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EFFICIENT COMPUTATION, SENSITIVITY, AND ERROR
ANALYSIS OF COMMITTOR PROBABILITIES FOR COMPLEX

DYNAMICAL PROCESSES∗

JAN-HENDRIK PRINZ† , MARTIN HELD‡ , JEREMY C. SMITH§ , AND FRANK NOÉ¶

Abstract. In many fields of physics, chemistry, and biology, the characterization of rates and
pathways between certain states or species is of fundamental interest. The central mathematical ob-
ject in such situations is the committor probability—a generalized reaction coordinate that measures
the progress of the process as the probability of proceeding to the target state rather than relapsing
to the source state. Here, we conduct a numerical analysis of the committor. First, it is shown that
committors can be expressed by the stationary eigenfunctions of a modified dynamical operator,
thus relating the committors to the dominant eigenfunctions of the original operator. Based on this
reformulation, committors can be efficiently computed for systems with large state spaces. Moreover,
a sensitivity analysis of the committor is conducted, which allows its statistical uncertainty from es-
timation to be quantified within a Bayesian framework. The methods are illustrated on two examples
of diffusive dynamics: a two-dimensional model potential with three minima, and a three-dimensional
model representing protein-ligand binding.
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1. Introduction. The essential features of dynamical systems can often be un-
derstood in terms of the transitions between substates of special interest. This is
particularly true where the dynamics are metastable, thus defining a natural parti-
tion into long-living substates. Examples of this include protein folding or misfold-
ing [21,24], molecular association [29], chemical reactions [8], phase transitions in spin
systems [13, 23, 25] or liquids [30], climate systems [11], and trend changes in finan-
cial systems [10]. In many cases, characterizing the dynamics between two substates
A,B of configurational space Ω provides a satisfactory picture of the process (e.g.,
in protein folding A being unfolded and B native [21]), whereas in other cases the
simultaneous consideration of multiple substates is necessary.

It is now widely recognized that the committor probability, also called splitting
probability or probability of folding in some contexts, is the central mathematical
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object needed for intersubstate processes to be characterized [2, 3, 5, 6,7,12, 14, 15].
The committor q(x) is a state function that provides the probability at any state
x ∈ Ω of next moving to B rather than to A under the action of the system dynamics.
By definition, q(x) = 0 for x ∈ A and q(x) = 1 for x ∈ B.1 The committor thus
defines a dynamical reaction coordinate, which has the advantage over ad hoc reaction
coordinates that it does not bring the danger of concealing relevant dynamics of the
system. In the present work, we investigate how the committor probability can be
efficiently computed for large-scale systems and study its sensitivity as well as its
uncertainty in cases where the full dynamics have been inferred from a finite set of
observations.

We concentrate here on dynamical systems which can be modeled as Markov
processes between a finite (but possibly large) number m of discrete states. This
includes systems which are discrete and Markovian by definition, such as spin glasses
and on-lattice Go models [32] or resulting from a space discretization of a continuous
generator or propagator [26]. In the latter case, the spatial discretization will cause the
discretized system to be no longer exactly Markovian. The unintentionally introduced
memory can in principle be described by the Mori–Zwanzig formalism when projecting
the full-dimensional dynamics onto a basis set defining the discrete states [18,36,37],
but, from a numerical point of view the error made by using a Markov model in the
discrete-state space can in principle be rendered as small as desired by using a fine
enough discretization, a small enough time resolution [26], or, alternatively, embedding
the dynamics in an extended discrete state space as proposed in [31].

The system dynamics are then described by a time-discrete transition matrix
T (τ) ∈ R

m×m, giving rise to the Chapman–Kolmogorov equation

(1) p(kτ) = p(0)Tk(τ),

which propagates state probabilities p ∈ R
m in time, or by the rate matrix K ∈ R

m×m

and the corresponding master equation

dp(t)

dt
= p(t)K

with the formal solution

(2) p(t) = p(0) exp(tK),

yielding the formal relationship

T(τ) = exp (τK) .

Numerous studies treat the estimation of T or K from observation data in cases where
they are not defined by the model itself or can be derived from the discretization of a
continuous operator [4,12,16,35], but this estimation problem is not further considered
here.

Given such a dynamical model, let us examine a number of aspects of the system
dynamics that can be accessed via the committor probability. First all sets of constant
committor probability in the state space Ω,

(3) I(q∗) = {x ∈ Ω | q(x) = q∗} ∀q∗ ∈ [0, 1] ,

1An alternative definition in time-discrete dynamics is to check also for x ∈ A ∪ B, where x is
in the next timestep. In this case q(x ∈ A) �= 0 and q(x ∈ B) �= 1 can occur. For time-continuous
systems, both definitions are equal.
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are hypersurfaces that partition the state space into the two disjoint subsets IA(q∗) =
{x ∈ Ω | q(x) < q∗} with A ⊂ IA(q∗) ∀q∗ > 0 and IB(q∗) = {x ∈ Ω | q(x) > q∗} with
B ⊂ IB(q∗) ∀q∗ < 1. The committor is thus a measure for the progress of a process
or reaction; i.e., it is the ideal reaction coordinate for the process A → B [2, 7, 14].
Of special interest in this context is the isocommittor surface I(0.5), which can be
interpreted as the transition state ensemble in protein folding theory [24].

Once the committor has been computed, the change of any state variable a(x)
along theA → B process may be monitored by projecting onto this reaction coordinate
using

(4) a(q∗) = E(a(x) | x ∈ I(q∗)) =

∫
x∈I(q∗) dx π(x) a(x)∫

x∈I(q∗) dx π(x)

with π(x) proportional to the statistical weight of state x and also the stationary
distribution of state x, if this exists. In the latter case, one can define a dimensionless
potential of mean force along the A → B process given by

(5) F (q∗) = − log

∫
x∈I(q∗) dx π(x)∫
x∈Ω

dx π(x)
.

The transport properties from A to B can be be computed via transition path
theory (TPT) [17, 33]. In particular, the reactive flux fij between two states i and j
is given by

(6) fij = πiq
−
i kijq

+
j

for rate matrices [17], or

(7) fij(τ) = πiq
−
i Tij(τ)q

+
j

if the transition probability matrix is used [21]. Here, q− is the backward committor,
which is the probability that of the two states set A has been visited last and not
B which is equal to 1 − q+ if the dynamics are reversible. The reactive flux fij is
proportional to the probability that a reactive trajectory, that is, a trajectory directly
connecting A and B, passes through the transition i → j. The net transport through
i → j is given by

(8) f+
ij = max{fij − fji, 0},

which defines a network flow out of A and into B that can be decomposed into a set
of A → B reaction pathways along with their probabilities [17, 21, 33].

Finally, one can also express different rates using the committor probability. The
global A � B flux F from TPT, which is defined as the average number of trajectories
traveling between A and B per time unit, is given by [17]

(9) F =
∑

i∈A,j /∈A
fij =

∑
i∈A,j /∈A

f+
ij .

F is the inverse expected time needed for an A � B cycle, composed of the inverse
forward rate constant kAB and the inverse backward rate constant kBA:

(10) F−1 = k−1
AB + k−1

BA.
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In order to calculate these rate constants we need the milestoning probability πmile
A ,

which is the total probability that the process has been in A previously while πmile
B =

1− πmile
A is the probability that it has been in B previously:

(11) πmile
A :=

∑
j∈Ω

πjq
−
j .

We have the following detailed balance condition:

(12) πmile
A kAB = (1− πmile

AB )kBA,

and we derive the expression for the A → B rate constant as

(13) kAB =
(
πmile
A

)−1
F.

For alternative rate definitions and their relations, see, e.g., [34].
Given the fundamental relevance of the committor probability in the characteri-

zation of dynamical processes, it is important to be able to compute q(x) efficiently,
and also to understand its sensitivity to perturbations, especially in cases where the
system dynamics can be computed only approximately, e.g., by some sampling scheme
such as molecular dynamics simulations or Monte–Carlo dynamics. The remainder of
the paper will concentrate on these numerical questions together with the illustra-
tion of the methods process on a simple two-dimensional (2D) energy surface with
metastable states and on a three-dimensional (3D) model reminiscent of protein-ligand
association.

2. Committor equations. The committor is defined as the probability of
reaching state B before state A is visited and thus corresponds to the result of a
hypothetical experiment which starts an infinite number of Monte–Carlo simulations
in state s and measures qs as the fraction of simulations, that reach B first.

2.1. Transition matrix. We first derive the committor equations via the hitting
times hA(x) of a subset A ⊂ Ω, which corresponds to the minimal number of steps a
stochastic process needs to reach the set A. Let hA(X) be the hitting time to reach
set A given by

hA(X) = inf
{
n : Xn ∈ A, n ∈ N

+
}

with Xi : i → Ω a time-discrete stochastic process.
Now consider the committor probability, q+i pertaining to two sets A and B, which

is the probability that, starting in state i, the system goes to B next rather than to
A using the hitting times h:

q+i ≡ Pi(h
B < hA),

where Pi indicates the probability for all trajectories X that originate in state i.
In order to compute q+i , we use the recursive relation in the committor between

connected points in configurational space Ω, which states that the committor prob-
ability of a state i /∈ A ∪ B is given by the sum of all products of the probabilities
of reaching a neighboring state j given from the transition probability Tij and the
committor probability at state j, while for states A and B we set the given solution
to be in correspondence with the boundary conditions:

(14) q+i =

⎧⎪⎨
⎪⎩
0 if i ∈ A,

1 if i ∈ B,∑
j Tijq

+
j if i /∈ A,B.
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The backward committor probability q
−
i is defined, respectively, as the probability

that being in state i, the system was in B last rather than in A. In order to obtain
the backward committor, we use the backward propagator

T−
ij :=

πj

πi
Tji,

which contains the probabilities that if the system is in state i, then it came from
state j. Proceeding in analogy to the forward committor, we get

q
−
i =

⎧⎪⎨
⎪⎩
1 if i ∈ A,

0 if i ∈ B,∑
j∈I T

−
ij q

−
j if i /∈ A,B

for the backward committor. For reversible dynamics the forward and backward prop-
agators are equal, Tij =

πj

πi
Tji = T−

ij , from which it follows immediately that

q
−
i = 1− q

+

i .

2.2. Rate matrix. Given the rate matrix K ∈ R
m×m, we can use a similar

argument as for the time-discrete case and derive expressions for the committor:

q+i = 0 if i ∈ A,

q+i = 1 if i ∈ B,∑
j∈I

Kijq
+
j = 0 if i /∈ A ∪B.

The corresponding equations hold also for the backward committor. A proof can be
found in [17, 22].

2.3. Transforming between rate and transition matrices. It turns out
that there is a simple way to transform rate matrices into transition matrices, and
vice versa, that leaves the committor probabilities unchanged. This transformation
is useful when a method is available to compute the committor from the transition
matrices, but not for rate matrices, or vice versa.

Theorem 1. Let T(K) ∈ R
m×m be a stochastic matrix and K ∈ R

m×m be a rate
matrix related by the transformation

(15) T(K) =
c

cmax
K+ Id, 0 < c < 1

with cmax = −mini∈{1,...,m} Kii representing the largest entry in the rate matrix. Then
T(K) and K have the same committor probabilities for any choice of A,B ⊂ Ω.

See the appendix for the proof. The theorem allows for the methods explained
later to be used with equal computational effort for rate matrices. In particular, it
can transport a potential sparse structure of the rate matrix to a transition matrix
and thus allows for sparse eigensystem algorithms in these cases as well.

2.4. Numerical solution. The committor equations (14) can be solved with
any linear systems solver. When the system is very large and sparse, a sparse linear
systems solver may still be able to handle them efficiently. An alternative approach to
computing the committor probability from K has been proposed in [13]. However, this
approach requires theK-matrix to be inverted, which effectively limits its applicability
to systems of ≤ 104 states.
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3. Eigenvector formulation. An alternative view is obtained when formulat-
ing the committor problem in terms of the dominant eigenvectors of either K or
T(τ). This is useful from a numerical point of view, because efficient solvers, such
as the Power method or Krylov subspace methods, exist for dominant eigenvectors.
Moreover, it is useful from a physical standpoint as it allows the committor to be
understood in terms of the slowest relaxation process of the system.

An approach to approximate q(x) in terms of the second eigenvector of K or T(τ)
has been proposed in [1]. This approach is valid only if the second eigenvector is similar
to the A → B committor and the second and third eigenvalues are well separated.
In molecular processes, this is often referred to as “two-state” process, where there
exists one slow process that is clearly separated from all other processes in terms of
timescales. In the following, we will derive equations that allow the committors to be
computed exactly in terms of their dominant eigenvectors for any Markovian system.

3.1. A → B committor. We construct a transition matrix T̂ with absorbing
states A and B from T by

(16) T̂ij =

⎧⎪⎨
⎪⎩
Tij , i /∈ A ∪ B, j ∈ X,

1, i ∈ A ∪ B, j = i,

0, i ∈ A ∪ B, j 	= i,

assuming that the underlying dynamics is ergodic or equivalently T irreducible. We
then define a transition matrix T̂∞ that transports any initial distribution infinitely
into the future,

(17) T̂∞ = lim
n→∞ T̂ n,

and consequently directly into either state A or B. Then the committor qs of state s
is given by the total sum of probabilities after propagating a distribution located only
in s given by a canonical unit vector (es)i = δis into the future using T̂:

(18) qs =
∑
k∈B

((es)T T̂∞)k =
∑
k∈B

T̂∞
sk .

In the following we will show that T∞ and thus q can be computed quickly and
robustly.

Without loss of generality, we treat here the case where the sets A = {a} and
B = {b} consist of only one state each. In cases where the sets are larger, they can
simply be aggregated into a single state in the definition of T̂. Finally the matrix is
diagonalized, obtaining

(19) T̂∞ = R · lim
n→∞ diag(λn

1 , λ
n
2 , . . . , λ

n
N ) ·R−1

with R := [r1, ..., rN ] being the matrix of right eigenvectors of T̂, and λi are the
corresponding eigenvalues, sorted from the largest to the smallest modulus of the
eigenvalue. It follows from the Perron–Frobenius theorem that there exist exactly two
left2 eigenvectors with eigenvalue 1, ea and eb. The modulus of all other eigenvalues
is strictly smaller than 1. As a result,

(20) lim
n→∞ |λn

i | = 0 ∀λi < 1,

2The number of left and right eigenvectors to the same eigenvalue are equal.
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and thus

T̂∞ = R · diag (1, 1, 0, . . . , 0) ·R−1.(21)

We now define L := R−1 to be the inverse of the eigenvector matrix. L is a matrix of
left eigenvectors, since all of its rows fulfill the requirement for a left eigenvector with
the same diagonalized eigenvalue matrix

(22) L · T̂∞ = LΛ.

This means that once we have the basis of left eigenvectors that equal R−1 we can
avoid the expensive calculation of the inverse. Although this is no advantage in general,
in the present case the left eigenvectors of T̂∞ take a particularly simple form. We
choose the following representation by row vectors for L := [l1, ..., lN ]T and get

T̂∞ = [r1, ..., rN ] · diag (1, 1, 0, . . . , 0) · [l1, ..., lN ]T(23)

= [r1, r2] · [l1, l2]T .(24)

As mentioned before, the left eigenvectors to the eigenvalue of 1 are a linear combi-
nation of ea and eb:

(25) [l1, l2]
T =

(
s11 s12
s21 s22

)
[ea, eb]T .

Exploiting the fact that T̂∞ is still a stochastic matrix and thus has a constant right
Perron eigenvector, we can choose without loss of generality 1 := r1 = (1, . . . , 1).
Thus, only one second linear independent right eigenvector r2 needs to be computed:

(26) T̂∞ = [1, r2] · S · [ea, eb]T .
Our goal was to compute the committor using (18) which leads us to the following
relation for qA and qB, respectively:

[qA, qB] = T̂∞ · [ea, eb](27)

= [1, r2] · S.(28)

Thus we have shown that the committor is a linear combination of the right eigen-
vectors of T̂∞. To compute the mixing matrix S we make use of the fact that the
solution of the committor is known already, by definition, in the entries a and b for
the two states:

(29)

(
qAk
qBk

)
=

(
δak
δbk

)
=
(
1k, (r2)k

) · S, k ∈ {a, b}.

Writing this as a matrix equation leads to

(30) S =

(
1 (r2)a
1 (r2)b

)−1

,

yielding the solutions

(31) [qA, qB] = [1, r2] ·
(

(1)a (r2)a
(1)b (r2)b

)−1

,
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(32) qi = (eiT̂
∞)f =

(r2)i − (r2)a
(r2)b − (r2)a

.

Finally we have avoided the inversion of the matrix R required in (21) and instead
reduced the effort to computing one largest nontrivial right eigenvector. This is con-
sistent with the computational effort of solving the system of linear equation in (14).

Based on (32), the committor probability can be easily computed for large sparse
transition matrices using, e.g., the Power method [9]. When, instead, the system
dynamics are specified in terms of the rate matrix, this computation can be performed
by first applying the transformation (15). In the case of the Power method for solving
for r2, the parameter c has to be larger than zero and strictly smaller than 1; otherwise
it cannnot be proven that all eigenvalues, except one (the Perron eigenvalue λP = 1),
are inside the unit circle of the complex plane (| λ |< 1), assuring convergence to the
correct eigenvector. Since in large systems the eigenvalues are expensive to compute,
a good guess is to choose c close to 1, which, in most cases, will maximize the relative
gap between the Perron eigenvalues and the next smaller eigenvalues and thus the rate
of convergence. The advantages of the Power method are its simplicity, low memory
requirement, and applicability to sparse matrices, which allow it to treat very large
systems (N ∼ 106) as shown later in the 3D model. However, in the case of slow
processes indicated by a very small spectral gap, the Power method might converge
too slowly or not at all due to numerical issues. In these cases more advanced methods
like Krylov subspace methods (Arnoldi, Lanczos) or graph theoretical approaches [35]
can be a solution.

3.2. Extension to multiple states. In many applications, it is desirable to
compute more than one committor probability. Consider a system for which a number
M ≥ 2 of core sets have been defined, and for which at each state we wish to evaluate
the probability that the system dynamics will hit the core i rather than any other core.
This defines a set of M committors, [qy1 , . . . , qyM ], where qyi indicates the vector of
committor probabilities of going to core i next rather than any other core, and each
row sums up to 1 (qy1 + . . .+ qyM = 1), thus forming a membership probability.

To solve this general case, all states [Y1, . . . , YM ] are made absorbing in the tran-
sition matrix, and a basis for all eigenvectors of the eigenvalue of 1 is computed. The
parameters for the eigenvectors can then be computed using a simple matrix inversion
in analogy to the two-state case by

(33) [qy1 , . . . , qyM ] = [1, . . . , rM ] ·

⎛
⎜⎝

1y1 · · · (rM )y1

...
. . .

...
1yM · · · (rM )yM

⎞
⎟⎠

−1

,

where y1, . . . , yM are the indices of the states, r2, . . . , rM the eigenvectors of the
eigenvalue of 1, and 1 is again the constant right Perron eigenvector.

4. Sensitivity and uncertainty. We now characterize the sensitivity of the
committor q to changes in the transition matrix given by ∂qi

∂Tab
, and we also examine

how the sensitivity leads to a first-order estimate of the uncertainty of the committor
δq in cases where the transition matrix T is not exactly known, but is, for example,
estimated from simulation data such as from molecular dynamics [27, 28].

4.1. Sensitivity analysis. We are interested in ∂q
∂Tab

, i.e., the sensitivity
of the committor with respect to perturbations in the transition matrix. We define
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Â := T̂ − Id so that the null space of Â is the space spanned by the eigenvectors to
the eigenvalue of λ1 = λ2 = 1; i.e.,

(34) Âq = 0.

First, we start with the derivative of (34) with respect to Tab:

∂Âq

∂Tab
= Â · ∂q

∂Tab
+

∂Â

∂Tab
· q = 0.(35)

We make the convention that all derivatives are taken at Tab if not specified otherwise.
Since Â does not have full rank and its inverse is not defined, we use

(36)
∂Âij

∂Tab
=

∂T̂ij

∂Tab
=

{
δiaδjb, i /∈ A,B,
0, i ∈ A,B,

and then we rewrite this (35) as

∑
k

Âik · ∂qk
∂Tab

= −qb

{
δia, i /∈ A,B,
0, i ∈ A,B.

Since ∂qk
∂Tab

= 0 for k ∈ A,B, we can exclude these from the calculation and define a

reduced inverse Ã−1 given by

Ã−1 =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0

...

⎡
⎢⎣

T22 − 1 · · · T2,M−1

...
. . .

...
TM−1,2 · · · TM−1,M−1 − 1

⎤
⎥⎦
−1

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ ,

which is inverted only on the subset of states neither in A nor B, and the remaining
transitions are set to zero, thus assuring the correct boundary conditions for ∂qi

∂Tab
.

This yields the sensitivity matrix Sa
ib defined by

Sa
ib :=

∂qi
∂Tab

= −
∑
l

Ã−1
il δlaqb = −Ã−1

ia qb.(37)

4.2. Uncertainty and sampling error of the committor. Let us now con-
sider the case where the transition matrix T is not known exactly but is instead
sampled by a finite number of observations, as is the case, for example, in molecular
dynamics simulations [19,20,27,28]. We will be interested in the question of how the
uncertainty involved in this finite sampling translates into uncertainty of the commit-
tor. Let Z ∈ R

m×m be a count matrix with Zij being the number of independently
observed transitions from state i to state j. The likelihood of transition matrices
pertaining to this observation is given by

P(C | T) =
∏
i,j

T
Zij

ij .

When restricting the prior distribution to the conjugate Dirichlet prior, the posterior
distribution can be expressed as

P(T | C) ∝ P(T)P(C | T) =
∏
i,j

T
Bij+Zij

ij =
∏
i,j

T
Cij

ij ,
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where Bij are prior counts. Comparing the Dirichlet distribution∏
i

∏
j

T
αij−1
ij =

∏
i

Dir(αi)

with αi := {αi1, . . . , αiM} results in the equivalence

(38) αij = Cij + 1 = Bij + Zij + 1.

The maximum likelihood transition matrix T̂ij is given by

T̂ij =
Zij∑
k Zik

,

the mean of the posterior distributions T̄ij is given by

T̄ij =
αij∑
k αik

=
Bij + Zij + 1∑
k (Bik + Zik + 1)

,

and both are equivalent for the null prior Bij = −1. Equation (38) shows that the
prior can be regarded as counts additional to the actual observed counts Zij . Thus, to
obtain an expectation based mainly on observations, the number of real observations
Zij must be larger than the number of prior counts:∑

k

Zik 
∑
k

(Bik + 1) = m+
∑
k

Bik.

This forces us to be careful about the choice of the prior, which, in principle, com-
pensates for the lack of information in states with few or none observed transitions.

One choice is the null prior, which sets Bik = −1, resulting in zero prior counts,
and thus the mean and maximum of the posterior probability distribution are equal.
Another choice is a uniform prior probability distribution P(T ) ∝ 1 ⇔ Bij = 0, which
will prove inadequate in the cases we consider, since the condition

∑
k Zik  m is

difficult to fulfill when m is large. A further choice might be to add only a very slight
prior to all counts, e.g., Bij = 1 − 1/m, and thus request

∑
k Zik  1. Yet another

approach is to use a prior that has counts restricted to a certain subset of elements.
We will address this issue again in the application section.

As we have shown before, the probability distribution can be written as a product
of independent Dirichlet distributions for each state. Hence, the covariance between
entries in the transition matrix is zero between elements from different rows, and we
can define a set of reduced covariance matrices Σi

ab for each state or equivalently row
in the transition matrix i separately by the expression

(39) Σi
ab := Cov (Tia, Tib) =

αia (αiδab − αib)

α2
i (αi + 1)

.

This leads finally to an expression for the standard deviation of each entry of the
transition matrix:

δTia =
√
Cov (Tia, Tia)=

√
αia(αi−αia)
α2

i (αi+1)

with

αi :=

m∑
j=1

αij .
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A simple and often used approach for propagating the uncertainty in T to the un-
certainty of the committor (or any other property derived from T) is to sample the
posterior distribution of transition matrices and compute the committor for each sam-
ple of this distribution [19, 28]. However, this procedure involves sampling itself and
thus uncertainty in the estimation of the uncertainty, which may be undesirable in
situations where the uncertainty estimation is conducted repeatedly, e.g., within an
adaptive sampling scheme [27, 28].

An alternative is to propagate the covariance from the transition matrix elements
linearly to the covariance in the committor using the computed sensitivity Si

ab by

Cov (qa, qd) =

m∑
i,b,c=1

Si
abΣ

i
bc

(
ST

)i
cd

m∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m∑
b,c=1

qb
αib (αiδbc − αic)

α2
i (αi + 1)

qc,

and finally we can compute the variance in the elements of the committor by

δ2qa = Cov (qa, qa)(40)

=

m∑
i=1

1

α2
i (αi + 1)

(
Ã−1

)2

ai

(
αi

m∑
b=1

qbαibqb −
(

m∑
b=1

qbαib

)(
m∑
c=1

αicqc

))
.(41)

A complete derivation can be found in the appendix. Clearly, the variance can be
separated into contributions from each state i, and we define an uncertainty contri-
bution vector wi by

(42) wi =

√√√√ m∑
a=1

1

α2
i (αi + 1)

(
Ã−1

ai

)2
(
αi

m∑
b=1

qbαibqb −
(

m∑
b=1

qbαib

)(
m∑
c=1

αicqc

))
,

which can then be used in order to direct new simulations that are most promising in
reducing the error [27].

5. Applications.

5.1. Diffusion in a 2D three-well potential. To illustrate an application of
the above equations we use a simple model of a particle diffusing in a 2D potential
with three wells (Figure 1), partitioned into a grid of m = 30 · 30 = 900. The minima
and their associated regions of configurational space will be referred to as A, B, and
C. Transition probabilities are defined based on the potential energies Ui on each grid
point using a Metropolis acceptance criterion given by

(43) Tij =
P (i → j)∑
k P (i → k)

=
min (1, exp (−β (Uj − Ui)))∑
k min (1, exp (−β (Uk − Ui)))

with β = 1, which has the correct invariant distribution πi ∝ exp (−βUi). Only tran-
sitions between horizontal or vertical neighboring microstates are allowed, resulting
in a maximum of five nonzero entries per row in the 900x900 transition matrix. This
matrix is used as the reference for the dynamics of the system. The committor from
state A to B, as given in (32), is shown in Figure 2.
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Fig. 1. Energy landscape for diffusion in a 2D potential with three basins discretized into a grid
of 30x30 bins. The minima in each basin are indicated by the letters A, B, and C. Black indicates
low energies; white, high energies.

Fig. 2. 2D three-well model: committor from state A to C computed directly from the reference
transition probability matrix Tij .

To investigate the dependence of the committor and its uncertainty on the actual
number of observations and the chosen prior probability distribution, we computed
the expected number of observed transitions in an equilibrium simulation as

Z̄ij = L πi T̂ij ,

which is the product of the total number of simulation steps L , the invariant density
of a state πi, and the true transition probabilities T̂ij . Four different types of prior
distributions are considered here (see Table 1). The committors computed for different
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Table 1

Prior probability distributions used for the 2D example.

Prior Bij

Null Prior −1
1/m Prior 1/m − 1

Neighbor Prior

{
0 if (i, j) neighbors

−1 else

Uniform Prior 0

simulation lengths L =
{
101, 103, 105, 107

}
and all prior sets except the null prior are

presented in Figure 3. The null prior was omitted since in this case the committor
does not depend on the simulation length L and equals the exact committor (Figure
2). It is important to note that this equivalence is only true on average and not for
every possible simulation outcome. The influence of the full uniform prior is so strong
that the computed committor differs from the true committor vastly even for L = 107.
The other two priors behave similarly to each other while the neighbor prior has the
general advantage over the null prior that it always provides a transition matrix that
can numerically be evaluated.

Fig. 3. 2D three-well model: committor from state A to C computed for different prior
choices (rows: neighbor prior, 1/m prior, full uniform) and simulation lengths (columns: L ={
101, 103, 105, 107

}
). Isocommittor surfaces for q = {0.25, 0.5, 0.75} are given in black.
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Equation (40) gives the expression for the uncertainty in the computed average
committor from a given number of observations. For the same set of total observations
L and all priors in Table 1 the covariance was computed and is shown in Figure 4. The
main uncertainty is always greatest in the transition region, and it depends strongly
on the choice of the prior, especially when few observations have been made.

Fig. 4. 2D three-well model: statistical uncertainty (variance) in the entries of the commit-
tor probability Cov (qi, qi) in (40) from state A to B for different prior choices (rows: null prior,
neighbor prior, 1/m prior, full uniform) and simulation lengths (columns: L =

{
101, 103, 105, 107

}
).

Isocommittor surfaces from Figure 3 shown in black. Blue indicates no variance; red indicates high
variance. The related absolute error development is given in Figure 6. States A and B are fixed
by definition, thus at these points the variance is equal to zero. The highest variation is found in
the transition region, the size of which depends strongly on the prior information. With increasing
simulation length, the error in the low energy states reduces fastest.

Figure 5 shows the difference in the predicted committors compared to the true
reference committor given in Figure 2. The quality of the average predicted committor
depends mainly on the amount of prior information put into the predictions: Priors
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Fig. 5. 2D three-well model: norm of the difference of the computed committor for different
prior probability distributions (neighbor prior, 1/m prior, full uniform) versus simulation length L.
The uniform estimation is about six orders of magnitude slower in convergence since the amount of
prior information is also about six orders of magnitude larger compared to the other priors.

with little information (null prior, neighbor prior) have less bias, while priors with
much information (1/m prior, uniform prior) strongly bias the computed committor.
However, committors with much information are less sensitive to perturbations in the
transition matrix elements (see Figure 6), thus having smaller uncertainties. How-
ever, due to the bias, this uncertainty is misleading in the cases of few observations.
This behavior changes once the simulation length is long enough for the estimated
committors to be similar.

1 1000 106 109 1012 1015
0.001

0.01

0.1

1

Simulation Length

T
ot

al
U
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er

ta
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ty

Null Prior

1�m Prior

Neighbor Prior
Uniform Prior

Fig. 6. 2D three-well model: theoretical average uncertainty in the estimated committor for
different prior probability distributions (null prior, neighbor prior, 1/m prior, full uniform) versus
simulation length L. The initial erratic behavior of the 1/m prior and uniform prior is caused by a
wrong committor prediction due to the high impact of these priors when only few transitions have
been observed.

The effects of the bias of the prior are also visible in the contribution to the
uncertainty from each state i given by wi in (42) as shown in Figure 7. In general,
the main contributions to the uncertainty are located in states inside the transition
region. For small simulation lengths L the contribution is more widely distributed and
mainly in regions that have also a significant equilibrium probability. With increasing
simulation time, the uncertainty contributing states shift toward the outer perimeter
of the energy landscape, where the uncertainty remains mostly unchanged since these
parts of phase space are hardly visited at all. The net flux for the system as given
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Fig. 7. 2D three-well model: Uncertainty contribution vector wi in (42) for different prior
choices (rows: null prior, neighbor prior, 1/m prior, full uniform) and simulation lengths (columns:
L =

{
101, 103, 105, 107

}
). Isocommittor surfaces from Figure 3 shown in black. Blue indicates van-

ishing sensitivity, red maximal sensitivity for each plot separately, thus absolute comparison is not
possible between plots. This was chosen to better indicate the highest uncertainty contributions. The
absolute sensitivity is given in Figure 6. The figure shows that in the case of the uniform prior a
length of L = 107 is insufficient for an accurate description of the uncertainty.

by (8) is shown in Figure 8. The opacity of the arrows indicates the intensity of the
flux in the direction of the arrow. The main fraction of the flux traverses the barrier
between A and B, while a minor fraction travels over state C. Finally, the three-state
committor, given by (33), was computed for states A, B, and C (see Figure 9), thus
partitioning the configurational space into three subsets divided by the main barriers.
In this manner the multistate committor can be used to partition the configurational
space into subsets that are dynamically close to one state of a set of predefined states
which can be regarded as cluster centers.



ERROR ANALYSIS OF COMMITTOR PROBABILITIES 17

Fig. 8. 2D three-well model: net flux between states A and B computed from the reference
transition matrix T̂ij . The underlying colors represent the reference committor. Arrows indicate the
direction of the flux and the opacity the intensity. Most flux travels over the direct barrier from state
A to state B.

Fig. 9. Committor computed for three states from (33). The committor shows a clear separation
of the configurational space into three subsets divided by the potential barriers.

6. 3D model. The method is now further examined on a simple model system
that mimics diffusional protein-ligand association. For this, a 3D potential was defined
by a potential function U :

U(x) =
5∑

i=1

bi√
2πσ2

exp

(
− (x− x̄i)

2σ2
i

)
.

This sum of five 3D Gaussian functions mimics an electrical field in which the ligand
diffuses (for parameters see Table 2).

The potential was coarse-grained on a grid with a total of m = 100·100·100 = 106

states in the range of [−1, 1]
3
. The dynamics were modeled as a diffusional process

under the influence of the potential as in the previous 2D case (see (43)). Figure 10
shows equipotential surfaces for a set of 19 exponentially spaced values of the potential
U , effectively depicting surfaces of equal equilibrium probability.
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Table 2

3D protein-ligand model: parameters for the manually defined potential U .

i Sign bi Mean x̄ Std Dev σ

1 - {0.0, 0.0,−0.2} 0.10
2 - {−0.6, 0.2,−0.6} 0.08
3 - {−0.6, 0.4, 0.4} 0.08
4 + {0.4,−0.6,−0.6} 0.05
5 - {−0.6,−0.6,−0.6} 0.05

Fig. 10. 3D protein-ligand model: equipotential surfaces.

Fig. 11. 3D protein-ligand model: isocommittor surfaces for the potential U .

The outer boundary of the grid is defined as the “unbound” state A, while all
states inside a sphere at the center of the grid with a radius of 0.2 define the “bound”
state B. The committor probability was computed using the procedure described in
the theory section, employing the Power method to solve for the dominant eigenvector
of the absorbing process [9]. The isocontours of the committor are shown in Figure
11. It is seen that these contours are roughly spherical around the binding site B but
have protrusions due to the existence of local energy minima.
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Fig. 12. 3D protein-ligand model: bundle of path lines starting at the virtual binding site along
the normals to the isocommittor surfaces.

Figure 12 shows some paths integrated along the normals to the isocommittor
hypersurfaces. To compute these, the committor function, given on each grid point,
was interpolated by linear polynomials between each neighboring grid point, and
the normals were computed from the continuous interpolation. As initial points, 20
circularly positioned points on the inner B state were chosen, which were directed
toward the potential minimum at point 5 in Table 2. The integrated paths define a
bundle of field lines connecting the outer perimeter and the binding site, depicting
the most probable paths toward the virtual binding site on the protein.

Using the committor, the reactivity g [17], i.e., the probability that a state con-
tributes to a reactive trajectory, was also computed, using

(44) gi = q+i πiq
−
i .

The results are shown in Figure 13. Due to the higher equilibrium probability in (44),
the density of reactive trajectories increases toward the binding site and especially in
the local minima.

Fig. 13. 3D protein-ligand model: density of reactive trajectories gi as given in (44).
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7. Conclusions. We have conducted a numerical study of the commit-
tor probability—the central mathematical object for characterizing dynamical
processes—for discrete-state Markov processes.

An eigenvector-based approach to compute the committor probability was de-
rived. This method is efficient, easy to implement, and computes the committor for
dynamical systems with large state spaces. If the considered transition matrix is sparse
enough, even very large systems can be investigated with computational effort roughly
proportional to the number of states, and thus the application of the presented method
is limited only by memory constraints. As an example, it was demonstrated that the
approach is able to investigate the electrostatically steered ligand binding pathways
to a protein.

Furthermore, a sensitivity and error analysis of the committor was conducted.
Computation of the sensitivity requires the inversion of a matrix of the size of the
number of states, which is, in general, of cubic order, but it can be made quadratic
if the matrix is sufficiently sparse. The other computations are also maximally of
quadratic order, which, in principle, also allows a sensitivity analysis for medium
system sizes.

The obtained error analysis allows an adaptive algorithm to be defined for fast
computation of the committor by collecting information from different parts of the
configurational space separately. This can produce more accurate estimations than
possible from one single long simulation.

Appendix.

Proof of Theorem 1. For arbitrary A and B, we need to show that if K fulfills
the committor equations for rate matrices, then T(K) has to fulfill the committor
equation for transition matrices. By definition this is true for all states x ∈ A ∪ B.
For all other states we start with the committor equation for transition matrices and
replace the transition matrix by T(K) and get

∑
j∈I

(c ·Kij + δij) q
+
j = q+i ,

which can be simplified to the committor equation for rate matrices:

c ·
∑
j∈I

Kijq
+
j = 0.

The theorem is independent of the choice of c, but 0 < c < cmax assures that the
row sum of zero in the rate matrix translates into row-stochastic transition matrix
T(K). A more direct proof is the fact that scaling of matrices by a constant factor and
adding multiples of the identity matrix do not change the eigenvectors of a matrix.
Thus T(K) inherits the same eigenvectors as K, but with different eigenvalues. Since
we show that, aside from the boundary conditions, the committor can be computed
from the eigenvectors, both matrices will result in the same committor probabilities.
However, it is important to note that T(K) will not reproduce the dynamical behavior
of the rate matrix K on any but infinite timescales.

Derivation of the committor covariance. To derive the committor covari-
ance, we start with the linear error propagation for the committor and use the sensi-
tivity S, given in (37), to extend the error in the transition matrix

∑
as follows:
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Cov (qa, qd) =

m∑
i,b,c=1

Si
abΣ

i
bc

(
ST

)i
cd

=

m∑
i,b,c=1

∂q̃a
∂Tib

Σi
bc

∂q̃d
∂Tic

=

m∑
i,b,c=1

(
Ã−1

)
ai
qbΣ

i
bc

(
Ã−1

)
di
qc

=
m∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m∑
b,c=1

qbΣ
i
bcqc.

We then insert the analytical expression for the uncertainty in the transition
matrix in (39) to obtain

Cov (qa, qa) =

m∑
i=1

(
Ã−1

)
ai

(
Ã−1

)
di

m∑
b,c=1

qb
αib (αiδbc − αic)

α2
i (αi + 1)

qc.

This can be rewritten in a form that is quadratic in the number of states:

Cov (qa, qa) =

m∑
i=1

1

α2
i (αi + 1)

(
Ã−1

)2

ai

(
αi

m∑
b=1

qbαibqb −
(

m∑
b=1

qbαib

)(
m∑
c=1

αicqc

))
,

leaving us with the inversion of Ã as the most expensive operation of cubic order.
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