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There is a gap between kinetic experiment and simulation in their
views of the dynamics of complex biomolecular systems. Whereas
experiments typically reveal only a few readily discernible expo-
nential relaxations, simulations often indicate complex multistate
behavior. Here, a theoretical framework is presented that recon-
ciles these two approaches. The central concept is “dynamical
fingerprints” which contain peaks at the time scales of the dyna-
mical processes involved with amplitudes determined by the
experimental observable. Fingerprints can be generated from both
experimental and simulation data, and their comparison by match-
ing peaks permits assignment of structural changes present in the
simulation to experimentally observed relaxation processes. The
approach is applied here to a test case interpreting single molecule
fluorescence correlation spectroscopy experiments on a set of
fluorescent peptides with molecular dynamics simulations. The
peptides exhibit complex kinetics shown to be consistent with the
apparent simplicity of the experimental data. Moreover, the finger-
print approach can be used to design new experiments with site-
specific labels that optimally probe specific dynamical processes
in the molecule under investigation.

Biological processes rely on the ability of macromolecules such
as proteins and nucleic acids to dynamically change between
different functional conformational and association states. Exam-
ples are the folded, unfolded, and long-lived intermediates in
protein folding or apo, and complexed states in protein-ligand
binding (1, 2). These processes may involve a few states that
are distinct in terms of their signature under a given experimental
observation, and experimental analyses often allow only one or
two time scales to be distinguished (3, 4), suggesting simple two-
or three-state models are sufficient to describe their behavior. In
contrast, molecular dynamics (MD) simulations often reveal a
considerably more complex picture with multiple metastable
states and a multitude of relaxation times (5, 6). Theoretically,
the macroscopically detectable changes have been proposed to
arise from a stochastic walk on a rugged multidimensional energy
landscape (7), possibly involving a hierarchy of barriers, resulting
in a hierarchy of relaxation time scales (8), or, alternatively, a
jump process on a transition network between conformational
substates (5, 9, 10) for which a given structural change may in-
volve multiple pathways (6). For simple systems, these different
views—microscopic/theoretical and macroscopic/experimental—
can be reconciled. For example, a system with ideal two-state
kinetics has a single experimentally measurable relaxation time
scale, corresponding structurally to the crossing of the predomi-
nant energy barrier. However, such an unambiguous mapping has
not yet been established for more complex systems.

In this work, we present a general approach that evolves
around the concept of dynamical fingerprints which visualize the
essential kinetic features of the observed system in terms of peaks
that have certain amplitudes and relaxation time scales. We
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derive a theoretical framework and computational methods that
allow these fingerprint peaks to be calculated from simulation
data and unambiguously linked to the structural processes pre-
sent in the simulation. This link is the essential advantage over
traditional analyses which do not enable the assignment of struc-
tural processes to relaxation time scales. Because fingerprints
can also be calculated from experimental data directly, it is then
possible to match peaks and thus assign structural processes to
individual relaxation processes present in the measurement—
provided that the simulation is a good model of the measured
system (Fig. 1). Because matching a single pair of simulated and
experimental fingerprints is often uncertain (e.g., due to force-
field inaccuracies), we illustrate how the approach can be used
in order to propose a new set of experiments with site-specific
labeling that optimally probes specific features of the fingerprint.
This approach is applicable in conjunction with all experiments
which measure relaxation profiles that decay with characteristic
time scales of the molecular system. Such experiments include
(i) experiments that monitor the relaxation of an ensemble to-
wards equilibrium after an initial perturbation via, e.g., a jump
in temperature (11, 12), pressure (13), a change in the chemical
environment (14), or a photoflash (15-16); (i) dynamical spectro-
scopic experiments such as inelastic neutron scattering (16), and
(iii) low concentration or single molecule experiments accumulat-
ing auto- or cross-correlations of fluctuations, e.g., correlation
spectroscopy of the fluorescence intensity (3, 17, 18-19) or Forster
resonance energy transfer efficiency (20, 21).
Experimentally-measured relaxation profiles are typically ana-
lyzed by fitting a single- or multiexponential model. This approach
is not objective as it requires the number of time scales to be fixed.
For example, multiple exponentials with similar time scales, or a
double-exponential where the larger time scale has a small ampli-
tude will both yield visually excellent single-exponential fits with
an effective time scale that may not exist in the underlying system
[see (5) and SI Appendix: Figs. 1 and 4]. This effect arises from the
fact that on the time axis exponentials cannot be visually separated
as each exponential affects all times. To prepare the experimental
data for a systematic analysis, we therefore propose a method that
uniquely transforms the observed relaxation profile into an ampli-
tude density of relaxation time scales (here called “dynamical fin-
gerprints”) present in the data. Several such methods have been
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Fig. 1. Dynamical fingerprints: Experimental relaxation profiles (A) can be
transformed into dynamical fingerprints (B), which represent the time scales
and amplitudes of the relaxation processes in the data without having to
predetermine a particular model or number of processes. On the theoretical
side, the dynamics on an energy landscape (D) also generates dynamical fin-
gerprints (C), but here each feature can be uniquely assigned to a particular
transition or diffusion process on the landscape. If the simulation model is a
sufficiently accurate model of the experimental system, structural processes
can be assigned to the experimental data by matching features in the experi-
mental and theoretical fingerprint.

developed (22, 23) and in the present work a related method is
given that calculates the maximum likelihood dynamical finger-
print from the measured relaxation profile under the experi-
ment-specific measurement noise. Nonexponential models used
in some analyses, such as stretched exponentials (24, 26) or power
laws (25), represent effective models of sums of exponentials
with particular spacings of time scales and amplitudes (26, 27)
and thus also correspond to dynamical fingerprints with multiple
peaks (see SI Appendix: Figs. 1 and 2).

The experimental relaxation profile and its dynamical finger-
print do not directly reveal the structural processes. However,
detailed information on structural changes can be obtained from
MD simulations. Here, we derive a theory and computational
methods that allow dynamical fingerprints to be calculated from
MD simulations. The critical advantage of the approach is that
it associates each fingerprint peak uniquely to an eigenvector/
eigenvalue pair of an operator describing the conformational
dynamics (Fig. 1), thus permitting each peak to be uniquely as-
sociated with a specific process of structural change. If the simu-
lated system is a realistic reproduction of the experimentally
measured system, the dynamical fingerprints will be similar as
well. Then, by matching peaks between the experimental and
theoretical fingerprints, the experimental features can also be
assigned to structural processes.

Before applying this approach to a real biomolecular system,
we illustrate it with three simple model systems, depicted in
Fig. 2, probed by the correlation of a fluorescence signal that
is quenched by end-to-end contact formation. Fig. 24 shows a
potential dominated by one major energy barrier between two
wells with some local roughness. The system exhibits two-state
behavior, i.e., its slowest process is well separated in time from
the fast local diffusion processes. Structurally, the slowest process
corresponds to a transition across the barrier between a and b, as
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Fig. 2. [lllustrative models of systems probed by fluorescence correlation.
(Left) model energy landscapes with fluorescent states in white and dark
states shaded in gray. The slowest transition process is governed by the sec-
ond eigenvector (blue) of the dynamical operator, the next-slowest process
by the third eigenvector (red). (Right) Dynamical fingerprints. The finger-
prints are shown by blue and red lines and bullets, corresponding to the slow-
est and second-slowest transition processes on the left. (B) also shows the
fingerprint peaks of the fast local diffusion processes as short black lines
and bullets while for clarity this information is not shown in (D) and (F).

indicated by the different signs of the corresponding eigenvector
in these states. State a is fluorescent while b is not, and therefore
the experiment is sensitive to this transition. As expected, a single
time scale with large amplitude (Fig. 2B, blue) would be seen
in fluorescence correlation spectroscopy (FCS), while the local
diffusion processes are fast and have small amplitudes. Fig. 2C
shows a more complex case of a potential dominated by two
major energy barriers. The slowest process (blue eigenvector)
changes sign between states a and states b+ c, and can thus
be assigned to the transition across the a — b barrier. The next-
slowest process (red eigenvector) has different signs in states
b and c while being near-zero in a. This process thus further
subdivides set b + c into b and ¢, and can be assigned to the tran-
sition across the b —c barrier. The fluorescence signal detects
the transition across the higher barrier, but the faster transition
occurs within the dark region. The system exhibits three-state
behavior, and, although the faster transition occurs in the dark,
it is nevertheless manifested in the FCS, albeit with a smaller
amplitude than the slow process (Fig. 2D, blue and red). Fig. 2E
is similar to C, but reversed in that the slow process is now
between the dark states while the faster process is the one directly
seen in the fluorescence signal. Although this system has three-
state kinetics, it will appear as two-state in the FCS as the slow
process has a very small amplitude (Fig. 2F, blue).

Theory

It is now briefly described how the dynamics on a particular en-
ergy landscape gives rise to dynamical fingerprints (Fig. 1 D-C)
and allows their features to be uniquely linked to structural
changes in these dynamics. Detailed derivations can be found
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in the SI Appendix. The theory rests on a description of the con-
formational dynamics as time-dependent probability transport in
state space (28). In practice, this description is approximated by a
Markov model, now commonly used to analyze conformational
dynamics (6, 10, 29-33). Consider the energy landscape to be
partitioned into a number, m, of conformational states, all small
enough to allow different metastable states to be distinguished
and thus the slow conformation dynamics of interest can be de-
scribed by interstate transitions and the dynamics is Markovian at
time scale 7 (6, 29, 30, 32). The transition probability, T7;(z), is the
probability that the system being at state i will be found in state j a
time 7 later. The entire slow kinetics is then encoded in the transi-
tion matrix, T(z), which is related to a rate matrix K via T(z) =
exp(zK). Given the vector p(0), the ith element of which provides
the population of conformation i at time 0, the population of the
system at any of the discrete times k7 is given by (29, 30, 34):

p' (kr) = p" (0)[T())", (1

where [T(7)]< is the kth power of matrix T(z) and the super-
script T indicates the transpose. Now consider the (left) eigenvec-
tors, 1;, and eigenvalues, 4;, of T(z). For every pair of eigenvectors
and eigenvalues the following relation holds:

I'T(r) = 417, [2]

This eigenvalue equation has a straightforward interpretation:
each eigenvector 1; corresponds to a collective transition process
moving population between conformational states in which the
eigenvector elements are of opposite sign (28). For ergodic sys-
tems, there is always one eigenvector, 1; = z, with corresponding
eigenvalue 1; = 1, which provides the equilibrium distribution:
7#'T(z) = #7, i.e., the Boltzmann distribution, for a molecular sys-
tem at equilibrium. All other eigenvectors have eigenvalues less
than 1 and represent perturbations from the equilibrium distribu-
tion which decay over time towards equilibrium, with a fraction
per time unit 7 specified by the corresponding eigenvalue 4;. Thus,
the dynamics described by T(z) has the characteristic relaxation
times (29, 30, 34):

T
i ) B3]

The above illustrates how the complete kinetics of the molecule
can be described as a superposition of collective transition pro-
cesses represented by the eigenvectors of T(z). Note that the “time
resolution” that can be practically described with this approach
depends on the number of conformational states, m, used. Split-
ting into finer states resolves faster processes and the interesting
slow processes are unaffected by this, as long as the state definition
allows separation of the slowly interconverting conformations.

We can now derive general expressions for time-dependent
relaxation profiles, f(¢), of kinetic experiments (see SI Appendix
for details). These profiles have the simple general form:

f0=n+Yn exp(—fi), [4]

i=2

where t; are the characteristic relaxation times of the system, thus
being independent of the experiment conducted or the observables
used. The amplitudes y;, however, do depend on the type of experi-
ment and the observable: Let a define the value of a particular
observable for every state. Then, experiments that monitor the re-
laxation of the ensemble average of @ from some initially perturbed
population p’(0) towards equilibrium have the amplitudes:
7 = @) (P O)"), [5]

3
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where u’v is equivalent to the scalar product that measures
the overlap of two vectors u, v, and p}(0) = p;(0)/z; denotes
the relative excess of the initial population with respect to the
equilibrium distribution. Correlation functions from equilibrium
experiments (such as FCS) have amplitudes given by:

7o = (a1 (b1, (6]

where a and b are spectroscopic observables. For the particular
example of FCS, we can simplify this equation. When the system
states are defined such that there exists a set of fluorescent states,
F, each giving rise to a constant fluorescence intensity, and the
complementary set of dark states giving rise to no intensity, then the
amplitudes due to conformational relaxations are proportional to:

2
y?:[zﬂ. (7
jeF

For FCS, an equivalent expression can be derived from Elson
and Magde’s theory of fluorescence correlation (35) when a
reversible stoichiometry matrix is considered.

The above equations directly provide the structural interpreta-
tion of the processes responsible for the relaxation of the signal or
the decay of the autocorrelation function: the signal is a weighted
sum of exponentials, each term decaying with a characteristic
time scale given by #;. Each relaxation process has an amplitude
that depends on the type of experiment and the observables
employed. In relaxation experiments, the amplitude depends on
how well the observable picks up the structural change involved
in the process (a’l;) and on how much the initial perturbation
populates relaxation mode i ([p’(0)]1,). In correlation experi-
ments, the amplitude depends only on the sensitivity of the ob-
servable to the structural change involved. In FCS, in particular,
the amplitude [Z]EFI,»]-]Z quantifies the change of fluorescence
intensity due to contact formation between dyes. The eigenvector
corresponding to each term, I;, provides the structural interpreta-
tion for each term, as it corresponds to a collective transition
between those states whose signs are opposite (see Fig. 2).

Based on the above theory, we can now give the mathematical
expression for the sharp (i.e., noise-free) dynamical fingerprint,
S(t), given by:

S() = Y vdlt—1), (81
=2

with 8 denoting the Dirac delta function. The slow part of S(¢)
consists of discrete spectral lines at times #;, indicating the relaxa-
tion times of all slow conformational processes, which are invar-
iant properties of the system. The amplitudes of these spectral
lines depend on the experimental observable; in the present
example the fluorescence intensity change. Correspondingly,
other types of experiment will have different S(¢) with equal posi-
tions but different intensities of the peaks associated with them.
In principle, S(¢) has an additional continuous part close to times
around 0, due to fast diffusion processes within the conforma-
tions, but this relatively uninteresting part of the fingerprint is
only approximated here because only finitely many states m are
considered. Note that in the limit of zero measurement noise, S(¢)
is the inverse Laplace transform of the correlation or relaxation
function (see SI Appendix).

Methods for extracting fingerprints from both experiment,
Sexp(t), and simulation, S, (¢), are described in the SI Appendix.
Sexp(t) and Sgp, (f) can now be compared. One cannot expect a
perfect agreement between these fingerprints, because inaccura-
cies of the MD force-field will be reflected in the relaxation times
and amplitudes that are computed. Moreover the fluorescence
model used, i.e., the definition of fluorescent and nonfluorescent
states, will affect the amplitudes (although not the time scales)

Noé et al.
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of the processes apparent in the fingerprint. However, when
features between S, (¢) and S, (f) can be qualitatively matched,
the simulation model allows these features to be interpreted
structurally through the association with the eigenvectors 1,
i.e., each mode in the dynamical fingerprint can be associated
with a particular structural process, thus yielding a detailed struc-
tural explanation of the experimentally observable features

Experimental fingerprint estimation has been implemented
in scimex (https://simtk.org/home/scimex). Markov models were
calculated with the EMMA package (https:/simtk.org/home/
emma).

Results

We now employ the concepts from above to investigate the
conformation dynamics of MR121-(Gly-Ser),-Trp peptides with
different lengths n =2, 3, 5, and 9 where MR121 is a dye that,
when specifically excited with a laser, will fluoresce unless it is
specifically quenched by Trp which occurs efficiently upon con-
tact formation. Experimentally, the conformational dynamics is
probed via FCS, i.e., we compute the autocorrelation function
of fluctuations of the fluorescence intensity in a very dilute sam-
ple. Computationally, all-atom explicit solvent MD simulations of
the same peptides have been conducted. Dynamical fingerprints
were computed from both experiment and simulation, their fea-
tures compared, and the structural processes giving rise to these
features investigated. The conformational dynamics of Gly-Ser
and other flexible peptides were previously measured by various
methods (3, 17, 19, 36). Usually, a fitting procedure suggested
a single-exponential decay, consistent with a simple two-state
model. Our present measurements have a time resolution of
about 150 ps compared to at most several ns in previous experi-
ments, and are at least tenfold longer in measurement time
than previous FCS experiments, thus having reduced statistical
noise and permitting the dynamical fingerprints to be resolved
more reliably. The experimental setup and dynamical fingerprint
extraction are described in the SI Appendix in detail.

The fingerprints computed from the experimental fluores-
cence correlation functions are shown in Fig. 3 C-F (top). Each
fingerprint has a negative amplitude at 1.5 ns-2 ns, which is
the signature of the limited excited state lifetime (37), i.e., an
anticorrelation in the fluorescence signal resulting from the fail-

ure to excite an already-excited dye. For this reason, contribu-
tions close to this peak are unreliable from experiment and are
grayed out in the figure. Furthermore, relaxation times in the
range of >500 ns are found which may be due to decay of long-
lived triplet states or arise from terms necessary to correct for the
imperfect model of the diffusional decay—these do not yield
reliable information on conformational transitions and thus
the corresponding region is grayed out as well. The remaining
ranges of 4 ns—500 ns contain useful information on the relaxation
times of conformational transitions and their associated fluores-
cence amplitudes, and this is validated by the fact that the finger-
print of the pure dye contains no features in these ranges.

For all four peptides, n = 2, 3, 5, and 9, most of the amplitude
of the experimental fingerprint is in peaks at time scales 4-8,
5-10, 7-30, and 15-50 ns, respectively. Due to these dominant
amplitudes, the slow relaxations appear almost single exponential
and could be well fitted with a single time scale, as in previous
studies that used a corresponding two-state model to compute
contact-formation rates depending on chain length (3, 36). How-
ever, both broadening and multimodality of these features imply
that the existence of multiple distinct conformational processes
with similar relaxation times is also consistent with the data.
Of particular interest is the presence of peaks indicating addi-
tional slow processes: the fingerprints of all peptides resolve
separate low-amplitude peaks at >30 ns to >200 ns. We have
tested the statistical significance of these long-time scale features
(SI Appendix: Table S2), and found them to have nearly 100%
confidence for n =2 and n =3, 93.9% confidence for n =9,
but only 77.3% confidence for n = 5. These findings indicate that
the processes which contribute the strongest to fluorescence
change and have been identified in previous experimental studies
are probably not the slowest processes in the systems, and the
systems may be considerably more complex than consisting only
of two metastable states that are open and closed.

In order to obtain detailed insight into the structural events
associated with the dynamical processes involved in the experi-
mental signals, extensive all-atom MD simulations for the above
systems in explicit solvent were conducted. The state spaces
were discretized into ~200 substates, and each substate classified
as either dark (with dye and Trp in van der Waals contact) or

C timescale (ns) D timescale (ns) timescale (ns) F timescale (ns)

o1 1 10 100 100001 1 10 100 100001 1 10 100 100001 1 __ 10 100 100 —
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[Fig. 3. (A, B) partition of the conformation space for the peptides

n =2 and n = 9 into the six most stable metastable conformations
and the associated five slowest relaxations. This structural informa-
tion was extracted from the MD simulation via a Markov model.
Representative structures are shown in cartoon representation with
flexibility indicated by the overlay of line structures. The fluores-
cent states are shown bright, the dark states are shaded. The slow
relaxation processes are indicated by colored arrows. (C, D, E, and F)
Dynamical fingerprints for the peptides of lengths n = 2, 3, 5, and
9, extracted from single molecule FCS data directly (Top), and from
the MD simulation Markov model (Bottom). Features in experiment
and simulation that can be qualitatively associated with each other
are linked with dashed lines. The mean positions and amplitudes of
the five slowest relaxations are marked in colors and correspond to
the structural transitions shown on the left. Regions that are unre-
liable due to measurement or analysis artifacts are grayed out. (G)
Prediction of the long-time scale part of the n = 9 fingerprint when
dye labels are considered at different residue positions. The dye po-
sitions are printed in each plot (e.g., 8-14 means MR121 at position

Noé et al.

8 and Trp at position 14).
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otherwise fluorescent. Markov models of the transition dynamics
between discrete states were built with the EMMA package and
extensively validated (SI Appendix). Both experimental and
simulated fingerprints yield very similar correlation functions
(SI Appendix: Fig. S8). A comparison of fingerprints is more
discriminatory and shows that some peaks and features are
similar and form a putative match, indicated in Fig. 3. Although
not every single peak can be matched with confidence, the
similar degree of complexity justifies detailed examination of
which structural processes the simulated fingerprint peaks cor-
respond to. This examination is done here forn =2 and n =9
in detail.

The slowest processes can be matched between simulation
and experimental fingerprints and have simulated time scales of
224+2,29+3,100+5, and 360 + 14 ns forn =2, 3, 5, and 9,
respectively. The slowest process amplitudes are small (between
1.5 and 7 %) but statistically significant. Although it is often
assumed in peptide and protein folding that the slowest process
is the folding process itself, this is not the case here. None of
these slow processes separate open and closed states (see Fig. 3),
and thus the slowest time scales cannot be assigned to folding or
chain closure. For the smallest peptide, n = 2, the slowest pro-
cess (22 ns) exchanges between sets (a, b, ¢) and (d, e, f) which
differ in the stacking order of the MR121 and Trp ring systems
(see Fig. 34). While this process does not separate open and
closed states, it involves a significant contribution to the fluor-
escence intensity change because it changes the probability of
occupying an unfolded, or fluorescent, structure, this being
25% for one stacking order and 10% for the other. The accom-
panying change in effective fluorescence upon swapping the
stacking order results in a 7% decay of the autocorrelation func-
tion. For n =2, the two next-slowest processes correspond to
changes of the Trp orientation relative to the MRI121 dye
[one splitting (a, b, and c) into (a, b) and c; the other one split-
ting (d, e, and f) into (d, e) and f]. Similar processes are
observed for the n =3 and n =5 peptides, in which the two
or three slowest processes again correspond mainly to exchange
of stacking order and change in orientation of the labels. This
observation confirms a previous finding that for the small pep-
tides the dynamics is dominated by the interaction of the dyes
(38, 39). In n = 9, the peptide is long enough to form secondary
structure and the slowest process involves mainly formation of
p-sheet structures (see Fig. 3B).

For all peptides, the largest amplitude processes, i.e., those
involving the strongest fluorescence changes, arise from multiple
processes with relaxation times similar to that of the main peak in
the experimental fingerprint. One can thus interpret an experi-
mentally-fitted single exponential as an “effective time scale” that
combines a group of different chain closure processes with similar
relaxation times. For n = 2, the highest-contributing individual
process contributes 34% of the decay, has an estimated time
scale of 7 &+ 0.5 ns, and structurally corresponds to an exchange
of end-group orientations (see Fig. 34), and this process involves
a strong fluorescence change as it switches between entirely
closed states and a rapid equilibrium of closed and open states.
For n = 9, the process with the maximum intensity of 24% has an
estimated time scale of 64 &4 ns and directly involves chain
closure.

All simulation-derived fingerprints exhibit fast processes in
the time ranges <2, 3, 5, and 30 ns forn = 2, 3, 5, and 9, respec-
tively, that could not be reliably estimated from the measurement
data. All fast processes exchange probability between very few
(often two) conformational states and are local because they
correspond to fluctuations and diffusion between states that
are embedded within the larger basins of the energy surface
(see also Fig. 2B). The fact that these processes make a significant
contribution to the fluorescence change indicates that the energy
landscape is not shaped in such a way that the major barriers

4826 | www.pnas.org/cgi/doi/10.1073/pnas.1004646108

exactly separate open and closed species, but rather allows for
rapid contact formation of the end groups while the main chain
stays within a metastable state.

A key concern of the analysis is how to reliably match features
of fingerprints derived from simulation and experiment, and,
more constructively, how experiments can be used to test the
existence of interesting processes proposed by the fingerprint
analysis. Systematic errors such as force-field inaccuracies in the
simulation and sample impurities in the measurement will affect
the positions, amplitudes, and even the existence of fingerprint
peaks, making a one-to-one comparison sometimes unreliable.
To resolve ambiguities, we propose an approach that uses the
present theoretical analysis to design specific new experiments
permitting a one-to-one investigation of fingerprint features.
This approach involves proposing to place site-specific labels
at different positions and predicting the corresponding changes
in the fingerprints which can be tested experimentally.

The approach uses the fact that the relaxation time scales #; are
basic physical properties of the molecular system, and thus the
positions of the fingerprint peaks are independent of the obser-
vable used to probe the conformational dynamics. However, the
peak amplitudes directly depend on the observable used, via Eq 5
or 6, and it is thus possible to propose label positions based on
the simulation model that maximally enhance the amplitude of
selected individual observed relaxation processes while suppres-
sing the other amplitudes. When the predicted enhancement
matches experiment, experimental and simulation peaks can be
matched with relative confidence even in the presence of sys-
tematic simulation or measurement error.

Measurement techniques using site-specific labels that do
not significantly affect the conformational dynamics are ideal
for this approach, e.g., isotope labeling in NMR, IR spectroscopy,
or neutron scattering. In fluorescence-based techniques the dyes
should not perturb the relaxation times concerned. Unfortu-
nately, in the system studied here, the dyes are relatively large
compared to the GS peptides themselves and changing label
positions would effectively change the sequence studied. Never-
theless, we use the MR121-GSy-W simulation model to illustrate
the usefulness of the approach. Assuming that fluorescence
quenching can be approximately predicted based on C,—C, dis-
tances of the labeled residue pairs, fingerprints were predicted for
all 190 possible positions of placing the MR121 and Trp dyes in
the 20-mer (see SI Appendix). It was found that, depending on the
labeling position, individual peak amplitudes may indeed be
tuned to very small or very large values. Moreover, for most
peaks, one or more label positions exist at which the target peak
has a large amplitude and the other peaks small amplitudes, in-
dicating that it is possible to design experimental constructs that
are optimal probes of individual relaxation processes. For each
of the five slowest processes, those label positions were chosen
that maximize the fraction of amplitude in the selected process
relative to the other four slowest processes, yielding MR121-Trp
dye positions 8-14, 11-17, 6-14, 4-11, and 2-20 for the slowest to
fifth-slowest process, respectively (see Fig. 3).

Conclusions

The present analysis of fluorescently labeled peptides reveals
highly complex processes even for these relatively simple systems.
These processes include very fast ones in the ps and few ns range,
the overlap of several large-amplitude conformational processes
at the time scales experimentally most apparent, and the exis-
tence of slow, low-amplitude processes. The slowest processes
have signatures of kinetic partitioning (40), i.e., they are not
due to direct end-to-end contact formation, but rather to transi-
tions between metastable states that contain rapidly equilibrating
dark and fluorescent states in different proportions. This scenario
is depicted in the schematic Fig. 1D. For the smaller peptides,
the slowest processes involve changing the stacking order and
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orientations of the fluorophore and the Trp quencher. In the
larger peptides, the slowest processes are due to secondary struc-
ture rearrangements, including p-sheet formation and dissocia-
tion, during which the Trp and MRI121 remain close. These
results were unexpected, because in all cases observed, the slow-
est processes involve transitions from dark to dark states or from
bright to bright states, which may intuitively seem to be invisible.
However, these processes are indeed visible because they switch
between regions of conformation space which contain different
ratios of dark and fluorescent species. The two-state kinetic pic-
ture that was suggested in previous experimental analyses of these
systems can now be seen as an effective model combining into a
single transition those processes that involve most of the fluores-
cence intensity change. However, this picture is insufficient to
quantitatively describe the complex energy landscape typical of
biological systems.

Dynamical fingerprints are a natural approach to reconcile ki-
netic experiments and molecular simulation, and can be expected
to find broad application in the characterization of biomolecular
processes. Comparing the features of fingerprints is cleaner and
more insightful than comparing relaxation profiles directly or fits
to them, because in relaxation profiles all relaxation processes
mix at all times. Critically, each simulation-derived peak can be
unambiguously associated to a structural process present in the
simulation data, yielding a direct and general approach for struc-
turally interpreting kinetic experiments via peak-matching.
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In a broader sense, the approach presented here illustrates
how the intrinsically complex conformational dynamics observed
in MD simulations is compatible with the comparatively simple
models suggested by standard experimental analyses. The finger-
print prediction approach has shown that in many experimental
observables only a few of the slow relaxation time scales are
probed with significant amplitudes. This observation suggests that
there may be many cases in which systems may appear to be only
two- or three-state in a single experiment, while they are in fact
more complex. To determine how many states a system possesses it
is useful to conduct multiple experiments with labels at different
sites. The theory laid out here suggests how simulations can be
used in order to propose a small set of experimental constructs
to be measured in order to probe individual relaxation processes,
and to thus construct a detailed picture of the conformational
dynamics of biomolecules step by step. Markov model simula-
tions have already shown considerable complexity in larger and
slower systems than the peptides reported here, including meta-
stable denatured states and multiple folding pathways (6, 10, 41).
The present approach will help in designing experiments to
unravel this complexity.
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