
JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 12 22 MARCH 1999
Faber and Newton polynomial integrators for open-system density
matrix propagation

Wilhelm Huisinga
Konrad-Zuse-Zentrum fu¨r Informationstechnik Berlin, Takustraße 7, D-14195 Berlin, Germany

Lorenzo Pesce
Institut für Physikalische und Theoretische Chemie, Freie Universita¨t Berlin, Takustraße 3,
D-14195 Berlin, Germany and Department of Chemistry, Northwestern University,
2145 Sheridan Road, Evanston, Illinois 60208

Ronnie Kosloff
Department of Physical Chemistry, Hebrew University Jerusalem, Jerusalem 91904, Israel

Peter Saalfrank
Institut für Physikalische und Theoretische Chemie, Freie Universita¨t Berlin, Takustraße 3,
D-14195 Berlin, Germany and Chemistry Department, University College London,
20 Gordon Street, London WC1H 0AJ, United Kingdom

~Received 10 November 1998; accepted 17 December 1998!

Two polynomial expansions of the time-evolution superoperator to directly integrate Markovian
Liouville–von Neumann ~LvN! equations for quantum open systems, namely the Newton
interpolation and the Faber approximation, are presented and critically compared. Details on the
numerical implementation including error control, and on the performance of either method are
given. In a first physical application, a damped harmonic oscillator is considered. Then, the Faber
approximation is applied to compute a condensed phase absorption spectrum, for which a
semianalytical expression is derived. Finally, even more general applications are discussed. In all
applications considered here it is found that both the Newton and Faber integrators are fast, general,
stable, and accurate. ©1999 American Institute of Physics.@S0021-9606~99!00512-7#
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I. INTRODUCTION

The quantum dynamical, often time-dependent, mic
scopic description of molecular systems has seen a big
forward in recent years.1 In particular the treatment of com
plex molecules or molecules in an environment~in solution,
in a matrix, in a solid, or at a surface! is in the focus of actua
theoretical research.1

The quantum dynamics of ‘‘open’’ systems, e.g., tho
exchanging energy and phase with their surroundings,
frequently treated within open system density matrix theo2

In cases where the characteristic time scales of motion of
environmental modes are fast the Markov approximation
be made, which neglects memory effects.2 The problem then
comes down to the solution of a Markovian, open-syst
Liouville–von Neumann equation of the form (\ª1),

ṙ̂~ t !5Lr̂~ t !52 i @Ĥs ,r̂~ t !#1LDr̂~ t !. ~1!

Here,L is the total, andLD the dissipative Liouvillian. These
are linear functions of the actual, ‘‘reduced’’ density ope
tor r̂, the latter depending on the typically few molecul
~‘‘system’’! degrees of freedom only.Ĥs is the correspond-
ing system Hamiltonian, which is to be understood as
effective Hamiltonian because it may include the static~av-
eraged! distortion of the system dynamics due to the ‘‘res
voir,’’ or ‘‘bath.’’ Energy and phase exchange between t
system and the bath~‘‘relaxation’’ and ‘‘dephasing’’! are
hidden in the dissipative LiouvillianLD , the proper choice
of which is still a matter of scientific dispute.3 It is even
5530021-9606/99/110(12)/5538/10/$15.00
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unclear whether under the Markov approximation such
‘‘proper’’ choice ~i.e., one which does not violate bas
physical principles such as equipartitioning or nonoccurre
of negative probabilities! is possible at all.3 The most promi-
nent examples of how to chooseLD have been given by
Redfield ~‘‘Redfield’’ theory!,4 and by Lindblad and others
~‘‘dynamical semigroup approach’’!.5 Alternative choices6

for LD can be shown to be often closely related to exist
schemes such as the Redfield theory.3

Once Eq.~1! is solved, i.e.,r̂(t) known, the relevant
observables are readily computed from a quantum mech
cal trace,

^Â&~ t !5tr$Âr̂~ t !%. ~2!

Except for special examples, an analytical solution of Eq.~1!
is not available and one has to resort to a numerical tr
ment. The latter requires~i! a particular representation of th
operators, and~ii ! a time integration scheme. Assuming th
a certain representation was selected~e.g., discrete spatia
grids,7–9 zeroth order state, eigenstate,10–12 or mixed
representations13!, Eq. ~1! can be written as a matrix differ
ential equation

ṙ5Lr, ~3!

with the initial conditionr(0)5r0 . Here,L is aD3D ma-
trix representation of the Liouvillian andr0 is a ‘‘vector’’ of
8 © 1999 American Institute of Physics
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size D5N3N, whereN is the size of the Hilbert space o
the system. Analytically, the solution of~3! for a time t
>0 is

r~t!5exp~tL!r0 . ~4!

Equation ~4! will be referred to as a ‘‘direct,’’ or matrix
solution of the LvN equation~1!.

The direct solution is to be contrasted with indirect on
for which ~many! stochastically sampled or variationally d
termined,~coupled! wave packets are employed. Exampl
of these wave packet based schemes are the Monte C
Wave Packet~MCWP!,14,15,16,9the quantum state diffusion
~QSD!,17,9,18 and the variational wave packet~VWP!
methods,19 respectively. Both classes of solution techniqu
~direct or indirect! require different computational resourc
~memory occupation and computation time!, differ in their
accuracy~e.g., statistical convergence vs numerically ‘‘e
act’’!, and are not equally general~e.g., restricted to Lind-
blad forms of dissipation!. Whether or not one or the othe
approach offers computational advantages is, therefore, q
system- and problem-dependent.16 The direct methods serve
at a minimum, as accurate and general benchmarks.

In the practice of direct methods the exponential o
large matrix has to be approximated. Various approac
have been proposed to do so. Besides ‘‘brute-force’’ dir
diagonalization of the Liouvillian and general-purpo
Runge–Kutta integration,18,10 there are more sophisticate
schemes such as various split-operator techniques,7,9,20 Kry-
lov methods,11 and polynomial expansions.21,22,23,13,14

The polynomial expansions, which will be the focus
the present paper, have the distinct advantage of being~arbi-
trarily! accurate but still efficient. In the following, two spe
cific examples of how to approximate the time-evolution s
peroperator exp(tL) in Eq. ~4! will be considered in some
detail. The first one is a Newton interpolation, which h
been used earlier for density matrix propagation.21,22,23,13,14

The second is an approximation of exp(tL) based on Fabe
polynomials—these have not been used so far to propa
density matrices in time, but proved useful for approximat
the Green operator for time-independent scattering calc

tions or to compute a propagatore2 i Ĥ̃ t with non-Hermitean

HamiltonianĤ̃.24

We will provide a unified mathematical background f
both types of polynomial expansions~Sec. II!, and a critical
evaluation of numerical aspects of their implementation, s
bility, and performance~Sec. III!. In Sec. IV, examples for
the application of the Newton and Faber methods to phys
problems will be given. In Sec. IV A both methods will b
applied to a damped harmonic oscillator. In Sec. IV B
semianalytical series expansion based on Faber polynom
for continuous wave~cw!, condensed phase absorption sp
tra will be derived. We apply the new series to the dissi
tive infrared~IR! absorption spectrum of benzoic acid dime
in a crystalline environment. In Sec. IV C it will be argue
that the Faber and Newton techniques can also be efficie
applied to explicitly time-dependent problems, and are g
eral enough to treat any kind of~Markovian! dissipation. The
final section V concludes our work.
,
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II. NEWTON AND FABER POLYNOMIAL
INTEGRATORS

A. General aspects

If we choose a polynomial approximation for the tim
evolution superoperator, we are interested in a polynom
Pn

t(L)r0 which minimizes among all polynomials of degre
<n the local error,

e loc~n!5iexp~tL!r02Pn
t~L!r0i . ~5!

To further proceed we first note that the eigenvalue spect
of the Liouvillian is complex. The eigenvalues are distri
uted symmetrically with respect to the real axis, beca
their imaginary part derives from the Hamiltonian Liouvi
lian LHª2 i @Ĥs,•# in Eq. ~1!. This term corresponds to a
the possible differences between the eigenvalues ofĤs , that
is the imaginary frequenciesiv i j 5 i (Ei2Ej ). Further, the
eigenvalues are usually~i.e., for energy-withdrawing pro-
cesses! located in the left half of the complex plane, indica
ing negative real parts due to the dissipative LiouvillianLD .

The application of functional calculus of analyt
functions25 gives an insightful framework to approximate
function of a Liouvillian with complex spectrum. LetG,C
be any closed~Jordan! curve that does not intersect itse
~e.g., the boundary of a rectangle or an ellipse! enclosing the
spectrum ofL; then,

e loc~n!5iexp~tL!r02Pn
t~L!r0i

5 I 1

2p i EG
$exp~tz!2Pn

t~z!%~zI2L!21r0dzI
<min

G
H CG max

zPG
Uexp~tz!2Pn

t~z!UJ ~6!

for a constantCG.0, depending onL andG, but indepen-
dent of n. From the above inequality, we see that the lo
error is related to the problem of approximating a scalar a
lytic function, i.e., finding among all polynomialsPn

t at most
of degreen one that minimizes for fixedG,

max
zPG

uexp~tz!2Pn
t~z!u. ~7!

Following the maximum principle,26 one can substitute in
Eq. ~7! G by the domainG5G(G) defined as the set of al
points enclosed byG. The exact solution of the min–ma
problem requires the calculation of the spectrum ofL,
equivalent to diagonalize it. This is precisely what we wa
to avoid, since direct diagonalization ofL is in general in-
efficient. Therefore, it is a common practice to fix a curveG
or respectively a domainG and consider the scalar value
approximation problem~7!. The choice of the domainG is
important for numerical aspects as we are going to see
low.

There is a rich literature about the approximation pro
lem ~7! both in complex analysis27,28 and in theoretical
chemistry1,24 to cite a few. These different methods can
considered as special realizations of polynomial approxim
tions. In the next subsection, the notion of conformal ma
ping associated with a domain is introduced to be used in



r

le

,
-
s
-
t

n

on

en

a

ls
n
ly
o

m
ite

ke
p-
lex

r

y

u-
ials
d in
nly

e
al

e
b-

r

s

o-
als

5540 J. Chem. Phys., Vol. 110, No. 12, 22 March 1999 Huisinga et al.
definition of the ‘‘quasioptimal’’ polynomial approximation
on a domain that includes the eigenvalues of the matrixL.

B. Conformal mapping

For a given domainG, it is advantageous to conside
separately its geometry from its size. The shape ofG deter-
mines the form of the polynomial approximationPn

t , while
the size influences its numerical stability.

Let G be a bounded, closed continuum in the comp
plane, such that the complement ofG is simply connected in
the extended plane and contains the point at`, e.g., a rect-
angle or an ellipse. By the Riemann mapping theorem26

there exists a conformal mappingc which maps the comple
ment of a closed disk with center at the origin and radiur
onto the complement ofG, satisfying the normalization con
dition limuwu→` c(w)/w51. Then, its Laurent expansion a
` is given by

c~w!5w1g01g1w211g2w221¯ ~8!

with coefficientsg iPC. The logarithmic capacityof G is
defined as the radiusr of the above disc. We call a domai
scaled, if r51. Two examples may illustrate this:

~1! For the herein suggested polynomial integrator, the c
formal mapping
c~w!5w1m1d/w ~9!

with parametersm,dPC (dÞ0) is of central impor-
tance. The left picture of Fig. 1 shows that for a giv
logarithmic capacityr, c(w) describes a family of el-
lipses with center atm and minor and major axisa
5(r2d/r) andb5(r1d/r), respectively.

~2! The mapping
c~w!5w1m21/~2w!3, mPC, ~10!

specifies a family of ‘‘smoothed rectangles,’’ centered
m ~see right panel of Fig. 1!.

C. The Faber approximation

In this section a brief introduction to Faber polynomia
is provided. It is interesting to notice that the well know
Chebychev polynomials are a special family of Faber po
nomials constructed to approximate continuous functions
real variables. When functions of matrices have to be co
puted, the Chebychev approximation is consequently su

FIG. 1. Elliptical and rectanglelikescaleddomains as in examples~9! and
~10!. The parameters arem520.25, 20.75,...,21.75 andd52(m11)
~from the left to the right ellipse! andm520.875 for the ‘‘rectangle.’’
x
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t

-
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to matrices with real or purely imaginary eigenvalues, li
the Hamiltonian, while Faber polynomials are generally a
propriate when the eigenvalues are defined in the comp
plane.

The family of Faber polynomials$Fk%kPN associated
with a conformal mappingc is defined via the recursion
relation

Fk11~z!5z•Fk~z!2(
j 50

k

g j•Fk2 j~z!2k•gk ~11!

for k>1 andF0(z)[1.29,24 The corresponding relations fo
matrix operations are obtained substitutingz byL and mul-
tiplying the equations byr0 , as is exemplified in Eq.~13!
below. The recursion relation is stable, ifz or the spectrum of
L, respectively, are contained in the scaled domain.30 It can
be seen from Eq.~11! that Faber polynomials, defined b
their recursion relation, depend upon the coefficientsg j of
the conformal mappingc and thus on the shape ofG inde-
pendently of the size of the domainG @there is nor in Eq.
~11!#.

From a numerical point of view, e.g., for memory occ
pation, we are interested in the families of Faber polynom
which allow short-term recursions. Thus, we are intereste
domainsG whose associated conformal mappings have o
a few nonzero terms in their Laurent expansion at` @see Eq.
~8!#. Among them, we have been working mainly with th
family of Faber polynomials corresponding to the conform
mappingc(w)5w1m1d/w @see example~1! above#. The
parametersm andd depend upon the relative strength of th
Hamiltonian and dissipative dynamics of the physical pro
lem studied.

For our conformal mapping~9!, the associated Fabe
polynomials are defined by the three term recursion

Fk11~z!5~z2m!Fk~z!2d•Fk21~z!, k>1 ~12!

with initial values F0(z)[1, F1(z)5z2m and F2(z)
5(z2m)222d. The matrix equivalents of these relation
are

Fk11~L!r05~L2mI !Fk~L!r02d•Fk21~L!r0 , k>1
~13!

with initial values F0(L)r0[r0 , F1(L)r05(L2mI )r0

and F2(L)r05(L2mI )F1(L)r022d•r0 . Setting the pa-
rametersm to 0 andd to 1/4, the associated Faber polyn
mialsFk are equal to the normalized Chebychev polynomi
Tk via Fk(z)5212kTk , for k>1, while F05T0 .

Any function that is analytic insideG can be expanded
in terms of the Faber polynomials associated withc.29 In
application to exp(tz), this yields

~14!

for all zPG. Equation ~14! is exact. Now we define the
Faber approximationof ordern to be the truncated series

Pn
t~z!5 (

k50

n

ck~t!Fk~z! ~15!
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with expansion coefficients as defined above. Substitu
Fk(z) by Fk(L)r0 , one gets the ‘‘matrix valued version’
Pn

t(L)r0 ,

r~t!5exp~tL!r0'Pn
t~L!r05 (

k50

n

ck~t!Fk~L!r0 . ~16!

For our conformal mappingc(w)5w1m1d/w, the coeffi-
cients can be solved analytically (dÞ0)

ck~t!5~2 i /A2d!k exp~tm!Jk~2tA2d!, ~17!

where we used the identity exp(x(t11/t)/2)
5(k(t/ i )

kJk( ix).31 Here,Jk is a Bessel function of the firs
kind. From now on, the term ‘‘Faber approximation’’ is a
ways meant with respect to the conformal mapping~9!.

D. The Newton interpolation at Leja ´ points

Another way to approximate functions of matrices w
polynomials is suggested by the theory of the interpolation
analytic functions. The complex Newton interpolation bas
on Lejápoints is an efficient implementation of this idea, a
was introduced in density matrix calculations by Koslo
Tal-Ezer, and Berman.21,14 The method is shortly outlined in
the following.

Let G be a domain as defined in Sec. II B. A sequen
(zm)mPN of points on the boundary ofG, i.e., (zm)mPN,G,
is called aLejá point sequence,28 if uz1u5maxzPG uzu and

)
k51

m

uzm112zku5max
zPG

)
k51

m

uz2zku ~18!

for m.1. In numerical applications, one substitutes t
maximum of allzPG by the maximum of allzPGL , where
GL5$z̃1 ,z̃2 ,z̃3 ,...,z̃L% is a set of uniformly distributed point
on the boundary ofG with L@n5estimated degree ofPn

t .
We call a Lejápoint sequence scaled if the points lie on t
boundary of a scaled domain.

A sequence of Leja´ points defines the associated Newt
polynomials$vk(z)%kPN by the two term recursion

vk11~z!5~z2zk11!vk~z! ~19!

for k>0 andv0(z)[1. For functions of matrices we have

vk11~L!r05~L2zk11I !vk~L!r0 ~20!

with starting termv0(L)r0[r0 . The recursion relation is
stable if the Leja´ points are scaled andz ~or the spectrum of
L, respectively! is contained in the scaled domain.28

The Newton polynomials are related to the logarithm
capacityr of G by Amuvm(zm11)u→r for m→` thus

uvm~zm11!u'rm11 ~21!

for ‘‘large’’ m. This shows why scaled Leja´ points are nec-
essary to avoid overflows~underflows!.32,28

The coefficients entering a Newton series are the
called divided differences. For a functionf on G, the divided
differences can be defined recursively@every two elements o
the Lejápoint sequence are different; therefore the deno
nator in Eq.~22! is alwaysÞ0#.
g

f
d

e

o

i-

@zk ,...,zl # f 5
@zk11 ,...,zl # f 2@zk ,...,zl 21# f

zl2zk
~22!

for 1<k, l and initial values@zk# f 5 f (zk).
Let c be the conformal mapping associated with a d

main G. Then, any function that is analytic insideG can be
expanded in terms of the Newton polynomials associa
with the Lejá points (zm)mPN .28 The application tof (z)
5exp(tz) yields

exp~tz!5 (
k50

`

@z1 ,...,zk11#expvk~z! ~23!

for all zPG. Now we define theNewton interpolationof
ordern as the truncated series

exp~tz!'Pn
t~z!5 (

k50

n

@z1 ,...,zk11#expvk~z!. ~24!

Substitutingvk(z) by vk(L)r0 one gets the ‘‘matrix valued
version’’ Pn

t(L)r0 that is formally equivalent to relation
~16!.

III. NUMERICAL ASPECTS

Analytically, the Faber approximation and the Newto
interpolation are very similar.30 It has to be checked whethe
this holds true also numerically. Before starting, we have
decide how to choose the domain that includes the eigen
ues ofL. This step is very similar for the two algorithms.

A. On scaling and domain

The effects of the choice of the domain on the numeri
stability and efficiency are of general nature, so any sys
can be used to exemplify them. For this purpose we h
chosen an abstract model dissipative system. HereL corre-
sponds simply to a diagonal matrix with complex eigenv
ues, shown as dots in the first panels to Figs. 2–4 below.
matrix dimension was taken to beD5199, and the complex
eigenvalues were chosen to be located on the arc of an
lipse, symmetrically with respect to the real axis. This eige
value spectrum resembles a ‘‘typical’’ physical situation i
sofar as states separated by large frequenciesv i j

~corresponding to largely positive or negative imagina
parts of the eigenvalues ofL!, are connected by ‘‘fast dissi
pation,’’ i.e., also their real parts are large~and negative!.21

In contrast, eigenvalues closer to the real axis typically h
also small real parts.21 As initial state, a randomly occupie
vectorr0 has been chosen, and propagated for one time s
The shape of the domainG used for interpolation/
approximation is taken here as elliptic, and is shown a
solid curve in the first panels of Figs. 2–4. The effects
choosing ellipsesG which are different in size and location
can be illustrated with the three exemplary cases of F
2–4. ~The results are shown only for the Faber approxim
tion; the Newton expansion behaves qualitatively similar.!

In Fig. 2, a typical case of numerical instability is pr
sented. It clearly arises from the recursion relation~13! since
the so called Frobenius norm

iÂiªAtr$Â†Â% ~25!
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FIG. 2. Behavior of the integration for anonscaledLiouvillian. Starting from the left, thescaleddomain and thenonscaledspectrum~¯! are shown in the
first graph. The local error~5! vs the ordern of approximation is depicted in the center, while in the last picture the Frobenius norm of the Faber polyn
~—! is presented together with the modulus of the coefficients~-•-!.
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of the last term of the series~16! (Â5Fn(L) r̂0) ‘‘ex-
plodes,’’ as shown in the third panel of the figure~solid line!.
This quantity is, therefore, a good measure to control
kind of numerical instability; in contrast, the modulus of th
last coefficientcn is not ~dotted–dashed curve in the thir
panel!. The recursion relation is unstable because in this c
the nonscaled eigenvalues ofL lie outside the domain. The
local error e loc(n) @Eq. ~5!# grows first exponentially, bu
then finally decreases to a constant~second panel of Fig. 2!.
Furthermore, it was shown in Ref. 33 that in the above c
the remaining error grows exponentially with the time stept,
so for large values oft the accuracy is completely lost.

Scaling.To avoid these last numerical instabilities in th
recursion relation, the Liouvillian has to be scaled,

L→s21L. ~26!

The scaling factors.0 should make the spectrum ofs21L
lie inside the scaled domain. As a consequence, the step
has to change, too,t→st. @We have r(t)5exp(tL)r0

5exp(sts21L)r0'Pn
st(s21L)r0 . Note that in genera

Pn
st(s21L)r0ÞPn

t(L)r0 , although the identity holds fo
the exponential function.# In Fig. 3, it is shown what happen
if the domain is properly scaled but improperly set and en
the right part of the complex plane. This depends on
position of the points for the Newton interpolation and on t
parameterm in Eq. ~9! for the Faber approximation, respe
tively. The Frobenius norm of the Faber polynomials d
creases exponentially in this case, because the recursio
is

se

e

ize

rs
e
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lation is stable. The modulus of the coefficientscn increases
exponentially untiln'70, where it reaches a value far larg
than 1~being a signature for this kind of error!, then it starts
to decrease. The local error~second panel! is constant until
n'70 and then starts to decrease; therefore the calcula
finally converges, but the propagation is numerically ine
cient because a high polynomial order is required.

In Fig. 4, the spectrum of the scaled Liouvillian lie
entirely in the scaled domain, which is completely contain
in the left part of the complex plane. The norm of the Fab
polynomials is almost constant, showing that the scaling w
correct.32 The modulus of the coefficients is bounded by
and decays exponentially fromn'305ts on. The effort to
reach a given local tolerance is much less than in the
examples above. The optimal ellipse has the smallest sca
factor s compatible with a stable propagation.

Based on the modulus of the coefficients and the Fro
nius norm of the Faber polynomials, one can construc
local error estimatore loc(k)5uck(st)uAtr$Fk* Fk%, which
proved to allow for a very reliable error check in practic
For details, see Ref. 34.

In practice, an algorithm is necessary to determine
rough estimate of the region of the complex plane where
eigenvalues of the Liouvillian matrixL lie. For the Faber
algorithm with an elliptical domainG, this will produce the
parametersm ~andd! in Eq. ~9!. Also for the Newton algo-
rithm an estimate for the size and shape of the eigenva
spectrum is required, no matter howG will actually be cho-
eaning
FIG. 3. Behavior of the integration when the Liouvillian is properly scaled but the domain lies partially in the right part of the complex plane. The m
of the graphs is the same as in Fig. 2.
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FIG. 4. Behavior of the integration when the Liouvillian is properly scaled and the domain is correctly set. The meaning of the graphs is the same
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sen. In Refs. 21–23 it was shown how a first guess for
shape and size of the spectrum ofL can be made on the
basis of physical arguments~expected maximum Hamil
tonian energy differenceuEi2Ej u, and fastest dissipative
channel!.

As a more automatized procedure, in this work we e
ploy the most simple iterative method, the power method35 to
estimate an eigenvalue spectrum. This method is particul
useful because in the present applications the reasonabl
sumption can be made that the eigenvalues lie ‘‘along
lines’’ between zero and the eigenvalue of largest modulu
hence, only this last one has to be evaluated. To hav
reasonably stable iteration, one should consider that

~1! The eigenvalues are distributed symmetrically with
spect to the real axis~see above!. Accordingly, there are
always two eigenvalues with maximum modulus. Ad
ing iEmaxÎ to the Liouvillian, whereEmax is an estimate
of the maximal energy, the eigenvalue spectrum is tra
lated along the imaginary axis and one of the eigenv
ues with maximum modulus becomes larger than
other one.

~2! The Frobenius norm and relative scalar product has to
used to compute the eigenvalue as

l5
tr$rn

†rn21%

Atr$rn21
† rn21%

. ~27!

~3! The iteration procedure has to be repeated a numbe
times sufficient in order to let the system relax clo
enough to the desired eigenvalue.

B. Spectral estimates, scaling, and coefficients

1. Newton interpolation

In order to stabilize the computation of the Newton po
nomials and the divided difference coefficients, the L´
points have to be scaled@see Eqs.~19! and ~22!#. This is
done iteratively: use a few points in the Leja´ algorithm to
derive a rough estimate ofr @see Eq.~21!# and rescale all
points with respect tor. Now, use more points to generate
more precise logarithmic capacity, rescale and so on. Re
this procedure untilr deviates by less than a prespecifi
tolerance from 1. Usually no more than three or four ite
tions are needed. The generation of the Leja´ points itself
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requires the repetition of many operations.14 For details of
the procedure the reader is referred to Ref. 34.

2. Faber approximation

If an eigenvaluel of maximal modulus is known@see
Eq. ~27!#, it is possible to determine an ‘‘optimal’’ ellipse. It
parametermP@22,0# solves the third order equation (
1r 2)m31(6r 222)m2112r 2m18r 250 with r 5Im(l)/
Re(l), which can be solved by Newton methods.35,36 Since
the ellipse should not penetrate the right part of the comp
plane, we choosed52(m11). Now, the scaling factor is
fixed, too, s5ul/qu for q5A11r 22rm(21m)2/(m2

1r 2(21m)2).
The next step is to calculate the expansion coefficie

ck5hkJk(2stA2d) with hk5(2 i /A2d)k exp(stm). Since
the density matrix theory in general is applicable in the we
or medium coupling limit~for Markovian equations!, the
spectrum ofL is ‘‘near’’ the imaginary axis and therefor
21<m<0. Accordingly, d,0 and we need only Besse
functions for purely real arguments. Over and underflows
hk can be avoided by employing a local tolerance criterion34

IV. PHYSICAL APPLICATIONS

A. Damped harmonic oscillator: Comparison between
Faber approximation and Newton interpolation

In terms of memory occupation, the two methods a
equivalent. The Newton interpolation is based on a two te
recursion~19! while the Faber approximation is based on
three term recursion~12!. In practice, both need three copie
of the matrixr to realize the recursive generation ofr(t), as
can be seen from Eqs.~13! ~Faber! and ~20! ~Newton!, re-
spectively. In both cases the basic operation isLr, thus there
is no need to store any~super! matrices of sizeD3D5N2

3N2. The operationLr itself depends on the particular rep
resentation used; e.g., in the case of a coordinate grid re
sentation the Hamiltonian operationLHr is conveniently
done via a fast Fourier transform~FFT! algorithm, which
scales asN2 log2 N.8

To test the propagators, a one-dimensional harmonic
cillator coupled to a bath atT50 K was chosen, following
the equation37

ṙ̂52 iv@ â†â,r̂ #1g~ âr̂â†2 1
2@ â†â,r̂ #1!, ~28!
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where@ #1 denotes an anticommutator, andâ† andâ are the
creation and annihilation operators; respectively.v is the os-
cillator frequency, andg is a damping constant. Equatio
~28! is derived from the general form~1! with the identifica-
tion Ĥs5v(â†â1 1

2), and the assumption that the dissipati
Liouvillian is of Lindblad form5

LDr̂5(
i

S Ĉi r̂Ĉi
†2

1

2
@Ĉi

†Ĉi ,r̂ #1D ~29!

~i labels different dissipative channels!. In the damped oscil-
lator case~28!, we use a single Lindblad operatorĈ, which
is Ĉ5Agâ.

By choosingv50.02Eh andg'1022v, weak damping
was anticipated. Further, the system was represented
spatial grid of 128 points, although a harmonic oscilla
basis should do equally well. As initial state, we assume
the oscillator is att50 in its first excited state, i.e.,r̂0

5uc1&^c1u, whereuc1& is the first excited harmonic oscilla
tor function.

In Table I, we compare the performance of the Newto
Lejá and Faber algorithms by propagating one time stet
and determining the corresponding polynomial ordern which
is required to keep the relative error in the energy sma
than 1024. From the table we note that the two algorithm
behave quite similar, i.e., about the same polynomial or
~and hence computation time! is required to achieve the sam
accuracy, with small advantages for the Faber algorith
Hence, both algorithms are similar not only in their ma
ematical structure, but also in their numerical efficien
This was confirmed in a series of test calculations with
range of parametersv andg.

The advantages of the Faber algorithm are that~i! it is
stable to higher orders than the Newton algorithm~see Table
I!, ~ii ! the coding of a computer program is easier, and~iii !
no selection of sampling points has to be made. On the o
hand, for the Newton interpolation, there are no restrictio
on the analytic function to be applied to; also, there is
restriction on the shape of the domainG chosen to enclose
the complex eigenvalue spectrum of the Liovillian, where
the Faber approach requires a different implementatio
domains different from the elliptical one are adopted.

B. Absorption spectra by polynomial expansions

1. Polynomial expansion of an absorption spectrum

Often, the propagated density matrix is used in ot
formulae to derive observables of interest. A typical case
the computation of a continuous wave~cw! absorption spec-

TABLE I. Damped harmonic oscillator. Typical polynomial order necess
for a Newton and a Faber polynomial series to achieve a relative error in
energy smaller than 1024. ‘‘n.s.’’ means not stable.

Time stept ~a.t.u.! 100 400 1000 2000 3000

Faber 277 1059 2509 5249 7795
Newton 273 1067 2545 5662 n.s.
a
r
at

–

r

r

.
-
.
a

er
s
o

s
if

r
is

trum. For a weak, continuous wave field, there is a kno
expression for the absorption coefficient of a system emb
ded in a dissipative environment38

a~v!5
4pvnmol

nc
ReE

0

`

dteivt tr$m̂eLt@m̂,r̂0#%, ~30!

which can be viewed as a generalization of the so ca
Heller formula39 to the dissipative case. Here,v is the light
frequency,m̂ is the dipole operator,nmol is the density of
molecules,c the velocity of light,n the refractive index, and
r̂0 the initial density operator. Settingr̂08ª@m̂,r̂0#, the solu-
tion of ~30! is equivalent to the propagation of a matrix a
cording to the dissipative LvN equation~1!. The integration
is done for a discrete number of time steps, the trace is c
puted for each time step and Fourier transformed.

An interesting aspect of the polynomial integrators
that the time dependence is only in the coefficients and
representation dependence is left in the Faber or New
recursion relations.1,24,40In the case of the Faber approxim
tion, for example,

eLt@m̂,r̂0#'(
k50

n

ck~ t !Fk~L!r̂08 . ~31!

This implies that Eq.~30! in its polynomial approximation
~31! can be rewritten as@Ksª(4pnmol /nc)#,

~32!

where the only approximation is in the polynomial expans
of the propagator, and where the trace is time-independ
In contrast to the Newton expansion, the Faber coefficie
ck(t) are given analytically by Eq.~17!. Using Eq.~17!, also
the coefficientssk(v) of the Faber approximation for spec
trum evaluation in Eq.~32! can be evaluated analytically as41

sk~v!5vE
0

`

eivtck~ t !dt

5vS 2 i

A2d
D kE

0

`

eivtemstJk~2stA2d!dt

5
v

A4s2d1~ms1 iv!2

3SA4s2d1~ms1 iv!21~ms1 iv!

2sdi D k

. ~33!

These coefficients are very similar to the Chebychev se
for computing dissociative Raman spectra1 or the Faber se-
ries for the Green operator.24 This is to be expected becaus
the underlying framework of the three series is equivalen

Hence, the evaluation of absorption spectra for co
densed phase problems can be done semianalytically by
ing Eq. ~32!, with the coefficients given by Eq.~33!. Unlike
the Faber coefficientsck(t), the coefficientsck(v) ~33! for
spectra evaluation are algebraic and therefore no spe

y
he
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functions like Bessel functions are needed. This makes
series very stable and polynomial orders up to millions c
be used without problems. However, a different series
needed for every frequencyv. For a givenv, the terms in
Eq. ~33! are generated via a simple one term recurs
relation—the (k11)st coefficient is readily calculated from
the kth one.

2. Infrared absorption spectrum of benzoic acid
dimers

The new series was applied to the IR absorption sp
trum of benzoic acid dimers embedded in benzoic acid c
tals. For this purpose, a two-dimensional model of the dou
minimum type was used, which is described elsewhere.42,43

The model consists of a ‘‘hydrogen transfer mode’’ and
‘‘molecular frame mode,’’ and all operators were represen
in the basis of the~16 lowest! vibrational bound states of th
model HamiltonianĤs . The system vibrational levelsui& re-
lax due to vibrational energy dissipation, caused by the c
pling to the phonons of the embedding crystal. The rel
ation was taken to be of the Lindblad form~29!, with

Ĉi→Ĉkl5AGkluk&^ l u, ~34!

where theGkl are relaxation rates connecting two vibration
states. For the evaluation ofGkl , a microscopic model was
used. All details of the model and the parameters are fr
Refs. 43 and 42.

In Ref. 43, the spectrum was obtained by numerica
propagating a matrixr08 @Eq. ~30!# with a Newton polyno-
mial integrator. Here we use the semianalytic series~32!.
When the dissipation is of Lindblad form, there is also
analytical solution fora~v!.38,43The analytical spectrum is
sum of broadened Lorentzians43

a~v!5v(
i . j

m i j
2 ~gj2gi !S G i i 1G j j

~G i i 1G j j !
21~v1v j i !

2

2
G i i 1G j j

~G i i 1G j j !
21~v2v j i !

2D . ~35!

Here, them i j are the matrix elements of the dipole mome
operator,v i j is the frequency for transitions between leve
ui& and uj&, and gi is the Boltzmann weight for stateui& at
temperatureT, i.e.,gi5e2(Ei /kbT)/Q (kb the Boltzmann con-
stant,Ei the energy of stateui&, andQª( i 50

` e2(Ei /kbT) the
partition function!. For the diagonal elements of the rela
ation matrix we used the conventionG i i 5( j Þ iG j i , as in Ref.
43.

Before considering the spectrum itself, we comment
the behavior of the expansion coefficientssk(v) as a func-
tion of v and the strength of dissipation~i.e., temperature!.
From Fig. 5, wheresk(v) is shown as a function ofv, it is
clear that the smallestv can be taken as a reference for t
convergence of all series. For example, the low-v part of the
spectrum requires the highest polynomial order to converg
spectrum, while at higherv the computational effort be
comes smaller.

In Fig. 5 effects of the dissipative strength are cons
ered, which can be investigated by varying the parametem
e
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n

c-
s-
le

a
d

u-
-

l

m

y

t

n

a

-

in Eq. ~9!. One finds that for stronger dissipation~larger
modulus ofm!, the modulususk(v)u of the expansion coef-
ficients decay more rapidly withk than in weakly dissipative
cases. This means that the series~32! converges faster when
the dissipation is strong, and the computation of spectr
less costly in this case. Strong dissipation is characterized
large Lorentzian line widths according to Eq.~35!. In con-
trast, when dissipation is weak and the peaks are nar
~e.g., at low temperature!, larger polynomial orders are re
quired. Further, in order to resolve narrow peaks many po
v i are needed at whicha(v i) has to be calculated.

In Fig. 6 we show the IR absorption spectrum of t
benzoic acid dimer in a crystal as obtained with our tw
mode model42,43 according to Eq.~32! for various crystal
temperaturesT. The well known trends are observed, that~1!
temperature increases the magnitude of dissipation and h
makes the peaks broader, and~2! higher temperatures favo
the contribution of ‘‘hot bands’’ to the high-v part of the
spectrum. All spectra obtained via Eq.~32! are in complete
agreement with the analytical solution~35! ~when the anti-
resonant terms are included!, and it is not possible to distin
guish between the analytical and the semianalytical cur
on the scale of Fig. 6. There is a certain quantitative d
agreement with the spectra reported in Ref. 43, thus show
that the present approach can improve accuracy in com
ing spectra in the presence of dissipation.

We do not analyze and assign the spectrum in de
here—that has already been done elsewhere.43 It is enough to
note that the different~broadened! lines correspond to eithe
~double-! hydrogen transfer or molecular frame modes. Fro
Fig. 6 we note that in particular at very low temperatur
~e.g., atT540 K), there exists a very sharp peak right belo
v560 cm21, which corresponds to the hydrogen trans
mode. This peak is particularly hard to compute by a se
expansion, because~i! v is small~ii ! the dissipation is weak

FIG. 5. Computation of spectra by polynomial expansion. In~a!, the loga-
rithm of the coefficientusk(v)u as a function of the polynomial order is
plotted forv50.2, 0.7, 1.2, 1.7, 2.2Eh ; m is set to 0.2Eh , ands51.2. The
largerv, the smaller are the dashes of the dashed lines. In~b!, the modulus
of the coefficientsusk(v)u is plotted as a function of the polynomial orde
for m520.05, 20.25, 20.45, 20.65, 20.85 Eh ; v is set ot 0.2Eh , and
s50.8. The larger the modulus ofm ~the ‘‘larger the dissipation’’! the
smaller are the dashes in the dashed lines.
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~see Fig. 5!, and~iii ! because manyv i are needed.
To converge the 40 K spectrum aroundv560 cm21, a

series of ordern54•107 was needed, which took about 4
min of CPU time on a medium-sized workstation. For th
calculation, the ratio between the modulus of the last coe
cient and the first one,cn(v)/c0(v), was set to 1027. Figure
7, which is a blow-up of the spectrum around the 60 cm21

peak, shows that this accuracy is indeed sufficient to g
agreement with the analytical result even on a hig
resolution scale. Also, with a ratiocn(v)/c0(v)51025 the
series~32! gives a reasonable agreement with the analyt
answer. However, by choosingcn(v)/c0(v)51023, the
semianalytical peak becomes too broad, and artificial os
lations emerge at the wings of the Lorentzian.

In contrast, for other peaks of the spectrum a ratio
1023 gives a spectrum almost indistinguishable from t

FIG. 6. Benzoic acid dimer, embedded in a crystal. IR absorption spe
computed forT540, 100, 200, 300 K~from lowest to highest frame!. The
spectra are scaled in order to keep the peak at'1140 cm21 at 80% of the
height of the frame. For the lowest temperature a very high peak emerg
59.76 cm21, whose features are plotted in Fig. 7, at the same vertical sc
The analytical spectra~35! are indistinguishable from the computed ones

FIG. 7. The absorption spectrum around the peak at 59.76 cm21 is shown as
computed for three different ratioscn(v)/c0(v) of the moduli of the last
and first expansion coefficients; 1027 ~circles!, 1025 ~triangles!, and 1023

~diamonds!. The analytical solution~35! is depicted as a solid line.
-

e
-

l

il-

f

analytical one, even at temperatures as low asT540 K. At
the same time, for largerv a shorter polynomial expansio
suffices to make the ratiocn(v)/c0(v) small ~see Fig. 5!. At
v'1200 cm21 for example, we require onlyn'2•103 terms
to converge the spectrum withcn(v)/c0(v)51023. And
even cn(v)/c0(v)51027 requires onlyn'8•103 in this
case.

C. More general applications

The application of Newton or Faber polynomial integr
tors is neither restricted to Lindblad dissipation~29!, nor to
time-independent Liouvillians. For illustration, we consi
ered a double minimum potential hydrogen transfer mo
similar to the one described in the last subsection~see Ref.
44 for details!, with two important differences;~1! the hy-
drogen transfer was driven by coupling the molecular dip
to an explicitly time-dependent, pulsed electromagnetic fi
in the IR frequency domain, and~2! the dissipation was of
Redfield form, i.e., elementwise,

~LDr̂ !kl5(
i , j

Rkl,i j r i j . ~36!

Here, the elements of the relaxation tensor,Rkl,i j , and all
other computational parameters were taken from Ref. 44
contrast to Lindblad dissipation, Eq.~36! allows for the cou-
pling of diagonal and off-diagonal density matrix elemen
as well as for the coupling between different off-diagon
elements.

For these applications, it turned out that even in the c
of a rapidly oscillating driving field, both the Newton–Lej´
and the Faber expansion can outperform a standard Run
Kutta integrator in terms of computation time. This was p
ticularly so when when high accuracy was demanded
This is not necessarily expected, since polynomial exp
sions are~due to their exponential convergence1!, most effi-
cient when large polynomial orders and large time steps
be used.

It further appears that the polynomial integrators a
general enough to cope not only with Lindblad forms
dissipation, in contrast, e.g., to stochastic wave pac
methods.15 Even when the dissipation is chosen artificia
strong, in which case the Redfield form~36! leads to physi-
cally meaningless negative eigenvalues of the density ma
the polynomial integrators proved to be stable—only spe
care had to be taken during the scaling procedure.

V. CONCLUSIONS

In conclusion, both the Newton–Leja´ interpolation and
the Faber approximation are very valuable tools to integr
a Markovian, open-system Liouville–von Neumann equat
~1! in time. Both integrators are stable and accurate; vari
measures can be given to keep their accuracy well un
control. In particular the Faber approximation appears to
highly stable and easy to implement; it further leads to
efficient, semianalytical series expansion for the linear
sorption coefficient for condensed phase spectra. Both a
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rithms are found to be fast~even for explicitly time-
dependent problems!, and general~the dissipative Liouvillian
must only be Markovian!.

These propagators will therefore be useful not only wh
a benchmark solution is required, but also for physical ap
cations where other methods cannot easily be used in p
tice. Also, the polynomial expansion of other functions o
Liouvillian than the exponential one will be of interest. F
nally, a critical comparison of the polynomial integrato
presented here to, e.g., split-operator integrators7,9,20 should
be a rewarding task for the future.
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