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Abstract
Transparent boundary conditions for polygonal

two-dimensional domains based on the pole condi-
tion approach are presented. The discretization of
the exterior is done by infinite trapezoids, which al-
lows to define a generalized distance variable. Taking
the Laplace transform of the solution w.r.t the dis-
tance variable, incoming and outgoing solutions can
be distinguished by the location of the singularities.
Using special ansatz and test functions, the condi-
tion on the location of the singularities yields a new
algorithmic realization of transparent boundary con-
ditions.

Introduction
For the simulation of wave propagation phenomena

on unbounded domains it is common to introduce
an artificial boundary. At this boundary transparent
boundary conditions have to be specified.

In [1] we have presented the pole condition ap-
proach for a class of one-dimensional test problems.
Here we show how to extend this ansatz to the two-
dimensional case, with an artificial boundary enclos-
ing a convex polygonal computational domain.

Our treatment of the boundary is based on the
pole condition developed by F. Schmidt [2] in the
early 90s. The algorithmic realization of the pole
condition in [1] yields local and efficient transparent
boundary conditions. In numerical experiments spec-
tral convergence in the number of auxiliary boundary
values is observed.

1 Problem class
We consider

p(∂t)u = ∆u+ d · ∇u− k2u, on R2, t > 0, (1)

where p(∂t) = i∂t (Schrödinger equation), p(∂t) = ∂t

(heat/drift diffusion equation) or p(∂t) = ∂2
t (Klein-

Gordon equation), with appropriate initial values.
The restriction to two space dimensions is not essen-
tial. All what is required is a coordinate that mea-
sures the distance to the artificial boundary.

2 Exterior discretization
Suppose that the computational domain is en-

closed by a polygonal convex artificial boundary.
The exterior is then discretized by infinite trapezoids
in such a way that there is a globally continuous
parametrization of the distance variable ξ, i.e. for
fixed ξ0 the line at distance ξ0 must be a closed curve,
c.f. Fig. 1.

Figure 1: Interior discretization by triangles and
exterior discretization by semi-infinite trapezoids.

By a bilinear map B each trapezoid is mapped to
the unit infinite half-strip [0, 1]×[0,∞]. In variational
form the Laplace operator is transformed to∫

trapezoid
∇u·∇φdx =

∫ 1

0

∫ ∞
0

J−T∇u·J−T∇φ|J |dξ dŷ

and the mass matrix is∫
trapezoid

uφdx =
∫ 1

0

∫ ∞
0

uφ|J |dξ dŷ

where J is the Jacobian matrix of B, |J | the deter-
minant of J , and φ is a test function. Choosing

φs(ŷ, ξ) = φ(ŷ) exp(−sξ)

for some complex parameter −s, the integral over ξ
yields the Laplace transform U(s, t) of the solution
u(ξ, ŷ) with respect to the distance variable. As J is
linear in ξ and η each term in the stiffness and mass
matrix can be transformed to the Laplace domain.

3 Pole condition
The pole condition states that a solution is out-

going if its Laplace transform U(s, y, t) with respect



to the distance variable is holomorphic in some half-
plane. The choice of this half-plane depends on the
type of equation. Details may be found in [1]. To
turn the pole condition into an elegant and useful al-
gorithm, a Möbius transform is used that maps the
half-plane of the complex plane, where U(s, ŷ, t) is
analytic, onto the unit disc. Thus in the Möbius
transformed coordinate

s̃ =
s+ s0
s− s0

U(s̃, ŷ, t) is a holomorphic function on the unit disc,
which can be approximated by the following power-
series expansion

U(s̃, ŷ, t) = (s̃−1)
(u(x0, ŷ)

2s0
+(s̃−1)

∑
n≥0

an(ŷ, t)s̃ n
)
.

Here u(x0, ŷ) is the Dirichlet boundary value of the
interior solution at the artificial boundary. This way
U(s) has the correct behavior for large arguments s.
It holds true that

lim
s→∞

sU(s) = u(x0, ŷ)

if u(x0, ŷ) exists. Truncating the series expansion
and matching moments equations for the coefficients
an(ŷ, t) can be deduced. The complex parameter s0
defines the half-plane where U is holomorphic. An
alternative way to obtain governing equations for the
an(ŷ, t) is discussed in [3].

4 Numerical example
Consider the Schrödinger equation

4i∂tu = ∆u; 0 < t < 3

on the square [−4, 4]× [−4, 4] with initial data given
by two Gaußian wave-packets traveling to the east
boundary and the south-west corner, that hit the
boundary at time t ≈ 0.5 The parameter s0 = −1−i.
Space discretization is done by finite elements of de-
gree 3. Time discretization is done by the trape-
zoidal rule. Fig. 2 shows the evolution of the l2-error
measured against the analytic reference solution for
various numbers of expansion coefficients L.

Fig 3 shows the convergence in the number of ex-
pansion coefficients at different times t. This exper-
iment indicates super algebraic convergence in the
number of modes, as was already observed in the
one-dimensional case [1].

Figure 2: Evolution of the error

Figure 3: Convergence in the number Hardy
modes.
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