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Abstract. In molecular dynamics applications there is a growing interest in so-called mixed
quantum-classical models. These models describe most atoms of the molecular system by the means
of classical mechanics but an important, small portion of the system by the means of quantum me-
chanics. A particularly extensively used model, the QCMD model, consists of a singularly perturbed
Schrödinger equation nonlinearly coupled to a classical Newtonian equation of motion.

This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces.
The main result states that this limit is given by the time-dependent Born-Oppenheimer model of
quantum theory—provided the Hamiltonian under consideration has a smooth spectral decomposi-
tion. This result is strongly related to the quantum adiabatic theorem. The proof uses the method
of weak convergence by directly discussing the density matrix instead of the wave functions. This
technique avoids the discussion of highly oscillatory phases.

On the other hand, the limit of the QCMD model is of a different nature if the spectral decom-
position of the Hamiltonian happens not to be smooth. We will present a generic example for which
the limit set is not a unique trajectory of a limit dynamical system but rather a funnel consisting of
infinitely many trajectories.
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1. Introduction. Most commonly, the simulation of the dynamical behavior
of molecular systems is based on the assumption that the system of interest can
sufficiently well be described by models of classical mechanics. However, such classical
molecular dynamics approaches cannot be valid if the very nature of the process
under consideration is quantum mechanically : e.g., the transfer of key protons in
enzymes, clusters, or matrices. In all these cases, a quantum dynamical description is
unavoidable. Since a full quantum dynamics simulation of, e.g., a complete enzyme is
not feasible, so-called mixed quantum-classical models have found growing interest in
applications. These models describe most atoms by the means of classical mechanics
but an important, small portion of the underlying system by the means of quantum
mechanics.

In the current literature various mixed quantum-classical models have been pro-
posed. We will restrict our attention to the so-called QCMD (quantum-classical
molecular dynamics) model which has been used extensively for real life applications,
cf. [4][7] and the references cited therein. Our concern is a further mathematical
understanding of this model.

For the sake of simplicity we introduce the QCMD model in the case of two
particles. We assume that they have spatial coordinates x ∈ Rd and q ∈ Rn, with
mass m = ε2 ¿ 1, respectively M = 1. The interaction potential will be denoted by
V (x, q). The lighter particle is supposed to perform quantum motion. It thus has to
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be described by a quantum Hamiltonian H, which is typically of the form

H(q) = − 1
2
∆x + V (x, q),(1.1)

where ∆x denotes the Laplacian with respect to x. Hence, the Hamiltonian is para-
metrized by the position q of the heavier particle, the description of which remains
classical. The force that drives this classical motion is given by the potential obtained
as the expectation value of the coupling energy. Thus, the equations of motion of the
QCMD model are given by the following nonlinearly coupled system of a Newtonian
equation of motion with a Schrödinger equation

q̈ε = − gradq 〈H(qε)ψε, ψε〉,
iε ψ̇ε = H(qε)ψε.

(1.2)

Here, 〈·, ·〉 denotes the scalar product in the Hilbert space of the model.
In the present paper, we will study the singular limit ε→ 0 which is of interest for

a couple of reasons: Because the QCMD model is known to be an O(ε)-approximation
of full quantum dynamics [7], it is typically applied to situations with ε ¿ 1. On
the other hand, the quantum part ψε is oscillating on a time scale of order O(ε).
Unfortunately, the computational work for any direct numerical integration of the
QCMD model is heavily dominated by the approximation of these fast oscillations.
The chemically interesting information, however, appears on a time scale of order
O(1). In the singular limit, the fast scale O(ε) will be eliminated but its averaged
influence will still be present. Thus, besides yielding analytical insight into the model,
the study of the limit ε→ 0 opens the way towards advanced numerical techniques.

We will assume that the Hilbert space of the quantum state ψε is finite dimen-

sional. Thus, H denotes an Hermitian matrix, which, for example, can be viewed as
the representation of the Hamiltonian (1.1) according to a discretization of the Lapla-
cian ∆x. By employing considerable technical tools from functional analysis, the first
author was recently able to extend the ideas presented below to the infinitely dimen-
sional case, cf. [6]. However, the present short account on the finite dimensional
case helps to concentrate on the basic ideas, which, in the opinion of the authors,
could be of general interest for singular perturbation problems with highly oscillatory
solutions.

We will obtain a limit equation that can be motivated by referring to the quan-
tum adiabatic theorem, originating from work of Born and Fock [5]. The classical
position q influences the Hamiltonian very slowly compared to the time scale of oscil-
lations of ψε, in fact, “infinitely slowly” in the limit ε → 0. Thus, in analogy to the
quantum adiabatic theorem, one would expect—under certain assumptions on the
eigenstates ψλ(q) and eigenenergies Eλ(q) of the Hamiltonian H(q)—the following
adiabatic invariance:

|〈ψε, ψλ(qε)〉|2 → θλ = const, ε→ 0,

uniformly as functions of time. Together with a uniform convergence qε → q0, this
would imply the convergence of the “potential” energy,

〈H(qε)ψε, ψε〉 → UBO(q0) =
∑

λ θλEλ(q0).

Thus, we are led to expect the limit equation being

q̈0 = − gradq UBO(q0),
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which is the well-known time-dependent Born-Oppenheimer approximation of quan-
tum theory, cf. [9][12]. In §3 we will present a rigorous proof for this fact, which
we call the quantum–classical adiabatic theorem. We employ a variant of the weak

convergence method which we have introduced for the homogenization of certain sin-
gularly perturbed equations of classical mechanics, cf. [8]. This method allows to
address the limit motion straightforwardly without explicit knowledge of the phase
of ψε. This phase drops out since we directly discuss the weak limit of the density
matrix ρε = ψεψ

†
ε . In contrast, all proofs of the quantum adiabatic theorem, the

present authors know of, proceed by first, representing the phase of ψε asymptotically
correct, and second, approximating the amplitude. A short informal exposition of our
methodology will be given in §2.

We will prove the quantum-classical adiabatic theorem in a way that the quantum
adiabatic theorem is a simple corollary. We will discuss in §4 to which extend our
approach weakens the assumptions known in the literature.

The proof of the quantum-classical adiabatic theorem relies strongly on the as-
sumption of a smooth dependence of the spectral decomposition ofH on the parameter
vector q. Whereas this is generically true for a scalar parameter dependence, it is not
true for a vector parameter dependence in general. In §5 we will illustrate what can
happen in the case of a nonsmooth spectral decomposition: The QCMD solutions
can depend extremely sensitively on the initial data for small ε. In the singular limit,
this sensitivity leads to a funnel of limit solutions instead of a single unique limit.
For certain singularly perturbed classical equations of motion, the appearance of such
funnels as the limit set has been discovered by Takens, cf. [8][21]. With regard to
his work we speak of Takens-chaos. Its relevance for problems in applications has yet
to be studied. However, there are strong hints that these funnels reflect properties of
the underlying full quantum mechanical situation, cf. [20].

2. An Informal Exposition of the Methodology. Here, for making the for-
mal discussion of the results that will be given below more accessible to the uninitiated
reader, we will informally demonstrate the how and why of our methodology in the
case of the quantum adiabatic theorem.

To begin, we recall the assertion of that theorem. Given a smooth time-dependent
family of Hermitian matrices H(t) ∈ Cr×r, we consider the singularly perturbed
Schrödinger equation

iεψ̇ε = H(t)ψε, ψε(t0) = ψ∗ ∈ Cr, |ψ∗| = 1.

On any fixed time interval [t0, t1] there is a unique smooth solution ψε of this initial
value problem. Suppose, we pick an eigenvalue (energy level) E(t) of H(t) with
spectral projection P (t),

P (t)H(t) = H(t)P (t) = E(t)P (t),

and assume that E and P vary smoothly with time. The quantum adiabatic theo-
rem asserts that the excitation 〈P (t)ψε(t), ψε(t)〉 of that energy level converges to a
constant as ε→ 0, uniformly in time:

〈Pψε, ψε〉 → 〈P (t0)ψ∗, ψ∗〉 in C[t0, t1].

The basic idea of our approach is to first use boundedness of norm or energy to obtain
convergence to some limit by invoking compactness results, and next, to determine
that limit by analyzing the underlying differential equation.
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A basic property of the Schrödinger equation is conservation of norm, i.e.,

|ψε(t)| = 1, t ∈ [t0, t1].

This means, that given some sequence ε→ 0 the sequence ψε of solutions is bounded in
L∞([t0, t1],Cr). Now, there is a compactness result for this function space: Because of
the duality L∞[t0, t1] = (L1[t0, t1])

∗ the Banach-Alaoglu theorem [19, Theorem 11.29]
states that there is a subsequence—which for simplicity is denoted by ε again—and
some limit ψ0 ∈ L∞[t0, t1] such that

ψε
∗
⇀ ψ0.

This weak* convergence abbreviates the following convergences of integral averages

∫ t1

t0

ψε(τ) · χ(τ) dτ →
∫ t1

t0

ψ0(τ) · χ(τ) dτ

for all filter functions χ ∈ L1([t0, t1]). A basic property of weak* convergence is
stability under differentiation [6, §I.1]: Given a sequence of continuously differentiable
functions uε there is

uε → 0 uniformly in time, u̇ε uniformly bounded in time ⇒ u̇ε
∗
⇀ 0.(2.1)

This particular property is more or less all one needs to know about weak* convergence
in the framework of the present paper.

Let us apply (2.1) to the sequence uε = εψε. Obviously there is the uniform
convergence εψε → 0 and, by invoking the Schrödinger equation, the derivative εψ̇ε is
uniformly bounded. Thus,

H(t)ψε = iεψ̇ε
∗
⇀ 0.

On the other hand, because of linearity we have

H(t)ψε
∗
⇀ H(t)ψ0.

We conclude that H(t)ψ0 = 0 and, by assuming that H(t) is non-singular, ψ0 = 0.
Hence, the now specified limit ψ0 is independent of the subsequence chosen above,
which implies as in elementary calculus that we can discard the extraction of subse-
quences and obtain

ψε
∗
⇀ 0

for all sequences ε→ 0.
This result tells us that ψε is highly oscillatory with an average value that con-

verges to zero. However, this result does not tell anything about the limit of quantities
that depend nonlinearly on ψε like the excitation we are interested in. A famous ex-
ample is given by

sin(t/ε)
∗
⇀ 0, sin2(t/ε)

∗
⇀ 1/2.

For this reason we consider explicitly the density matrix ρε = ψεψ
†
ε which parameter-

izes linearly all quadratic quantities by

〈Aψε, ψε〉 = tr(Aρε), A ∈ Cr×r.
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Now, we treat ρε the same way as we treated ψε before. By boundedness and com-
pactness we get, after extraction of subsequences, the weak* convergence ρε

∗
⇀ ρ0 to

some limit ρ0 ∈ L∞([t0, t1],Cr×r). Using the Schrödinger equation we immediately
obtain the matrix differential equation

iερ̇ε = [H(t), ρε].

The same arguments as in the discussion of ψε
∗
⇀ ψ0 above yield the commutativity

result

[H(t), ρ0] = 0.

This last equation implies [P, ρ0] = 0, which is central for proving the quantum
adiabatic theorem. To this end, we finally show the uniform convergence of the
excitation to a constant by proving the weak* convergence of its time-derivative to
zero: In fact, a simple calculation using the Schrödinger equation reveals

d

dt
〈Pψε, ψε〉 = 〈Ṗψε, ψε〉 = tr(Ṗ ρε)

∗
⇀ tr(Ṗ ρ0)

= tr(PṖρ0P ) + tr((I − P )Ṗ ρ0(I − P )).

The last equality uses P 2 = P and the invariance of the trace under cyclic permuta-
tions of the matrices of a product. Now, by referring to the commutativity [P, ρ0] = 0
we finally obtain

d

dt
〈Pψε, ψε〉 ∗

⇀ tr(PṖP · ρ0) + tr((I − P )Ṗ (I − P ) · ρ0) = 0,

because for reasons of linear algebra we have P ṖP = (I − P )Ṗ (I − P ) = 0, as
explained in Footnote 4 below.

3. The Singular Limit of the QCMD Model. For simultaneously addressing
the quantum adiabatic theorem, we consider a time-dependent version of the QCMD
model (1.2) given by the following set of ordinary differential equations

(i) q̈jε = −〈∂jH(t, qε)ψε, ψε〉, j = 1, . . . , n,

(ii) iεψ̇ε = H(t, qε)ψε.
(3.1)

Here, q = (q1, . . . , qn) ∈ Rn, ψ ∈ Cr, and 〈·, ·〉 denotes the Euclidean sesquilinear
form on Cr. The Euclidean norm on Rn, resp. Cr will be denoted by | · |. We consider
converging initial values, namely

lim
ε→0

qε(t0) = q∗, lim
ε→0

q̇ε(t0) = v∗, lim
ε→0

ψε(t0) = ψ∗,

with the normalization |ψε(t0)| = 1 for all ε. We assume that the Hamiltonian H
satisfies the following conditions on a finite time interval [t0, t1]:

(H1) H : [t0, t1]×Rn → Cr×r is a smooth map, the values of which are Hermitian
matrices, uniformly bounded from below

〈H(t, q)ψ,ψ〉 ≥ H∗ > −∞ t ∈ [t0, t1], q ∈ Rn, |ψ| = 1.
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(H2) The time derivative ∂tH(t, q) is uniformly bounded for t ∈ [t0, t1] and q ∈ Rn.
(H3) There is a smooth spectral decomposition of H,

H(t, q) =
s
∑

λ=1

Eλ(t, q)Pλ(t, q) t ∈ [t0, t1], q ∈ Rn,

where Pλ denotes the orthogonal projections onto the mutually orthogonal
eigenspaces of H which span Cr: I =

∑

λ Pλ.
The reader should note, that the smooth multiplicities1 nλ of the eigenvalues Eλ are
constants,

nλ = dim rangePλ(t, q) = const, t ∈ [t0, t1], q ∈ Rn.(3.2)

As we have already mentioned in the introduction, we will prove that the singular
limit of the QCMD model (3.1) is given by the time-dependent Born-Oppenheimer

model

q̈j
BO

= −∂jUBO(t, qBO) j = 1, . . . , n.(3.3)

The Born-Oppenheimer potential UBO is defined by

UBO(t, q) =

s
∑

λ=1

θλEλ(t, q), θλ = 〈Pλ(t0, q∗)ψ∗, ψ∗〉,

and the initial values of the system are the limit ones of QCMD model, qBO(t0) = q∗
and q̇BO(t0) = v∗.

We have to introduce a further notion concerning resonances of the energy levels
Eλ along the Born-Oppenheimer solution qBO. If for any resonance

Eλ(tr, qBO(tr)) = Eµ(tr, qBO(tr)) λ 6= µ

at a time tr ∈ [t0, t1] the transversality condition

d

dt
(Eλ(t, qBO(t))− Eµ(t, qBO(t)))

∣

∣

∣

∣

t=tr

6= 0

holds, we will call qBO at most generically resonant.

Theorem 3.1. On the time interval [t0, t1], there exists a smooth unique solution
qBO of the Born-Oppenheimer model, and, for every ε > 0, a smooth unique solution

qε of the QCMD model. Let qBO be at most generically resonant.2 Then, given a

sequence ε → 0, the classical components of the QCMD model converge to those of

the Born-Oppenheimer model,

qε → qBO in C1([t0, t1],Rn),

and the energy level populations of the wave functions converge to the constants given

by their limit initial values,

〈Pλ(·, qε)ψε, ψε〉 → θλ in C[t0, t1].

Proof. The proof will be given in seven steps according to the following plan:

1More precisely, this is the multiplicity of the parameter-dependent eigenvalue Eλ(·). At a
resonance point q the multiplicity of the eigenvalue Eλ(q) itself might be higher.

2In particular, there are at most finitely many resonances, cf. Step 7 of the proof below.
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1. existence and uniform boundedness of QCMD-solutions using energy esti-
mates

2. existence of a unique solution of the Born-Oppenheimer model
3. weak* convergence of the density matrix ρε as in §2
4. the limit commutativity relation [H, ρ0] = 0 as in §2
5. adiabatic invariance of the energy level excitations as in §2
6. calculation of the limit force of the classical equation of the QCMD model
7. solution of a technical problem due to resonances

Step 1. We start with estimating the solutions on a time interval of existence.
According to a well-known formula of Ehrenfest [17, Eq. (V.72)] we obtain for any
time-dependent observable A (Hermitian matrix) that

d

dt
〈Aψε, ψε〉 =

i

ε
〈[H(·, qε), A]ψε, ψε〉+ 〈Ȧψε, ψε〉.(3.4)

Inserting A = I, the identity matrix, yields the conservation of the norm of the wave
function

|ψε(t)| = |ψε(t0)| = 1, t ≥ t0.(3.5)

A key quantity to look at is the energy of the QCMD model, i.e.,

Eε(t) =
1
2
|q̇ε|2 + 〈H(t, qε)ψε, ψε〉.

Inserting A(t) = H(t, qε) into the Ehrenfest formula (3.4) yields the time derivative
of the energy

Ėε = 〈∂tH(t, qε)ψε, ψε〉.

By assumption (H2) and the conservation of norm (3.5) we obtain a uniform bound
on Ėε. Integration shows that the energy is uniformly bounded on finite time intervals
of existence (since Eε(t0) is converging for ε → 0). Hence, assumption (H1) yields a
uniform bound for q̇ε and, after integration, one for qε. Now, these a priori bounds
in phase space prove the existence and uniqueness of solutions (qε, ψε) for the time
interval [t0, t1] under consideration. Summarizing, we have obtained the uniform
bounds

qε, q̇ε, q̈ε = O(1)(3.6)

in C([t0, t1],Rn) for ε→ 0, where the bound for q̈ε immediately follows from equation
(3.1(i)).

Step 2. Analogously to Step 1 one can prove the existence of the Born-Oppen-
heimer solution qBO on [t0, t1]. Here, one considers the energy

EBO = 1
2
|q̇BO|2 + UBO(t, qBO)

with the time derivative ĖBO = ∂tUBO(t, qBO). Once more, assumption (H2) yields the
boundedness of ĖBO, and after integration, assumption (H1) the boundedness of EBO.

Step 3. We recall the fact, that the space L∞[t0, t1] = (L1[t0, t1])
∗ is the dual of

a separable space. Thus, by the Arzelà-Ascoli theorem [19, Theorem 11.28] and the
Banach-Alaoglu theorem [19, Theorem 11.29] for spaces with a separable predual, the
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bounds (3.6) imply the existence of a subsequence of ε—which we will denote by ε
again—such that

qε → q0 in C1([t0, t1],Rn), q̈ε
∗
⇀ q̈0 in L∞([t0, t1],Rn).

We introduce the time-dependent density matrix ρε belonging to the pure state ψε,

ρε = ψεψ
†
ε .

It turns out, that the sequence ρε is bounded in L∞([t0, t1],Cr×r). For that, we use
the trace class norm ‖ · ‖1 on the space of r × r-matrices,

‖A‖1 = tr(AA†)1/2, A ∈ Cr×r,

and observe that

‖ρε‖1 = tr ρε = 〈ψε, ψε〉 = 1.

By a further application of the Banach-Alaoglu theorem for spaces with a separable
predual, we may assume that a limit

ρε
∗
⇀ ρ0 in L∞([t0, t1],Cr×r)

exists for the above chosen subsequence. This limit matrix ρ0 is a time-dependent
density matrix as well, i.e., for each time its value is a nonnegative Hermitian matrix
with

tr ρ0 = 1.

However, since quadratic functionals are not weakly sequentially continuous, ρ0 does
not belong to a pure state in general, but to a mixture of states.3 The significance of
the limit ρ0 becomes clear, if we take weak limits in the first set (3.1(i)) of the QCMD
equation, yielding

q̈j0 = − tr(ρ0 ∂jH(t, q0)).(3.7)

For that, we rewrite 〈H(t, qε)ψε, ψε〉 = tr(ρε∂jH(t, qε)) and observe that we may pass
to the weak limit because of the uniform convergence of qε.

Step 4. A simple calculation reveals, that the Schrödinger equation (3.1(ii)) is
equivalent to the well-known evolution equation [17, Eq. (VIII.68)] for the density
matrix,

iερ̇ε = [H(t, qε), ρε].

Taking weak limits on both sides of the equation yields by (2.1) the commutativity
relation

0 = [H(t, q0), ρ0].(3.8)

If we exclude resonances of the energy levels along q0, we would get a simultaneous
block-diagonalization of H(t, q0) and ρ0. In fact, it is sufficient to exclude resonances
almost everywhere. Therefore, until Step 7, we make the following assumption:

3Mathematically speaking, the limit ρ0 might have a rank higher than one, as we will see in
Eq. (3.12) below, despite the fact that all the ρε are rank one matrices.
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(Z) The resonance set

R = {t ∈ [t0, t1] : Eλ(t, q0(t)) = Eµ(t, q0(t)) for some λ 6= µ}

is a set of Lebesgue measure zero.
Now, multiplying the commutativity relation (3.8) by Pλ(t, q0) from the left, and by
Pµ(t, q0) from the right, gives

(Eλ(t, q0)− Eµ(t, q0)) · Pλ(t, q0)ρ0Pµ(t, q0) = 0

as functions in L∞([t0, t1],Cr×r). Thus, we obtain in L∞ that

Pλ(t, q0)ρ0Pµ(t, q0) = 0, λ 6= µ,

which implies the block-diagonal form of the limit density matrix ρ0,

ρ0 =
∑

λ
Pλ(t, q0)ρ0Pλ(t, q0).(3.9)

Step 5. Using the abbreviation P ε
λ = Pλ(t, qε), we define the energy level popula-

tions of the state ψε as

θελ = 〈P ε
λψε, ψε〉 = tr(ρεP

ε
λ).

Using the commutativity relation [H(t, qε), P
ε
λ] = 0, the Ehrenfest formula (3.4) yields

the time derivative

θ̇ελ = 〈Ṗ ε
λψε, ψε〉 = tr(ρεṖ

ε
λ).

Hence, the time derivatives form a bounded sequence in L∞[t0, t1], showing by the
Arzelà-Ascoli theorem that

θελ → θ0λ = tr(ρ0P
0
λ) in C[t0, t1], θ̇ελ

∗
⇀ θ̇0λ = tr(ρ0Ṗ

0
λ) in L∞[t0, t1].

Here, we have used the uniform convergence Ṗ ε
λ → Ṗ 0

λ in C([t0, t1],Cr×r) which follows
from q̇ε → q̇0 in C([t0, t1],Rn). However, the block diagonal form (3.9) of ρ0 yields

θ̇0λ = tr(ρ0Ṗ
0
λ) =

∑

µ
tr(P 0

µρ0P
0
µ Ṗ

0
λ) =

∑

µ
tr(ρ0P

0
µ Ṗ

0
λP

0
µ) = 0,(3.10)

since P 0
µ Ṗ

0
λP

0
µ = 0 for all λ and µ.4 Thus, the limit populations θ0

λ are constants and
their values are given by

θ0λ(t) = θ0
λ(t0) = lim

ε→0
θελ(t0) = θλ.(3.11)

Step 6. Inserting the spectral decomposition of H into the force term of the
abstract limit equation (3.7) yields

tr(ρ0 ∂jH) =
∑

λ
∂jEλ · tr(ρ0Pλ) +

∑

j
Eλ · tr(ρ0 ∂jPλ).

4 For λ 6= µ we have P 0

λP
0
µ = 0 and therefore Ṗ 0

λP
0
µ + P 0

λ Ṗ
0
µ = 0. Multiplying P 0

µ from the left

yields the asserted result for λ 6= µ. From P 0

λP
0

λ = P 0

λ we obtain Ṗ 0

λ = Ṗ 0

λP
0

λ + P 0

λ Ṗ
0

λ . Multiplying
by P 0

λ from the left and cancelling equal terms yields the desired result for λ = µ.
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The same argument as in Step 5, Eq. (3.10), shows that

tr(ρ0 ∂jPλ(t, q0)) = 0.

This and the fact that the limit population is constant, tr(ρ0 Pλ(t, q0)) = θλ, reveals
that the force term belongs to the Born-Oppenheimer potential,

tr(ρ0 ∂jH(t, q0)) =
∑

λ
θλ · ∂jEλ(t, q0) = ∂jUBO(t, q0).

Thus, q0 is the solution of the Born-Oppenheimer equation (3.3). Since the initial
values coincide, we obtain the equality q0 = qBO—provided the resonance condition of
Step 4, Assumption (Z), is satisfied for q0.

Step 7. In this final step we will show by means of a continuation argument:
the accessible resonance assumption of the theorem, which has been imposed on the
Born-Oppenheimer solution qBO, implies the validity of the somewhat inaccessible
Assumption (Z), which is concerned with the limit q0 instead.

There are only finitely many resonances along qBO in the compact time interval
[t0, t1]. Otherwise we would get a converging sequence tj → t∗ of crossing times for
one and the same resonance surface. As a consequence, at time t∗ there would be a
non transversal crossing of qBO with that resonance surface. This would contradict
the assumption of transversality.

For proving the validity of Assumption (Z), and simultaneously the equality q0 =
qBO, we consider the maximal time of equality,

t∗ = max {t ∈ [t0, t1] : q0|[t0, t] = qBO|[t0, t]} .

Because of q0(t0) = qBO(t0), this is a well defined quantity. Suppose we have t∗ < t1.
Then, there are only finitely many resonances of q0 during the time interval [t0, t∗].
Since q0 and qBO are C1-functions of time, we get

q̇0(t∗) = q̇BO(t∗),

just using the initial values if t∗ = t0. Hence, if q0 crosses a resonance surface at time
t∗ it does so transversally. As a consequence, there is a small δ > 0 such that there are
no further resonances of q0 during the time interval ]t∗, t∗+δ]. Thus, the resonance set
of q0 restricted to the time interval [t0, t∗ + δ] has measure zero, i.e., Assumption (Z)
is satisfied for this time interval. Employing the results of the previous steps to this
time interval proves that

q0|[t0, t∗ + δ] = qBO|[t0, t∗ + δ],

contradicting the maximality of t∗. We therefore obtain t∗ = t1, which is equivalent
to q0 = qBO.

We have shown that the limits of any converging subsequence of qε and θελ are
uniquely given by qBO and θλ. Thus, we can finally discard the extraction of subse-
quences.

Despite the fact that we have made use of the density matrix ρε = ψεψ
†
ε during

the proof of Theorem 3.1, we could not state a convergence result involving it. This
is because the limit relations (3.9) and (3.11) do not identify the limit density matrix
ρ0 uniquely in general. However, there is a special case, where ρ0 can be identified
unambiguously. This allows to recover information about the quantal part other than
energy level populations.
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Corollary 3.2. Let the limit populations θλ be nonzero only for simple eigen-

values.5 Then, the density matrix converges as

ρε
∗
⇀ ρ0 =

∑

λ
θλ Pλ(·, q0) in L∞([t0, t1],Cr).

For each θλ 6= 0, the projection Pλ is the density matrix belonging to a corresponding

normalized eigenvector ψλ,

Pλ = ψλψ
†
λ, Hψλ = Eλψλ, |ψλ| = 1.

The expectation values of a time-dependent observable A converge as

〈Aψε, ψε〉 ∗
⇀
∑

λ
θλ〈Aψλ, ψλ〉 in L∞[t0, t1].

This convergence is strong in C[t0, t1], if there holds [H(·, q0), A] = 0.
Proof. We go back to Steps 4 and 5 of the proof of Theorem 3.1. The diagonal

blocks Pλ(·, q0)ρ0Pλ(·, q0) of ρ0 are nonnegative Hermitian matrices. Therefore, their
trace class norm is given by

‖Pλ(·, q0)ρ0Pλ(·, q0)‖1 = tr(Pλ(·, q0)ρ0Pλ(·, q0)) = tr(ρ0Pλ(·, q0)) = θλ.

By assumption, all nonzero populations θλ belong to one-dimensional block-diagonal
entries of the matrix ρ0, which yields

Pλ(·, q0)ρ0Pλ(·, q0) = θλPλ(·, q0)
for all λ. Thus, ρ0 is uniquely given by the asserted expression. As in the final step
of the proof of Theorem 3.1, we may discard any extraction of subsequences. The
convergence of the expectation values follows directly from

〈Aψε, ψε〉 = tr(ρεA)
∗
⇀ tr(ρ0A) =

∑

λ
θλ〈Aψλ, ψλ〉.

If [H(·, q0), A] = 0, the Ehrenfest formula (3.4) shows that the time derivative of the
expectation value remains bounded. Thus, a further application of the Arzelà-Ascoli
theorem proves the uniform convergence in time.

In the setting of this corollary we obtain that the limit density matrix ρ0 is a
convex combination of density matrices belonging to pure states, namely the simple
eigenstates of H. In particular, the rank of ρ0 is given by

rank ρ0 = #{λ : θλ 6= 0}.(3.12)

4. The Adiabatic Theorem of Quantum Mechanics. The case n = 0 of
Theorem 3.1, i.e., the absence of a “classical” particle, corresponds to the so-called
quantum adiabatic theorem. This theorem is of considerable interest in itself and we
have actually proven more for that case than stated in Theorem 3.1. For thus, we will
discuss it in detail here.

We consider a time-dependent Schrödinger equation in a finite dimensional state
space,

iεψ̇ε = H(t)ψε, ψ(t0) = ψ∗, |ψ∗| = 1.

We assume that the Hamiltonian H satisfies the following conditions on a finite time
interval [t0, t1]:

5This means, the smooth multiplicity nλ as defined in Eq. (3.2) is one, nλ = 1. Resonances are
still allowed.
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(A1) H : [t0, t1] → Cr×r is a smooth map, the values of which are Hermitian
matrices.

(A2) There is a smooth spectral decomposition of H,

H(t) =

s
∑

λ=1

Eλ(t)Pλ(t) t ∈ [t0, t1],

where Pλ denotes the orthogonal projections onto the mutually orthogonal
eigenspaces of H which span Cr.

Notice, that the assumptions (A1) and (A2) imply those of the previous section, i.e.,
(H1)–(H3). Asymptotically in the limit ε → 0, the quantum adiabatic theorem now
states the following: An initial value which belongs to the λ-eigenspace of H(t0) leads
to a solution at time t1 which likewise belongs to the λ-eigenspace of H(t1).

Theorem 4.1 (Quantum Adiabatic Theorem). Let the resonance set

R = {t ∈ [t0, t1] : Eλ(t) = Eµ(t) for some λ 6= µ}
be of Lebesgue measure zero. Then, given a sequence ε → 0, the energy level popula-

tions of the wave functions converge to the constant values of the initial populations,

〈Pλψε, ψε〉 → 〈Pλ(t0)ψ∗, ψ∗〉 in C[t0, t1].

If the initial populations θλ are nonzero only for simple eigenvalues, nλ = 1, the
assertions of Corollary 3.2 hold likewise.

Proof. The proof is given literally by the Steps 1–6 of the proof of Theorem 3.1.
Since there is no q-variable, we do not have to distinguish between q0 and qBO. Thus,
Step 7 is not needed, explaining the considerably weaker resonance condition of The-
orem 4.1, which is just Assumption (Z) of Step 4.

Under stronger assumptions, the first mathematical proof of the quantum adia-
batic theorem for finite dimensional state spaces was given by Born and Fock [5].
They considered simple eigenvalues with at most finitely many resonances. Further,
they assumed that there exists a κ ∈ N0 such that for each resonance Eλ(t∗) = Eµ(t∗)
a higher order nondegeneracy condition holds,

dκ

dtκ
(Eλ − Eµ)

∣

∣

∣

∣

t=t∗

6= 0,

just putting κ = 0 if there are no resonances at all. By estimating oscillatory integrals
as arising in geometrical optics, they were able to prove the asymptotic result [5,
Eq. (60)]

〈Pλψε, ψε〉 = 〈Pλ(t0)ψ∗, ψ∗〉+O
(

ε
1

κ+1

)

.

This shows in particular, that the rate of convergence in Theorem 4.1 can be arbitrary
slow as a power of the singular perturbation parameter ε.

Remark. The proof of Born and Fock for the case κ = 0 can also be found in the
textbook of Messiah [17, Ch. XVII, §12]. The proof involves the so-called “rotating
axis representation” and needs a careful tracking of the phases of the wave function.
The proof presented here avoids the discussion of phases by directly discussing the
density matrix. The work of Born and Fock was later extended to the infinite di-
mensional setting by Kato [15] and Friedrichs [10][11]. The most complete account
of this method of proof can be found in recent work of Avron, Seiler, and Yaffe
[2][3].
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5. Takens-Chaos. According to Theorem 1, the limit dynamics as given by the
Born-Oppenheimer equations does only depend on the limit initial values q∗, v∗, and
ψ∗. Thus, the details of the limiting process leading to these values do not matter at
all—which is a far-reaching stability property of the limit model. In this section, we
will show that a completely different situation may appear if the assumption (H3) of
a smooth spectral decomposition of the Hamiltonian H is hurt.

For simplicity, we restrict ourselves to systems with time reversal which amounts
for the Hamiltonian being a real symmetric matrix in the finite dimensional case, [17,
Chap. XV, §19]. Perturbation theory of linear operators, [16, Chap. 2, §6], teaches
that property (H3) can only be hurt if there are eigenvalues of multiplicity greater
than one for some parameter values. Now, the set of real symmetric matrices, having
at least one eigenvalue with multiplicity greater than one, has codimension two in the
set of all real symmetric matrices.6 Thus, for hurting property (H3) generically we
need at least a two parameter dependence of H, acting itself on a two-dimensional
space. We will construct an example with a time-independent Hamiltonian having
n = r = 2.

We consider the “classical” positions q = (q1, q2) and take as Hamiltonian the
real symmetric matrix

H(q) =

(

q1 q2

q2 −q1

)

.

This is the famous example of Rellich [18, §2][16, Chap. 2, Example 5.12] for a
smooth symmetric matrix which is not smoothly diagonizable, a property being stable
under real symmetric perturbations of the matrix. This matrix also occurs in the work
of Hagedorn [13][14] on the relation of the time-dependent Born-Oppenheimer model
to the full Schrödinger equation. There, it appears as the normal form of so-called
“energy level crossings of codimension two.” The latter fact makes the matrix H
particularly interesting for our study.

The eigenvalues of H are E1(q) = −|q| and E2(q) = |q|. Excluding the origin
q = 0 and using polar coordinates,

q1 = r cosϕ, q2 = r sinϕ,

yields the corresponding eigenvectors in the form

ψ1 =

(

− sin(ϕ/2)
cos(ϕ/2)

)

, ψ2 =

(

cos(ϕ/2)
sin(ϕ/2)

)

.

The occurrence of the argument ϕ/2 shows that these eigenvectors are defined up to
a sign only. For a unique representation we have to cut the plane along a half-axis,
e.g., along ϕ = 3π/2. Hence, we restrict the angular variable to the open interval

ϕ ∈
]

−π
2
,
3π

2

[

.

6The “loss” of two degrees of freedom can be explained as follows. Representing a real symmetric
matrix H by its diagonalization H = STDS shows that one degree of freedom is lost due to the
eigenvalue resonance in the diagonal matrix D. Another degree of freedom is lost, however, in the
orthogonal matrix S since the corresponding eigenspace of dimension greater than one can be freely
rotated without changing the resulting matrix H. See also [1].
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By this, ψ1 and ψ2 become smooth vector fields uniquely defined on the cut plane

R2
c = R2 \ {q : q1 = 0, q2 ≤ 0}.

They cannot, however, be continued over the cut, but change their roles there instead.
We consider the following family of initial values:

qε(0) = (1, 0), q̇ε(0) = (0, µ), ψε(0) = (1, 0),

depending on a parameter µ ≥ 0. For the discussion of the singular limit ε → 0 we
have to distinguish two cases.

The Case µ = 0. In this case, the solutions of the QCMD model can be calculated
explicitly. The QCMD equations are given by

q̈1ε = −
(

|ψ1
ε |2 − |ψ2

ε |2
)

, q̈2ε = −2<
(

ψ1
εψ

2
ε

)

,

and

iεψ̇1
ε = q1εψ

1
ε + q2εψ

2
ε , iεψ̇2

ε = q2εψ
1
ε − q1εψ2

ε .

A short calculation reveals that the unique solution is given by

q1ε (t) = 1− 1
2
t2, q2ε ≡ 0, ψ1

ε (t) = exp

(

− i
ε

∫ t

0

q1ε (τ) dτ

)

, ψ2
ε ≡ 0.

Surprisingly, the q-components are independent of the singular perturbation parameter
ε. Therefore, the limit ε→ 0 of qε is trivially given by

qµ=0
0 =

(

1− 1
2
t2, 0

)

.

As a particularity, this limit solution crosses the singularity q = 0 of the spectral
decomposition at time t =

√
2.

The Case µ > 0. We will see that, in this case, the adiabatic Theorem 1 is
applicable on the time interval [0, 2

√
2], at least for small µ > 0 and ε > 0. For then,

the limit would be given by the Born-Oppenheimer initial value problem

q̈0 = − q0
|q0|

, q0(0) = (1, 0), q̇0(0) = (0, µ).(5.1)

At the end of this section we will prove the following lemma.

Lemma 5.1. Let µ > 0 be small enough. Then, for all t ∈ [0, 2
√
2], the Born-

Oppenheimer solution q0 takes values in the cut plane R2
c.

Hence, for µ > 0 and ε > 0 small enough, the hypothesis (H3) of §2 is fulfilled
and Theorem 1 indeed applicable, showing that

qε → q0 in C1[0, 2
√
2].

Now, we take the limit µ ↓ 0 of the Born-Oppenheimer solution q0, which will be
denoted by qµ↓00 . A direct calculation reveals that

qµ↓00 (t) =

{ (

1− 1
2
t2, 0

)

, t ∈ [0,
√
2],

(

1
2
t2 − 2

√
2t+ 3, 0

)

, t ∈ [
√
2, 2
√
2].

Notice, that qµ↓00 ∈ C1[0, 2
√
2].
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Discussion. These two cases show that the limits ε → 0 and µ ↓ 0 are not

interchangeable: In fact, after passing the singularity q = 0 at t =
√
2, the two limit

functions separate,

lim
ε→0

lim
µ↓0

qε(t) = qµ=0
0 (t) 6= qµ↓00 (t) = lim

µ↓0
lim
ε→0

qε(t), t >
√
2.

Thus, if we consider the simultaneous limit by taking an ε-dependent sequence µ(ε) ↓
0, the resulting limit solution q0 would depend on how the limit initial velocity

lim
ε→0

q̇ε(0) = lim
ε→0

(0, µ(ε)) = (0, 0)

is obtained. This is in sharp contrast to the assertion of Theorem 1, showing the
necessity of hypothesis (H3)—even for the principal structure of the result. The
situation here is even worse: By continuity we may obtain as the limit value of qε(t)
at time t >

√
2 any value q̃ with

qµ=0
0 (t) ≤ q̃ ≤ qµ↓00 (t).

One only has to choose the sequence µ(ε) accordingly. In a way, the limit dynamics is

thus described by the funnel between the two extreme cases qµ=0
0 and qµ↓00 . Figure 5.1

illustrates the situation.
The appearance of such funnels as the limit set of certain singularly perturbed

problems has been discovered by Takens in his work [21] on Hamiltonian systems
with a strong constraining potential. With regard to this work we speak of Takens-
chaos, cf. [8].

Proof of Lemma 5.1. The Born-Oppenheimer equation (5.1) belongs to the La-
grangian

L = 1
2
|q̇|2 − |q| = 1

2
ṙ2 + 1

2
r2ϕ̇2 − r.

Thus, Eq. (5.1) transforms into polar coordinates as the set of Euler-Lagrange equa-
tions

r̈ = rϕ̇2 − 1,
d

dt
(r2ϕ̇) = 0.

The corresponding initial values are given by r(0) = 1, ϕ(0) = 0, ṙ(0) = 0, and
ϕ̇(0) = µ. Along the solution there is conservation of energy,

E = 1
2
ṙ2 + 1

2
r2ϕ̇2 + r = α2 + 1, α =

µ√
2
.

Using this and eliminating the cyclic variable ϕ yields

ṙ2 = − 2

r2
(

r3 − (1 + α2)r2 + α2
)

=
2

r2
(1− r)(r − r+)(r − r−),(5.2)

with

r± =
α2

2
±
√

α4

4
+ α2.

Because of r2ϕ̇ ≡ µ > 0 we always have r > 0 and ϕ̇ > 0. Thus, the local extrema of
r(t), given at ṙ = 0, are rmin = r+ and rmax = 1. In particular, we obtain

0 < α < r+ ≤ r(t) ≤ 1.
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Fig. 5.1. Illustration (q1 vs. t) of the sensitivity on µ and ε, indicating

Takens-chaos: (a) the two different limit solutions q
µ=0

0
and qµ↓0, (b) the

limit solution q
µ=0

0
(solid line) and the QCMD–solution for ε = 0.05 and

µ = 0.1 (dashed line), (c) the limit solution for ε → 0 with µ = 0.1 (solid
line) and the QCMD–solution for ε = 0.005 and µ = 0.1 (dashed line), (d)
the funnel of possible limits for ε → 0, µ → 0.

It remains to show that 0 ≤ ϕ(t) < 3π/2 for 0 ≤ t ≤ 2
√
2. Since the motion is periodic

and ϕ is monotonely increasing, it suffices to compute the period T of the motion and
the angular difference ∆ϕ = ϕ(T ) − ϕ(0) during that period. Using Eq. (5.2), we
obtain

T = 2

1
∫

r+

dr

ṙ
=
√
2

1
∫

r+

r dr
√

(1− r)(r − r+)(r − r−)
.

Correspondingly, we obtain

∆ϕ = 2

1
∫

r+

ϕ̇ dr

ṙ
= 2

1
∫

r+

αdr

r
√

(1− r)(r − r+)(r − r−)

= 2

1
∫

r+

α
√
z dz

r+
√

(1− z)(1− zr−/r+)(z − r+)
.
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In the limit α→ 0, these elliptic integrals can be evaluated explicitly:

T →
√
2

∫ 1

0

dr√
1− r

= 2
√
2, ∆ϕ → 2

∫ 1

0

dz√
1− z2

= π.

By continuity, these results readily imply the assertion for µ =
√
2α being small

enough.
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