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Abstract

In many applications one is interested in finding a simplified model which captures the essential

dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approxi-

mately) memoryless then a reasonable choice for a model is a Markov model whose parameters are

estimated by means of Bayesian inference from an observed time series. We propose an efficient

Monte Carlo Markov Chain framework to assess the uncertainty of the Markov model and related

observables. The derived Gibbs sampler allows for sampling distributions of transition matrices

subject to reversibility and/or sparsity constraints. The performance of the suggested sampling

scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of

functions of the Markov model under investigation is discussed in application to the identification

of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+).
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I. INTRODUCTION

Markov processes provide an elegant way to model important physical properties of (espe-

cially stochastic) real-world processes such as equilibrium distributions and non-equilibrium

fluctuations, effective dynamics, or reversibility.

Recent years have seen the advance of so-called Markov state models (MSM) as low-

dimensional models for ergodic Markov processes on very large, mostly continuous state

spaces exhibiting metastable dynamics [1–4]. Recently the interest in MSMs has drastically

increased since it could be demonstrated that MSMs can be constructed even for very high

dimensional systems [3] and have been especially useful for modeling the interesting slow

dynamics of biomolecules [5–10] and materials [11] (there under the name ”kinetic Monte

Carlo”). Metastable dynamics means that one can subdivide state space into metastable

sets in which the system remains for long periods of time before it exits quickly to another

metastable set; here the words ”long” and ”quickly” mainly state that the typical residence

time has to be much longer than the typical transition time so that the jump process between

the metastable sets is approximately Markovian. An MSM then just describes the Markov

process that jumps between the sets with the aggregated statistics of the original process.

Mathematically, a MSM is characterized by its so-called transfer operators {T (t)}, t ≥ 0

describing the evolution of the Markov model in state space. Since the state space of a MSM

is finite, say {1, . . . , n}, the family of transfer operators is given by the family of n×n transfer

matrices, whose entry Tij(t) denotes the conditional transition probability from state i to

state j in time t, for example. As usual within the Markov process framework, reversibility

is captured by the detailed balance condition expressing that the probability fluxes between

states of the equilibrated process are balanced.

In real-world applications, the transfer operator T (τ) for some timescale τ of interest

typically is not available since the underlying dynamical process is high dimensional and

nonlinear and its transition probabilities are only implicitly given by a time series {Xkτ , k =

0, 1, . . . , N} of observables with respect to a fixed observation time lag τ . Provided that the

time series is memoryless, the parameters/entries of the matrix T (τ) are estimated from the

time series by means of Bayesian inference. Typically, the observation time series allows to

approximate the transition probabilities only. The approximation errors originate from, e.g.,

the finiteness of the time series, or the incompleteness of the observations. Classical results
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on a priori estimation of such errors are quite old [12]; they state that the error decays like

1/
√

N asymptotically, i.e., for all N larger than some unknown large N0, in analogy to the

central limit theorem. However, N0 cannot be characterized which makes a priori estimators

rather useless in application to metastable processes (where N0 typically is extremely large).

Therefore, it is of great importance to predict the a posteriori statistical uncertainty of the

transfer operator and, moreover, the uncertainty of functions or observables of the transfer

operator like eigenfunctions, eigenvalues, correlation functions, etc.

Recently, several approaches have been introduced to a posteriori uncertainty analysis of

sampling the transfer matrix of finite, homogeneous, discrete-time Markov chains or jump

processes [5, 13–15]. The purpose of this article is to develop a new Monte Carlo Markov

chain (MCMC) approach which is a natural extension of the approach in [15]. The approach

is based on a Gibbs sampler allowing us to efficiently sample from the distribution of transfer

matrices which corresponds to a given observation. Based on the resulting ensemble of

transition matrices we will demonstrate the assessment of the uncertainty of functions of

Markov chains, e.g., the spectrum and, more important, metastable subsets in state space.

Moreover we will show that it is important for the a posteriori analysis of uncertainty

to take into account the sparsity structure of the given observation. To this end, we will

introduce a new prior which is based on a penalty ansatz and allows to model the preservation

of the sparsity structure of the transition matrices. The effect of that prior on the ensemble

of transition matrices and observables will be discussed on simple examples. Furthermore,

the effect of preserving the sparsity of the observation along with ensuring reversibility

of transition matrix ensemble will be demonstrated on an example arising from molecular

dynamics. In particular, we will show that the uncertainty analysis admits a systematic way

to detect and characterize transition regions between molecular conformations which may

help to understand conformation dynamics of biomolecular systems.

The article is organized as follows. In Section II, the necessary notation is introduced

as well as the framework of Bayesian statistics for Markov chains. Section III contains the

derivation of the Gibbs sampler approach to be proposed. Various numerical experiments

on model examples are presented and discussed in Section IV which also includes the results

of the uncertainty analysis of the identification of the trialanine dipeptide molecule. We

conclude by a brief discussion of the results in Section V.
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II. BAYESIAN STATISTICS FOR MARKOV CHAINS

A. Markov chains

A Markov chain {Xn}, n = 0, 1, 2, . . . is a discrete time stochastic process on a finite

state space, say S, such that the Markov property holds true, i.e.,

P[Xn+1 = j|Xn = i, Xn−1, . . . , X0] = P[Xn+1 = j|Xn = i], n = 0, 1, 2, . . . (1)

A probability distribution (µi), i ∈ S with P[X0 = i] = µi is called initial distribution. A

Markov chain is said to be time homogeneous if the right hand side in (1) does not depend

on the time, i.e.,

P[Xn+1 = j|Xn = i, Xn−1, . . . , X0] = P[X1 = j|X0 = i], n = 0, 1, 2, . . . (2)

Consequently, a time homogeneous Markov chain is uniquely described by its transition

matrix (Tij), i, j ∈ S,

Tij
def
= P[X1 = j|X0 = i] i, j ∈ S, (3)

and an initial distribution (µi), i ∈ S. By definition, a transition matrix T is stochastic, i.e.,

T ∈ T
def
=

{

T = (Tij)i,j∈S : Tij ∈ [0, 1],
∑

k∈S

Tik = 1 ∀i, j ∈ S

}

(4)

and an entry of Tij is the conditional probability that the chain makes a transition from

i to j. An initial distribution π which satisfies π†T = π† is called stationary distribution.

Throughout the paper † denotes the transposition operator. From now on we only consider

time homogeneous Markov chains.

An important class of Markov chains is the class of time-reversible chains. A Markov

chain is said to be (time-)reversible if the chain evolving forward in time is statistically

indistinguishable from the chain evolving backwards in time. Formally, reversibility holds if

the chain satisfies the detailed balance condition,

πiTij = πjTji, ∀i, j ∈ S, (5)

with respect to a strict positive probability distribution (πi), i ∈ S. Particularly, a proba-

bility distribution π satisfying (5) is unique and stationary.
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B. Bayesian statistics for Markov chains

The probability to observe a sample path (realization) Y = (X0 = y0, . . . , XN = yN) of a

given Markov chain (T, µ) is

P[Y |T, µ] = µ(y0)
N−1
∏

k=0

Tyk ,yk+1
= µ(y0)

∏

i,j∈S

T
Cij

ij ,

where the transition count matrix (Cij) i, j ∈ S is entry wise defined as

Cij
def
=

N−1
∑

k=0

δyk,i × δyk+1,j .

In this paper we are interested in the opposite question: what is the probability P (T |Y )

that a particular transition matrix T has generated the observed data? By virtue of the

Bayesian Theorem it follows that the posterior probability P (T |Y ) is given by

P (T |Y ) =
P (Y |T )P (T )

P (Y )
, (6)

where P (Y |T ) is the likelihood function, P (T ) is the prior probability of transition matri-

ces and the normalization factor P (Y ) =
∫

T
P (Y |T )P (T )dT is called the evidence. The

likelihood takes the form

P (Y |T ) =
N−1
∏

k=0

Tyk,yk+1
=
∏

i,j∈S

T
Cij

ij . (7)

The prior probability of transition matrices, P (T ), reflects knowledge or reasonable assump-

tions on the set of all transition matrices before observing any data. The natural candidate

for the Markov chain which explains or fits a given observation best is the maximizer of the

posterior and formally given by

T ∗ = argmaxT∈TP (Y |T )P (T ). (8)

The matrix T ∗ is called the maximum posterior estimator. Whenever we refer to the uncer-

tainty of the inferred model we mean the uncertainty of the posterior probability distribution.

a. Uniform prior. The uniform prior is a reasonable choice if no knowledge on T is

available at all. For that choice the posterior in (6) is proportional to

P (T |C) =
∏

i,j∈S

T
Cij

ij , (9)

5



where we use the notation P (T |C) instead of P (T |Y ) since all the required information

concerning Y is contained in the transition count matrix C, see Eq. (7). Note that P (T |C)

is not normalized as given which is not necessary as the Gibbs-sampler derived in this article

does not depend on the evidence P (Y ). However, P (T |C) is in principal normalizable due

to its polynomial form with non-negative exponents Cij . To remind us of this fact let us

instead use the notation

pC(T )
def
=
∏

i,j∈S

T
Cij

ij , (10)

where pC(T ) can be seen as a non-normalized probability density function (PDF) of the

posterior. The maximum posterior estimator coincides with the unique maximum likelihood

estimator, i.e,

T ∗
ij =

Cij

Ci

Ci =
∑

k∈S

Cik. (11)

It is worth to note that the PDF in (10) is proportional to the product of m independent

multivariate Dirichlet distributions, i.e.,

pC(T ) ∝
m
∏

i=1

Dir(Ti1, . . . , Tim; Ci1 + 1, . . . , Cim + 1). (12)

Due to that relation we will henceforth refer to the non-normalized posterior in (10) as the

Dirichlet posterior.

Example II.1. In a first example we illustrate the PDF pC(T ) in (10) on a 2-state Markov

chain. Let the matrix C, given by

C =





5 2

3 10



 , (13)

be the frequency matrix associated with a fictitious finite observation Y . Let T ∈ R
2×2 be

a stochastic matrix, i.e.,

T =





T11 T12

T21 T22





with Tij ≥ 0, 1 ≤ i, j ≤ 2 and Ti1 + Ti2 = 1, i = 1, 2. The non-normalized PDF pC(T )

associated with the observation in (13) takes the form:

pC(T ) = pC(T11, T12, T21, T22) = T 5
11T

2
12T

3
21T

10
22 .
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Figure 1: (Color online)Left: Probability distribution of 2x2 transition probability matrices for

the observation given in (13). The resulting PDF, pC(T11, T22) = T 5
11(1 − T11)

2(1 − T22)
3T 10

22 , is

shown in terms of the diagonal matrix elements. Right: The PDF pC′(T11, T22) with C ′ = 10C is

illustrated. The color (gray scale) encodes the probability density; the darker the color the higher

the probability.

Exploiting the stochasticity of T , pC(T ) can be written as

pC(T ) = pC(T11, T22) = T 5
11(1 − T11)

2(1 − T22)
3T 10

22 , T11, T22 ∈ [0, 1].

The left panel in Figure 1 illustrates the transition matrix density function pC(T11, T22).

Next, we are interested in how the uncertainty of the transition matrix ensemble changes

when we consider a longer (fictitious) observation. Intuitively, we expect that the uncertainty

decreases because more knowledge of the underlying chain is available. This is indeed the

case as one can see in the right panel of Figure 1; the broadness or variance of the distribution

pC′(T11, T22) with C ′ = 10C is significantly smaller than the variance of pC(T11, T22).

b. Penalty prior. In many applications, the lack of observation of a transition between

states does not necessarily imply that this transition can not in principle occur. Conversely,

for instance in molecular dynamics certain transitions between configuration of a molecule

can never happen due to the diffusive character of the underlying dynamics. That observa-

tion reflects the inverse problem behind inferring model parameters from a finite observation.

The problem becomes even clearer by looking at the maximum likelihood estimator T ∗ asso-

ciated with a sparse frequency matrix C. Equation (11) shows that T ∗ preserves the sparse
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structure of C, i.e.,

Cij > 0 ⇔ T ∗
ij > 0.

However, a transition matrix which is drawn from the uniform posterior is in general not

sparse. The non-preservation of the sparse structure can significantly affect the distribution

of observables as demonstrated in the following example.

Example II.2. Let the matrix C, given by

C =











1 100 0

99 0 1

0 0 1











, (14)

be the frequency matrix of a fictitious observation of a three state Markov chain. Consider

the maximum likelihood estimator T ∗ and a specific perturbation Tǫ of it,

T ∗ =











0.0099 0.9900 0

0.99 0 0.01

0 0 1











and Tǫ =











0.0099 0.9900 0

0.99 0 0.01

0 ǫ 1 − ǫ











. (15)

Starting in the first state, the chain T ∗ frequently jumps between state one and state two

before it eventually gets absorbed in the third state. Therefore, the stationary distribution

is given by π∗ = (0, 0, 1). However, the perturbed chain Tǫ is irreducible for all ǫ ∈ (0, 1] and

possesses a strictly positive stationary distribution π(ǫ). The graph in Figure 2 shows π3(ǫ)

as a function of ǫ. It is apparent that even a small perturbation causes a large deviation of

π3(ǫ) from π∗
3 = 1.

Another important observable of a stochastic matrix is its spectrum. Let λ1(ǫ), λ2(ǫ), λ3(ǫ)

be the eigenvalues of the perturbed matrix Tǫ ordered such that

1 = λ1(ǫ) > |λ2(ǫ)| ≥ |λ3(ǫ)|. (16)

The eigenvalue λ2(ǫ) is called the first nontrivial eigenvalue of Tǫ and provides insight in

the slowest time scale of the Markov chain. One can see in the right panel of Figure 2

that a small perturbation ǫ > 0.01 leads to a sign switch of λ2(ǫ) which in turn indicates a

significant change in the dynamics of the chain.

The example was supposed to show that even a perturbation of the occupation structure of

T ∗ in a single entry leads to large perturbation of observables with respect to their maximum
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Figure 2: (Color online)The non-preservation of the sparse structure of an observation can signifi-

cantly affect the distribution of observables. The panels show two observables associated with the

perturbed transition matrix Tǫ given in (15) as a function of the perturbation ǫ, respectively. Left:

Stationary probability π3(ǫ). Right: The first non-trivial eigenvalue λ2(ǫ).

likelihood representative. Moreover, we will demonstrate in a numerical experiment (see

Sect. IVB) that the non-preservation of the occupation structure of T ∗ might result in

misleading observables’ distributions. Therefore, it is desirable to suppress or rather exclude

unobserved transitions from being sampled. A reasonable way to achieve that is to deploy

a tailored prior.

Noé et al. suggested in [5] a prior which reflects the belief that a transition matrix

entry Tij is less important if no transition from i to j has been observed. Here we give an

alternative construction of such a prior which is based on a penalty ansatz. The construction

is motivated by the following aspects:

1. The prior P (T ) should only depend on transition probabilities which corresponds to

non-observations, i.e.,

P (T ) = P (Tl1m1
, . . . , Tlkmk

)

with

Tl·,m·
∈ I0

def
= {(i, j) : Cij = 0}. (17)

2. The prior P (T ) should penalize any non-zero transition probability Tij , (i, j) ∈ I0

uniformly. In other words, P (T ) should penalize the undesirable transition probability

mass
∑

(i,j)∈I0
Tij rather than a specific Tij , (i, j) ∈ I0.
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3. The prior P (T ) should exhibit the property that the less the undesirable transition

probability mass of T the more likely the corresponding transition matrix T should

be, i.e.,
∑

(i,j)∈I0

Tij <
∑

(i,j)∈I0

T̃ij ⇒ P (T ) > P (T̃ ).

4. The prior P (T ) = P (T ; M) should depend on a parameter M which allows us to scale

the effect of the prior. In particular, we require for a fixed T ∈ T with
∑

(i,j)∈I0
Tij > 0

P (T ; M1) < P (T ; M2) ∀M1 > M2 ≥ 1.

A prior which satisfies these four requirements is given in

Definition II.3. For an arbitrary but fixed M ≥ 1 we define the prior as

P (T ; M) =



1 − κ−1
∑

(i,j)∈I0

Tij





M

, (18)

where κ is the number of states which exhibit a non-observed transition to any other states,

i.e.,

κ =











|{i ∈ [m] : ∃j ∈ [m] with Cij = 0}| if |I0| > 0,

1 otherwise.
(19)

The penalty prior in (18) is non-normalized but in principal normalizable due to its

polynomial form. The factor κ−1 ensures that P (T ; M) ∈ [0, 1]. Consequently, we get for

any fixed T ∈ T

lim
M→∞

P (T ; M) = χR(T ), (20)

where χR is the indicator function on the set

R
def
= {T ∈ T :

∑

(i,j)∈I0

Tij = 0} ⊂ T. (21)

The set R consists of all transition matrices which preserve the occupation structure of the

frequency matrix C. The indicator function χR is normalizable on R, and, hence, can be

employed as the uniform prior restricted to R.

In Section IVB we will demonstrate and discuss the effect of the penalty prior on observ-

ables’ distributions.
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C. Sampling

Monte Carlo strategies, in particular Monte Carlo Markov Chain (MCMC) methods,

provide a powerful framework for sampling high-dimensional probability distributions. The

idea behind an MCMC method is to construct a reversible Markov Chain on the high-

dimensional sampling space such that its stationary distribution coincides with the target

probability distribution. To be more precise, let f : R
n 7→ R denote the probability density

function (PDF) of the distribution we want to sample from and suppose xC ∈ R
n is the

current state. In the proposal step a new state xN ∈ R
n is generated with probability

q(xC, xN ). In the acceptance step the proposed state is accepted with probability

pAcc = min

{

1,
f(xN )q(xN , xC)

f(xC)q(xC , xN )

}

.

If the new state is accepted, then xN is added to the ensemble and the scheme restarts with

xN as the current state. Otherwise, the current state xC is added to the ensemble and is

considered again in the next iteration of the scheme.

The Gibbs sampler is a special kind of MCMC method. It was introduces by Geman

and Geman [16] in the context of image restoration and has been applied in a wide range of

applications. The key feature of the Gibbs sampler is that the Markov chain, i.e. the proposal

step, is designed such that every generated (proposed) state is accepted. Specifically, the

proposal step is constructed by using the univariate conditional probability density functions

f(·|x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n associated with the target PDF f : R
n 7→ R.

For the sake of notational simplicity we introduce the notation [N ] = {1, . . . , N}
and, whenever it is clear from the context, [−i] refers to the set [·] \ {i}, e.g., x[−i] =

(x1, . . . , xi−1, xi+1, . . . , xn).

Throughout this paper when we speak of a Gibbs sampler, we are actually referring to

an implementation of an iterative scheme described as follows. Let x(s) = (x
(s)
1 , . . . , x

(s)
n ) be

the current sample in the s-th iteration step. The (s + 1)-th iteration step comprises the

following steps:

1. Uniformly randomly draw a coordinate i from the set {1, . . . , n}.

2. Draw x
(s+1)
i according to the conditional probability density function

f(·|x(s)
[−i]) = f(·|x(s)

1 , . . . , x
(s)
i−1, x

(s)
i+1, . . . , x

(s)
n )

11



and leave the remaining components unchanged, i.e.,

x
(s+1)
[−i] = x

(s)
[−i].

The described sampling scheme generates a dependent sample from the distribution given

by its PDF f(x). For alternative sampling strategies in the flavor of the described scheme

and a discussion on convergence see, e.g., [17].

Now the natural question arises why to prefer the Gibbs scheme over a MCMC scheme

based, e.g., on purely uniformly drawn states (transition matrices) as described in [15]? The

extra merits come from the observation that the latter scheme is not very efficient because

it often exhibits low acceptance rates. The proposed Gibbs sampler, however, accepts every

proposed state and our numerical experiments (see Section IV) show that this results in a

more efficient sampling in terms of a faster convergence.

D. Uncertainty of observables

Observables of a transition matrix are important to describe and to analyze the essential

dynamics of the Markov chain. For example, the spectrum, i.e. the eigenvalues and eigen-

vectors, allows for a decomposition of the state space into metastable sets and, hence, leads

to a reduced and simplified description of the slowest processes within the Markov chain.

As we will explain in more detail in Section IVC1, conformations of a biomolecule are iden-

tified by metastable sets computed from the spectrum of the maximum likelihood estimator

T ∗. Therefore, it is important to assess the reliability of the resulting conformations for the

further analysis.

Formally, an observable associated with a transition matrix T is expressed as a function,

say g(T ). In general, g depends nonlinearly on the transition matrix which entails two

consequences. First, the observable g might not attain its global maximum in T ∗ due to

several local maxima or, even worse, g might not attain any local maximum in T ∗ at all.

Hence, the identification of those scenarios is of great importance as the further analysis of

the system under consideration via g(T ∗) would lead to misleading results and conclusions.

The Gibbs sampler presented in the previous section provides an algorithmic framework to

uncertainty analysis of observables of Markov chains. In particular, it allows for the detection

of the above described misleading scenarios. The algorithmic proceeding is straightforward.
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In the first step, a sufficiently large ensemble of transition matrices is generated distributed

according to the posterior probability distribution associated with the given time series.

That ensemble in turn induces an ensemble of observables whose uncertainty can then be

analyzed in a post-processing step.

III. METHOD

In this section we derive a Gibbs sampling scheme to sample from the posterior distri-

bution resulting from the penalty prior in (18). The main result will be a Gibbs sampler

which preserves reversibility.

A. Penalized Dirichlet posterior

The posterior’s PDF resulting from the penalty prior takes the form

pC,M(T ) =
m
∏

i,j=1

T
Cij

ij



1 − κ−1
∑

(i′,j′)∈I0

Ti′j′





M

(22)

subject to

T ∈ T =

{

T = (Tij)i,j∈[m] : Tij ∈ [0, 1],

m
∑

k=1

Tik = 1 ∀i, j ∈ [m]

}

with κ being independent of T (see Eq. (19)) and I0 defined in (17). The main problem in

deriving a MCMC scheme for drawing from (22) is to ensure the stochastic property of any

proposal matrix T ; beside of being entry wise non-negative, T has to satisfy the constraints

m
∑

j=1

Tij = 1 ∀i ∈ [m]. (23)

Here the key idea is to explicitly insert the constraints in the posterior. In order to keep the

resulting univariate conditional probability density functions (CPDFs) as simple as possible

we make the substitution

T̃i,si
= 1 −

∑

z∈[−si]

Tiz ∀i ∈ [m]

with si = min{j ∈ [m] : Cij > 0}. To derive the (non-normalized) conditional distribution

f(x|T[−(k,l)]) with respect to an entry Tkl we proceed by collecting all factors involving Tkl.
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We finally end up with the following formula for the conditional probability density functions

(CPDF)

f(x|T[−(k,l)]) =











xCkl(r1(Tkl) − x)Cksk (r2(Tkl) − x)M if (k, l) ∈ I0,

xCkl(r1(Tkl) − x)Cksk otherwise,
(24)

subject to x ∈ [0, r1(Tkl)] with

r1(Tkl) = 1 −
∑

z∈[−{l,sk}]

Tkz,

r2(Tkl) = κ −
∑

(i′,j′)∈I0\{(k,l)}

Ti′j′.

We end this paragraph with two remarks. First note that for M = 0 the penalized Dirichlet

posterior reduces to the posterior resulting from the uniform prior. Furthermore, the log-

CPDFs decompose into a sum of a concave functions, respectively. For example, for (k, l) ∈
I0 we have

log
(

f(x|T[−(k,l)])
)

= Ckl log(x) + Cksk
log(r1(Tkl) − x) + M log(r2(Tkl) − x). (25)

The concavity of the log-CPDFs is essential for the efficient drawing of univariate random

variables from the CPDF because it allows for a simple construction of an envelope function

which is needed in the rejection-framework for sampling univariate random variables.

B. Reversible case

The main result of this paper is a Gibbs-sampling scheme which allows us to sample

reversible transition matrices distributed according to the posterior (10). The scheme is

based on results in [15] where we exploit the fact that if K ∈ R
m×m is a symmetric and

non-negative matrix then the transition matrix T ∈ R
m×m element wise defined by

Tij =
Kij

∑

j Kij

is a reversible transition matrix with respect to the probability distribution

π =

(

∑m

j=1 K1j
∑m

i,j=1 Kij

, . . . ,

∑m

j=1 Kmj
∑m

i,j=1 Kij

)

.
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Additionally, to ensure strict positivity of π we assume that Ki =
∑m

j=1 Kij > 0, i =

1, . . . , m. This transformation maps K-matrices to transition matrices and can be formally

stated as the function:

u(K)
def
=

(

K11

K1
, . . . ,

Kmm

Km

)

∈ T (26)

such that T = u(K). The entries of a (symmetric) non-negative matrix K can be interpreted

as fictitious transitions counts between states. Furthermore, the matrix T = u(K) can be

seen as the maximum likelihood estimator associated with these transition counts.

The crucial idea is now to generate an ensemble of symmetrical count matrices Ksym ⊂
R

m2

+ via a Gibbs procedure which is distributed according to the PDF pC(T ). To be more

precise, we derive a Gibbs procedure to sample symmetrical count matrices distributed

according to

p̃C(K)
def
= pC(u(K)) = Πm

i,j=1

(

Kij
∑m

k=1 Kik

)Cij

. (27)

It is shown in the Appendix (see also [15]) that if Ksym is restricted on the set

Ksym =

{

K ∈ Rm2

+ : Kij = Kji ∀i, j ∈ [m], k− ≤
m
∑

i,j=1

Kij ≤ k+

}

, (28)

with 0 < k− < k+ < ∞ then the ensemble of reversible transition matrices T = {u(K) :

K ∈ Ksym} is distributed according to pC(T ).

For the derivation of the CPDFs associated with the likelihood function in (27) we proceed

analogously as in Section IIIA and finally get

f(x|T[−(k,l)]) =







x(Ckl+Clk) (rk + x)−Ck (rl + x)−Cl if k 6= l,

xCkl (rk + x)−Ck otherwise,
(29)

where ri =
∑

z∈[−{l}] Kiz and, e.g., Ci =
∑m

z=1 Ciz. The constraint in (28) confines the CPDF

in (29) on the finite interval

[a, b] =







0.5
[

max
{

k− − S(k,l), 0
}

, k+ − S(k,l)

]

if k 6= l,
[

max
{

k− − S(k,k), 0
}

, k+ − S(k,k)

]

otherwise,
(30)

with S(k,l) =
∑

(i,j)∈[−{(k,l),(l,k)}] Kij .

IV. NUMERICAL EXPERIMENTS

In this section we demonstrate our Gibbs sampler derived in the previous section on

various examples. The purpose of the first example is to explain the need for the restriction

15



of the transition matrix ensemble to transition matrices preserving the occupation structure

of the given observation. Furthermore, we comment in detail on the choice of sampling

parameters, e.g. the burn-in time and thinning step, and we compare the efficiency and the

speed of convergence of the Gibbs sampler with the MCMC method presented in [15].

The focus of the remaining section is on sampling of reversible transition matrices. Partic-

ularly, we will investigate the uncertainty in the identification of conformations of a molecule

computed via the Perron Cluster Cluster Analysis (PCCA+) scheme [2, 18, 19].

But before starting with the first example, let us comment on some computational aspects

of the Gibbs sampler and on sampling parameters as well as on tests for convergence of the

sampling scheme.

A. Computational aspects and choice of sampling parameters

Numerically, sampling of a high dimensional PDF via a Gibbs sampler boils down to

sampling from univariate probability distributions which can efficiently be performed by

standard methods, e.g., adaptive rejection sampling (ARS) [20], adaptive rejection metropo-

lis sampling [21]. Throughout our numerical experiments, we used the concave con-

vex adaptive rejection sampling method (CCARS) [22] since all resulting log-CPDFs, e.g.

log[f(x|T[−(k,l)])], are decomposable into sums of concave and convex functions. The crucial

idea behind CCARS is to exploit this property of the log-CPDFs in order to adaptively con-

struct an envelop function which is needed in the acceptance-rejection algorithm for drawing

from univariate random variables. Another important feature of the acceptance-rejection

algorithm, particularly of CCARS, is that the PDF to be sampled from does not have to be

normalized.

Next, we comment on our choice for the sampling parameters. In order to ensure uncor-

related samples we actually start storing samples after a certain burn-in time. Moreover,

rather than storing every updated sample we took every nth sample where we used the thumb

rule n ≈ m2 with m being the number of states.

For testing on convergence, we employed Gelman and Rubin’s convergence diagnostic [23].

We considered a transition matrix ensemble T to be converged when all entries Tij are

converged indicated by their potential scale factor [24] R̂(Tij) being close to one, respectively.
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To be more precise, we stopped sampling when the following criterion was fulfilled

R(T )
def
= max

i,j∈[m]
{|1 − R̂(Tij)|} << 1. (31)

B. Effect of the penalty prior

In the first numerical example we study the effect of the penalized Dirichlet posterior

in (22) on the transition matrix ensemble which arises from a fictitious observation of a

three state Markov chain. To this end we re-visit Example II.2 and consider the frequency

matrix given in (14). In particular, we are interested in the distribution of the stationary

probability of state 3, π3, and the distribution of the first nontrivial eigenvalue λ2 as a

function of the penalty exponent M .

For a sequence of penalty exponents M = (0, 100, 1000, 10000), we generated by means of

our Gibbs sampler scheme an ensemble of 106 3×3 transition matrices distributed according

to the penalized Dirichlet posterior in (22), respectively. We did not enforce reversibility of

the transition matrices. The distributions of the observables mentioned above are depicted

in Figure 3. The left panel shows the distributions of π3. For the sake of illustration

we normalized the distributions of π3 (left panel) such that their maximum value is one,

respectively. Recall that the third state in the maximum likelihood chain associated with

the observation in (14) is an absorbing state with stationary distribution π∗
3 = 1. As already

pointed out in Example II.2, the distribution of π3, more precisely its mean value, resulting

from the uniform prior (M = 0) is far away from one. In other words, a transition matrix

with stationary probability distribution (0, 0, 1) is extremely unlikely in the ensemble of

dense transition matrices distributed according to the Dirichlet posterior in (10). However,

one can see that increasing M results in a right shift of the distribution towards π∗
3 = 1. The

distribution of the first nontrivial eigenvalue as a function of the penalty exponent exhibits

the same behavior (see the right panel of Figure 3). The decrease of the average undesirable

probability mass with increasing M , <
∑

(i,j)∈I0
Tij >, is depicted in Figure 4.

These observations support the idea that preserving the occupation structure of the fre-

quency matrix C is essential for the assessment of the uncertainty of observables. Thus the

next natural question is how to choose the penalty exponent M in applications? Clearly, it

is desirable to choose the actual value of M in an automatic way since M is an additional

parameter and in turn introduces additional uncertainty into the model. In fact, our simple

17



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

π
3

D
is

tr
ib

ut
io

n 
π 3

 

 

M=0
M=100
M=1000
M=10000

0.85 0.9 0.95 1
0

20

40

60

80

|λ
2
|

D
is

tr
ib

ut
io

n 
|λ

2|

 

 

M=0
M=100
M=1000
M=10000
|λ∗

2
|≈ 0.995

Figure 3: (Color online)Distributions of observables resulting from a sampling of the posterior

in (22) associated with the frequency matrix in (14). The left panel shows the distribution of the

stationary probability of the third (absorbing) state π3. For the sake of illustration, we normalized

the distributions of π3 such that the maximum value is one, respectively. The right panel shows

the distribution of the modulus of the first nontrivial eigenvalue |λ2|. Furthermore, the panels

show the distributions’ dependence on the penalty exponent M : the larger is M the more shifted

the distributions are towards the values π∗
3 = 1 and |λ∗

2| ≈ 0.995 resulting from the maximum

likelihood estimator T ∗ associated with (14).

example from above as well as the real-world application to be discussed in Section IVC1

have shown that the higher the value of M is the higher the statistical weight of the maxi-

mum likelihood estimator T ∗ within the ensemble of transition matrices TM . Consequently,

choosing M = ∞, i.e., applying the restricted uniform prior introduced in (20), seems a

reasonable choice (and will be applied in further numerical experiments in Section IVC1

below). Finally note that from a more formal point of view the penalty prior provides a

mathematically consistent justification for considering the restricted uniform prior since it

shows that the restricted uniform prior results from a limit process of normalizable priors.

C. Reversible Markov chains

In this section we are interested in distributions of observables arising from ensembles

of reversible transition matrices, i.e. transition matrices which fulfill the detailed balance

condition in (5). We will first discuss the effect of reversibility on the distribution of the
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Figure 4: (Color online)The figure shows the double logarithmic plot of the average of undesirable

transition probability mass, <
∑

(i,j)∈I0
Tij >, as a function of the penalty parameter M . The

respective averages were computed by sampling the posterior in (22) associated with the frequency

matrix in (14). The double logarithmic plot reveals that the undesirable transition probability

mass decreases proportionally to M−1.

transition matrix ensemble itself. Furthermore, we will compare the convergence of the Gibbs

sampler with that of the MCMC method introduced in [15] as well as the computational

effort of both methods in terms of the running time. The main result will be the numerical

investigation of the uncertainty in the identification of conformations of the biomolecule

trialanine.

c. Two-state Markov chain. Even in the simplest case - a two-state Markov chain -

enforcing reversibility substantially affects the transition matrix ensemble. To demonstrate

that effect we generated an ensemble of 2 × 2 reversible transition matrices based on the

frequency matrix given in (13) (cf. Example II.1). The distributions of the diagonal entries

T11 and T22 are depicted in Figure 5 together with the distributions arising from the unre-

stricted ensemble. For the sake of illustration we normalized the distributions such that their

maximum value is one, respectively. One can clearly see that the distributions significantly

differ. The deviation can be explained by the fact that not every 2 × 2 Markov chain is

automatically reversible. For example, a transition matrix of the form





α 1 − α

0 1



 (32)
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Figure 5: (Color online)Restricting the transition matrix ensemble to reversible transition matrices

significantly affects distributions of observables. In the panels, we illustrate the distributions of

the diagonal entry T11 (left) and T22 (right) based on the frequency matrix given in (13). The

reversible ensemble (dashed lines) clearly differs from the unrestricted ensemble (solid line).

with α ∈ [0, 1] is not reversible since its stationary distribution, π = (0, 1), is not strictly

positive and, consequently, the off-diagonal entries cannot be recovered via the detailed

balance condition (cf. Eq. (5)).

d. Three-state Markov chain. Next, we study the speed of convergence of our method

and compare it to the MCMC method introduced in [15]. To this end we consider the

frequency matrix C given by

C =











1 10 2

2 26 3

15 20 20











, (33)

and generate two ensembles of 3 × 3 reversible transition matrices; one ensemble with the

Gibbs sampler and the second one with the MCMC sampler. Both ensembles have the same

size (107 transition matrices) and we used the same boundary parameters (k− = 0.9, k+ =

100) as well as the same sampling parameters including the same initial matrix.

To assess the speed of convergence of both methods, we evaluate the function R(TN)

introduced in (31) for a nested sequence of sub-ensembles {TN}, N = 103, . . . , 107, respec-

tively. The double logarithmic plot of R(TN ) (left panel in Figure 6) based on the Gibbs-

and MCMC ensemble reveals that the Gibbs sampler converges approximately one order of

magnitude faster than the MCMC sampler. However, the price for the faster convergence is
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Figure 6: (Color online)Left: The evaluation of the function R(TN ) (see Eq. (31)) for a nested

sequence of reversible ensembles {TN}, N = 103, . . . , 107 indicates that the Gibbs sampler converges

approximately one order of magnitude faster than the MCMC sampler. Right: Running time of

the Gibbs sampler and the MCMC sampler. For details see text.

an approximately one order of magnitude longer running time than the MCMC scheme (see

right panel in Figure 6). The increased running time is due to the fact that in each proposal

step of the Gibbs sampler a univariate and non-uniform density has to be sampled whereas

in the MCMC proposal step the updated entry is uniformly distributed.

1. Molecular Dynamics : Trialanine

Molecular dynamics is a reversible process Xt with positive invariant measure µ given by

the Boltzmann distribution. For every spacial discretization of the molecule’s state space S
into n disjoint sets B1, . . . , Bn, ∪iBi = S the transition matrix

Tij = Pµ[Xτ ∈ Bi|X0 ∈ Bj]

is reversible with respect to the coarse grained measure µ(Bi) =
∫

Bi
µ(x)dx. In applications,

however, we can only approximate the transition matrix Tij based on finite observations

of the chain. The resulting approximate transition matrices (e.g., the maximum likelihood

estimator based on the observations) usually do not fulfill the detailed balance condition

because, e.g., the transition count matrix associated with the observation in general is not

symmetric.

21



Figure 7: (Color online)The figure shows the ball-and-stick representation of the trialanine dipep-

tide analog. The torsion angles Φ and Ψ have been proven to be the right order parameter to

describe the conformation dynamics.

In this example we study the uncertainty in the identification of conformations of the

trialanine molecule which is shown in ball-and-stick representation in Figure 7. The process

is implicitly given by a time series of two torsion angles Φ and Ψ. For the analysis of

transition pathways between the conformations of the trialanine molecule based on the time

series used herein see [25, 26]. This is a realistic application of our uncertainty estimation

technique; we are however not mainly interested in new physical insights into the molecule’s

properties but in a validation of our technique and in a demonstration of how it can be

applied.

The time series of trialanine was generated in vacuum using the Hybrid Monte Carlo

method [27] with 544.500 steps with GROMACS force field [28, 29] at a temperature of

750K. The integration of the sub-trajectories of the proposal step were realized with τ = 1

fs time steps of the Verlet integration scheme. The top panel of Figure 8 shows the projection

of the time series (all atomic positions) onto the torsion angle space spanned by Φ and Ψ.

Here, the torsion angle space (Φ, Ψ) ∈ [0 360] × [−180 180] is discretized into 30 × 30

equidistantly sized boxes. Since not all boxes are visited by the time series we ended up

with an 447 state Markov chain associated with a 447 × 447 frequency matrix C. For the

sake of illustration we depict in the right bottom panel of Figure 8 the discrete free energy,

− log π∗
i , associated with the stationary distribution of the maximum likelihood chain T ∗.

The brightness of a box encodes the probability to encounter the chain; The lighter the color

the more probable to encounter the process in that box.

a. Robust Perron Cluster Analysis (PCCA+). PCCA+ is an algorithm which can be

used to identify metastable subsets of a reversible Markov chain T . The clustering of the

states of the Markov chain is done in terms of a membership matrix χ(i, x), where i is the

index of molecular states and x = 1, . . . , m, is the index of a metastable (fuzzy) subset. The
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Figure 8: (Color online)In this figure we exemplify our strategy to capture the essential dynamics

of a bio-molecule in a coarse grained model. The top panel shows the projection of the time

series (all atomic positions) onto the torsion angle space spanned by Φ and Ψ, which reveals the

metastable behavior. Left bottom: The Ramachandran plot of the torsion angle time series. At

first glance, trialanine attains three different conformations indicated by the three clusters. Right

bottom: The discrete free energy, − log π∗, associated with the stationary distribution π∗ of the

Markov chain T ∗ which models the effective dynamics of the system in terms of the torsion angles

Φ and Ψ. The chain was constructed from the underlying time series with respect to a 30 × 30

box discretization of the torsion angle space. The lighter the color of a box the more probable to

encounter the process in that box.

matrix element χ(i, x) ∈ [0, 1] denotes the grade of membership of state i to the metastable

subset x where χ(i, x) close to 1 indicates a unique assignment of state i to cluster x and

close to 0 a unique non-assignment. Conversely, if χ(i, x) is not near 1 or 0 then state i

can not be assigned uniquely to one of the metastable subsets x. If all states are assigned
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λ1 λ2 λ3 λ4

1 9.9599 · 10−1 9.9576 · 10−1 9.1248 · 10−1

Table I: The first four dominant eigenvalues of T ∗(C ′). The spectral gap between the third and

the fourth eigenvalue indicates an optimal decomposition of the state space into three metastable

subsets as illustrated in Figure 9

(almost) uniquely, we call the membership function ”hard”.

In PCCA+ the columns of the matrix χ are computed as linear combinations of the m

dominant eigenvectors of the transition matrix T under investigation. This linear transfor-

mation is done in such a way that the row sums of χ are 1 (partition of unity) and that the

entries of χ are non-negative. Since there are many feasible linear transformations, PCCA+

identifies one optimal transformation with regard to an objective function [19, 30, 31]. In

our example, we maximize the metastability, more precisely, we maximize the sum of the

diagonal elements of the Markov chain T .

b. Uncertainty in conformations’ identification. The frequency matrix C associated

with a given observation of a reversible process is in general not symmetric and, thus, it is

not guaranteed that the maximum likelihood estimator chain T ∗(C) fulfills the prerequisite of

PCCA+, i.e., real-valued eigenvalues and eigenvectors. In practice, it is common to analyze

the reversible maximum likelihood estimator chain T ∗(C ′) arising from the symmetrized

frequency matrix C ′ = C + C† where C† is the transpose of C.

The first four eigenvalues of T ∗(C ′) (for the torsion angle time series) are given in Tab. I.

The gap between the second and third eigenvalue of T ∗(C ′) indicates an optimal decompo-

sition of the state space into three metastable sets. In the remainder of the section we will

study the uncertainty of the identification of three metastable sets.

In order to obtain a hard membership function χ(i), i ∈ S, it is common to assign a state

i to the cluster with maximal affiliation probability, i.e.,

χH(i)
def
= argmaxx∈{1,2,3}χ(i, x), (34)

where χ(i, x) is the membership function resulting from PCCA+. For an illustration of χH(·)
for T ∗(C ′) see the left panel of Figure 9. Note that the assignment in (34) does not depend

on the actual maximum value. Consequently, in the worst case, i.e. χ(i, 1) ≈ χ(i, 2) ≈
χ(i, 3) ≈ 1/3, the assignment would be meaningless. To capture these cases we considered
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Figure 9: (Color online)Left: Decomposition of the state space of the torsion angle space into

three metastable sets via PCCA+ based on the maximum likelihood estimator T ∗(C ′) associated

with symmetrized frequency matrix C ′ = C + C†. Boxes (states) with the same color (gray scale)

belong to the same metastable set (conformation). Right: Decomposition of the state space via the

regularized hard assignment in (35) with respect to the regularity parameter γ = 0.9. The states

corresponding to “empty” boxes could not be assigned to any metastable set at all.

a regularized assignment,

χH(i; γ)
def
=











argmaxx∈{1,2,3}χ(i, x) if maxx∈{1,2,3} χ(i, x) > γ,

“mark as non-assigned” otherwise,
(35)

where the threshold γ ∈ [0, 1] can be interpreted as a regularity parameter for the assignment.

Using the parameter γ = 0.9, the decomposition of T ∗(C ′) based on χH(i; γ) as shown in the

right panel of Figure 9 suggests the following interesting interpretation: the three clusters

(indicated by different colors) are core metastable subsets whereas the non-assigned states

(indicated by empty boxes) form a transition region through which the transitions between

the core clusters happen. Now the obvious question arises of how reliable the decomposition

is when based on the maximum likelihood estimator T ∗(C ′)? More precisely: what is the

uncertainty of the identification of the core cluster and the transition region?

For the numerical investigation of the uncertainty we proceed analogously as in the pre-

vious sections. We generated an ensemble TRev of 500.000 reversible transition matrices

(k− = 0.9, k+ = 10000) restricted on the set specified in (36). Next, we computed for all

T ∈ TRev via PCCA+ the membership matrix χ(T ) = (χ(i, x)),∈ i ∈ S, x ∈ {1, 2, 3} with
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χ(i, x) being the grade of membership that state i belongs to cluster x. Based on landmarks,

i.e. distinctive states in each of the three clusters associated with T ∗(C ′), we ensured that,

e.g., cluster x = 1 always corresponds to the reference metastable set M1 associated with

T ∗(C ′).

Before we describe the numerical experiment in more detail, we shall comment on how

we restricted the sampling on reversible transition matrices while preserving the occupation

structure of the underlying time series. At the first glance it seems reasonable to generate

an ensemble of reversible transition matrices based on the symmetrized frequency matrix

C ′. Doing so, however, would lead to a biased ensemble because C ′ does not reflect the

given observation. Sampling with respect to the ”true” frequency matrix C poses another

problem. In the previous section we have seen that preserving the occupation structure of

the frequency matrix is necessary to obtain meaningful distributions of observables. On

the other hand, sampling reversible transition matrices amounts to sampling symmetric

frequency matrices. However, in general and, particularly in this example, the occupation

structure of a frequency matrix C is not symmetric, i.e.

∃(i, j) : Cij > 0, Cji = 0.

The minimal compromise between preserving the occupation structure and symmetry is

sampling the PDF in (27) subject to

K ∈ Ksym ∩ {K ∈ R
m×m : Kij = 0 if Cij = Cji = 0}. (36)

Based on the resulting ensemble TRev of 500.000 of reversible transition matrices and with the

assignment based on (35) at hand, we computed from the ensemble of membership matrices

{χ(T ) : T ∈ TRev} the assignment/non-assignment histograms of the states by counting how

often a state i is assigned to a cluster x and how often i is not assigned at all. Finally,

from these histograms we derived the conditional probability distributions px(i), i ∈ S with

px(i) is the probability of a state i being assigned to cluster x conditional on being in cluster

x. Analogously, we derived the distribution p−(i), i ∈ S with respect to the non-assigned

states.

In Figure 10 we illustrate p1, p2 and p3 for γ = 0.9. First of all, comparing these distribu-

tions, one can see that the majority of states either are always assigned to the same cluster

or are not assigned to any cluster at all. Thus, the uncertainty of the regularized assignment
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Figure 10: (Color online)Conditional probability distributions px(i), i ∈ S with px(i) is the prob-

ability of a state i being assigned to cluster x conditional on being in cluster x. Top left: Cluster

x = 3. Top right: cluster x = 2. Bottom: Cluster x = 1. All distributions are computed via

PCCA+ and the regularized assignment function in (35) for γ = 0.9. The underlying ensemble

TRev consists of 500.000 reversible transition matrices.

for γ = 0.9 is small. However, the uncertainty of the identification of the core clusters is

quite high which becomes obvious by comparing, e.g., the core clusters x = 3 associated

with T ∗(C ′) (see right panel in Figure 9) with the corresponding distribution p3. Roughly

spoken, the lower third of the core cluster x = 3 is not assigned to any cluster at all in the

ensemble TRev (cf. Figure 11). Consequently, the decomposition based on the maximum

likelihood estimator T ∗(C ′) would be misleading.

c. Conformational switching process Beside indicating uncertainty, the distributions

p1, p2, p3 and p− or, more precisely, the corresponding histograms allow for an accurate char-

acterization of core and transition clusters. To show that, the torsion angle state space is
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Figure 11: (Color online)Conditional probability distributions p−(i), i ∈ S with p−(i) is the

probability of state i being not assigned to any cluster conditional on being not assigned to any

cluster at all.

decomposed by applying the hard assignment function in (34) with respect to the member-

ship function resulting from the assignment/non-assignment histograms. More formally, a

state i is assigned to a cluster x ∈ {1, . . . , 4} if i was most frequently assigned to cluster

x with respect to the ensemble TRev whereby the cluster x = 4 represents the case “non-

assigned at all”. The resulting four clusters are illustrated in the left panel of Figure 12.

It remains to justify that the above described procedure leads to a meaningful decom-

position into core metastable subsets dynamical connected via a transition region. To this

end, we consider the Markov switching process between the four clusters represented by the

maximum likelihood estimator T ∗(Ĉ) with Ĉ ∈ R
4×4 being the frequency matrix computed

from the torsion angle time series. The associated transition graph, schematically illustrated

in the right panel of Figure 12, reveals the claimed character of the cluster; all transitions

between the strongly metastable core clusters x = 1, x = 2 and x = 3 happen via the (weak

metastable) fourth cluster x = 4. Therefore, the fourth cluster (the non-assignment cluster)

can be interpreted as a transition cluster.

V. CONCLUSION

We have presented an efficient scheme for sampling posterior probability distributions of

transition matrices. The scheme has been derived for uncertainty analysis of Markov state
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Figure 12: (Color online)Left: Decomposition of the torsion angle space into four clusters which

is based on the hard assignment (34) with respect to the assignment/non-assignment histograms.

Right: Transition matrix T ∗(Ĉ) of the switching process between the four clusters. The cluster

in the center (x = 4) can be interpreted as a transition region as the switching process between

the upper clusters (x = 3), the left cluster (x = 2) and the lower cluster (x = 1) only happens via

cluster x = 4.

models (MSM) estimated from time series. Its performance has been illustrated on a variety

of toy examples.

The main novelty is the penalty prior that has been introduced to account for the need to

preserve the sparsity of the observations. The strength of the believe that transition matrix

entries are less important if no transitions between the respective involved states have been

observed yet is expressed by an additional scaling (penalty) parameter M . In the limit

M → ∞ the penalty prior reduces to the uniform prior restricted to the set of observed

transitions.

We proposed a Gibbs sampler based scheme for sampling the resulting posterior distri-

bution of transfer operators / transition matrices. This scheme allows for incorporation of

additional constraints. In particular, we have discussed how to perform efficient sampling

of the posterior for reversible transition matrices since this constraint is essential in the

construction of MSMs for equilibrium molecular dynamics. Instead of ensuring reversibility

by means of the detailed balance condition, the proposed Gibbs sampler acts on positive

symmetric matrices which naturally lead to reversible transition matrices by normalizing

the rows. Based on [15], we have rigorously demonstrated that the involved transformation
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leads to the right posterior distribution.

The proposed approach has been applied to an example arising from molecular dynamics

where we have analyzed the uncertainty of the identification of conformations of the tri-

alanine molecule via the Robust Perron Cluster Analysis (PCCA+). To this end, we have

introduced a regularized affiliation function and, specifically, have demonstrated by means

of uncertainty analysis that the decomposition of the state space via PCCA+ based on the

maximum likelihood chain may yield misleading metastable sets. Moreover, we have high-

lighted that PCCA+ combined with uncertainty analysis provides a promising numerical

procedure to identify metastable core and transition sets.

Last but not least let us add a warning: The choice of a prior in Bayesian statistics allows

to incorporate a belief about probable and improbable results. Therefore comparisons of

Bayesian approaches using different priors are of limited use only. A specific choice of a prior

can and must be validated in application to realistic examples but one should always be aware

of the fact that for different realistic examples different priors can be superior. Particularly,

the choice of the penalty parameter M has carefully to be tested out by, e.g., varying M from

large to small values. Furthermore, the choice of M can change from problem to problem.

This article does not contain any such detailed comparisons between different priors; this

will have to be the topic of forthcoming contributions. This article’s main contribution lies in

making available a sparsity based prior, a corresponding sampler that allows to incorporate

reversibility, and in its validation in application to a typical realistic example.
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VI. APPENDIX

It remains to prove

Theorem .1. Let Ksym = {K ∈ Ksym} be an ensemble of symmetric count matrices dis-

tributed according to pC(u(K)). Then the ensemble T = {u(K) : K ∈ Ksym} of reversible
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transition matrices is distributed according to pC(T ), i.e.,

P[u(K) = T ] = c pC(T ) ∀T ∈ T ,

where c > 0 is a positive constant independent of the matrix T .

Proof. Formally, the statistical weight of a reversible transition matrix T ∈ {u(K) : K ∈
Ksym} is given by

P[u(K) = T ] =

∫

u−1(K)

pC(u(K)) dK. (37)

The key observation is that the set u−1(K) ⊂ Ksym can be parameterized as

u−1(K) = {α S},

where

S = diag(π1, . . . , πm)T

is a symmetric matrix, π = (πi), i = 1, . . . , m is the unique stationary distribution of T and

α ∈ [k−, k+].

To motivate the following transformation, note that for symmetric K the stationary

distribution of T = u(K) is simply given by

πi =

∑m
j=1 Kij

∑m

k,j=1 Kkj

and we conclude

πiTij =
Kij

∑m
k,l=1 Kkl

.

We change variables according to the transformation F :

K 7→ (α, S11, · · · , Sd,d−1)

with α =
∑m

k,l=1 Kkl and Sij =
Kij

α
. The inverse transformation F−1 reads

(α, S11, · · · , Sm,m−1) 7→ (K11, · · · , Kmm)

with Kij = α · Sij and Kmm = α − α
∑m

i=1

∑m−1
j=1 Sij. The right hand side in (37) with

respect to the new variables is given by

∫

{αS}

pC(u(K)) dK =

∫

F ({αS})

pC(u(F−1(x)))
∣

∣det(J(F−1(x)))
∣

∣ dx. (38)
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Let x = (α, S11, · · · , Sm,m−1) ∈ F ({αS}) then the first factor in (38) reduces to

pC(u(F−1(x))) = pC(T ). It remains to evaluate the Jacobian.

det J(F−1(x)) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S11 α 0 0 . . .

S12 0 α 0 . . .
...

...
. . .

. . .
...

Sm,m−1 0 . . . . . . α

1 −
∑m

i=1

∑m−1
j=1 Sij −α −α . . . −α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S11 α 0 0 . . .

S12 0 α 0 . . .
...

...
. . .

. . .
...

Sm,m−1 0 . . . . . . α

1 0 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(m2−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 . . . 0

S11 α 0 0 . . .

S12 0 α 0 . . .
...

...
. . .

. . .
...

Sm,m−1 0 . . . 0 α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(m2−1)α(m2−1).

Putting all together we have shown that (37) reduces to

∫

{αS}

pC(u(K)) dK =
(

(k+)m2−1 − (k−)m2−1
)

pC(T ),

where the factor (k+)m2−1 − (k−)m2−1 is independent of T .
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