e.g. ζ0 = 0.2) the circumferential length of

the flat portion of the vessel exceeds the circumferential
length of the circular portion by a factor of four

( ), thus we assume plane wedge flow for the

calculation of viscous forces. Consequently νw is taken to

be the velocity component normal to the flat portion of

the wall, which is νw = -∂Rd/∂t. At the edge of the bound-

ary layer, the free-stream velocity V (x, t) must be related
to the pressure by the potential flow relation

Integral momentum equation
The integral momentum relation of von Kármán (1921) is
obtained by multiplying the continuity equation (15) by
u - V and subtracting it from the momentum equation
(16). Integration over the bending radius and introduc-
tion of the integral relations for the displacement thick-
ness
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and the total displacement thickness δ** = δ* + θ

leads to

with  u(0, t) = V(0, t),  θ(0, t) = δ*(0, t) = 0,  (24)

where cf is a non-dimensional friction factor defined as

The only difference to plane flow is the term involving
∂Rd/∂x. If Rd → ∞ or ∂Rd/∂x → 0, equation (23) reduces to
the von Kármán integral momentum equation for plane
flow. Compared to the frictional term cf/2 the influence of
the term involving ∂Rd/∂x on the boundary layer proper-
ties is indeed small (below 0.3%), thus disregarding the
term for simplicity is appropriate. The boundary condi-
tions in (24) assume a uniform inflow profile.

Falkner-Skan equation
Suitable solutions to the boundary layer equations in
either plane or axial symmetry are found by the introduc-
tion of the stream function. A suitable coordinate trans-
formation turns the equation for the stream function into
the Görtler equation (derivation see [59]). The following
approach mainly consists in assuming that the flow is
locally self-similar and that it depends weekly on the coor-
dinate x, so that the velocity profiles can be mapped onto
each other by suitable scaling factors in y. Falkner and
Skan have found a family of similarity solutions, where
the free-stream velocity is of the power-law form

V(x) = Cxn,  (26)

with a constant C and the power-law parameter n. The
similarity variable η ~ y/δ(x) is set as

where f(η) is the dimensionless stream function and the
prime refers to derivative with respect to η. The coordinate
normal to the plate is denoted by y. However there are
other general similarity solutions including the temporal
dependence of the profile evolution [61]. The above sim-
ilarity variables turn the boundary layer equations into a

non-linear ordinary differential equation of order three,
which is known as the Falkner-Skan-Equation

The parameter β is a measure of the pressure gradient ∂p/
∂x. If β is positive, the pressure gradient is negative or
favourable, β = 0 indicates no pressure gradient (i.e. the
Blasius solution to flat plate flow) and negative β denotes
a positive or unfavourable pressure gradient. We note that
by assumption, β should vary slowly with coordinate x.
The solutions are found numerically by a shooting
method with f''(0) as free parameter by Hartree [62]. To
avoid extensive calculations we follow a curve fit represen-
tation of three quantities extracted from solutions of the
Falkner-Skan equation used in [19]:

The relation to flat plate flow is generally given by the
shape factor, which is defined as H = δ*/0, whereas H0 is
the equivalent value for plane flow over a flat plate. The
curve fits provide a good approximation for values of H
between 1 and 20. At the separation point the wall shear
stress vanishes, i.e. ∂VX/∂r = 0, which is equivalent to a
shape factor H = 4. Relation (32) is not required for the
calculations, however it is useful to predict the actual
boundary layer thickness δ99, where the fluid velocity dif-
fers by 1% from the free stream value. The relation for the
shear stress given in [19] is

consequently the friction factor is

A schematic illustration of the actual flow profile along
the tube axis is shown in Figure 5. We have chosen a uni-
form inflow profile with velocity V(0, t). The boundary
layer (dashed line) grows from the leading edge, decreases
in the converging part, while it grows in the divergent part
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of the tube. The upward triangles (▲) denote the point of
separation, while downward triangles (▼) indicate the
reattachment of the boundary layer. After separation the
flow field can be seen as a top hat profile in the centre and
a recirculation zone close to the walls. Due to the adjacent
converging part the reattachment is forced early, because
fluid is accelerated. In contrast the reattachment after the
second diverging part takes place further downstream.

Averaged flow equations
The simultaneous viscid-inviscid boundary layer
approach assumes an inviscid core flow, which follows
equation (19) and a viscous boundary layer, which may
be found by the solution of equation (23). The one-
dimensional equations commonly used to simulate
unsteady, incompressible blood flow in elastic tubes with
frictional losses [53,63] are given in averaged flow varia-
bles as

where Fν is the viscous friction term and χ is the momen-
tum correction coefficient. The viscous friction term is
defined as

and the momentum correction coefficient is

We rearrange the equations written in area and flow rate
in terms of area and area-averaged axial flow velocity so
that

The derivative of Ad with respect to time in equation (39)
is a prescribed function depending on Rd(x, t). It is respon-
sible for the volume displacement caused by the forced
deformation of the tube.

Hagen-Poiseuille viscous friction and momentum correction
The determination of viscous friction factor and momen-
tum correction coefficient requires knowledge about the
velocity profile. For pulsatile laminar flow in small axially
symmetric vessels a flow profile of the form

is used [50]. Here û is the free stream value of the axial
velocity and R is the actual radius of tube, while γ is the
profile exponent, which for a Hagen-Poiseuille flow pro-
file is equal to two. Consequently the friction term is given
by

Fν = -2 π ν(γ + 2) u = Kν u,  (42)
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Boundary layer evolution in the myocardial bridgeFigure 5
Boundary layer evolution in the myocardial bridge. Illustration of boundary layer separation in a series of two myocar-
dial bridges at a deformation of ζ0 = 0.2; geometry and boundary layer thickness are displayed in realistic proportions, the 
velocity profiles are schematically drawn. The inflow profile is uniform with velocity V. We note that the extension of the sep-
aration zones differ, because the second myocardial bridge experiences different flow conditions.
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whereas the friction coefficient for a parabolic profile is Kν
= -8 π ν. The corresponding momentum correction coeffi-
cient is given by

which is 4/3 in the parabolic case. Such factors can be
used for the purpose of correlating other variables as well
as for direct calculation of pressure drop. We note that in
the presence of a stenosis the total losses under the
assumption of Hagen-Poiseuille flow are underestimated
[55]. This comes mainly from underestimating the viscous
forces and disregarding the losses caused by flow separa-
tion at the diverging end of the stenosis [64,65].

Boundary layer derived viscous friction and momentum correction

Developing flow conditions in ducts of multiply con-
nected cross-sections generally make it difficult to use the
right friction factor. A variety of cross-sections are dis-
cussed in [45]. In those situations the similarity parame-
ters are preferably based on the free stream velocity and
the square root of the cross-sectional flow area as charac-

teristic length scale i.e. . Consequently we define

the Reynolds number , the Womersley

number or frequency parameter 

and the Strouhal number . Here ω

is the angular frequency defined as ω = 2πf, with f the base
frequency of pulse wave oscillation. In other words we

have multiplied Re and Sr by a factor of , while Wo

is multiplied by . In the calculations we have given

the Reynolds number inside the stenosis, Rest, based on

.

As previously mentioned the surface line of the flat por-
tion of the non-circular duct dominates the circular por-
tion at severe deformations, so that the computation of
viscous forces is based on plane wedge flow. Conse-
quently the thickness of the boundary layer is estimated in
the xz-plane. Further we assume that the boundary layer
has constant thickness along the circumference as illus-
trated in Figure 6. The latter assumption allows a simple
derivation of the momentum correction coefficient and
the viscous friction term. Integration over the cross-sec-
tion leads to geometric relations for the areas occupied by
the displacement thickness δ* and the total displacement
thickness δ** in that cross-section. They are expressed as

Aδ* = 2B δ* + π [R2
d - (Rd - δ*)2],  (44)

Aδ** = 2B δ** + π [R2
d - (Rd - δ**)2],  (45)

It is obvious that Ad > Aδ** and Ad > Aδ* have to be satisfied
to make sure that the flow is not fully developed. The
momentum correction coefficient can be found by satisfy-
ing mass conservation for the mean flow and the core flow
by

V (A - Aδ*) = A u,  (46)

which can be used together with equation (22) and (45)
in the definition for the momentum correction (43), so
that

The uniform inflow profile is identical to χ = 1, while the
developing profile reaches its far downstream value of
1.39 after the entrance length within less than 4.5% from
the analytical solution for the parabolic flow profile given
in equation (43). We note that in the linearised system the
total cross-section A in equation (47) is replaced by Ad.
According to equation (34) the friction factor built with
the pressure dependent surface line, Up(x, t) is

Computations in a uniform tube show good agreement to
the friction factor of the parabolic profile given in equa-
tion (42). After the entrance length the friction factor
computed via the boundary layer theory reached its far
downstream value to within 7%. Additionally the Fan-
ning friction factor Reynolds number product in a
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Displacement thickness and displacement area in a deformed tubeFigure 6
Displacement thickness and displacement area in a 
deformed tube. Illustration of the displacement thickness 
δ*, the momentum thickness θ and the total displacement 
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deformed vessel geometry agrees well with experiments
carried out in [45]. In contrast to other proposed models
the underlying model does not require knowledge about
the fully developed friction factor Reynolds product cf Refd
[45], or the incremental pressure drop factor K∞ [66,67].
The above results for momentum correction and viscous
friction quantify the entrance conditions typically
encountered in studies of the arterial system.

Validity
The stationary boundary layer approximation becomes
increasingly valid if the Reynolds number increases and
when the ratio of unsteady forces to viscous forces given
by the Womersley number is small. In the left coronary
artery the values for Womersley and Strouhal number,
built with pulsatile frequency were around 4 and below
0.2 respectively. The approximation of the actual flow
profiles by near equilibrium flow profiles is justified for
stationary flow, however, for time dependent flow the
period T of the deformation function in equation (3) has
with be large compared to the viscous diffusion time

through the boundary layer: td = δ2/V << T. This is well sat-
isfied for the situation under consideration, where td in the
centre of the deformation was between 4.4 * 10-3 s and 0.2
s at values of ζ0 of 0.25 and 1 respectively.

Computational domain
Based on 83 angiographies, Dodge et al. [68,69] presented
a normal anatomic distribution of coronary artery seg-
ments and proposed a terminology, which we used for
our model of the left coronary artery (LCA): the left main
coronary artery (LMCA) bifurcates into the left anterior
descending artery (LAD) and the left circumflex artery
(LCxA). The main branches of the LAD include the 1st, 2nd

and 3rd diagonal branch (Dl, D2, D3) and the 1st, 2nd and
3rd septal branch (S1, S2, S3). The main branches of the
LCxA include the 1st and 2nd obtuse marginal branches
(OM1, OM2). The exact intrathoratic location and course
of each one of the 27 arterial segments and branches of
the LCA are illustrated in Figure 7. We note that in the
present 1D approximation the arterial tree is composed of
tubular entities. The branching angles in figure 7 serve
only artistic purposes.

Boundary conditions
Because the coronary flow is primarily driven by the aortic
pressure, the pulsatile inflow condition to the LMCA was
represented by a periodic extension to a synthetic pressure
wave in the exponential form

where ps is the static pressure and p0 is the amplitude of the
exponential waveform, while tr is the rising time. We have
chosen the parameters according to measurements in
[38]. The baseline condition is represented by a stationary
pressure ps = 8 kPa and a pressure amplitude of p0 = 7 kPa,
while for the inlet pressure under dobutamine challenge
we have chosen ps = 6.6 kPa and p0 = 5.5 kPa. In both cases
the raising time was tr = 0.25 s. The pressure wave at the
inlet is shown in Figure 8.

The branching conditions between the 1D entities are
implemented by the requirement of constant pressure at
the branching point and mass conservation throughout
the bifurcation [63]. To avoid wave reflections at the ends
of the tubes the boundary conditions are implemented by
a characteristic system of one-way wave equations [46].
There are several ways to account for peripheral reflections
at the terminals of a vascular network. In the current sim-
ulations we have implemented a three-element windkes-
sel model for the termination of the left coronary arterial
tree [70,71]. The main advantage of this model is to con-
sider the compliant-capacitive effects due to micro-vessels
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Computational domainFigure 7
Computational domain. Structure of the 27 main seg-
ments of the left coronary arteries. The dimensions of a nor-
mal anatomic distribution of coronary artery segments are 
based on 83 angiographies by Dodge et al. [68, 69]. A series 
of two consecutive myocardial bridges is situated in the mid 
LAD. In this case we have coloured the segments according 
to the pressure distribution calculated by the proposed 
boundary layer model (high pressure is coloured red, while 
low pressure is coloured blue). The dark blue, vertical cylin-
der indicates a segment of the ascending aorta.
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and arterioles. To satisfy the Blasius solution at the lead-
ing edge of the tube, we have assumed a uniform flow pro-
file at the entrance (V(0, t) = u(0, t)).

Numerical implementation
Due to the non-linear terms in equation (23) and (40) the
solutions for haemodynamically developing flows are
generally more difficult to obtain than fully developed
flows or oscillating flows with a frequency dependent
Stokes boundary layer. Developing flows require simulta-
neous solution of the momentum equation (39), the con-
tinuity equation (40) and the integral momentum
equation (23), together with the boundary conditions
given in (49) and (24) respectively. The system of equa-
tions cannot be solved analytically, so that the interior
domain was solved by a second order predictor-corrector
MacCormack finite difference scheme with alternating
direction for prediction and correction in each time step

[72]. To implement the boundary and interface condi-
tions it is convenient to disregard viscous friction and
rewrite equation (39) and (40) in terms of characteristic
variables [46]. The momentum correction factor in equa-
tion (47) and the viscous friction in equation (48) are
given by the solution to the integral momentum equation
(23) and the two curve fits to the Falkner-Skan equation
in (30) and (31). They are solved by discretisation using
the same second order MacCormack scheme and iterative
solution of the resulting set of discrete non-linear equa-
tions by a combined root bracketing, interval bisection
and inverse quadratic interpolation method of van Wijn-
gaarden-Brent-Dekker. To start the computation the Bla-
sius solution at each time step provides values for the
boundary layer thickness a few grid points downstream of
the entrance. The solution was applied to the steady inte-
gral momentum equation as boundary condition for δ*.
Downstream marching the solution leads to the values of

Synthetic pressure wave at the inletFigure 8
Synthetic pressure wave at the inlet. Synthetic pressure wave at the inlet to the left coronary tree are modelled by equa-
tion (49). We have chosen the parameters according to measurements in [38]. The baseline (black line), is represented by a 
stationary pressure ps = 8 kPa and a pressure amplitude of p0 = 7 kPa, while for the inlet pressure under dobutamine (red line) 
ps = 6.6 kPa and p0 = 5.5 kPa. In both cases the raising time was tr = 0.25 s.
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boundary properties along the tube axis, which through
equation (47) and (48) provide the required values of
momentum correction and viscous friction to the aver-
aged flow equations respectively.

Results
The derived model to simulate viscous friction and
momentum correction in the entrance of a tube with var-
ying cross-section was subsequently applied to a test
geometry, which consists of a single elastic tube with
either temporally fixed or dynamic indentations, and spe-
cific clinical situations in the LCA described in [38]. The
simulations were carried out in temporal fixed and
dynamic stenosis of different degree and extent. The
Womersley and Strouhal number were around 4 and
below 0.15 respectively, the Reynolds number in the sten-
osis varied from 850 to 1500. It was found that under
application of a uniform flow profile at the entrance the
core velocity in the vessel increases gradually downstream,
indicating the development of a parabolic flow profile.
For a Reynolds number of 2000 the distances over which
the core velocity stabilised in the tube were very much
shorter than at 800; fully in line with the dependence of
the entrance length. However fully developed flow was
not present in any of the cases.

The spatial resolution of the grid was adjusted to represent
the curvature of deformation, where 4 gird points per mm
was reasonable in any of the cases, the time resolution was
chosen accordingly and ranged between 5 μs and 10 μs.
These resolutions are sufficient to avoid numerical insta-
bilities at severe deformations. The computational time
required, for the simulation of one pulsatile cycle in the
above described network of coronary arteries, was about
22 min. (Apple Power-Mac G5, 2 GHz).

In the following we address the flow limiting effect by the
assessment of the pressure derived fractional flow reserve
in different stenotic environments (test geometry and
LCA). Further, we will discuss the pressure drop Δp, the
flow separation, the wall shear stress and the influence of
external wall deformation. In some of the graphs we have
shown the interval of possible solutions that may occur
during the pulsatile cycle, i.e. the upper and lower enve-
lope denoted by Maxenv (solid red line) and Minenv (solid
blue line) respectively.

Modelling: test geometry
We have chosen the test geometry of the tube according to
the size of the left main coronary artery with an internal
diameter of 5 mm. To observe separation and reattach-
ment we have adapted the length to the maximum extent
of the recirculation zone, which was about 300 mm at
80% diameter deformation. At 20 mm downstream of the
entrance, the diameter was abruptly decreased (tl = 4 mm)

by 0 – 85%, with an extent of 30 mm (single stenosis),
another constriction with the same length follows 30 mm
further downstream (double stenosis). In addition the
extent of the single stenosis (short) was varied by a factor
of two (medium) and three (long), in the double stenosis
we varied the separation distance between one and three
dimensions of the stenosis. The wave velocity in those sit-
uations may take values as low as c = 5 m/s in uniform ves-
sels, rising to values around c = 30 m/s in constricted
vessels. Physiological peak flow velocities, V, are much
smaller, generally around 0.5 – 1 m/s, but they can reach
2 – 3 m/s in parts of severe deformation.

The region around the diameter transition in the test
geometries is shown in detail in Figure 9. The area pertur-
bation A', shown on the top of each column, indicates
that the arterial deformation caused by pulsatile pressure
is much smaller in regions where the tube is squeezed
(about A'/A = 1 – 2%), while in circular segments A'/A = 8
– 9%. Due to incompressibility and mass conservation a
sudden jump to a high velocity is seen at the narrowing. It
appears that the stenosis influences the mean velocity
only over a short distance upstream, while in the case of
separation the core velocity slowly decays until reattach-
ment, then it starts growing again until the flow is fully
developed. The boundary layer separation in the post-
stenotic region indicates an emerging top-hat velocity pro-
file from the stenosis, with sideway counter-current flows.
The decay in core flow velocity indicates shear widening
of the top-hat until reattachment. Further downstream the
core velocity is almost constant. It was found that the dis-
tance over which the outlet effect occurs is smaller for ste-
nosis with small deformation and length and small
Reynolds number. The core velocity influences the fric-
tional losses and the extent of the separation zone in series
stenoses, so that series stenoses cannot be represented by
two similar building blocks. This becomes more evident
through the fact that the entrance flow profile in the sec-
ond stenosis changes, if the distance of the two stenoses is
varied (Figure 10(a–c)). The downstream deformation is
generally dominant in wall shear stress and frictional
forces as well as in the extent of the post-stenotic separa-
tion zone. Further, it is likely that a downstream stenosis
with equal deformation collapses significantly earlier,
because the core flow velocity is increased, so that the
transition from subcitical flow (V <c) to supercritical flow
(V > c) happens earlier.

Pressure drop and flow limitation
Geometric influences on the pressure loss across series of
stenoses have been studied in [15]. It was found that the
pressure drop across severe stenoses is little affected by the
eccentricity of the stenosis, dominantly affected by the
severity and length of the stenosis, and affected by the
Reynolds number only at low Reynolds number. The
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Spatial dependence of flow variables in a tube with fixed deformationFigure 9
Spatial dependence of flow variables in a tube with fixed deformation. The area perturbation, flow velocity, pressure 
and friction coefficient, the wall shear stress, momentum correction factor, the normalised boundary layer thickness and the 
shape factor are plotted as a function of position in a vessel with fixed deformation of ζ0 = 0.2. Three stenoses of different 
extent (s), (m) and (l) and a series stenosis (d) are compared. The losses are about equal in the cases (m) and (d), which indi-
cates that the pressure loss is mainly viscous. To indicate the flow characteristics in the stenosis we have used the Reynolds 
number Rest inside the deformation.
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Variation of stenosis distanceFigure 10
Variation of stenosis distance. In columns (a), (b) and (c) we compare a series of two dynamic stenoses, which are sepa-
rated by one, two and three stenosis dimensions respectively. From the top we illustrate the flow velocity, the pressure, the 
friction coefficient, the wall shear stress, the momentum correction coefficient and normalised boundary layer thickness, the 
shape factor and the instantaneous geometry of the vessel. The boundary layer is illustrated as dashed lines. The upward trian-
gles at the centreline of the vessel geometries indicate the separation point, while the downward triangles indicate the reat-
tachment of the boundary layer. The FFR decreases with increasing distance between the stenoses.
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eccentricity of mild stenoses increases the likelihood of
collapse of stenotic arteries, because the buckling pressure
is reduced [28].

As in [1,8] we found that the pressure proximal to the
deformation is increased if the degree of deformation or
the length of deformation is increased. Compared to the
mean reference pressure (no deformation) of 9.29 kPa,
the mean pressure at the inlet for a deformation of ζ0 = 0.2
was 10.28 kPa, 11.53 kPa and 12.41 kPa in the cases (s),
(m) and (l) respectively. Under these conditions the mean
flow in the reference artery was 10.36 cm3/s. For fixed
deformation of ζ0 = 0.2 we found 8.43 cm3/s, 6.38 cm3/s,
4.94 cm3/s and 6.66 cm3/s in the short, medium, long and
double stenosis respectively. The pressure drop for the
medium sized stenosis was at 7.52 kPa just below that of
the double environment with 7.78 kPa, the pressure drop
across the short stenosis was 4.15 kPa and across the long
stenosis 9.82 kPa. In double stenoses the pressure drop
across the proximal stenosis was 3.28 kPa, which is mark-
edly less than 4.4 kPa at the distal stenosis. Complemen-
tary the values for the dynamic case are generally less
pronounced, they can be found in Table 1.

However, the translesional pressure drop in a series of two
stenoses with time dependent deformation in the
entrance region of a tube shows further remarkable
effects. The simulations indicate that in general the pres-
sure drop cannot be obtained by a summation of pressure
drops for single stenosis, since the proximal and distal ste-
nosis influence each other unless the spacing between
them exceeds some critical distance, which depends on
the Reynolds number and deformation. Therefore several
consecutive stenoses along the same epicardial artery
require separate determination of stenosis severity. We
found that when the two stenoses are close together, the
pressure drop is approximately equal to that of a stenosis
with twice the length of a single stenosis (see Table 1 and
Figure 9 (m) and (d)). This can be explained by the fact
that the friction coefficient in the recirculation zone
between the two stenoses is small and consequently the
pressure loss over that region is small. However, when the

stenoses are separated by more than the length of the ste-
nosis the flow is hardly affected by the second stenosis,
because the core flow velocity and likewise the frictional
force are increased (see Figure 10(a–c)), even though the
entrance flow conditions are preserved. Coexistent is the
increased reduction in shape factor and momentum cor-
rection coefficient, suggesting the non-linear influence in
that region. The pressure drop over the downstream defor-
mation is generally pronounced, however the distance
between the deformations further increases the pressure
drop and consequently the mean FFR is reduced. The val-
ues for the cases (a) to (c) are Δpa = 3.45 kPa, Δpb = 3.64
kPa and Δpc = 3.89 kPa for the pressure drop over the
downstream deformation and FFRa = 71%, FFRb = 70%
and FFRc = 68% for the mean fractional flow reserve across
the bridge. We note that these findings are based on the
entrance type of flow, where the core flow velocity gradu-
ally changes and may not appear in fully developed flow,
where the core flow velocity is a constant and identical to
the maximum of Hagen-Poiseuille flow velocity.

Separation and reattachment

The core velocity in a uniform tube generally increases
downstream of the entrance, however in presence of a ste-
nosis the boundary layer thickness decreases at the inlet
and rapidly increases in the diverging part of the constric-
tion (see Figure 9). Separation occurs under the develop-
ment of a top hat profile with sideway counter-current
flow. At the separation point (▲) the boundary layer

thickness increases and a sudden jump in χ is evident,

because the integral of the actual velocity  over the area

of the recirculation is close to zero and in contrast to the
mean flow velocity the core velocity is increased. There-
fore the non-linear term is pronounced in the separation
region, while it is close to unity in converging regions. The
momentum correction becomes markedly smaller than
before the upstream stenosis. This indicates that the
entrance profile into the second stenosis is almost flat, but
has increased core velocity, while the counter current flow

νx
2

Table 1: Mean flow quantities, pressure drop and fractional flow reserve for test geometry shown in Figure 9.

fixed dynamic

measure unit short medium long double short medium long double ref

[kPa] 10.42 11.63 12.48 11.46 9.55 9.84 10.07 9.80 9.29

Δp1–3 [kPa] 4.15 7.52 9.82 7.78 1.89 2.74 3.47 2.87 1.23
FFRp [%] 60 35 21 32 80 72 65 70 86

[cm3/s] 8.43 6.38 4.94 6.66 9.90 9.40 9.01 9.46 10.36

ū1 [m/s] 0.43 0.33 0.25 0.34 0.50 0.48 0.46 0.48 0.53

p1

q1
Page 16 of 25
(page number not for citation purposes)



BioMedical Engineering OnLine 2006, 5:42 http://www.biomedical-engineering-online.com/content/5/1/42
at the walls have disappeared. The reattachment of the
boundary layer (▼) further downstream is caused by shear
layer friction between the recirculation zone and the top-
hat profile, which also causes the pressure to recover. Due
to the increased momentum correction in that region the
pressure in the non-linear case recovers more rapidly than
in linearised computations, which causes earlier reattach-
ment and consequently slightly smaller recirculation
zones. The extent of the recirculation zone is primarily
dependent on vessel deformation and Reynolds number,
however, we found that the extent also correlates with the
length of the constriction. Compared to the short defor-
mation in Figure 9 (s) the tail of the shape factor curve
drops below the critical value of 4 (condition for separa-
tion or reattachment) by a factor of about two and three
later for the medium (m) and long (l) constriction respec-
tively. In other words vessels with the same degree of ste-
nosis, but with the stenosis having different curvatures
and lengths, have recirculation regions that differ mark-
edly in their extent. At deformations of 85% the recircula-
tion zones had an extent of about 20 tube diameters in
length. However the extent of the separation region was
found to be strongly dependent on the degree of deforma-
tion and the Reynolds number. The separation point
moves upstream, while the reattachment point moves
downstream if the Reynolds number or deformation
increases. A particularity of series stenoses is that the
extent of the recirculation zone in the interconnecting seg-
ment is reduced. This is due to early reattachment caused
by fluid acceleration in the converging part of the second
stenosis. But nonetheless the core flow velocity is gener-
ally smaller compared to the downstream separation
region.

Wall shear stress and friction coefficient
For steady flows the location of maximum wall shear is
always upstream the neck of the stenosis (see Figure 9),
and moves upstream as the Reynolds number increases. In
series stenoses the WSS is significantly increased in the
distal stenosis, while the friction coefficient is smaller
there (see column (d)). Generally they have their maxi-
mum at the entrance of the stenosis and reduce towards
the end of the stenosed section. Eventually they become
negative after separation of the boundary layer. The
increased boundary layer thickness in the downstream
stenosis suggests lower retarding forces, however, the core
flow velocity is increased there so that pressure losses are
dominant there. Consequently the second stenosis can be
seen as the more vulnerable, in wall shear stress and flow
limitation. Likewise the mean flow velocity in a pressure
driven vessel is dependent on the total after-load, the max-

imum values of wall shear stress are dominant in short
constrictions (see column (a)), because the after-load is
smaller and fluid velocity is increased compared to long
constrictions (column (l)). Although the wall shear is
increased in short constrictions, we observe that the peak
of the viscous friction increases if the length of the con-
striction is increased. In flow driven vessels however the
peak values are independent of the extent, because the
flow velocity is equal in all cases (not shown here).

Wall shear stress oscillations have been observed for vari-
ous downstream locations and severity of deformation.
The amplitude of oscillation depends strongly on the axial
position and the actual state of deformation. The wall
shear stress is large in the entrance region of the deforma-
tion, fades towards the end and is negative in the separa-
tion region, so that the development of atherosclerosis is
more likely in segments proximal to the deformation.
Compared to wall shear stresses in non-diseased vessels (5
– 10 N/m2) vulnerable regions are endothelial cells in the
throat of a strong deformation. They may experience wall
shear stresses in excess of 60 N/m2. In series stenoses the
stresses are largest in the downstream stenosis because the
core flow velocity is increased there. Furthermore the wall
shear stresses are no longer likely to be distributed evenly
around the circumference of the vessel and may be partic-
ularly focused on the most vulnerable shoulder regions,
marking the transition from normal to diseased artery
wall. Further improvements for the prediction of the wall
shear stress may be obtained by the introduction of a
shear dependent model to predict the local blood viscos-
ity.

Unsteady solutions
Despite the assumption of strong coupling between the
boundary layers and the core flow and the assumption of
quasi-stationary evolution of the boundary layers, the
time dependent motion of the wall under external defor-
mation reproduces some remarkable characteristics of
myocardial bridges. In Figure 11 we have shown the effect
of temporal deformation onto the pressure and flow in
the segments Ω1–5 of a series of two myocardial bridges
(see Figure 2). The time dependence of the two separation
zones, one between the two deformations and the other
distal to the second deformation shows that separation
occurs for deformations greater than about 40%. The sep-
aration cycle is present in the time interval of 0.1 s to 0.4
s. The maximum deformation during the cycle was 75% of
R0, which was reached at 0.3 s. It is seen that during defor-
mation the separation point moves somewhat upstream,
while the reattachment point of the boundary layer moves
farther downstream. The upstream separation zone (tur-
quoise cycle) is spread over a region of 49.94 mm to 80.83
mm, while the downstream separation zone (purple cycle)
is from 109.98 mm to 193.32 mm. The extensions of the
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two zones differ, because the upstream reattachment
point is forced early due to accelerating fluid at the inlet of
the downstream deformation and because the core veloc-
ity is generally larger further downstream. In each case
however, a top-hat velocity profile develops in systole,
producing large recirculation zones distal to the stenoses,
which are delayed into diastole. The back-flow is develop-
ing earlier for severe deformation and is strongly depend-
ent on deformation phase. For phase delayed
deformation, say, by half the cycle time (here 500 ms), the
flow patterns are noticeably different (not shown here).
The top-hat profile is now present in diastole, the peak
velocities and the viscous friction are less pronounced and
the reverse flow region is smaller and mainly present in
the diastole. The wall shear stress is dramatically reduced
compared to the zero phase case, because deformation
maximum falls together with the haemodynamic condi-
tions present in diastole. Furthermore the mean FFR was
increased to 0.65 compared to 0.6 of the zero phase case.
This can be explained by the circumstance that no appre-
ciable pressure drop was present at the downstream sten-
osis.

Modelling: physiological basis
The simulation of clinical relevant cases requires a specific
set of parameters, which however is not available in the
literature. Due to this difficulty we compare the FFR range
obtained with parameters for the length and degree of
deformation given in [38]. The length of the myocardial
bridge for the baseline and dobutamine case were 12 mm
and 24 mm respectively. The values for the deformation
were ζbaseline = 0.54 and ζdobutamine = 0.32. To assess the
dynamics, we have applied more physiological wave-
forms (aortic pressure conditions) to the inlet of the left
main coronary artery (LMCA) (see Figure 8). The peak
Reynolds and Strouhal numbers in the myocardial bridge
were 815 and 1069, and 0.021 and 0.016 for the baseline
and dobutamine case respectively. The Womersley
number was 4.11.

Mean pressure drop
The mean pressure drop was calculated by subtracting the
average of a distal pressure wave, which was taken approx-
imately 3 cm distal to the myocardial bridge, from the
average inlet pressure at the LMCA. The proximal and dis-
tal pressure waves for the baseline and while dobutamine
challenge are shown in Figure 12. It is seen that the base-
line pressure is less affected, while the pressure under dob-

Temporal evolution of flow variablesFigure 11
Temporal evolution of flow variables. The temporal dependence of pressure and volume flow (left) and the separation 
cycle during deformation (right) of a series of two myocardial bridges are illustrated. The dashed lines represent flow variables 
in segments with deformation (Ωs2 (red) and Ωs5 (blue)), while solid lines show the flow variables in segments without deforma-
tion (Ωs1 (black) proximal, Ωs3 (green) in the centre and Ωs6 (yellow) distal to the stenoses). Separation and reattachment dur-
ing the cardiac cycle was observed for severe deformation between 0.1 s and 0.4 s (right).
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utamine challenge shows a pressure notch, which may
appear if the deformation is dominant during systole (see
earlier discussion on that in [46]). At baseline the mean
pressure at the inlet was pp = 11.92 kPa and the mean distal
pressure was pd = 10.67 kPa, so that the pressure drop was
Δp = 1.25 kPa, which compares well with the value of
measurements mentioned above, where Δp = 1.19 kPa.
Under dobutamine challenge the corresponding values
are pp = 9.64 kPa, pd = 8.1 kPa and Δp = 1.54 kPa, which
however are close to the measured values, where Δp = 1.85
kPa.

We have further compared the translesional pressure drop
across a series of two myocardial bridges resulting from
Hagen-Poiseuille and boundary layer computations in
three animations, one as reference, without a stenosis
(Additional file 1), one assuming a Hagen-Poiseuille flow
with a series stenosis, each of length 8 mm and deforma-
tion ζ0 = 0.25 (Additional file 2) and the same series sten-
osis with the boundary layer method described here
(Additional file 3). It is clearly seen that the systolic pres-
sure in Additional file 1 is uniformly distributed and fades
towards the terminals of the network. In Additional file 2
we notice that during systole the pressure drops in both of
the stenoses, so that the LAD branch is less distributed.
However the boundary layer computations in Additional
file 3 show that the pressure drop by the assumption of
fully developed flow was underestimated in the case of
developing flow conditions.

Fractional flow reserve
The flow limitation caused by epicardial stenoses is gener-
ally expressed by the flow based FFR, which is the ratio of
hyperaemic myocardial blood flow in the presence of a
stenosis to hyperaemic flow in the absence of a stenosis,
FFRq = qs/qn, i.e. the flow based FFR is the fraction of hyper-
aemic flow that is preserved despite the presence of a ste-
nosis in the epicardial coronary artery. However this
definition is purely theoretic, because the flow without
the stenosis is not known, so that for clinical purposes the
ratio of hyperaemic flows with or without a single stenosis
is derived from the mean distal coronary pressure pd to
mean proximal pressure pp recorded simultaneously
under conditions of maximum hyperaemia.

Neglecting correction terms the mean pressure-derived
fractional flow reserve is FFRp = pd/pp. In the case of two
consecutive stenoses however, the fluid dynamic interac-
tion between the stenoses alters their relative severity and
complicates determination of the FFR for each stenosis
separately from a simple pressure ratio as in a single sten-
osis. Consequently the FFR determined for single stenosis
is unreliable in predicting to what extent a proximal lesion
will influence myocardial flow after complete relief of the
distal stenosis, and vice versa.

Taking the pressure values resulting from boundary layer
computations of the previous section, we obtain values
for the mean pressure derived FFR of 0.90 and 0.84 for
baseline conditions and under dobutamine challenge
respectively. These values agree with the measurements in
[38], where the values were 0.90 and 0.84 respectively.

Specific case of clinical relevanceFigure 12
Specific case of clinical relevance. Intracoronary pressure at baseline and during dobutamine challenge. The proximal pres-
sure, pproximal was taken from the inlet of the coronary tree (LMCA), the distal pressure, pdistal in a segment 3 cm distal to the 
myocardial bridge. At baseline the mean FFR was 0.90, while during dobutamine challenge the mean FFR was 0.84. The corre-
sponding pressure drops were Δp = 1.25 kPa and Δp = 1.54 kPa respectively.
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In Figure 13 we have shown the coronary pressure-derived
fractional flow reserve for the baseline case as a measure
of coronary stenosis severity (left) and in dependence on
deformation length (right). In both plots we have used
baseline inflow conditions with either fixed (solid lines)
and dynamic walls (dashed lines). Initially we found that
in developing flow conditions the FFR is overestimated by
the assumption of Hagen-Poiseuille flow (HP), and, as
expected, that the mean FFR in dynamic lesions is much
larger than in fixed stenotic environment, because the dis-
tal pressure recovers during relaxation phase. The graph at
the right shows that the mean FFR depends essentially lin-
early on deformation length for different severities, ζ0 =
0.7, 0.5, 0.3, suggesting that the losses are mainly viscous
and that the non-linear term plays a minor role for
observed deformations.

The values indicate that the FFR depends on the degree
and length of the stenosis. As mentioned earlier the losses
in fixed environments are more pronounced. Further, we
point out that series stenoses separated by more than the
length of the stenosis drop below the cut-off value of 0.75
markedly earlier than single stenosis with the same degree
and extent.

Pressure-flow relation
The pressure-flow relations for different stenotic environ-
ments in the coronary arteries are shown in Figure 14. We

have applied a stationary flow rate qLMCA at the entrance of
the LMCA in the range between 4.5 cm3/s and 9 cm3/s. The
resultant mean flow in the myocardial bridge, qMB was
between 1.57 cm3/s and 3.13 cm3/s. The pressure-flow rela-
tions in this range are essentially linear and extrapolate to
the origin at qLMCA = 0 and Δp = 0. This is consistent with
the assumption of long waves in short tubes, where the
pressure-drop is linearily dependent on the flow. The sin-
gle deformation with length 12 mm is denoted by (S 12)
and with length 24 mm by (S 24). We further show a dou-
ble deformation with length 12 mm (D 12). In general it
is seen that the pressure drop increases with severity and
length of the deformation, however the difference
between S 24 and D 12, which have essentially the same
deformation length, result from inlet and outlet effects of
the double environment.

Influence of wall velocity
In contrast to fixed stenoses, the velocity of the wall νw ≠ 0
in a dynamic environment, i.e. positive during compres-
sion and negative while the vessel is relaxing. At the bot-
tom of Figure 15 we have shown the thickness of the
boundary layer during inward (left) and outward motion
(right) of the wall compared to fixed deformations. The
situation depicts two different states where the influence
is close to its maximum. Compared to fixed deformations
(νw = 0) the boundary layer thickness in systole is
increased in the entrance region of the deformation, while

Mean fractional flow reserve in dependence on degree of deformation (left) and segment length (right)Figure 13
Mean fractional flow reserve in dependence on degree of deformation (left) and segment length (right). The 
mean pressure derived fractional flow reserve of the baseline environment shown in Figure 8 is plotted as a function of defor-
mation (left) defined in equation (3) and versus the segment length (right). The computations via the boundary layer theory 
(BLT) are compared to Hagen-Poiseuille (HP) flow profile (γ = 2). It is seen that the mean pressure derived fractional flow 
reserve is overestimated under the assumption of fully developed flow. Generally the mean FFR is larger in the dynamic case 
(dashed lines), because the pressure recovers during the relaxation phase. The segment length of three dynamic lesions at a 
deformation of ζ0 = 0.7, 0.5 and 0.3 was varied in a physiological range between 5 mm and 40 mm.
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it is decreased in the outlet region, and the situation is vice
versa in diastole. In fact this is due to an additional pres-
sure gradient, which causes fluid acceleration or decelera-
tion depending on axial position in the constriction and
whether the wall moves inwards or outwards. For example
during inwards motion of the wall the fluid is decelerated
at the entrance and accelerated at the outlet of the defor-
mation, while the situation is opposite if the vessel wall
moves outwards. Due to the symmetry of the indentation
there is no additional acceleration or deceleration in the
centre of the deformation. The influence of the wall veloc-
ity onto the boundary layer properties is more pro-

nounced if VW/V is reasonably large, i.e. if the
deformation that the axial flow experiences during pas-
sage of the constriction is comparable to the radius of the
tube. The influence of wall velocity on viscous friction and
wall shear stress is small and thus the difference in pres-
sure loss over the deformation with νw ≠ 0 compared νw =
0 is small (δp ≈ 1% of Δp).

Discussion
The results have demonstrated that the formation and
development of flow separation and reattachment in the
post-stenotic region of a time dependent constriction are

Pressure drop vs. volume flowFigure 14
Pressure drop vs. volume flow. The pressure-drop flow characteristics of stenoses with different degree and extent where 
obtained under stationary flow conditions. We compare two single dynamic stenosis of length 12 mm (S12) and 24 mm (S24) 
with a double stenosis with length of 12 mm each (D12). Further D12 is compared for three severities ζ0 = 0.25, 0.5 and 0.75. 
The relations are essentially linear, extrapolation to lower inflow values leads to the origin.
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very complicated, especially secondary fluid motion in
the systolic deceleration phase can cause situations of
reverse flow. The post-stenotic flow is influenced by a
number of factors, including the degree of stenosis, the
flow and deformation waveform, and the geometry of the
constriction. The above calculations suggest is that percent
diameter stenosis alone does not adequately characterise
the flow through myocardial bridges, and that geometric
and physiological features such as the curvature, extent,
and asymmetry of the stenosis, and the shape of the pul-

satile waveform have substantial effects on the haemody-
namic conditions.

However, we found that the total perfusion to the myocar-
dium is strongly dependent on the severity and length of
the muscle bridge. The mean FFR in fixed environment is
generally smaller than in the dynamic case because the
losses are not persistent during periods of small deforma-
tion, so that the pressure distal the bridge recovers during
this time span. Consequently the pressure drop and flow

Influence of the wall velocity on boundary layer thickness, friction coefficient and wall shear stressFigure 15
Influence of the wall velocity on boundary layer thickness, friction coefficient and wall shear stress. The bottom 
figure shows the normalised thickness of the boundary layer during in- (left) and outward motion (right) of the wall in the 
dynamic configuration presented in the third Additional file. Compared to zero wall velocity the boundary layer thickness in 
systole (νw = 5.1 mm/s) is increased in the entrance region of the deformation while it is decreased in the outlet region, in dias-
tole (νw = -6.8 mm/s) the situation is vice versa. The influence on viscous friction and wall shear stress is small and thus the dif-
ference in pressure loss over the deformation compared to νw = 0 is small (δp ≈ 1% of Δp).
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reduction across fixed stenoses are more pronounced than
in dynamic environments.

As previously noted [8] found that the pressure proximal
to the myocardial bridge was higher than the aortic pres-
sure, and concluded that the disturbance of blood flow
and high wall stress proximal to the myocardial bridge
was the main contributor to the development of athero-
sclerosis in the proximal segment. The observed wall shear
stress distributions indicate that the proximal segment is
more susceptible to the development of atherosclerosis,
firstly because the pressure is increased there and secondly
for reasons that the wall shear stress and their oscillations
are maximum in the entrance region of the deformation.
In contrast bridged segments are relatively spared because
the wall shear stress fades towards the end of the deforma-
tion. In a series of myocardial bridges it is likely that the
intima between the deformations and distal to the myo-
cardial bridge are protected from atherosclerosis because
the wall shear stress is very low and negative in separated
flow regions.

Conclusion
We have presented a method for simulation of unsteady
blood flow in a time dependent vessel geometry using an
integral boundary layer method. The strong interaction of
the viscous boundary layer and the inviscid core flow pro-
posed by Veldman [58] models the pressure and the
extent of the separation region by assuming Falkner-Skan
flow profiles. The equations were modified to the flow sit-
uation under consideration. Numerical simulations were
performed for idealised stenosis geometries with a time
dependent, smooth wall contour, but with a physiologi-
cally realistic coronary artery flow waveform. The pre-
dicted values of fractional flow reserve in dynamic lesions
agree well with the clinical findings in [38], however, fur-
ther quantification in more defined geometries is
required.

Regarding the wall shear stresses and the development of
atherosclerosis the findings are consistent with [1], where
the intima beneath the bridge is protected from athero-
sclerosis, and the proximal segment is more susceptible to
the development of atherosclerotic lesions.

Besides the advantage of computational time taken for the
simulation, the choice of parameters, such as location,
length and severity of the lesion are easily determined by
coronary angiography. Due to the assumptions made in
the boundary layer model, the approximation fails for the
prediction of reverse flow and flow where the boundary
layers merge, i.e. fully developed flow. Under these
aspects severe deformations cannot be calculated, because
the boundary layers merge in the deformation. Further,
the length of the computational domain is restricted by

the entrance length, which depends on Reynolds number.
And finally the pulsatile frequency and the frequency of
wall motion has to be sufficiently low (a few Hz), so that
the approximation of quasi-stationary evolution of the
boundary layers is satisfied.

We believe that the parameters and equations in this arti-
cle are detailed enough to describe the physiological con-
sequences also in a clinical setting, however, this remains
to be confirmed by in vivo studies. The functional conse-
quence, especially for severe systolic compression, is con-
sistent with clinical findings published in the literature [1-
3,6,8,38,51], where myocardial bridging is found to be
responsible for myocardial ischaemia. The comparison of
our findings with the published data from patient studies
in [38,51] supports a potential clinical relevance of our
simulation.
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Additional material

Additional file 1
Animation of the left descending coronary artery assuming Hagen-
Poiseuille flow. The animation shows the pressure in the main segments 
of the left coronary arterial tree during one pulsatile cycle. The unit of the 
colour bar is kPa, the playback speed is slower by a factor of three than 
realtime.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-5-42-S1.mov]

Additional file 2
Animation of a double myocardial bridge in the left descending coro-
nary artery assuming Hagen-Poiseuille flow. As in the first animation 
the pressure in the main segments of the left coronary arterial tree are 
shown over one heart cycle. A series of two myocardial bridges with length 
8 mm and deformation ζ0 = 0.25 are located in the mid LAD. The pres-
sure drop is underestimated by the assumption of Hagen-Poiseuille flow, 
consequently perfusion to the myocardium remains nearly unaffected. The 
unit of the colour bar is kPa, the playback speed is slower by a factor of 
three than realtime.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-5-42-S2.mov]
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Additional file 3
Animation of a double myocardial bridge in the left descending coro-
nary artery using the proposed integral boundary layer method. The 
animation shows the pressure in the main segments of the left coronary 
arterial tree over the pulsatile cycle. A series of two myocardial bridges 
with length 8 mm and deformation ζ0 = 0.25 are located in the mid LAD. 
It is seen that the pressure drop at the second deformation is dominant and 
that distal segments are less perfused. In contrast the pressure proximal to 
the deformation and in the left circumflex is increased [1,8]. The unit of 
the colour bar is kPa, the playback speed is slower by a factor of three than 
realtime.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
925X-5-42-S3.mov]
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