
BALANCED AVERAGING OF BILINEAR SYSTEMS WITH

APPLICATIONS TO STOCHASTIC CONTROL
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Abstract. We study balanced model reduction for stable bilinear systems

in the limit of partly vanishing Hankel singular values. We show that the
dynamics can be split into a fast and a slow subspace and prove an averaging

principle for the slow dynamics. We illustrate our method with an example

from stochastic control (density evolution of a dragged Brownian particle) and
discuss issues of structure preservation and positivity.

1. Introduction

Modelling of chemical, physical or biological phenomena often leads to high-
dimensional systems of differential equations, resulting, e.g., from semi-discretized
partial differential equations. Examples involve stochastic control problems [43],
dissipative quantum dynamics [48], or metabolic networks [41].

For linear systems, balanced model reduction going back to [50] provides a ratio-
nal basis for various approximation techniques that include easily computable error
bounds [30]; see also [70, 2] and the references given there. The general idea of
balanced model reduction is to restrict the system to the subspace of easily control-
lable and observable states which can be determined by the Hankel singular values
associated with the system. For bilinear systems, however, neither a comprehen-
sive theory nor robust numerical algorithms for efficiently solving the corresponding
generalized Lyapunov equations are available, at least not to the same extent as in
the linear case (e.g., see [38, 16, 69, 1, 19, 7]). This article contributes to some
theoretical aspects where only little attention is given to numerical feasibility and
efficiency; regarding numerical issues we refer to, e.g, [6, 17].

For a certain class of stable bilinear systems we derive balanced reduced-order
models by studying the limit of vanishing Hankel singular values. We do so by means
of a multiscale analysis of the balanced equations of motion which are shown to col-
lapse to a dimension reduced system when some of the Hankel singular values go to
zero; see, e.g., [35, 36] for a related approach or [22, 47, 59, 29] in which low-rank
perturbative approximations of transfer functions of linear systems are sought. To
the best of our knowledge our approach is new, and, although it is based on comput-
ing an appropriate balanced form of the system equations which certainly becomes
infeasible if the system is extremely high-dimensional (n ∼ 106 or larger), we see
it not merely as an alternative, but rather as an extension to existing projection-
based methods such as Krylov subspace [54, 4, 15, 45, 46, 12, 10] or interpolation
(moment-matching) methods [9, 23, 67], and empirical POD [37, 44, 13, 58]; see
also [7, 60]. A common feature of these methods is that they identify a subspace
which contains the “essential” part of the dynamics, and we suggest to combine
the numerically cheap identification of Krylov or POD subspaces with singular per-
turbation methods that have certain advantages in terms of structure preservation.
(Another option that is discussed in [7] is to use Krylov methods as a preconditioner
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2 C. HARTMANN, B. SCHÄFER-BUNG, AND A. ZUEVA

that reduces the dimension of the system before balancing.) For a critical discussion
of Krylov methods regarding preservation of moments and stability, and numerical
efficiency we refer to [21]. We should mention related ideas in the direction of model
order reduction for nonlinear systems based on a singular value analysis of the as-
sociated nonlinear Hankel operator that have been developed in a series of articles
(see, e.g., [61] or [26, 27] for two recent accounts); the nonlinear balancing method
establishes a splitting of the dynamics into subspaces corresponding to small and
large singular values of the Hankel operator, and a subsequent elimination of the
states that correspond to small singular values. The latter is either done by re-
stricting the nonlinear vector field to the relevant subspace (balanced truncation),
or by imposing an algebraic constraint that arises from the assumption that the
irrelevant degrees of freedom are stationary (balanced residualization). In contrast,
in our approach that resembles the well-known averaging method (see, e.g., [53] and
the references therein), the Hankel singular values analysis serves only to identify
suitable small parameters so as to arrive at a decomposition of the system into slow
and fast variables. We then prove that in the limit of the small singular values
going to zero, the fast dynamics converge (weakly) to a stationary probability mea-
sure which after averaging the slow dynamics against the invariant measure yields
a lower-dimensional differential equation for the slow variables. Related theoreti-
cal works that analyze convergence of the averaging method for control systems in
terms of differential inclusions can be found in [28, 20, 31, 64, 3]; see also [42] for a
survey of singular perturbation techniques in linear control and filtering.

The structure of the article is as follows: In Section 2 we briefly review con-
trollability and observability for linear and bilinear systems. Section 3 states the
averaging problem and contains the main result, Theorem 3.2; our result is new in
that we prove uniform convergence of the system to a limiting equation rather than
a differential inclusion and establish a link with model order reduction based on
the analysis of Gramians and Hankel singular values. A numerical example from
stochastic control is discussed in Section 4, along with the problem of structure-
preservation and positivity. The article has two appendices. In the first, Appendix
A, we record diverse results related to the existence of the Gramian matrices on
which our analysis is based, in the second, Appendix B, we propose an alternative
approach to compute the solutions of generalized Lyapunov equations as covariance
matrices of Markov diffusion processes.

2. Bilinear control systems

We consider bilinear control systems of the form

(2.1)
ẋ = Ax+

m∑
k=1

Nkxuk +Bu , x(0) = x0 ,

y = Cx ,

where x ∈ Rn is the state vector, u = (u1, . . . um), ui : R → R is the control,
and y ∈ Rl denotes the vector of outputs. The matrices A,B,C and Nk ∈ Rn×n,
k = 1, . . . ,m are of appropriate dimensions (e.g., for y ∈ Rl, we have C ∈ Rl×n).
We suppose for the moment that the matrix A is Hurwitz, i.e., all eigenvalues of A
have strictly negative real part. (Additional assumptions will be stated below.)

We seek matrices Ā, N̄k ∈ Rd×d, B̄ ∈ Rd×m and C̄ ∈ Rl×d with d� n such that

(2.2)
ζ̇ = Āζ +

m∑
k=1

N̄kζuk + B̄u , ζ(0) = ζ0 ,

ȳ = C̄ζ
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has an input-output behaviour that is similar to (2.1). In other words, we seek a
reduced-order model with the property that for any admissible control input u (to
be defined below), the error |ȳ(t)− y(t)| in the output signal is uniformly bounded
in t ∈ [0, T ] with 0 < T <∞.

2.1. Paradigm: linear systems. Our model reduction approach is based on an
analysis of the Hankel singular values associated with the bilinear system (2.1). In
doing so we borrow ideas from linear systems theory that relates the input-output
properties of a stable system of equations (cf. [26, 27])

(2.3)
ẋ = Ax+Bu , x(0) = x0 ,

y = Cx

with the solution of the Lyapunov equations

AWc +WcA
∗ +BB∗ = 0 , A∗Wo +WoA+ C∗C = 0 .

The positive semidefinite Gramian matrices Wc and Wo have suggestive physical
interpretations: The controllability Gramian Wc measures the control effort that is
needed to drive the system to a state x; given two states x1, x2 ∈ Rn with |x1| = |x2|,
then x1 can be reached with less control energy than x2 if x∗1Wcx1 > x∗2Wcx2. In
particular, if Wcx2 = 0, then the state x2 cannot be reached at all, regardless of how
strong the control field is; hence, it cannot contribute to the input-output behaviour
or transfer function of the system. More precisely, we have (e.g., see [50, 61])

(2.4) x∗W−1c x = min
u∈U−

{∫ 0

−∞
|u(t)|2 dt : x(0) = x, x(−∞) = 0

}
,

where the minimum is over

U− = C((−∞, 0]) ∩ L2((−∞, 0]) ,

i.e., the completion of the continuous functions with respect to the L2-norm. That
is, x∗W−1c x is the minimum energy in the L2 sense that is needed to steer the
system from the origin at time t = −∞ to the state x at t = 0, assuming that the
admissible controls are continuous, where we declare that the right hand side of
(2.4) is infinite if a state x ∈ Rn cannot be reached by any u ∈ U−. Conversely,
the observability Gramian Wo measures how much output energy can at least be
extracted from the system when the input is bounded in L2. More precisely,

(2.5) x∗Wcx ≤ max
u∈U+

α

{∫ ∞
0

|y(t)|2 dt : x(0) = x, x(∞) = 0

}
.

where the maximum goes over the set

U+
α =

{
u ∈ C([0,∞)) ∩ L2([0,∞)) : ‖u‖L2([0,∞)) ≤ α

}
for any non-negative value of α. Equality holds when α = 0, i.e., when the systems
evolves freely with u = 0. In particular, Wox = 0 means that no output signal can
be extracted; the state is then called unobservable and does not contribute to the
transfer function [50].

If (2.3) has neither unobservable nor uncontrollable states, then both Wc and Wo

are positive definite. In this case one expects that states that are hardly controllable
or observable will not play a major role for the transfer function. To make this
precise we consider a contragredient transformation x 7→ T−1x that makes the two
Gramians equal and diagonal, i.e.,

T−1Wc

(
T−1

)∗
= T ∗WoT = Σ ,

so that states that are least influenced by the input also have the least influence on
the output and therefore can be neglected. Here Σ = diag(σ1, . . . , σn) > 0 is the
diagonal matrix of Hankel singular values (HSVs). The HSVs are independent of
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the choice of coordinates as can be readily seen by noting that they are the square
roots of the eigenvalues of WcWo, i.e.,

T−1WcWoT = Σ2 .

It has been proved by Glover [30] that the following error bound holds for the rank
d approximant ȳ, that is obtained by projecting the coefficient matrices A,B,C in
(2.3) onto the space spanned by the first d singular vectors:

σd+1 < sup
u∈L2([0,∞))

‖y − ȳ‖
‖u‖

≤ 2(σd+1 + . . .+ σn) , u 6= 0 .

2.2. Realization theory for bilinear systems. For the bilinear system (2.1) we
can define the controllability and the observability Gramian Wc and Wo as the
solutions to the generalized Lyapunov equations

(2.6) AWc +WcA
∗ +

m∑
k=1

NkWcN
∗
k +BB∗ = 0

and

(2.7) A∗Wo +WoA+

m∑
k=1

N∗kWoNk + C∗C = 0 .

In contrast to the linear case, the generalized Gramians do not admit a straightfor-
ward energy interpretation in terms of controllability and observability functions;
for a discussion of possible issues see [7, 14, 32]. Although equations (2.3)–(2.5)
can be obtained by linearizing (2.1) about the stable fixed point x = 0, such a lin-
earization may not be very informative, for the bilinear term involving the control
u can grow without bound. The semidefinite generalized Gramians are useful in
that their nullspace contains only uncontrollable and unobservable states [38, 16].
As a consequence we can eliminate states from ker(Wc) and ker(Wo) without affect-
ing the input-output behaviour of (2.1). Based on the linear system paradigm, we
will further use the heuristic that states x ∈ Rn with |x| = 1 for which x∗Wcx or
x∗Wox are small, are in some sense “negligible”; cf. [1, 7]. We will provide numer-
ical evidence indicating that states corresponding to small HSVs of the generalized
Gramians can indeed be neglected.

Remark 2.1. For bilinear systems the controllability function in (2.4) can be
computed as the solution of a Hamilton-Jacobi-Bellman equation (see, e.g., [61]).
However this nonlinear partial differential equation is a) not very handy for high-
dimensional problems, and b) we cannot expect it to have a classical (i.e., C1) so-
lution at all. We further emphasize that the choice of the controllability and the
observability function is not unique, and neither is their approximation by quadratic
forms; see, e.g., [32, 33], or [34, 7] for a discussion of possible issues.

3. Balanced model reduction for bilinear systems

Let us come back to our bilinear system (2.1). We assume that the generalized
Gramians Wc,Wo are both positive definite and consider a balancing transformation
x 7→ T−1x under which the Gramians transform according to

T−1Wc

(
T−1

)∗
=

(
Σ1 0
0 Σ2

)
= T ∗WoT .

As in the linear case, the HSVs σi, i.e., the diagonal entries of Σ = (Σ1,Σ2), are the
square roots of the eigenvalues of the product WcWo. Hence they are independent
of the choice of coordinates. Suppose that Σ2 � Σ1 in the sense that the smallest
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entry of Σ1 is much larger than the largest entry of Σ2. For the reasons outlined in
the last section, we may assume that in the balanced representation

(A,B,Nk, C) 7→ (T−1AT, T−1B, T−1NkT,CT ) , k = 1, . . . ,m ,

we can neglect all states corresponding to the almost invariant subspace of the small
singular values Σ2 without changing the input-output behaviour of (2.1) too much.

Small parameters. Starting from a balanced representation, we will now derive
a dimension-reduced version of (2.1). Because of the positive definiteness we can
decompose the two Gramians according to

Wc = XX∗ , Wo = Y Y ∗

and do a singular value decomposition of the full-rank matrix Y ∗X, i.e.,

(3.1) Y ∗X = UΣV ∗ =
(
U1 U2

)( Σ1 0
0 Σ2

)(
V ∗1
V ∗2

)
.

The partitioning Σ1 = diag(σ1, . . . , σd) and Σ2 = diag(σd+1, . . . , σn) indicates which
singular values are important and which are negligible. The remaining matrices
satisfy U∗1U1 = V ∗1 V1 = Id×d and U∗2U2 = V ∗2 V2 = Ir×r with r = n− d. In terms of
the SVD, the balancing transformation T and its inverse S = T−1 read

(3.2) T = XV Σ−1/2 , S = Σ−1/2U∗Y ∗

as can be readily verified.
Now suppose σd+1 � σd. As HSVs are coordinate invariant, the σd+1, . . . , σn > 0

can serve as dimensionless small parameters. Replacing Σ2 by εΣ2 in equation (3.2)
and changing coordinates according to x 7→ S(ε)x tells us where the small param-
eters Σ2 enter the equations. Partitioning the thus obtained balancing matrices
accordingly, then yields (see [35])

S(ε) =

(
S11 S12

ε−1/2S21 ε−1/2S22

)
, T (ε) =

(
T11 ε−1/2T12
T21 ε−1/2T22

)
which gives rise to the balanced coefficients Ã(ε) = S(ε)AT (ε), Ñk(ε) = S(ε)NkT (ε),

B̃(ε) = S(ε)B, and C̃(ε) = CT (ε). Specifically, we have

Ã(ε) =

(
Ã11 ε−1/2Ã12

ε−1/2Ã21 ε−1Ã22

)
and similar expressions for Ñ(ε), B̃(ε), and C̃(ε) where the partitioning of the
matrices is according to the splitting into large and small HSVs. In the last equation,
Ã = S(1)AT (1) denotes the balanced matrix A for ε = 1, and we have used that the
balancing transformations can be recast as S(ε) = Γ(ε)S(1) and T (ε) = T (1)Γ(ε)
with Γ(ε) being the diagonal scaling matrix

Γ(ε) =

(
I 0
0 ε−1/2I

)
.

In what follows, we shall omit the tilde on balanced matrices. In terms of the
balanced variables z = S(ε)x with z = (z1, z2) our bilinear system (2.1) turns into
the singularly perturbed system of equations

ż1 = A11z1 +
1√
ε
A12z2 +

(
N11z1 +

1√
ε
N12z2 +B1

)
u

√
εż2 = A21z1 +

1√
ε
A22z2 +

(
N21z1 +

1√
ε
N22z2 +B2

)
u

y = C1z1 +
1√
ε
C2z2

(3.3)
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where without loss of generality we have set m = 1 in order to avoid the need to
sum over the bilinear terms.1

Remark 3.1. In general we cannot be sure that the system is completely controllable
and observable, in which case the Gramians are only semidefinite and the balancing
transformation results in

T−1Wc

(
T−1

)∗
=


Σ1 0 0 0
0 Σ2 0 0
0 0 0 0
0 0 0 0

 , T ∗WoT =


Σ1 0 0 0
0 0 0 0
0 0 Σ3 0
0 0 0 0


with Σ1,Σ2,Σ3 invertible and positive definite [2]. To save the previous scaling
argument we may resort to some kind of regularization approach and replace the
zero HSVs by entries of order εs with s > 1. This will introduce an additional scale
in equation (3.3) that must be taken into account. For the sake of clarity of the
presentation, however, we refrain from treating the problem in such generality and
assume throughout that the system is completely controllable and observable.

3.1. An averaging principle for bilinear control systems. We want to study
the limit ε → 0 of vanishing small HSVs. For this purpose it is convenient to
introduce the scaled variables z2 7→

√
εz2 by which (3.3) becomes

(3.4)

ż1 = A11z1 +A12z2 + (N11z1 +N12z2 +B1)u

εż2 = A21z1 +A22z2 + (N21z1 +N22z2 +B2)u

y = C1z1 + C2z2 ,

where we remind the reader that the submatrices A11, A12, . . . are in balanced form.
Equation (3.4) is an instance of a slow-fast system with z1 being the slow variable
and z2 being fast. By rescaling time in the equations according to t 7→ t/ε and
assuming that u can be bounded in some norm, we obtain the associated system

(3.5)

ż1 = O(ε)

ż2 = A21z1 +A22z2 + (N21z1 +N22z2 +B2)u

y = C1z1 + C2z2 ,

that describes the dynamics on time scales of order ε. Under suitable assumptions
on the stability of the system and further assumptions on the controls that will
be specified below it is reasonable to expect that, whenever ε is sufficiently small,
the fast dynamics relax to a steady state or stationary distribution while the slow
variable is effectively frozen. The general idea of the averaging principle then is
to replace the fast variables in the slow equations by their stationary distributions,
taking into account only their effective influence on the slow dynamics.

Here the situation is slightly different from averaging of uncontrolled (determin-
istic or stochastic) systems (see, e.g., [11, 25]), because the stationary distribution
of the fast variables may depend on the controls, giving rise to averaged equations
with measure-valued right hand side [28, 31, 64]. As we will argue below, however,
the use of the balancing method entails certain restrictions on the admissible con-
trols u that allow for proving stronger results, namely, uniform convergence to a
controlled differential equation governing the slow dynamics.

1This choice is merely conventional—neither the balancing procedure, including the solution of

the generalized Lyapunov equations, nor the singular perturbation analysis rely on fact that the
input is scalar. All results can be easily extended to the case of multiple inputs.
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Statement of the main result. The following assumptions on the system matri-
ces and the controls will be used throughout:

Assumption 1: The system (3.4) is BIBO stable, i.e., for all s ∈ [−c, c] and
some c > 0, the eigenvalues of the matrix A+ sN have strictly negative real part.

Assumption 2: The matrix A22 in (3.4) is Hurwitz; its eigenvalues λi satisfy

max
i
<(λi(A22)) ≤ −δ < 0 .

Assumption 3: The controls u : [0,∞) → E ⊂ R are bounded continuous
functions with finite energy, i.e., u ∈ Cb([0,∞)) ∩ L2([0,∞)).

Assumption 4: The controls u = uε are from the class of relatively slow controls
in the sense of Gaitsgory [28], i.e., uε(t) = u(t/εγ) with some 0 < γ < 1.

The fourth assumption, which will play a role in the convergence proof below,
states that the controls act on an intermediate time scale between the slow and the
fast variables, the third assumption, that is common in balanced model reduction
for linear systems, implies that the control decays asymptotically as t→∞, which
guarantees that the fast dynamics relax to a stationary distribution that is inde-
pendent of u. Indeed, if, in equation (3.5), we freeze the slow variable at z1 = ζ,
the fast dynamics are obtained as the solution of

ż2 = A21ζ +A22z2 + (N21ζ +N22z2 +B2)u ,

If we then let ϕt,t0ζ (ξ) denote the solution of the last equation with initial condition

z2(t0) = ξ, it follows by Assumptions 2 and 3 that

lim
t→∞

ϕt,t0ζ (z2) = −A−122 A21ζ ,

which is equivalent to the statement that, the fast dynamics converge to a unique
stationary distribution given by the Dirac measure concentrated at −A−122 A21ζ. The
averaging principle for uncontrolled systems then suggests that in (3.4) we may
replace z2(t) by its steady state −A−122 A21z1(t) which yields a closed equation for
z1 and the output variable y. Our main result is the following averaging principle.

Theorem 3.2. Let yε(t) be the observed solution of (3.4), satisfying Assumption
1–4 above. Further let ȳ(t) be the output of the reduced system

(3.6)
ζ̇ = Āζ(t) +

(
N̄ζ +B1

)
u , ζ(0) = ζ0 ,

ȳ = C̄ζ ,

with the coefficients

Ā = A11 −A12A
−1
22 A21 , N̄ = N11 −N12A

−1
22 A21 , C̄ = C1 − C2A

−1
22 A21 .

Then

lim
ε→0
|yε(t)− ȳ(t)| = 0

uniformly for t ∈ [0, T ] and for all initial conditions (z1(0), z2(0)) with z1(0) = ζ0.

3.2. Proof of the averaging principle. For the proof of Theorem 3.2, it suffices
to establish convergence of the state variables, ignoring the output. For the sake of
convenience, we write the first two equations in (3.4) as the system of equations

(3.7)
ż1 = f(z1, z2, u)

εż2 = g(z1, z2, u)

with (z1, z2) ∈ Rd × Rn−d and 0 < ε � 1 and (z1, z2) = (0, 0) being a global
asymptotically stable fixed point of the control-free system (i.e., for u = 0).

We prove that in the limit ε → 0 and for u being admissible in the sense of
Assumptions 3 and 4 on page 7, the slow component z1 converges uniformly to ζ
that is governed by

ζ̇ = f(ζ,m(ζ), u) ,
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where z2 = m(ζ) is the graph representation of the limiting invariant subspace

M =
{

(ζ, z2) ∈ Rd × Rn−d : g(ζ, z2, 0) = 0
}
⊂ Rn

that the fast dynamics approach as ε→ 0.

Contractivity and admissible controls. Suppose that z1 = ζ is fixed. By the
assumption that A22 is Hurwitz and the fact that u decays as t → ∞ the fast
subsystem has a unique stable fixed point zero (recall that u is continuous and

square integrable). That is, for all ζ ∈ Rd fixed, the solution ϕtζ(ξ) := ϕt,t0ζ (ξ) of

the associated system (here and in the following we set t0 = 0)

ż2 = g(ζ, z2, u) , z2(0) = ξ

has a unique exponentially attracting fixed point, i.e.,

lim
t→∞

ϕtζ(ξ) = m(ζ) = −A−122 A21ζ ,

uniformly in ζ and independently of the initial condition z2(0) = ξ. More pre-
cisely, we observe that g(ζ,m(ζ), 0) = 0 where g meets the following contractivity
condition: for any ζ ∈ Rd and z2, z̃2 ∈ Rn−d there exist α, δ > 0 such that

(3.8) 〈g(ζ, z2, u)− g(ζ, z̃2, u), z2 − z̃2〉 ≤ −α |z2 − z̃2|2 .
for all admissible controls u with |u| ≤ δ. The contractivity condition is met by
the fact that the spectrum of A22 is bounded away from the imaginary axis; as the
controls u are decaying, this means that there exists a t∗ > 0, such that A22 +uN22

is Hurwitz for all t ≥ t∗. This entails (3.8), which, by Gronwall’s Lemma, gives the
fixed-point property.

Convergence to the invariant subspace. In order to avoid the inflationary use
of symbols, we implement the following notation: we call L > 0 a uniform Lipschitz
constant and let U × V ⊂ Rd × Rn−d be an open set such that

|f(z1, z2, u)| ≤ L ∀(z1, z2) ∈ U × V
|∇f(z1, z2, u)| ≤ L ∀(z1, z2) ∈ U × V

|∇m(z1)| ≤ L ∀z1 ∈ U .
Existence of L <∞ is guaranteed by the Assumptions 1–3 above. In particular we
may choose L such that

. |g(z1,m(z1), u)| ≤ Lu ∀(z1, z2) ∈ U × V
We now define the deviations of the fast variable from the invariant manifold by

η = z2 −m(ζ) .

As a first step we estimate the rate at which η goes to zero as ε→ 0. Since

η̇ = ż2 −∇m(ζ)ζ̇ ,

the augmented set of variables (ζ, η, z2) is governed by the joint system of equations

ζ̇ = f(ζ,m(ζ) + η, u)

η̇ =
1

ε
g(ζ,m(ζ) + η, u)−∇m(ζ)f(ζ,m(ζ), u)

ż2 =
1

ε
g(ζ,m(ζ) + η, u)

that is equivalent to (3.7). By adding zero, the second equation can be recast as

η̇ =
1

ε
(g(ζ,m(ζ) + η, u)− g(ζ,m(ζ), u) + g(ζ,m(ζ), u))−∇m(ζ)f(ζ,m(ζ), u) .

Lipschitz continuity of f, g and m and the Cauchy-Schwarz inequality entail

g(ζ,m(ζ), u) ≤ Lu , 〈∇m(ζ)f(ζ,m(ζ), u), η〉 ≤ L2 |η| .
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Using further equation (3.8), i.e.,

〈g(ζ,m(ζ) + η, u)− g(ζ,m(ζ), u), η〉 ≤ −α |η|2 ,
we obtain the following differential inequality for η:

1

2

d

dt
|η|2 = 〈η, η̇〉

=
1

ε
〈g(ζ,m(ζ) + η, u), η〉 −

〈
∇m(ζ)f̄(ζ), η

〉
≤ −α

ε
|η|2 +M |η| .

with M = L2 + Lu/ε. Completing the square yields

1

2

(
δM − |η|

δ

)2

> 0 ⇒ 1

2

(
δ2M2 +

|η|2

δ2

)
> L |η|

for any δ ∈ R. Setting δ =
√
ε/α, we therefore find

1

2

d

dt
|η|2 ≤ −α

ε
|η|2 +

1

2

(
δ2M2 +

|η|2

δ2

)
≤ − α

2ε
|η|2 +

ε

2α
M2 .

Thus Gronwall’s Lemma gives the bound

|η|2 ≤ exp
(
− α

2ε
t
)(
|η(0)|2 +

ε

2α

∫ t

0

exp
( α

2ε
s
)
M2
s ds

)
where the subscript Ms indicates the time dependence of M through u. If we set
û = max{u(t/εγ) : t ∈ (0, T ]} the integral can be bounded from above by

(3.9) |η|2 ≤ exp
(
− α

2ε
t
)
|η(0)|2 +

ε2M̂2

α2

(
1− exp

(
− α

2ε
t
))

.

with ε2M̂2 = ε2L4 + 2εL3û+ L2û2. Since u(t/εγ)→ 0 for any fixed t > 0 as ε→ 0
we conclude that û→ 0 and therefore

lim
ε→0
|η(t)|2 = 0

for all t ∈ [0, T ] which implies η → 0. This completes the first part of the proof.

Convergence of solutions. In order to show that convergence of the fast dynam-
ics to the invariant subspace implies uniform convergence z1 → ζ, we note that

ż1 = f(ζ,m(ζ) + η, u)

by definition of η, and

ζ̇ = f(ζ,m(ζ), u) .

Using Cauchy-Schwarz and Lipschitz continuity of f , it readily follows that

1

2

d

dt
|z1 − ζ|2 = 〈z1 − ζ, f(ζ,m(ζ) + η, u)− f(ζ,m(ζ), u)〉

≤ |z1 − ζ| |f(ζ,m(ζ) + η, u)− f(ζ,m(ζ), u)|
≤ L |z1 − ζ| |η| .

By completing the square we obtain the inhomogeneous differential inequality

d

dt
|z1 − ζ|2 ≤ L2 |z1 − ζ|2 + |η|2

with |η|2 as given by (3.9) above. For z1(0) = ζ(0), Gronwall’s Lemma gives

|z1 − ζ|2 ≤
∫ t

0

exp(L(t− s)) |η(s)|2 ds .
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The assertion that z1 → ζ uniformly on [0, T ] follows upon inserting (3.9) in the
last inequality and integrating, viz.,

(3.10) |z1 − ζ|2 ≤ CeLt
(
ε |η(0)|2 + εγ

)
.

In equation (3.4), y is a linear transformation of the state variables z1 and z2 =
η +m(z1). Hence (3.10) implies convergence y → ȳ which proves Theorem 3.2. �

Remark 3.3. We should mention a similar result that is due to Watbled [68]. The
author proves uniform convergence of the slow process on the interval [0,∞) to the
solutions of a differential inclusion. The proof relies on the construction of a suitable
Lyapunov functional by which convergence of the fast dynamics to an invariant
manifold can be shown. Although it does not give convergence rates for ε → 0, it
proves that the error remains bounded for all times (given that certain technical
conditions are met that are difficult to verify in practice). General convergence
results for averaged control systems using differential inclusion techniques are due
to Gaitsgory and co-workers [28, 31, 64].

Remark 3.4. Upon inspecting (3.10) we see that our error bound consists of two
parts the first of which depends on the deviation of the initial condition z2(0)
from the invariant subspace m(z1(0)). That is, the first term is due to the ini-
tial relaxation of the fast dynamics to the steady state, whereas the second term
describes the actual approximation error that arises from replacing f(z1, z2, u) by
f(z1,m(z1), u). Further notice that the upper bound for the error grows like exp(Lt),
i.e., for t = O(− ln ε) the upper bound becomes essentially of order 1.

3.3. Comparison with balanced truncation and residualization. The reader
may wonder how the averaging principle relates to the usual method of balanced
truncation and other singular perturbation approaches (that are also known by the
name of balanced residualization). Roughly speaking balanced truncation amounts
to setting z2 = 0 in the balanced equations (3.4), whereas singular perturbation
methods seek a closure of the equations by arguing that ż2 ≈ 0.

Clearly, our approach belongs to the second category as we use that ż2 → 0 in the
associated system (3.5). Note, however, that simply setting ż2 = 0 as is stipulated
by residualization methods (see, e.g., [47, 29, 27]) and solving the resulting algebraic
equations for z2 is different from letting ż2 → 0; in fact when the time scales of
the two subsystems are clearly separated, the point-wise condition ż2 = 0 of the
residualization may not be very meaningful, e.g., when the fast variables oscillate
infinitely fast around the stationary mean value zero in which case ż2 6= 0. However
assuming a certain degree of “hyperbolicity” of the fast subsystem and suitable
decay properties of the controls, it is possible to show (e.g., see [31]) that the fast
variables weakly converge to an invariant measure on time scales of order one (e.g.,
a Gaussian with mean zero in the previous oscillatory scenario).

In the case of linear systems, both truncation and residualization can be shown
to yield reduced systems that preserve stability and that obey the usual H∞ er-
ror bound [30]. Although we strongly believe that a similar result may hold for
bilinear systems, it is clear that proving such a result would require completely dif-
ferent mathematical techniques, e.g., diffusive limits [40, 52] or differential inclusion
techniques [68] which is beyond the scope of this article.

Remark 3.5. It is interesting to note that the limiting equations (3.6) resemble
the result of the Schur complement method that is employed for solving partial dif-
ferential equations on complicated domains (see, e.g., [55]). In the language of our
approach this is to say that we decompose our system’s state space (i.e., the com-
putational domain) into controllable/observable and hardly controllable/observable
subspaces and restrict the solution to the first one where the latter enters the problem
in form of stationary boundary terms.
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Figure 1. The optical tweezer acting with force u tilts the original
double well W potential (solid line) to V = W − ux (dashed line).

4. Applications and numerical illustration

We shall now illustrate the balanced model reduction approach with an example
from stochastic control: a semi-discretized Fokker-Planck equation with external
forcing. The Fokker-Planck or forward Kolmogorov equation (see [51]) describes the
evolution of the probability distribution of the solution to a stochastic differential
equation. By being probabilities, the state variables are nonnegative. Moreover,
the system comes with a simple eigenvalue zero that corresponds to the stationary
distribution of the system and which means that it cannot be BIBO stable. Whereas
the latter problem can be easily dealt with by an appropriate shifting and scaling
procedure that is described in Appendix A below, preservation of positivity turns
out to be a more delicate issue and fails to hold in general.

4.1. Dragged Brownian particle. Consider a stochastic particle on the real line
assuming states x ∈ R that is confined by a double-well potential

W (x) =
(
x2 − 1

)2
.

Suppose that initially the particle is in the left well and we want to drag it to the
right well; even without external forcing the particle will eventually hop to the right
well, but on a time scale that is of the order exp(∆W/ϑ) where ∆W = W (0) denotes
the energy barrier that the particle has to overcome and ϑ > 0 is the (dimensionless)
temperature of the system [25]; in typical application scenarios, ϑ is small, so that
the typical transition time (more precisely: the mean first exit time) is enormous;
by dragging the particle over the barrier the transition rate can be considerably
increased.

Situations of this kind arise, e.g., in atomic force microscopy [56, 49] or single-
molecule pulling experiments [24, 39] in which the system is typically manipulated
by an optical tweezer. To lowest order, a reasonably good model for the interaction
with the particle with an optical tweezer is

φ(x;u) = −ux

where u denotes the force exerted on the particle (see Figure 1). The motion of the
particle is then governed by the stochastic differential equation

(4.1) dXt = −∇V (Xt, t)dt+
√

2ϑdWt , X0 in the left well, e.g., X0 = −1 ,
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with 0 < ϑ ≤ 1/2 and V (x, t) = W (x) +φ(x, ut). Equivalently, the dynamics of the
particle can be described in terms of its probability distribution function

ρ(x, t)dx = P [Xt ∈ [x, x+ dx)]

that is governed by the Fokker-Planck equation

(4.2)
∂ρ

∂t
= ϑ∆ρ+∇ · (ρ∇V ) , ρ(x, 0) = ρ0(x) .

Here ρ0 6= 0 denotes a smooth initial probability distribution for the diffusion pro-
cess (4.1). For u = 0 and for smooth potentials W that grow at least quadrati-
cally (as in our case) all solutions converge to the Boltzmann distribution ρ∞ ∝
exp(−W/ϑ) that is the unique solution of the elliptic equation

ϑ∆ρ+∇ · (ρ∇V ) = 0 ,

where the rate of convergence is exponential in the first nonzero eigenvalue of the
operator L defined by the right hand side of (4.2), i.e., Lρ = ϑ∆ρ+∇ · (ρ∇V ); see
the seminal article [5] or the textbook [65] for details.

Discrete Fokker-Planck equation. Now let us discretize the parabolic partial
differential equation (4.2) on a finite spatial domain I ⊂ R, say, I = [a, b]. Conser-
vation of probability then requires that the (outwards) probability flux

J(ρ) = ϑ∇ρ+ ρ∇V

vanishes at the boundaries a and b, so that (4.2) assumes the form

(4.3)

∂ρ

∂t
= ϑ∆ρ+∇ · (ρ∇V ) (x, t) ∈ (a, b)× (0, T ]

0 = ϑ∇ρ+ ρ∇V (x, t) ∈ {a, b} × [0, T ]

ρ0 = ρ (x, t) ∈ (a, b)× {0} .

As we are not interested in particularly sophisticated spatial discretization schemes,
we choose the simplest finite difference scheme to illustrate the basic idea: given a
grid {x1 = a, x2 = a+ h, x3 = a+ 2h, . . . , xn = b} and defining ρi(t) = ρ(xi, t) the
finite difference discretization of the initial boundary value problem (4.3) reads

ρ̇i =
ϑ

h2
(ρi+1 − 2ρi + ρi−1) +

W ′(xi)− u
2h

(ρi+1 − ρi−1) +W ′′(xi)ρi .

for i = 2, . . . , n− 1. At the boundaries x1 = a and xn = b we have

ρ̇1 =
2ϑ

h2
(ρ2 − ρ1) +

(
2W ′(a)

h
− (W ′(a))2

ϑ
+W ′′(a) +

uW ′(a)

ϑ

)
ρ1

and

ρ̇n =
2ϑ

h2
(ρn−1 − ρn) +

(
−2W ′(b)

h
− (W ′(b))2

ϑ
+W ′′(b) +

uW ′(b)

ϑ

)
ρn .

The initial value is given by the vector with the nonnegative entries ρi(0) = ρ0(xi).
In matrix-vector notation, the last equations can be compactly written as

(4.4) ρ̇ = Aρ+Nρu , ρ(0) = ρ0 ,

where we have ignored boundary terms that are quadratic in u. By our choice of a
spatial discretization scheme, −A ∈ Rn×n is an M -matrix with a simple eigenvalue
0 that corresponds to the discretized stationary distribution ρ∞ ∝ exp(−W/ϑ)
on I ⊂ R. Since the diffusion process (4.1) is reversible, i.e., it satisfies detailed
balance, it follows moreover that A has only real eigenvalues (provided that the
discretization is sufficiently fine); for some results on the spectral theory of the
Fokker-Planck equations the reader is referred to the standard textbook [57].
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Figure 2. Controlled Fokker-Planck equation: the first 60 HSVs
(left panel) and the approximant of degree d = 10 (right panel).
The blue curve shows the probability in the left well whereas the
red curve shows how the right well is populated.

We augment (4.4) by an output equation. To this end, we introduce the observ-
able y = (y1, y2) with yi ≥ 0 denoting the probabilities to be in the left well or the
right well which yields the homogeneous system

(4.5)
ρ̇ = Aρ+Nρu

y = Cρ .

The observation matrix C ∈ R2×n is given by C = (PL, PR) where PL, PR ∈ Rn
denote the discrete characteristic functions of left and right potential well.

Clearly, in its present form, (4.5) cannot be controllable at all, for B = 0 and
therefore one cannot escape the the zero state ρ = 0. Even though the zero state
is certainly not of particular interest, notwithstanding that is is not a probability
distribution, we can exploit the fact that the matrix A has a nontrivial kernel v = ρ∞
that is given by the stationary distribution of the diffusion process (4.1): shifting the
state variables according to ρ 7→ ρ+ v will generate an additive term Bu = −Nvu
that makes the system controllable from the zero state; we refer to Section A below
for the details (also regarding the violation of the stability requirement stated on
page 7), and simply assume that the discrete Fokker-Planck equation (4.5) is already
in balanced form, i.e., we assume that Gramians, HSVs and balancing transforms
have been computed. In partitioned form (4.5) reads

(4.6)

ρ̇1 = A11ρ1 +A12ρ2 + (N11ρ1 +N12ρ2)u

ερ̇2 = A21ρ1 +A22ρ2 + (N21ρ1 +N22ρ2)u

y = C1ρ1 + C2ρ2 ,

where we have inserted the scaling parameter ε > 0 to make the connection with
the averaging principle, Theorem 3.2, clear.

Since the stationary distribution, i.e., the kernel of A is easily controllable and
observable, it is safe to assume that the weakly controllable and observable modes lie
in the complementary subspace. In other words, we may assume that A22 is Hurwitz
(which will be checked numerically) so that the dominant subspace is asymptotically
stable as we have assumed in the proof of Theorem 3.2. Then, as ε → 0, the
dynamics converge to the solutions of the averaged system

(4.7)
ρ̇1 =

(
A11 −A12A

−1
22 A21

)
ρ1 +

(
N11 −N12A

−1
22 A21

)
ρ1u

y =
(
C1 − C2A

−1
22 A21

)
ρ1 .

Averaged dynamics. Notice that ε in equation (4.6) is a fake parameter, i.e., it
does not appear in the actual equations of motion. Nonetheless it marks where the
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Figure 3. Contractivity of the invariant subspace: the left panel
shows the largest 60 eigenvalues of the matrix A22 that are re-
sponsible for the fast relaxation of the dynamics to the invariant
subspace as the right plot shows (here d = 10).

negligible HSVs enter the equations which is why we can expect (4.7) to yield a
reasonable approximation whenever the negligible HSVs are small compared to the
dominant ones.

By the M -matrix property of A that is preserved under the balancing transfor-
mation A 7→ S(1)AT (1), the Schur complement Ā = A11−A12A

−1
22 A21 is a singular

M -matrix with a simple eigenvalue zero (see [8] and the references therein).2 As
a consequence, the reduced system is positivity-preserving provided that the ini-
tial value remains positive upon balancing—which, unfortunately, is not always the
case. The approximation result, however, guarantees that a positive output vari-
ables y remains positive when the HSVs decay sufficiently fast. If the balanced
variables stay positive, the vector v̄ solving Āv̄ = 0 can moreover be interpreted
as the marginal equilibrium distribution of the dominant variables (again a simple
computation that exploits the fact that Ā is the Schur complement of A22 in A).

For a comparison of (4.5) and (4.7) we consider the following scenario: we dis-
cretize the Fokker-Planck equation (4.2) on the domain I = [−2, 2] using n = 400
grid points. As initial value we choose ρ0(x) ∝ χL(x) where χL is the character-
istic function of the set L ⊂ R and L = [−1.2,−0.8] is symmetric around the left
potential minimum at x = −1. The forcing u is given by the mollified step function

u(t) =
1

2
(tanh(t− π)− 1) , t ≥ 0 ,

that goes to zero as t grows large. For the time-discretization we use a simple
forward Euler scheme with constant step size ∆t = 5 · 10−5. The temperature
was set to ϑ = 1/2. Since the matrix A in our Fokker-Planck example violates
the stability requirement, Assumption 1 on page 7, the balancing transformation
was computed by first doing a state transformation to the zero state and then
stabilizing A by shifting A 7→ A − sI with s = 10−3 and scaling the control input
according to u 7→ 2u (see Appendix A below). The dominant HSVs and the 400-
dimensional reference trajectory together with its approximant of dimension d = 10
are shown in Figure 2. The blue curve is the probability in the left well whereas
the red curve depicts how the right well is populated; observe that the population
maximum is reached about t ≈ π slightly before the control is turned down. Once
the control is switched off, the populations of left and right well start approaching
their equilibrium values.

2Note that the M -matrix property does not need to be preserved under the scaled balancing
transformation A 7→ S(ε)AT (ε) which is not a similarity transformation.
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Note that the initial values in the right panel of Figure 2 have not been projected
to the invariant subspace; in point of fact starting from the invariant subspace would
require that u(0) = 0. But if the initial values do not lie in the invariant subspace of
the fast dynamics then the dynamics have to relax to the invariant subspace before
the limiting dynamics kicks in (see also the discussion below). The relaxation to
the invariant subspace is demonstrated in the right panel of Figure 3. It can be
seen that for sufficiently small HSVs (i.e., small enough ε) the relaxation occurs
quickly; notice that the fast dynamics relaxes even though the control force is still
of order 1. The latter is due to the fact that the invariant subspace is contractive
whenever u is not too large (compare Section 3.2). The contraction condition is
further justified by noting all the eigenvalues of A22 in equation (3.4) are strictly
negative, with a spectral gap of about δ ≈ 3 (see left panel of Fig. 3).

4.2. Non-decaying control force and positivity. The second example is to
illustrate some of the subtleties and pitfalls of the method. To this end we consider
a skew double well potential defined by

Ws(x) = (x2 − 1)2 + x .

In comparison with the symmetric potential, the left potential well is lowered and
therefore carries the overall statistical weight if the system is in equilibrium.

Suppose that initially at t = 0 the system is in the stationary state ρ0 given by the
eigenvector ρ0 of A to the simple eigenvalue zero. Apart from the modified potential,
the discretization is essentially the same as before with I = [−2, 2], n = 400,
ϑ = 1/2 and zero-flux boundary conditions. In contrast to the previous example
and in violation of the theoretical assumptions that underlie the averaging result
we choose an external force that is non-decaying. More precisely we set

u(t) = 2(1− exp(−2t)) , t ≥ 0 ,

which is clearly not square integrable over the positive real line. By the choice of
u, the effective potential V (x, u) = Ws(x)− ux is turned into W−s = (x2 − 1)2 − x
as t→∞, which is exactly the reverse of Ws with the right well lowered.

As observable we choose the population of the right potential well, i.e., C = PR
with PR denoting again the discrete characteristic function of the right well. The
initial populations in the left and right wells are ρ0,L = 0.9685 and ρ0,R = 0.0315.
We integrate the system up to the final time T = 10 at which W (x, u) ≈ W−s (x)
and the population are ρL = 0.0404 and ρR = 0.9596.

As before, balancing and averaging is performed after a change of variables ρ 7→
ρ+ ρ∞ and shifting A 7→ A− sI with s = 10−3 with an additional scaling u 7→ 2u
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of the control input.3 Singular values and the time evolution of the observable
y = PRρ for various orders of approximation, d, are shown in Figure 4. Apparently
the dynamics are well reproduced for d ≥ 12 (see right panel of the figure).

But as usual the devil is in the details: Closer inspection reveals that the state
variables other than the observables do not remain positive when d is too small.
Figure 5 shows an instance for d = 12; it can be seen that both initial and final state
ρ(0) and ρ(T ) assume negative values in regions of low density (here: in the left well).
The negative outliers disappear for d ≥ 20. This behaviour is well in accordance with
the limit result: Firstly, the M -matrix property of A or Ā, respectively, preserves
positivity of the solution provided that the initial values are positive. This however
does not need to be the case, because the balanced and truncated initial value
is not necessarily positive. Secondly, the limit result essentially asserts that the
approximation error is of the order of the negligible HSVs, so it does not come as a
surprise that negative values appear in regions of low density; as d is increased the
outliers should vanish which is in agreement with the numerical findings. Thirdly,
the projection to the invariant subspace may produce initial values that are no
longer nonnegative; the same is true for the observables although the balancing
transformation itself leaves the output variable invariant.

Remark 4.1. For the sake of completeness we computed also the truncated version
of (4.5), i.e., the reduced system that is obtained from (4.6) by setting ρ2 = 0 and
compared the solutions to the averaged ones. In terms of the output variables y both
methods yielded almost equally accurate approximants (cf. the recent work [7, 60]).
However, other than the Schur complement, truncation does not preserve the M -
matrix property with the simple eigenvalue zero. As a consequence, the truncated
system may not admit a stationary distribution. Moreover, the low lying eigen-
values of the Fokker-Planck operator that describe slow relaxation processes in the
system—recall that the first nonzero eigenvalue can be used to estimate the con-
vergence towards the stationary distribution—are well approximated by the singular
perturbation method, but not so by the truncated system. The latter should not come
as a surprise as the singular perturbation approach specifically aims at approximat-
ing the slow variables of the system. We leave the discussion of the approximation
of the spectral properties of a diffusion process by reduced order models to future
work.

3Alternatively, one may consider to split off the stationary state and balance the equations only

on the stable orthogonal complement. However in our case, the results are found not to depend
on this choice.
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Appendix A. Generalized Lyapunov equations

Consider the generalized Lyapunov equation

AWc +WcA
∗ +

m∑
k=1

NkWcN
∗
k +BB∗ = 0 ,

and recall that if A is Hurwitz there are constants λ, µ > 0, such that ‖ exp(At)‖ ≤
λ exp(−µt) where ‖ · ‖ is any suitable matrix norm. If moreover

(A.1)
λ2

2µ

m∑
k=1

‖Nk‖2 < 1 ,

the generalized (controllability) Gramian Wc exists [32]. If the pair (A,B) is com-
pletely controllable, i.e., if rank(BABA2B . . . An−1B) = n, then Wc is positive
definite [62].

Since direct methods for solving generalized Lyapunov equations have a numer-
ical complexity O(n6) computing Gramians is challenging even for medium-sized
systems. For A Hurwitz, the obvious iterative scheme is (see, e.g., [66])

(A.2) AXj+1 +Xj+1A
∗ = −

m∑
k=1

NkXjN
∗
k −BB∗ , X0 = 0

which requires the solution of a standard Lyapunov equation in each step. Con-
vergence Xj → Wc is guaranteed by the following result that is due to Damm
[17].

Lemma A.1. Let the linear operator LA : Rn×n → Rn×n be defined by LA(X) =
AX + XA∗ and let Π: Rn×n → Rn×n be nonnegative in the sense that Π(X) > 0
for X > 0. Further assume that the spectrum of LA is contained in the closed left
half-plane (including the imaginary axis) and that for a given Y > 0 there exists a

nonnegative definite matrix X̂ > 0 such that (LA + Π)X̂ 6 −Y . Then there exists
a minimal nonnegative definite solution X− satisfying

(1) X− > 0 and (LA + Π)X− = −Y
(2) If X̂ > 0 such that (LA + Π)X̂ 6 −Y , then X̂ > X−.
(3) Xj → X−, where Xj for j = 0, 1, 2, . . . is defined via

Xj+1 = −L−1A−sI(Π(Xj) + 2sXj + Y ), X0 = 0, s > 0 .

Setting Π(X) =
∑m
k=1NkXN

∗
k and s = 0 Lemma A.1 implies that (A.2) con-

verges to Wc if the solvability condition (A.1) is met (cf. [7]).

Unstable systems I. In both of the previous numerical examples the matrix A
has a simple eigenvalue zero and B = 0. However we may exploit the fact that A
has a nontrivial kernel and transform the homogeneous equation

ρ̇ = Aρ+

m∑
k=1

Nkρuk , ρ(0) = ρ0 ,
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by doing a change of variables ρ 7→ ρ+ v with Av = 0 . This yields

ρ̇ = Aρ+

m∑
k=1

Nkρuk +Bu , ρ(0) = ρ0 + v ,

with B = −(N1v, . . . , Nmv). The difference between the homogeneous and the
inhomogeneous system is that the latter has ρ = v as stationary state whereas the
other one has the stationary state ρ = 0.

Clearly the Gramians do not exist if A is not Hurwitz. In accordance with Lemma
A.1 we may enforce stability by shifting the matrix A according to A 7→ A−sI for a
suitable s > 0; cf. also [63] for the use of shifting for linear system. Physically, shift-
ing amounts to a constant killing rate s in the Fokker-Planck equation and makes
the zero state ρ = 0 the unique asymptotically stable fixed point. Alternatively one
may split off the stationary state v = ρ∞ and balance only the orthogonal com-
plement in which the dynamics are asymptotically stable. This approach has the
advantage that it preserves the stationary state and that the computed Gramians
are the Gramians associated with the true dynamics (i.e., without shifting). In both
of our examples neither method turned out to be better than the other in terms of
approximation quality of the reduced systems.

Unstable systems II. Now suppose that (A.1) does not hold while A is Hurwitz.
In this case we may replace the control by the scaled control u 7→ u/µ for 0 < µ < 1.
Invariance of (2.1) or (4.5) then requires that the coefficients scale according to
B 7→ µB and Nk 7→ µNk whereupon the system is altered according to

ρ̇ = Aρ+

m∑
k=1

(µNk)ρ
uk
µ

+ (µB)
u

µ
, ρ(0) = ρ0

y = Cρ ,

and the generalized Lyapunov equation has to be replaced by (cf. [14])

AWc +WcA
∗ + µ2

m∑
k=1

NkWcN
∗
k + µ2BB∗ = 0.

The scaling as such clearly changes the Gramian Wc. Roughly speaking, we expect
that the HSVs decay faster as µ becomes small (for µ → 0 the system becomes
completely uncontrollable). But since the nullspace of Wc is not affected by the
scaling we still expect that, to lowest order, the ordering of the HSVs is not changed
as long as µ is close to one.

Appendix B. Sampling the generalized Gramians

Instead of solving the generalized Lyapunov equation (2.6) directly, we may com-
pute Wc as the covariance matrix of a continuous-time Markov process that is gov-
erned by the following stochastic differential equation

(B.1) dXt = AXtdt+

m∑
k=1

NkXtdWk,t +BdWt , X0 = 0 .

that is the stochastic analog of the deterministic control system

(B.2) ẋ = Ax+

m∑
k=1

Nkxuk +Bu , x(0) = 0 .

Here Wt denotes standard Brownian motion in Rm. To see this, it is helpful to note
that EXt = 0. By Itô’s formula [51], it follows that

d (XtX
∗
t ) = XtdX

∗
t + dXtX

∗
t +

m∑
k=1

(NkXt + bk)(NkXt + bk)∗ ,
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with the bk ∈ Rn denoting the columns of the matrix B, i.e., B = (b1, . . . , bm). Now
set St = EXtX

∗
t . Inserting the differential equation for dXt, taking the expectation,

and interchanging expectation and differentiation, it follows that

(B.3) Ṡt = ASt + StA
∗ +

m∑
k=1

NkStN
∗
k +BB∗ .

Recall that the existence of the Gramian Wc in (2.6) followed from (A.1). Equiv-
alently the solvability condition (A.1) guarantees that the solutions of (B.1) are
mean-square stable, i.e., for B = 0, we have E|Xt|2 → 0 as t → ∞ (see, e.g., [18]

and the references therein). For B 6= 0 it therefore follows that Ṡt → 0 which entails

Wc = lim
t→∞

St .

The observability Gramian can be sampled in an analogous fashion (cf. [36]).
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