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Abstract 

Statistical methods for analyzing large data sets of molecular con­
figurations within the chemical concept of molecular conformations are 
described. The strategies are based on dependencies between config­
urations of a molecular ensemble; the article concentrates on depen­
dencies induced by a) correlations between the molecular degrees of 
freedom, b) geometrical similarities of configurations, and c) dynam­
ical relations between subsets of configurations. The statistical tech­
nique realizing aspect a) is based on an approach suggested by AMADEI 

ET AL. (Proteins, 17 (1993)). It allows to identify essential degrees 
of freedom of a molecular system and is extended in order to deter 
mine single configurations as representatives for the crucial features 
related to these essential degrees of freedom. Aspects b) and c) are 
based on statistical cluster methods. They lead to a decomposition of 
the available simulation data into conformational ensembles or subsets 
with the property that all configurations in one of these subsets share 
a common chemical property. In contrast to the restriction to single 
representative conformations, conformational ensembles include infor 
mation about, e.g., structural flexibility or dynamical connectivity. 

The conceptual similarities and differences of the three approaches 
are discussed in detail and are illustrated by application to simulation 
data originating from a hybrid Monte Carlo sampling of a triribonu-
cleotide. 

K e y words , conformational ensemble, cluster method, structural and 
dynamical similarity, representative, conformation, essential degrees of free­
dom, transition states, cluster analysis, feature extraction. 

M a t h e m a t i c s subjec t classification. 6 5 U 0 5 , 62H30 . 

nt roduct ion 

A molecule can exist in an infinite number of spatial states, in the literature 
also known as configurations. Subsets of states can be identified as confor-
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mational ensembles, if all states within the subset share a common chemical 
property. However, often just a single state is refered to as a conformation, 
being a typical representative of the chemical property. In this article, we 
consider both aspects with the main emphasis lying on the ensemble aspect 
of conformations. 

Structurally meta-stable conformations belong to minima of the free en­
ergy landscape, which are expected to be nearly isoenergetic [15]. They 
could be identified experimentally, if the barriers between the minima en­
abled lifetimes of the states, which correspond to the time resolution of 
the experiment. Transitions between these conformations have been inves 
tigated theoretically; they can be described by a few collective interdomain 
motions, which correspond to low energy conformational changes [17, 20] 
Functionally active conformations can be characterized by their ability to 
initiate a process. They need neither to be structurally conserved in every 
atom position, nor necessarily occupy an energy minimum. Up to now, the 
lifetime of these conformations is generall below experimental resolution, 
but within the scope of simulations. 

Theoretical investigations of simulation data have contributed to the un­
derstanding of, e.g., conformational gating of buried active sites [30], binding 
of ligands to proteins [19], folding processes of proteins [9, 5] or the initial 
state of an enzymatic reaction [4]. These insights result from analyzing 
simulated time series below the nanosecond range, which are assumed to 
correspond to thermodynamical ensembles of the respective molecular sys 
tem. Although the simulation data are still not large enough to accurately 
reproduce configurational entropy or free energy, the classification in terms 
of conformational subsets may help to understand the structure-function 
relationship of biomolecules and allows to reduce the complexity without 
losing relevant information. 

Cluster methods are well established in many fields to discover the un­
known structure of complex data [2, 23]. In our context these methods can 
be used to decompose some large set of configuration data into disjoint con­
formational subsets with the property that configurations from one subset 
are structurally closer to each other than configurations from different sub­
sets. There are two classes of such structure based cluster methods: 1) Global 
methods directly handle the entire set of data; they are known from, e.g. 
clustering in large graphs via spectral information [22, 8] or from decompo­
sition techniques using multiple-center estimations of phase space distribu­
tions [26]. 2) Sequential methods handle the data set as a sequence and refine 
the decomposition iteratively; they are based on, e.g., non-hierarchical neu­
ral nets [25] or fuzzy clustering [18]. However, none of the structure based 
cluster methods takes into account any dynamical properties of the molecu­
lar system underlying the given set of configurations. That is, these methods 
do not allow to characterize the meta-stability of the conformational sub­
sets, e.g., their lifetimes or the rate of transitions between them. Damics 



based cluster techniques have been developed only recently [28]. Based on 
additional transition data, the set of configurations is decomposed into con­
formational subsets with respect to meta-stability minimizing the transition 
probabilities between them. 

In [1], Amadei et al. introduced the so-called essential dynamics tech­
niques tailored to identify essntial degrees of freedom of molecular systems 
based on simulation data. We will demonstrate in Sec. 2.1, how this tech­
nique can also be used as a tool for conformational analysis. In contrast to 
the cluster analysis tools discussed above, this approach yields single repr 

tative conformations rather than conformational subsets or ensembles. 
The primary concern of this article is to discuss and compare the struc­

ture based and dynamical based conformational subsets. To this end, two 
different cluster techniques and the representative analysis are considered 
in detail, at first conceptionally in Sec. 2 and then via application to the 
triribonucleotide adeny ly l (3 ' 5 ) cy t i dy ly l (3 ' 5cy t id in (r( in vacuum 

(chosen because of its structural flexibility) in Sec. 3. 
The required configuration and transition data were computed by means 

of a specific hybrid Monte Carlo method with adaptive temperature choice 
(ATHMC) [12], especially designed to overcome energy barriers. Based on 
the resulting data we observe some interesting and far-reaching similarities 
between dynamics and structure based conformational subsets but also sig­
nificant differences, e.g., situations in which configurations from different 
meta-stable conformational subsets are clustered together by the structure 
based method. 

ethods 

In classical MD a molecule is modeled by a Hamiltonian function 

H(q,p) = ^pTM-p + V{q 

where q (<7i,..., q^N) and p ( p , . . . ,PSN) are the corresponding posi 
tions and momenta of the atoms, M the diagonal mass matrix, and V 
differentiable potential. The formal solution with initial state qo </(0 
p0 p(p) is given by q(t) = q(t; qo,Po) and p(t) = p(t; qo,Po-

Most experiments on molecular systems are performed under the con­
ditions of constant temperature and volume. The distribution of the iden­
tically prepared systems is described by the stationary noncal dnsity 
associated with the Hamiltonian H 

{l,p) = 7? e x p ( - / 3 J ? ( g , p 

where Z denotes the partition sum, ß 1/kßT, with T being the system' 
temperature and Boltzmann's constant. Since H is separable, the 



canonical density decomposes into a product of a position density Q(q) de­
pending only on q and a momentum density P(p depending only on p, i e . 

(q,p) Q(q)P(p)-
Starting point for the methods presented below is a sampling of the posi 

tional part of the canonical density resulting in simulation data g ' 1 ) , . . . , q(s 

When using reweighted hybrid Monte Carlo methods, there is a weighting 
factor associated to each state q(k. To keep notation simple, we assume 
within this section the weighting factor being the same for all states. 

1 R e p r e s e n t a t i v e C o n f o r m a t i o n s 

Identifying representative conformations is based on a correlation analysis 
of the molecular degrees of freedom. Analysis of simulation data reveals 
that it is possible to divide the set of molecular degrees of freedom into two 
subsets: a subset of only a few "essential" degrees of freedom, in which an-
harmonic motion occurs that comprises most of the positional fluctuations, 
and the remaining degrees of freedom, in which the motion has a narrow 
Gaussian distribution and can be considered as "physically constrained" [1] 
This is in contrast to normal mode analysis [21], which is based on the shape 
of the potential energy function and is restricted to predict only harmonic 
vibrations. We determine essential degrees of freedom both in the Cartesian 
coordinate space following A M A D E I E T AL. 1] as well as in the space of 
torsion angles. 

Cartes ian coordinates . Since essential degrees of freedom should only 
reflect internal fluctuations of the molecule, we first eliminate the overall 
translational and rotational motion. This is done by a least squares transla-
tional and rotational fit of each configuration to an arbitrary chosen reference 
configuration. The results are fitted simulation data, which, for simplicity, 
we again denote by q^1',..., q(sK 

The correlation between atomic motions within the simulation data are 
expressed by the covariance matr i 

o ( q q k j ^ 3 N {q q)o{q q)q)Q 

where ()Q denotes the ensemble average, i e . 

q)Q = f ( q ) d (g 
Q 

Since C is symmetric, it can always be diagonalized. Let U denote the 
matrix, whose columns are the eigenvectors of C Then the transformed 
coordinates x (q § } are uncorrelated and 

o ( x X k i n = S N XX 



for a diagonal matrix A diag(Afc). If we choose the eigenvectors to be 
normalized with respect to the Euclidean norm (or equivalently, the ma­
trix U to be orthogonal), the eigenvalues are equal to the variance of the 
transformed coordinates, i.e., Var(a:fc) Xk for all k. 

Due to the last equality, the covariance matrix is connected to the sys 
tems constraints in the following way [1]: Transformed coordinates corre­
sponding to zero or nearly zero eigenvalues behave effectively as constraints; 
they have narrow Gaussian distributions with zero mean and do not con­
tr ibute significantly to the positional fluctuations. In contrast to that , t rans 
formed coordinates corresponding to large eigenvalues represent large posi 
tional deviations. Often, only a few coordinates see important fluctuations; 
these are called essential degrees of freedom. In practice, one has to specify 
a set of largest eigenvalues of which, often, can only be done heuristically. 

Torsion Ang le s . An alternative way to describe conformational changes 
is based on the set of torsion angles LO\ , . . . , U)M of the molecular system un­
der consideration. In order to analyze the simulation data in terms of these 
torsion angles we have to apply statistical methods for circular data [13, 14] 

The mean direction p,{ujk) of the torsion angle u and a corresponding 
circular deviation p{u) are defined by 

(uexp(iß(c exp(iu)Q and (t) = v - 2 1 o g ( ( w 

The value r(uk) is called the mean resultant length. To apply the analysis 
from above we choose the following definition of correlation between circular 
variables4 [ 3 , 

or(üujr 

(u - Lüm (c + u)m 

2 ( 2 W
2 ( 2 W 

and set Cov(wi,wm) = Cor(wj;, ujm)p{ujk)p(ujm). These definitions allow to 
apply the technique introduced above for simulation data u 1 ) , . . . , U(S be­
ing converted to torsion angles. 

The identification of representative conformations is based on the fol 
lowing idea. According to their distribution, essential degrees of freedom 
can roughly be divided into two groups: (1) broad Gaussian shaped and (2 
multiple peaked compounding of Gaussian like parts . Each Gaussian peak 
corresponds to a part of the configurational space with relevant weight 
ing factor and might be represented by a configuration associated with the 
maximum of the Gaussian peak. Thus, configurations associated with a 
combination of maxima of all essential degrees of freedom correspond to the 

4In contrast to the Cartesian coordinate case, there are different definions of corela­
tions between cicular data ( e e [24, 13] and re fences therein). 



most different states of the molecular system. In order to eliminate artifi­
cial combinations of maxima we associate to each combination a weighting 
factor being defined as the number of states that are within a predefined 
Euclidean distance to the maxima combination. We sort with respect to the 
weighting factors and neglect all combinations with zero weight; the repre­
sentative conformations are then defined as the states that are closest to the 
combination of maxima. 

ustering Methods 

In this section we present two different concepts to identify essential molec­
ular conformations. Although they are based on different aspects of the sim­
ulation data, both methods are grounded on the same idea: They exploit 
special properties of eigenvectors corresponding to so-called proximity 
matrix associated with the system. 

In order to introduce the identification methods consider the following 
setting: Given a set of data {d\,... ,ds}, e.g., single configurations or sets 
of configurations, and a proximity function p(di,dj) G [0,1] measuring the 
degree of association between two elements. In the case of the methods pre­
sented below, the proximity function measures either structural or dynamical 
relations. It is p(di,dj) « 1 for strongly related data and pdi dj) 0, if di 
and dj are only weakly related5 . 

We are interested in decomposing the set of da ta into disjoint clusters 
(conformations) C i , . . . , C c , such that each cluster d groups together re­
lated elements, while elements of different cluster are mostly unrelated. Let 
p(i,Cj) denote the proximity between the two clusters j defined by 

an appropriate average value of p(, d) for d G C\ and d G . Then we as 
for a decomposition into clusters , . . . , C , such that 

p( and p( i^j 1) 

In order to identify the clusters, both methods use a proximity matrix P 
(Pij) based on the proximity function p. The off-diagonal entries are given 
by p ( i , j , while the diagonal entries are different for either method. 

In view of Eq. 1 the clustering problem is equivalent to finding a per­
mutation of the d a t a , . . . , such that the permuted proximity matrix 
is as block-diagonal as possible, in the sense that the average value over 
off-blockdiagonal entries is much less than the corresponding blockdiagonal 
value. Since the problem of finding such a permutation is in practice un-
solvable (it is a so-called TVP-complete problem), the methods presented 
below pursue (different heuristics. However, both exploit eigenvectors of 
the proximity matrix. 

6We do not request symmety, ie . p(ddj) = p(dd) for all ij, for the proximit 
function. 



2.2. t ruc ture B a s e d onformat ions 

The structural method aims at classifying configurations according to their 
structural proximity or similarity. The set of configurations is partitioned 
into disjoint subsets with the property that two configurations in the same 
subset are in some sense structurally closer to each other than two config­
urations in different subsets. In the statistical literature, this problem is 
known as cluster analysis, i e . , the classification of a set of feature vectors 
by their intrinsic properties [23, 2, 8]. 

The measure of structural proximity should be invariant under rotations 
and translations. We thus choose to describe a configuration q not by the 
Cartesian positions of its atoms, but by its intra-molecular distances defin­
ing a symmetric n x n distance matrix6 D (q) = (D (q with 

(l i ,...,N. 

In the statistical literature, the distance matrix is known as feature vector. 
Since D is symmetric, it is sufficient to consider only the N(N—l)/2 different 
intra-molecular distances. With respect to the number of degrees of freedom, 
the set of different intra-molecular distances is still overdetermined, which 
allows to further reduce the distance matrix (see Sec. 3). 

The structural distance between two configurations q and q is defined as 
the distance of their distance matrices: 

d i s t ( g ) = N { N 1 ) £ ( A ( ? - D^2 

To transform the structural distance into proximity, we c h o o s 7 the 
function 

/ dist(g 
p(q, exp I  

with a suitably chosen constant c, which sets the preferred distance scale of 
the clusters. Distances much smaller than c are mapped to nearly complete 
similarity and will almost always form a cluster, while distances much larger 
than are mapped to nearly complete dissimilarity and will rarely form 

For sake of simplicity, we assume the components of a configuration q = (qi,.., q^N 
ordered in the way that ( q epresents respectively the x,y,z positions of the ith 
atom. 

7Their are other possible transformations, like e.g., p{q, q) = 1 — dist(g, q)/c or p(q, q) = 
1/(1 + dist(g,q)jc). However, our cluster algorithms performs best with the proximit 
function given above. 



cluster. The proximity between two clusters and is then defined as 

p(Cj) J2 PM (2 

qeC,qeC 

The identification of clusters or conformations is attacked hierarchically by 
gradually partitioning a cluster C into two subclusters C _ , C _ . Its basic 
idea is due to [10, 11, 2 2 : Let Xi be + if configuration q belongs to 
and if it belongs to C . Then 

p ( C + p ( 9 g ( x - X » ) 

\ E p ( ? 9 i E P ( ? 9 

J "Xj = T ( X ) - ^ X 

where ( , ) denotes the Euclidean inner product and P the proximity or 
Laplacian matri 

p ( g g , i f i  

X>(<A<(f ,if* 

The cluster problem is to minimize (x, P%) under the constraint that Xi = 
± 1 and not all x% a r e equal A similar minimality condition arises in diago-
nalizing a symmetric matrix: The eigenvector X corresponding to the lowest 
eigenvalue of the matrix minimizes (X, PX) under the constraint that X is 
normalized; the eigenvalue is equal to the value attained at the minimum. 
Higher eigenvectors minimize this quantity under the additional constraint 
of being orthogonal to all lower eigenvectors. 

By construction, the matrix P has a trivial lowest eigenvalue of zero 
corresponding to the constant eigenvector ( 1 , . . . , 1 ) The second lowest 
eigenvector X then represents a minimum of (X, PX) where X is orthog­
onal to the constant vector, i.e., has vanishing sum. It thus will consist of 
positive and negative (and possibly zero) entries. This differs from the origi 
nal constraint only in allowing non-integer (or zero) values. We can consider 
the second eigenvector as a heuristic approximation to the true solution of 



the discrete problem by mapping "continuous" entries to discrete values 
i = using a threshold t: 

XXi<  
i f X i > 

The threshold t is determined as the value at which the proximity p(C+, C ) 
of the two subclusters is minimized. In this way, the second-lowest eigen­
vector serves as a heuristic for determining the partitioning that must be 
considered in the minimization procedure. Instead of all partitions, the algo­
ri thm considers only those arising from thresholding the second eigenvector. 
This splitting procedure is repeated iteratively. 

Since the proximity of two clusters, as defined in Eq. 2, is not weighted 
by the size of the subclusters, it favors splitting off a subcluster containing 
only a single configuration8. One could include a suitable weighting factor 
in the definition of proximity, but this would destroy the connection to the 
eigenproblem of the Laplacian matrix, though it is still possible to use such 
a weighting factor when the threshold t is determined. However, splitting of 
single configurations only indicates that these configurations do not cluster 
very well. We found that after a few of these peripheral splits, there occur 
central splits that result in subclusters of comparable size. 

2.2.2 D y n a m c s B a s e d onformat ions 

The dynamics based clustering characterizes conformations in terms of me ta -
stability. The state space is partitioned into disjoint subsets (conformations) 
with the property that each subset is meta-stable with respect to fluctu­
ations within the canonical ensemble. Consequently, transitions between 
different subsets are rare events. In the first part , we introduce the dynam­
ics within the ensemble and how to approximate it; in the second part , we 
present a cluster method to identify meta-stable conformations. 

The distribution of molecular systems within the canonical ensemble does 
not change in time. However, there are fluctuations within the ensemble, 
since single systems evolve according to the Hamiltonian equation of motion. 
To capture the internal dynamics, we fix a time r and observe all single 
system fluctuations after the span r . A subset C C 0 is called invariant 
under the dynamics, if all systems being in C stay there after the time r . 
By definition, the whole configurational space is invariant. Furthermore, a 
subset is called almost invariant or meta-stable, if most of the systems 
stay in C after time r . 

In order to introduce the measure of dynamical proximity and there­
fore making the above characterization more precise we approximate the 

8I this case, there will only be S 1 t m s in (2), as opposed to 5 4 for a symmet i 
plit. 



fluctuations within the canonical ensemble. Based on the simulation data 
q1',..., q(s\ we choose for each configuration q(k a momentum p(k accord­
ing to the density P (see Sec. (2)) and integrate the Hamiltonian system for 
the time r . This results in new configurations (k q(;q(kp^ and 
transitions9 qW —» cfk\ 

For two subsets Cfrom, C t o , the dynamical proximity pT(Cfrom C t mea­
sures the relative frequency of transitions from Cfrom to C t 

no.(g(f C f r o m and ^ f C t 

P r o t o n C no.(q(k Ctl 
(3 

it can be interpreted as the conditional transition probability of being in 
Cfrom and changing to C t within the time T. We call a subset or confor 
mation C meta-stable, if pT(C,C) 1 and a transition a rare event, if 
PT(Cfrom, Cto) ~ 0. In contrast to the structure based method, the prox­
imity is defined for subsets of states rather than for single states. To solve 
the dynamics based cluster problem, i.e., to identify meta-stable conforma­
tions, we therefore discretize the state space into disjoint sets B\,...,Bd, 
e.g., boxes resulting from a grid defined by partitioning the Cartesian co­
ordinates or torsion angles into intervals, and seek out cluster that can be 
written in terms of these sets _Bj. At this point, we are in the situation of 
the general cluster problem presented in Sec. 2.2. Thus, in principle, ev­
ery cluster algorithm based on the discretization sets B\,..., B^ and the 
transition probabilities pT(Bi,Bj) could be applied to identify meta-stable 
conformations. In the following we present a cluster method that exploits 
the special structure of the transition probabilities and can be interpreted 
as the discretization of a continuous cluster problem (for details, see [28]). 

As for the structural method, the identification algorithm is based on a 
proximity or transition matri P (Py) , which is defined by the transition 
probabilities, Py pT(Bj,Bj). For the identification process, we exploit the 
following two properties of the transition matrix (for more details see [7]) 

The transition matrix is stochastic, i.e., its entries are non-negative 
and the sum of each row equals one. As a consequence, the con­
stant vector ( , . . . , 1) is an eigenvector corresponding to the eigenvalue 

2. The presence of meta-stable conformations corresponds to a bloc 
structure of the transition matrix (for a suitable permutation of the B 
and a splitting of the spectrum into a cluster of eigenvalues A i , . . . , Ac 

near 1 and the remaining part of the spectrum. The two spectral parts 
are separated by a gap. The number of meta-stable conformations, 
blocks in the transition matrix and eigenvalues near are equal 

9For better approximation resuls, choose momenta p^ p^ according to P. 
This results in m tansit ions qk) - k ) l k ) - k) 



It follows from perturbation analysis [7] that the eigenvectors \,..., 
corresponding to the cluster of eigenvalues near 1 are almost constant on 
each meta-sble conformation, i.e., if and B belong to the same confor 
mation, then Xk(Bi) Xh(Bj) for k = 1 , . . . , Furthermore, the c-tuple 
of eigenvector components associated with each 

Bi i (B,... , ( B 

is sufficient to identify the conformations in the case of weak coupling [7]. 
Each conformation is the collection of sets Bi with almost identical c-tuple. 
Thus, using the eigenvectors X\,... ,X we have incorporated the dynam­
ics by encoding the discretization sets Bi,...,Bd through c-tuples. The 
identification of conformations is reduced to clustering these c-tuples with 
respect to (geometrical) similarity. We have implemented an algorithm, 
which also copes with larger perturbations in the eigenvector components 
due to stronger coupling between the conformations. detailed description 
of the algorithm is given in 7] 

At the end of this section, we want to address the problem of how to 
choose the discretization sets B\,... ,B^. On the one hand, since we seek 
out dynamical conformations as unions of the B, the partitioning should 
be as fine as possible in order to allow "arbitrary shaped" conformations. 
On the other hand, a fine partitioning requires many states and transitions 
to accurately determine the transition probabilities in (3). We adopt the 
following strategy: Since conformational transitions should correspond to 
changes in the essential degrees of freedom, we define the discretization sets 
only in terms of these essential coordinates (see Sec. 2.1). Furthermore, we 
take only those essential degrees of freedom into account whose distributions 
are far from being broad Gaussian shaped. The distributions are partitioned 
into their Gaussian-like parts and the Bi are defined as collection of states 
that fit into a certain combination of these subdivisions. 

esults 

The approaches to identify representative, structure and dynamics based 
conformations were applied to the triribonucleotide adenylyl(3'-5)cytidylyl(3' 
5)cyt idin (r(ACC)) model system in vacuum (Fig. 4 . It consists of N — 7 
atoms, whose physical representation is based on the G R 6 extended 
atom force field [29] 

Sampl ing of the canonical density. The simulation data were gener 
ated by means of an ATHMC sampling of the canonical density at 300K. 
The subtrajectories of length 80fs (femtoseconds) were computed by means 
of the Verlet discretization with stepsize of 2fs. For these parameters, 



HMC simulations typically require thousands of iterations only to leave the 
neighborhood of the initial configuration. pplication of ATHMC (with 
adaptive temperatures between 300K and 400K) circumvents the problem 
one observes frequent transitions in the crucial torsion angles of the molecule 
(for details see [12]). The simulation was divided into 4 Markov chains, each 
starting with a different state chosen from a high temperature run at 500K, 
which allowed the molecule to move into different conformations. The sam­
pling took about 12h on a workstation with MIPS RIO.000 processor. It was 
terminated by a convergence indicator [ ] associated with the potential en­
ergy and all 37 torsion angles after 32.000 steps, resulting in the sampling 
sequence q1',... ,q(s. We have found slower convergence for the torsion 
angles of the terminal ribose. Since the temperature can change during the 
ATHMC run, each configuration is connected with a reweighting factor with 
respect to the canonical ensemble at 300K. 

Representa t ive conformat ions . For Cartesian coordinates and tor 
sion angles there are respectively five and four essential degrees of freedom. 
The transformation process for the torsion angles is exemplified in Fig. 1 and 
Fig. 2. Figure 1 (top,left) shows the circular deviations p of the transformed 
torsion angles in decreasing order of magnitude. Only the first four trans 
formed torsion angles have relevant circular deviation and are far from being 
Gaussian shaped (see Fig. 2 ) , while the remaining transformed torsion an­
gles are Gaussian like. On the top right part of Fig. 1 the first non-essential 
transformed torsion angle, which is the fifth in the sequence, is shown. The 
graphics at the bot tom part of Fig. 1 show the circular deviations of the 
original torsion angles (left in decreasing order and the distribution of the 
fifth torsion angle (right) in sequence. learl n o n - a u s s i a n distributions 
show about 10 of the 37 torsion angles. 

In order to identify representative conformations (R-conformations), we 
determine the maxima for each distribution of the essential torsion angles 
(see Fig. 2). These maxima have been grouped to 3 x 3 x 2 x 2 36 combina­
tions, each of them defining a theoretical, but not necessarily realized config­
uration of the molecule. From 15 maxima combinations with non-vanishing 
weight, we have selected two representative conformations to visualize char 
acteristic differences (Fig. 4 

Structure based conformat ions . Since for the current structural 
cluster algorithm the computational effort grows quadratically with the 
number of configurations, we have performed the algorithm based on a 
subensemble of 000 configurations out of the 32000 sampling configura­
tions.1 1 

10We scaled the tansformed tor ion angles such that the range is between 180 and 
180. 
"Th i s selection is realized randomly, taking the different statistical weights of the con­

figurations into account. Using a subensemble one is always in danger of loosing elevant 



0.06 

10 20 30 
transformed torsion angles 

10 20 30 
torsion angles 

0.0 

0.06 

0.0 

-100 0 100 
degrees 

-100 0 100 
degrees 

Figure 1: Top: circular deviation of the ansformed torsion angles ordered 
by magnitude (left and the distribution of the first non-essential torsion 
angle, which is the fifth angle in the sequence (right, see text) . Bottom 
circular deviation of the original torsion angles (left and the distribution of 
the fifth torsion angle (right 

As stated in Section 2.2.1 the set of intra-molecular distances is overde-
termined with respect to the number of degrees of freedom of a configura­
tion. In order to emphasize differences between conformations and suppress 
smaller statistical vibrations, we reduce the set of intra-molecular distances 
to those with largest statistical variance in the sampling. To make sure that 
the reduced distance matrix still describes the whole molecule, we have se­
lected pairs of atoms with largest variance such that each atom occurs 

information. Thus, it should be emphasized that the selection step is not necessary, e. 
one could also compute the required eigenvectors of the proximity matrix for the entir 
data set by applying subspace-oriented iterative eigenvalue solvers [6, 27]. However, in 
the case considered herein, the results to be presented do not depend sensitively on the 
length of the subensemble. 
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Figure 2: Distribution of the four essential torsion angles. The distributions 
at the top allow to identify three maxima each, while there are two maxima 
for each distribution at the bottom. 

three times in the pairs. 
The identification of clusters is performed hierarchically. Clusters are 

split into two subclusters according to the measure of similarity. During the 
process, many splits remove only a few data points from the parent cluster, 
i.e., the cluster from which the current cluster was split off, as our measure 
of proximity is inclined to do for combinatorial reasons. As a consequence, 
we consolidate the cluster hierarchy by removing all clusters that have fewer 
than ten data points. We characterize the clusters by the average distance 
of their members in comparison to the average distance of all data points or 
to the average distance in the father cluster. The latter measure indicates, 
in particular, good clustering properties. 

We use a multidimensional scaling plot (Fig. 6 and Fig. 7) to visualize 
clusters [3]. The 2d-plot shows a 2d least squares approximation of the 

0 dimensional configurational space in the sense that neighboring 



points correspond in general to structurally similar configurations, while 
distant points reflect in general structural differences. 

The structural clusters ( - c lus t e r s ) are shown in Fig. 6. On the top level 
of hierarchy, there are three well separated clusters S1&S2, S3&S4 and S5 
two of which can be split again giving a total of five clusters S I , . . . ,S5. The 
structural clustering took less than 4% of the computing time required for 
evaluation of the simulation data. 

D y n a m i c s based conformat ions . The dynamical fluctuations within 
the canonical ensemble were approximated by integrating four short trajec­
tories of length r = 80fs starting from each sampling point q1',... ,q(sK 
To facilitate transitions, analogous to the ATHMC sampling, the momenta 
were chosen according to the momenta distribution P(p) for 4 different tem­
peratures between 300- — 400K and reweighted afterwards. This resulted 
in a total of 4x32.000 128.000 transitions. This calculation took less than 

% of the total computing time. 
The configurational space was discretized into boxes Bi,..., B^ by means 

of all four essential degrees of freedom (see Fig. 2) resulting in d = 36 dis 
cretization boxes. Then the 36x36 transition matrix P was computed based 
on the 128.000 transitions taking the different weighting factors into account. 
Since every box had been hit by sufficiently many transitions, the statistical 
sampling was accepted to be reliable. The computation of the eigenvalues 
of P near yielded a cluster of eight eigenvalues with a significant gap to 
the remaining part of the spectrum 

A/ 1.000 0.999 0.989 0.974 0.963 0.946 0.933 0.904 0.805 

Finally, the dynamics based conformations (D-conformations) were com­
puted based on the corresponding eight eigenvectors of P via the cluster al 
gorithm presented in Section 2.2.2. We found eight D-conformations, which 
we have displayed in the multidimensional scaling plot based on structural 
proximity (Fig. 7). The clustering turned out to be rather insensitive to 
further refinements of the discretization. The weighting factors within the 
canonical ensemble and the meta-stabili ty pT(D7D of the eight identified 
conformations are given in the following table: 

conformations Die Dlt D2c D2t D3c D3t D4c D4t 
weighting factor 
meta-stability 

0.107 0.011 
0.986 0.938 

0.116 0.028 
0.961 0.888 

0.320 0.038 
0.991 0.949 

0.285 0.095 
0.981 0.962 

The transition probabilities between the different D-conformations are 
visualized schematically in Fig. 3. In the limit of infinitely many transi 
tions, the transition matrix should exploit a reversible, but not symmetric 
structure. Furthermore, the matrix allows to define a hierarchy between the 
clusters, which is inherent to the algorithm. On the top level, there are two 
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clusters, D1&D2 and D3&D4 corresponding to the two 4 x 4 blocks on the 
diagonal. On the next level, each of these clusters split up into two subclus 
ters yielding l , . . . ,D4. On the bot tom level, each cluster is further divided 
into a core (c) and a transition (t) part . The dynamical clustering took less 
than 2% of the computing time required for evaluation of the simulation 
data. 

Figure 3: Schematical visualization of the transition probabilities 
PT{Dirom Dto) between the dynamical conformation Dfrom (row) and Dto 

(column). The colors are chosen according to the logarithm of the corre­
sponding entries; blac pT , white: pT 0. 

Discussion 

Comparing dynamics and structure based conformations by means of Fig. 6 
and Fig. manifests the characteristics of each concept. The four confor 
mations S I , . . . ,S4 correspond to D l , . . . ,D4, while S5 is part of all four 
dynamical conformations. This is made more precise by the following table, 
which shows the percentage of S-conformations in D-conformations: 

D2 D3 D4 
000 000 000 000 

S2 000 000 000 000 
S3 000 000 99 00 
S4 000 000 000 000 
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The table indicates, that structural similarity and meta-stabili ty might co­
incide. However, a difference between the two concepts is given by the last 
row. While S5 is composed of structurally similar configurations, it is by 
no means meta-stable, being spread out all over the four D-conformations. 
This might indicate that S5 is a collection of transition states, which do not 
cluster due to their similarity among each other, but rather due to their 
structural difference to all other states. In the dynamical analysis, these 
transition states are grouped to those clusters, to which they fluctuate most 
likely. 

Fig. 4 shows two representative conformations with characteristic dif 
ferences, selected out of the 15 representative conformations with non-
vanishing weighting factor (see end of Sec. 2.1). Analyzing representative 
conformations in comparison to conformational ensembles, we have found, 
that the first six conformations with highest weights belong to the four dom­
inant dynamical clusters D l , . . . ,D4. Of course, with the described method 
we will expect to find more representative conformations than dynamical 
clusters. The combination of maxima in the distribution of transformed 
torsion angles actually indicates a possible discretization of the state space 
into relatively few boxes. Each meta-stable conformational ensemble is com­
posed of some of these boxes such that the number of conformational ensem­
bles should be less than (or at most equal to the number of representative 
conformations. 

The conformations in Fig. 4 belong to the clusters D2 and D3 and can be 
visually distinguished according to the orientation of the x angle around the 
first glycosidic bond and the conformation of the terminal ribose, indicated 
by the so called sugar pucker P. In order to analyze, whether the two 
R-conformations allow to represent the two dynamical conformations, we 
plotted the distributions of the x a n d one of the torsion angles (within 
the sugar pucker P) for the D2 and D3 conformation in comparison to 
all sampled states (Fig. 5). Obviously, the structural differences between 
the states in the conformational ensembles D2 and D3 can be described by 
differences in the ribose conformation and in the orientation of the adenine. 

Torsion angle fluctuations at terminal groups have only minor influence 
on the global structure of the molecule. However, they may influence the 
covariance analysis based on torsion angles and thus the essential degrees of 
freedom. There are two possible remedies. On the one hand, one can switch 
to a representation in Cartesian coordinates, but then the overall transla-
tional and rotational motion of the molecule have to be eliminated. On the 
other hand, one can exclude all torsion angles corresponding to terminal 
groups for the covariance analysis. We favor the latter approach, since the 
chemical intuition and the imagination of global changes are facilitated in 
the space of torsion angles. 

oncludi r e m a r s : It is intriguing to apply "data mining"-oriented 
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Figure 4: Two conformations of r ( A C ) . Left: The % angle around the first 
glycosidic bond is in anti position (175 . degrees and the terminal ribose 
pucker P is in (3')endo (2')exo conformation. Right: The x angle is in 
syn position 19 degrees and the terminal ribose in (2 ' endo (3 ' exo 
conformation. 

statistical techniques to large data sets originating from MD or MC sam­
plings of molecular ensembles. The idea of using cluster methods naturally 
leads to the concept of decomposing the data set into conformational en­
sembles or subsets, which can either be defined via their significant meta-
stability or via structural similarities between the molecular configurations 
contained. This clustering of configurations into conformational ensembles 
is clearly different from the concept of choosing single conformations as rep­
resentatives for common properties of a larger set of configurations. A few 
representative conformations allow a rough but fast examination of the state 
space, while the concept of conformational ensembles enables the investiga­
tion of structural conservation or meta-stability in the case of dynamical 
based methods. The latter approach can additionally be used to calculate 
transition rates between conformational ensembles and to locate transition 
states. 
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Figure 6: 2d plot of the five structure based conformations S I , . . . ,S5. 
The distinction between open and filled squares indicates a the splitting 

into subsets. 
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Figure 7: 2d plot of the four dynamical conformations D l , . . . ,D4 (squares) 
The distinction between open and filled squares indicates a further splitting 
into eight conformations resulting from a partition into core(c and a 
transition (t conformation. 
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