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Two polynomial expansions of the time-evolution superoperator to directly integrate Markovian
Liouville—von Neumann(LvN) equations for quantum open systems, namely the Newton
interpolation and the Faber approximation, are presented and critically compared. Details on the
numerical implementation including error control, and on the performance of either method are
given. In a first physical application, a damped harmonic oscillator is considered. Then, the Faber
approximation is applied to compute a condensed phase absorption spectrum, for which a
semianalytical expression is derived. Finally, even more general applications are discussed. In all
applications considered here it is found that both the Newton and Faber integrators are fast, general,
stable, and accurate. @999 American Institute of Physids$S0021-960609)00512-1

I. INTRODUCTION unclear whether under the Markov approximation such a
“proper” choice (i.e., one which does not violate basic

) e ) ‘physical principles such as equipartitioning or nonoccurrence
scopic description of molecular systems has seen a big legp negative probabilitiesis possible at aff. The most promi-

forward in recent yearsin particular thg treatment of_com- nent examples of how to choos&, have been given by
plex molecules or molecules in an environméntsolution, Redfield (“Redfield” theory),* and by Lindblad and others
in a matrix, in a solid, or at a surfaces in the focus of actual (“dynamical semigroup approach?® Alternative choice®

theoretical research. _ ) ) for £ can be shown to be often closely related to existing
The quantum dynamics of “open” systems, e.g., thoSeéschemes such as the Redfield thedry.

exchanging energy and phase with their surroundings, are nce Eq.(1) is solved, i.e.,p(t) known, the relevant

frequently treated within open system density matrix théory. observables are readily computed from a quantum mechani-
In cases where the characteristic time scales of motion of thga| trace

environmental modes are fast the Markov approximation can

be made, which neglects memory effet®he problem then R R

comes down to the solution of a Markovian, open-system  (A)(t)=tr{Ap(t)}. (2
Liouville—von Neumann equation of the fornmk =1),

The quantum dynamical, often time-dependent, micro

, . Except for special examples, an analytical solution of #y.
p(t)=Lp(t)=—i[Hs,p(t) ]+ Lop(t). (D is not available and one has to resort to a numerical treat-
ment. The latter requirg$) a particular representation of the
operators, andii) a time integration scheme. Assuming that
a certain representation was selectedy., discrete spatial

Here,L is the total, and’y the dissipative Liouvillian. These
are linear functions of the actual, “reduced” density opera-

tor p, the latter depending on the typtcally few mOIECU|argrids,7‘9 zeroth order state, eigenstafe!? or mixed
(“system”) degrees of freedom oni¥; is the correspond-  representatiort), Eq. (1) can be written as a matrix differ-
ing system Hamiltonian, which is to be understood as anppja| equation

effective Hamiltonian because it may include the stétic-

eraged distortion of the system dynamics due to the “reser- .

voir,” or “bath.” Energy and phase exchange between the P~ LP: &)
system and the batli‘relaxation” and “dephasing’) are

hidden in the dissipative LiouvilliairCp, the proper choice with the initial conditionp(0)=py. Here,L is aD XD ma-
of which is still a matter of scientific dispufelt is even trix representation of the Liouvillian angl, is a “vector” of
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sizeD=NXN, whereN is the size of the Hilbert space of |l. NEWTON AND FABER POLYNOMIAL
the system. Analytically, the solution @B) for a time 7 INTEGRATORS
=0 is A. General aspects

p(r)=exp(7L)po. (4) If we choose a polynomial approximatio_n for the timg
evolution superoperator, we are interested in a polynomial

Equation (4) will be referred to as a “direct,” or matrix P;(L)po which minimizes among all polynomials of degree
solution of the LvN equationl). =<n the local error,

The direct solution is to be contrasted with indirect ones, -
for which (many) stochastically sampled or variationally de- €ioc(N) =[[eXA(7.L) po— Pr(.L) pol ®)
termined, (coupled wave packets are employed. ExamplesTo further proceed we first note that the eigenvalue spectrum
of these wave packet based schemes are the Monte Ca® the Liouvillian is complex. The eigenvalues are distrib-
Wave Packe(MCWP),***>%%the quantum state diffusion uted symmetrically with respect to the real axis, because
(QSD),""**® and the variational wave packetVWP)  their imaginary part derives from the Hamiltonian Liouvil-
methods.® respectively. Both classes of solution techniquesjgn =—i[Hge] in Eq. (1). This term corresponds to all
(direct or indirect require different computational resources $ ”
(memory occupation and computation timéiffer in their
accuracy(e.g., statistical convergence vs numerically “ex-
act”), and are r'10t. qually generéd.g,, restricted to Lind- cesseglocated in the left half of the complex plane, indicat-
blad forms of dissipation Whether or not one or the other .ing negative real parts due to the dissipative Liouvilligg.
approach offers computational advantgges is, therefore, quite The application of functional calculus of analytic
SySte"?' _and problem-dependéhThe direct methods serve, functiong® gives an insightful framework to approximate a
ata minimum, as accurgte and general benchmarks_. function of a Liouvillian with complex spectrum. Lé&tCC

In the practice of direct meihods the exponenial of e any closedJordan curve that does not intersect itself
fe.g., the boundary of a rectangle or an elljpseclosing the
gpectrum ofC; then,

the possible differences between the eigenvalué?tsofthat
is the imaginary frequencieisv;;=i(E;—E;). Further, the
eigenvalues are usuall§i.e., for energy-withdrawing pro-

have been proposed to do so. Besides “brute-force” direc

diagonalization of the Liouvilian and general-purpose

Runge—Kutta integratiotf''® there are more sophisticated €1oc(N) =lexp(7L) po— PH(L) pyll

schemes such as various split-operator techniggié3Kry-

lov methods'! and polynomial expansiorfs:?22313.14 _ if (exp(72)— P(2)H(zl — £)Lpodz
The polynomial expansions, which will be the focus of 27 Jr : Po

the present paper, have the distinct advantage of e

trarily) accurate but still efficient. In the following, two spe- gmin[ Cr ma% exp(7z) — P1(z)

cific examples of how to approximate the time-evolution su- r

peroperator exp{l) in Eq. (4) will be considered in some

detail. The first one is a Newton interpolation, which has

] (6)

zel

for a constantC+>0, depending onC andI’, but indepen-
dent ofn. From the above inequality, we see that the local

been used earlier for density matrix propagafibff:231314 , = oC
The second is an approximation of exfi) based on Faber error is related to the problem of approximating a scalar ana-
tic function, i.e., finding among all polynomial], at most

polynomials—these have not been used so far to propagah—% q h L2 tor fixed"
density matrices in time, but proved useful for approximatingo egreen one that minimizes for fixed,

the Green operator for time-independent scattering calcula-  maxexp(7z)— P7(z)|. 7
tions or to compute a propagater "' with non-Hermitean zel
HamiltonianH.?* Following the maximum principlé® one can substitute in

We will provide a unified mathematical background for Eq. (7) I' by the domainG=G(I") defined as the set of all
both types of polynomial expansiofSec. I, and a critical points enclosed by'. The exact solution of the min—max
evaluation of humerical aspects of their implementation, staproblem requires the calculation of the spectrum ©f
bility, and performancédSec. Ill). In Sec. IV, examples for equivalent to diagonalize it. This is precisely what we want
the application of the Newton and Faber methods to physicab avoid, since direct diagonalization & is in general in-
problems will be given. In Sec. IV A both methods will be efficient. Therefore, it is a common practice to fix a cufve
applied to a damped harmonic oscillator. In Sec. IV B, aor respectively a domais and consider the scalar valued
semianalytical series expansion based on Faber polynomiadégproximation probleni7). The choice of the domaif is
for continuous wavécw), condensed phase absorption specimportant for numerical aspects as we are going to see be-
tra will be derived. We apply the new series to the dissipaiow.
tive infrared(IR) absorption spectrum of benzoic acid dimers ~ There is a rich literature about the approximation prob-
in a crystalline environment. In Sec. IV C it will be argued lem (7) both in complex analyst$?® and in theoretical
that the Faber and Newton techniques can also be efficientighemistry?* to cite a few. These different methods can be
applied to explicitly time-dependent problems, and are geneonsidered as special realizations of polynomial approxima-
eral enough to treat any kind @¥larkovian dissipation. The tions. In the next subsection, the notion of conformal map-
final section V concludes our work. ping associated with a domain is introduced to be used in the
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FIG. 1. Elliptical and rectanglelikecaleddomains as in examplg8) and
(10). The parameters amn= —0.25, —0.75,...,—1.75 andd=—(m+1)
(from the left to the right ellipseand m= —0.875 for the “rectangle.”

definition of the “quasioptimal” polynomial approximation
on a domain that includes the eigenvalues of the matrix

B. Conformal mapping

For a given domairG, it is advantageous to consider
separately its geometry from its size. The shap&afeter-
mines the form of the polynomial approximati®,, while
the size influences its numerical stability.

Huisinga et al.

to matrices with real or purely imaginary eigenvalues, like

the Hamiltonian, while Faber polynomials are generally ap-

propriate when the eigenvalues are defined in the complex
plane.

The family of Faber polynomials{F,}.~ associated
with a conformal mappingy is defined via the recursion
relation

k

Fk+1(z):Z'Fk(Z)_j§=:0 Y- Fe-j(2) = K-y (1)

for k=1 andFy(z)=1.2%2*The corresponding relations for
matrix operations are obtained substitutingy £ and mul-
tiplying the equations by, as is exemplified in Eq(13)
below. The recursion relation is stablezifr the spectrum of
L, respectively, are contained in the scaled domaincan
be seen from Eq(11) that Faber polynomials, defined by
their recursion relation, depend upon the coefficieptof
the conformal mappings and thus on the shape &f inde-
pendently of the size of the domaé [there is nop in Eq.
(D]

From a numerical point of view, e.g., for memory occu-
pation, we are interested in the families of Faber polynomials
which allow short-term recursions. Thus, we are interested in

Let G be a bounded, closed continuum in the Comp|exdomainsG whose associated conformal mappings have only

plane, such that the complement®fis simply connected in
the extended plane and contains the pointae.g., a rect-
angle or an ellipse. By the Riemann mapping theofeém,
there exists a conformal mappirgwhich maps the comple-
ment of a closed disk with center at the origin and raglius
onto the complement db, satisfying the normalization con-
dition limyy .. #(w)/w=1. Then, its Laurent expansion at
« is given by

(W) =W+ Yo+ YW~ yw ™ 2 (8)

with coefficientsy; e C. The logarithmic capacityof G is
defined as the radiys of the above disc. We call a domain
scaled if p=1. Two examples may illustrate this:

a few nonzero terms in their Laurent expansiorrdtee Eq.
(8)]. Among them, we have been working mainly with the
family of Faber polynomials corresponding to the conformal
mapping(w) =w+m+d/w [see examplél) abovd. The
parametersn andd depend upon the relative strength of the
Hamiltonian and dissipative dynamics of the physical prob-
lem studied.

For our conformal mapping9), the associated Faber
polynomials are defined by the three term recursion

Fir1(2)=(z-mF(2)—d-Fr_1(2), k=1 (12

with initial values Fy(z)=1, F{(z)=z—m and F,(2)
=(z—m)?—2d. The matrix equivalents of these relations
are

(1) For the herein suggested polynomial integrator, the con-

formal mapping
P(w)=w+m-+d/w (9
with parametersm,de C (d#0) is of central impor-

Fre1(L)po=(L—m)F (L)po—d-F_1(L)py, k=1
(13

with initial values FO(E)pOEPO! Fl(ﬁ)p():(ﬁ,—ml)po

tance. The left picture of Fig. 1 shows that for a given@nd F2(L£)po=(L—ml)F1(L)po—2d- po. Setting the pa-

logarithmic capacityp, (w) describes a family of el-
lipses with center atm and minor and major axig
=(p—d/p) andb=(p+d/p), respectively.

(2) The mapping
Hw)=w+m—1/2w)3, meC, (10)

specifies a family of “smoothed rectangles,” centered at

m (see right panel of Fig.)1

C. The Faber approximation

rametersm to 0 andd to 1/4, the associated Faber polyno-
mialsF, are equal to the normalized Chebychev polynomials
Ty via Fi(2) =21 Ty, for k=1, while Fy=T,.

Any function that is analytic insid& can be expanded
in terms of the Faber polynomials associated wjtR® In
application to expf2), this yields

L[ ) e Fata)

o0

exp(7z) =k2—0 27 Jwie1

-

) (14

In this section a brief introduction to Faber polynomials
is provided. It is interesting to notice that the well known for all ze G. Equation(14) is exact. Now we define the
Chebychev polynomials are a special family of Faber poly+aber approximatiorof ordern to be the truncated series
nomials constructed to approximate continuous functions of n
real variables. When funct|0ns_ of matrices have to be com- P(2)= S c(DFW(2) (15)
puted, the Chebychev approximation is consequently suited k=0
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with expansion coefficients as defined above. Substituting [Zs1se-z)f—[2cy. 21 ]f
Fi(2) by F (L£)po, One gets the “matrix valued version” [z,...z1]f= 7—12, (22
P(L)po,

for 1=<k<l and initial valueq z]f=1(z,).
Let ¢ be the conformal mapping associated with a do-
p(7)=exp(7L)po~ Pﬁ(ﬁ)Pozgo c(NF(L)po- (18 mainG. Then, any function that is analytic insid® can be
expanded in terms of the Newton polynomials associated
For our conformal mapping/(w) =w+ m+d/w, the coeffi-  with the Leja points @) men .22 The application tof(2)
cients can be solved analyticallg 4 0) =exp(rz) yields

n

cu(7)=(—i/y=d)*exp(rm)I(27y/=d), (17) eXp(TZ):kZo [Z1,....Zks 1]€XPWK(Z) (23

where we used the identity exi(+1/t)/2)
=3, (t/1)*J,(ix).3! Here,J, is a Bessel function of the first
kind. From now on, the term “Faber approximation” is al-
ways meant with respect to the conformal mappi@g

for all ze G. Now we define theNewton interpolationof
ordern as the truncated series
n

. . L eXp72)~P{(2)= 2 [21,... Zcr1]eXpo(2).  (24)
D. The Newton interpolation at Leja = points k=0

Another way to approximate functions of matrices with Substitutingw(z) by w,(L£)p, one gets the “matrix valued
polynomials is suggested by the theory of the interpolation ofersion” P (L)p, that is formally equivalent to relation
analytic functions. The complex Newton interpolation based16).
on Lejapoints is an efficient implementation of this idea, and
was introduced in density matrix calculations by Kosloff,
Tal-Ezer, and Bermafi:'* The method is shortly outlined in 1ll. NUMERICAL ASPECTS

the following. . L
Let G be a domain as defined in Sec. Il B. A sequence Analytically, the Faber approximation and the Newton
(2)men Of points on the boundary @, i.e., (z)menCT interpolation are very similat® It has to be checked whether

is called aLeja point sequencég if |zy|=max_c|2 and this holds true also numerically. Before starting, we have to
° decide how to choose the domain that includes the eigenval-
ﬁ ]T[ ues of £. This step is very similar for the two algorithms.
Zm+ 1~ Zx| = max z—2 18
k=1 1212 7¢G k=1 | d (18 A. On scaling and domain

The effects of the choice of the domain on the numerical
stability and efficiency are of general nature, so any system
can be used to exemplify them. For this purpose we have
chosen an abstract model dissipative system. Hemorre-
sponds simply to a diagonal matrix with complex eigenval-
ues, shown as dots in the first panels to Figs. 2—4 below. The
matrix dimension was taken to =199, and the complex
eigenvalues were chosen to be located on the arc of an el-
lipse, symmetrically with respect to the real axis. This eigen-

0k 1(2)=(Z2— 2k 1) 0(2) (19 value spectrum resembles a “typical” physical situation in-

_ _ sofar as states separated by large frequencigs
for k=0 andwo(z)=1. For functions of matrices we have (corresponding to largely positive or negative imaginary
_ parts of the eigenvalues df), are connected by “fast dissi-

Oicr 1(L£)Po= (L= Zicsal) 0K £) o (20 pation,” i.e., also their real parts are largend negative?®!
with starting termwo(L)po=po. The recursion relation is In contrast, eigenvalues closer to the real axis typically have
stable if the Lejgpoints are scaled armi(or the spectrum of IS0 small real part$. As initial state, a randomly occupied

for m>1. In numerical applications, one substitutes the
maximum of allze " by the maximum of aleeI'| , where
' ={72,,2,23,... 72} is a set of uniformly distributed points
on the boundary o6 with L>n=estimated degree d?; .
We call a Lejapoint sequence scaled if the points lie on the
boundary of a scaled domain.

A sequence of Léjaoints defines the associated Newton
polynomials{ w(z) }x .~ by the two term recursion

L, respectively is contained in the scaled doméfh. vectorpg has been chosen, and propagated for one time step.
The Newton polynomials are related to the logarithmicThe shape of the domairG used for interpolation/
capacityp of G by V|wn(zn+1)|—p for m—oo thus approximation is taken here as elliptic, and is shown as a

solid curve in the first panels of Figs. 2—4. The effects of
|om(Zms1)|~p™" (21)  choosing ellipse$s which are different in size and location,

for “I N his sh h led Leiaoi can be illustrated with the three exemplary cases of Figs.
or "large™ m. This shows why scaled Lejpoints are nec- 2—4. (The results are shown only for the Faber approxima-

H 32,28
essarr)]/ to av?fl_d_0verf|ow€underflow3. . h tion; the Newton expansion behaves qualitatively similar.
The coefficients entering a Newton series are the so |, Fig. 2, a typical case of numerical instability is pre-

Cilfled divided differer}c_:es. For a fynctid)lmn G, thle dividedf sented. It clearly arises from the recursion relaiib8 since
di erences can be defined recyrsw&byery two elements o the so called Frobenius norm

the Lejapoint sequence are different; therefore the denomi- ) _
nator in Eq.(22) is always+0]. Al := Vtr{ATA} (25)
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FIG. 2. Behavior of the integration foronscaled_iouvillian. Starting from the left, thescaleddomain and theonscaledspectrum(- - -) are shown in the
first graph. The local errg5) vs the orden of approximation is depicted in the center, while in the last picture the Frobenius norm of the Faber polynomials
(—) is presented together with the modulus of the coefficiénts.

of the last term of the serie§l6) (A=F,(L£)po) “ex-  lation is stable. The modulus of the coefficientsincreases
plodes,” as shown in the third panel of the fig@selid line.  exponentially untin~70, where it reaches a value far larger
This quantity is, therefore, a good measure to control thighan 1(being a signature for this kind of erpothen it starts
kind of numerical instability; in contrast, the modulus of the to decrease. The local err@gecond panglis constant until
last coefficientc, is not (dotted—dashed curve in the third n~70 and then starts to decrease; therefore the calculation
pane). The recursion relation is unstable because in this casénally converges, but the propagation is numerically ineffi-
the nonscaled eigenvalues 4f lie outside the domain. The cient because a high polynomial order is required.

local error e,(n) [Eq. (5)] grows first exponentially, but In Fig. 4, the spectrum of the scaled Liouvillian lies
then finally decreases to a constésgcond panel of Fig.)2  entirely in the scaled domain, which is completely contained
Furthermore, it was shown in Ref. 33 that in the above casé# the left part of the complex plane. The norm of the Faber
the remaining error grows exponentially with the time step polynomials is almost constant, showing that the scaling was

so for large values of the accuracy is completely lost. correct®® The modulus of the coefficients is bounded by 1
Scaling.To avoid these last numerical instabilities in the and decays exponentially fromr30= 7o on. The effort to
recursion relation, the Liouvillian has to be scaled, reach a given local tolerance is much less than in the two

4 examples above. The optimal ellipse has the smallest scaling
L—o "L. (26) - ; :
factor o compatible with a stable propagation.
The scaling factorr>0 should make the spectrum of 1.£ Based on the modulus of the coefficients and the Frobe-

lie inside the scaled domain. As a consequence, the step sinius norm of the Faber polynomials, one can construct a
has to change, toor—o7. [We havep(7)=expFL)p, local error estimatore (k) =|cy(o7)|Vtr{F§F}, which
=exploro L) py~PI (o 1L)p,. Note that in general proved to allow for a very reliable error check in practice.
PI (0~ L) po# P(L)py, although the identity holds for For details, see Ref. 34.

the exponential functiohln Fig. 3, it is shown what happens In practice, an algorithm is necessary to determine a
if the domain is properly scaled but improperly set and entersough estimate of the region of the complex plane where the
the right part of the complex plane. This depends on theeigenvalues of the Liouvillian matrixC lie. For the Faber
position of the points for the Newton interpolation and on thealgorithm with an elliptical domair®, this will produce the
parametem in Eqg. (9) for the Faber approximation, respec- parametersn (andd) in Eq. (9). Also for the Newton algo-
tively. The Frobenius norm of the Faber polynomials de-rithm an estimate for the size and shape of the eigenvalue
creases exponentially in this case, because the recursion rgpectrum is required, no matter hasvwill actually be cho-

w

[\ 10° 10°
-10] —10]

10

imag
o

=4 0 2 0 25 50 75 100 0 25 50 75 100
real n n

FIG. 3. Behavior of the integration when the Liouvillian is properly scaled but the domain lies partially in the right part of the complex plane. The meaning
of the graphs is the same as in Fig. 2.
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FIG. 4. Behavior of the integration when the Liouvillian is properly scaled and the domain is correctly set. The meaning of the graphs is the same as in Fig.
2.

sen. In Refs. 21-23 it was shown how a first guess for théequires the repetition of many operatidfistor details of

shape and size of the spectrum 6f can be made on the the procedure the reader is referred to Ref. 34.

basis of physical argument&xpected maximum Hamil-

tonian energy differenc¢Ei—Ej|, and fastest dissipative 2. Faber approximation

Char,l‘\nsei more automatized procedure, in this work we em- If an faigenvalt_Jex of maXimal modulu; Is knowrﬁsee

ploy the most simple iterative method t,he power meffieal Eq.(27)], itis possible to determine an “optimal” ellipse. Its
’ . ' . ) arameterme[ —2,0] solves the third order equation (1

estimate an eigenvalue spectrum. This method is particularl

i o r)me+(6r2—2)m?+12r°m+8r?=0 with r=Im(\)/
useful because in the present applications the reasonable as. (), which can be solved by Newton methdds® Since
sumption can be made that the eigenvalues lie “along th(:f\h ¥ y i

i . Ili houl he righ f th I
lines” between zero and the eigenvalue of largest modulus— e ellipse should not penetrate the right part of the complex

hence, only this last one has to be evaluated. To have ?ilane, we choosé=—(m+1). Now, the scaling factor is
) . _ N 2/(m?2
reasonably stable iteration, one should consider that xed, too, o=[Mq| for g=y1+r<2rm(2+m)%(m

+r2(2+m)?).

(1) The eigenvalues are distributed symmetrically with re-  The next step is to calculate the expansion coefficients
spect to the real axiGee above Accordingly, there are  ¢,= 7, Jy(207/—d) with 7,=(—i/\—d)* exp(crm). Since
always two eigenvalues with maximum modulus. Add-the density matrix theory in general is applicable in the weak
iNg iEmad to the Liouvillian, whereE,,, is an estimate ~ or medium coupling limit(for Markovian equations the
of the maximal energy, the eigenvalue spectrum is transspectrum ofZ is “near” the imaginary axis and therefore
lated along the imaginary axis and one of the eigenval-—1<m=0. Accordingly, d<0 and we need only Bessel
ues with maximum modulus becomes larger than thdunctions for purely real arguments. Over and underflows of

other one. 7, can be avoided by employing a local tolerance criteffbn.
(2) The Frobenius norm and relative scalar product has to be
used to compute the eigenvalue as IV. PHYSICAL APPLICATIONS
+ , . .
_ tr{pnpn-1} @27) A. Damped harmonic oscillator: Comparison between
B tr{p;_.pn 1}' Faber approximation and Newton interpolation
Vt{pn_1Pn-

(3) The iteration procedure has to be repeated a number of In terms of memory occupation, the two methods are
times sufficient in order to let the system relax closeequivalent. The Newton interpolation is based on a two term
enough to the desired eigenvalue. recursion(19) while the Faber approximation is based on a

three term recursiofil2). In practice, both need three copies
. . - of the matrixp to realize the recursive generationgft), as

B. Spectral estimates, scaling, and coefficients can be seen from Eqsl3) (Fabe} and (20) (Newton, re-

spectively. In both cases the basic operatiof js thus there

. _ is no need to store anfsupej matrices of sizeD X D=N?

In order to stabilize the computation of the Newton poly- 2. The operationC p itself depends on the particular rep-

nomials and the divided difference coefficients, the Lejaegentation used: e.g., in the case of a coordinate grid repre-
points have to be scaleee Eqs(19) and (22)]. This is  gentation the Hamiltonian operatiadyp is conveniently

done iteratively: use a few points in the Lejdgorithm to done via a fast Fourier transfori@FT) algorithm, which
derive a rough estimate gf [see Eq.(21)] and rescale all scales ad?log, N.2
points with respect tp. Now, use more points to generate a To test the propagators, a one-dimensional harmonic os-

more precise logarithmic capacity, rescale and so on. Repegij|ior coupled to a bath aF=0 K was chosen, following
this procedure untip deviates by less than a prespecified,q equatiof’

tolerance from 1. Usually no more than three or four itera-
tions are needed. The generation of the Lpgnts itself p=—iw[a'a,p]+y(apa’—3atapl,), (28)

1. Newton interpolation
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TABLE I. Damped harmonic oscillator. Typical polynomial order necessarytrum. For a weak, continuous wave field, there is a known
for a Newton and a Faber polynomial series to achieve a relative error in th'éxpression for the absorption coefficient of a system embed-
energy smaller than 1d. “n.s.” means not stable. ded in a dissipative environmdht

4on o
n—Cm"' Ref dteettr{ne [ ,pol}, (30
0

Time stepr (a.t.u) 100 400 1000 2000 3000

Faber a(w)=

Newton

277
273

1059
1067

2509
2545

5249
5662

7795
n.s.

which can be viewed as a generalization of the so called
Heller formula® to the dissipative case. Here,is the light
frequency, is the dipole operatom,,, is the density of
moleculesg the velocity of light,n the refractive index, and

po the initial density operator. Settirfg):=[ it,po], the solu-
cillator frequency, andy is a damping constant. Equation tjon of (30) is equivalent to the propagation of a matrix ac-
(28) is derived from the general forf1) with the identifica-  cording to the dissipative LvN equatid). The integration
tion Hy= w(a'a+ 3), and the assumption that the dissipativeis done for a discrete number of time steps, the trace is com-
Liouvillian is of Lindblad forn? puted for each time step and Fourier transformed.

An interesting aspect of the polynomial integrators is
that the time dependence is only in the coefficients and the
representation dependence is left in the Faber or Newton
recursion relations?4%In the case of the Faber approxima-
tion, for example,

where[ ], denotes an anticommutator, aatlanda are the
creation and annihilation operators; respectivelys the os-

T P
EDﬁ:Ei CipCiT_E[CiTCi!p]‘F (29

(i labels different dissipative channglén the damped oscil-
lator case(28), we use a single Lindblad operat@r which
is C=/ya. n

By choosingw=0.02E,, and y~10 2w, weak damping e, pol~ >, Ch(t)FW(L)ph-
was anticipated. Further, the system was represented on a k=0
spatial grid of 128 points, although a harmonic oscillatorThis implies that Eq(30) in its polynomial approximation
basis should do equally well. As initial state, we assume that31) can be rewritten apKg:=(47Nmy/NC)],
the oscillator is att=0 in its first excited state, i.epg
=|1){ 11|, where|y,) is the first excited harmonic oscilla-
tor function.

In Table I, we compare the performance of the Newton—
Leja and Faber algorithms by propagating one time step

32
and determining the corresponding polynomial omderhich . L . (32 .
is required to keep the relative error in the energy smallefVhere the only approximation is in the polynomial expansion

than 10°%. From the table we note that the two algorithms of the propagator, and where the trace is time-independent.

behave quite similar, i.e., about the same polynomial ordeln contrast to the Newton expansion, the Faber coefficients

(and hence computation timis required to achieve the same Ck(t) are given analytically by E17). Using Eq.(17), also

accuracy, with small advantages for the Faber algorithmin€ co€fficientss(w) of the Faber approximation for spec-

Hence, both algorithms are similar not only in their math-Tum evaluation in Eq(32) can be evaluated analyticallyas

ematical structure, but also in their numerical efficiency.
This was confirmed in a series of test calculations with a

(31)

a(@)~K,Re S, o [ "dree™ w{aF O},
k=0 0

»\'k(’-l’)

range of parametere and vy.

The advantages of the Faber algorithm are thait is
stable to higher orders than the Newton algoritts®e Table
), (i) the coding of a computer program is easier, &ifiid

sk(w)=wfoxei“’tck(t)dt
_| k ©
ﬁ) f el“teMt], (20ty/—d)dt

0

no selection of sampling points has to be made. On the other

hand, for the Newton interpolation, there are no restrictions
on the analytic function to be applied to; also, there is no

restriction on the shape of the domachosen to enclose

the complex eigenvalue spectrum of the Liovillian, whereas
the Faber approach requires a different implementation if

domains different from the elliptical one are adopted.

B. Absorption spectra by polynomial expansions

1. Polynomial expansion of an absorption spectrum

|

B Vaa?d+(mo+iw)?

><(\/40'2d+(m(r-|—ioo)z—l-(m(r-l-iw) k. 33

20di

These coefficients are very similar to the Chebychev series
for computing dissociative Raman spettox the Faber se-
ries for the Green operatét This is to be expected because
the underlying framework of the three series is equivalent.
Hence, the evaluation of absorption spectra for con-
densed phase problems can be done semianalytically by us-

Often, the propagated density matrix is used in otheiing Eqg.(32), with the coefficients given by E¢33). Unlike
formulae to derive observables of interest. A typical case ishe Faber coefficients,(t), the coefficientx,(w) (33) for

the computation of a continuous wat@v) absorption spec-

spectra evaluation are algebraic and therefore no special
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functions like Bessel functions are needed. This makes the O
series very stable and polynomial orders up to millions can -2 2‘\_ - (a)
be used without problems. However, a different series is -4 :p\ ---------
needed for every frequenay. For a givenw, the terms in log Isk(w) -6 ';-'\ N\
Eq. (33) are generated via a simple one term recursion | PN
relation—the k+1)st coefficient is readily calculated from BT B \\
the kth one. S \
. - 02, (b)
2. Infrared absorption spectrum of benzoic acid 015/t
dimers L
) _ ) ISkl gafms T T -~ _
The new series was applied to the IR absorption spec- AN -
trum of benzoic acid dimers embedded in benzoic acid crys- 0.05] * v . Sso -
tals. For this purpose, a two-dimensional model of the double ) e litemeoenoTos
minimum type was used, which is described elsewf&f2. 0 500 1000 1500 2000

: Polynomial order
The model consists of a “hydrogen transfer mode” and a v

“molecular frame mode,” and all operators were representediG. 5. Computation of spectra by polynomial expansion(an the loga-
in the basis of th€16 lowes} vibrational bound states of the rithm of the coefficienys,(w)| as a function of the polynomial order is

. .o~ . . . plotted foro=0.2, 0.7, 1.2, 1.7, 2.Ey,; mis setto 0.%E,,, ando=1.2. The
model HamiltoniarHs. The system vibrational Ieve'9 re- larger w, the smaller are the dashes of the dashed line&)Irthe modulus

lax due to vibrational energy dissipation, caused by the Ccouof the coefficientys,(w)| is plotted as a function of the polynomial order
pling to the phonons of the embedding crystal. The relaxfor m=—-0.05, —0.25, —0.45, —0.65, —0.85E;,; w is set ot 0.2E,, and
ation was taken to be of the Lindblad forf®9), with 0=0.8. The larger the modulus of (the “larger the dissipation)’ the

smaller are the dashes in the dashed lines.
Ci—Cy= Tl k)(Il, (34)

where thel",, are relaxation rates connecting two vibrationalin Eg. (9). One finds that for stronger dissipatidlarger
states. For the evaluation &%, a microscopic model was modulus ofm), the modulugs,(w)| of the expansion coef-
used. All details of the model and the parameters are fronficients decay more rapidly witkthan in weakly dissipative
Refs. 43 and 42. cases. This means that the seli@®) converges faster when

In Ref. 43, the spectrum was obtained by numericallythe dissipation is strong, and the computation of spectra is
propagating a matriyp, [Eq. (30)] with a Newton polyno- less costly in this case. Strong dissipation is characterized by
mial integrator. Here we use the semianalytic sef&®. large Lorentzian line widths according to E@5). In con-
When the dissipation is of Lindblad form, there is also antrast, when dissipation is weak and the peaks are narrow
analytical solution for(w).*®*3 The analytical spectrumis a (e.g., at low temperatuyelarger polynomial orders are re-
sum of broadened Lorentzidhis quired. Further, in order to resolve narrow peaks many points

w; are needed at which(w;) has to be calculated.

L+ In Fi )

5 5 n Fig. 6 we show the IR absorption spectrum of the
i)t (0t wj) benzoic acid dimer in a crystal as obtained with our two-
a+Ty mode modéf*® according to Eq(32) for various crystal
T AT (0 w__)2> . (35 temperature?f'. The well known tr_ends are _ob_ser\{ed, thBt

e " temperature increases the magnitude of dissipation and hence
Here, thew;; are the matrix elements of the dipole momentmakes the peaks broader, af) higher temperatures favor
operator,w;; is the frequency for transitions between levelsthe contribution of “hot bands” to the high- part of the
iy and|j), and g; is the Boltzmann weight for stat) at  spectrum. All spectra obtained via E@2) are in complete
temperaturd, i.e.,g;=e (Ei’%1/Q (k, the Boltzmann con- agreement with the analytical solutid85) (when the anti-
stant,E; the energy of statéi), andQ:=3]"_,e” Ei’k") the  resonant terms are includecnd it is not possible to distin-
partition function. For the diagonal elements of the relax- guish between the analytical and the semianalytical curves
ation matrix we used the conventiby ==, .,;I';; , asin Ref.  on the scale of Fig. 6. There is a certain quantitative dis-
43. agreement with the spectra reported in Ref. 43, thus showing

Before considering the spectrum itself, we comment orthat the present approach can improve accuracy in comput-
the behavior of the expansion coefficiesfgw) as a func- ing spectra in the presence of dissipation.
tion of w and the strength of dissipatidne., temperatune We do not analyze and assign the spectrum in detail
From Fig. 5, wheres,(®) is shown as a function ab, itis  here—that has already been done elsewftéités enough to
clear that the smallesd can be taken as a reference for the note that the differentbroadeneglines correspond to either
convergence of all series. For example, the lowart of the  (double) hydrogen transfer or molecular frame modes. From
spectrum requires the highest polynomial order to converge Big. 6 we note that in particular at very low temperatures
spectrum, while at highew the computational effort be- (e.g., atT=40K), there exists a very sharp peak right below
comes smaller. w=60cm !, which corresponds to the hydrogen transfer

In Fig. 5 effects of the dissipative strength are consid-mode. This peak is particularly hard to compute by a series
ered, which can be investigated by varying the paranmater expansion, becauge o is small(ii) the dissipation is weak

- 2(q.—0.
a(cu)—wizj wij (9; g|)((1-”+1-
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analytical one, even at temperatures as lowl as40 K. At
03 T=300K the same time, for largep a shorter polynomial expansion
suffices to make the ratig,,(w)/cy(w) small(see Fig. 5. At

0.0 w~1200 cm* for example, we require only~2- 10° terms
7 05 to converge the spectrum with,(w)/co(w)=10"3. And
g T=200K even c,(w)/co(w)=10"" requires onlyn~8-10* in this
a8 case.
=~ 00
&
2 %5 T=100K
=1 C. More general applications
0'(1) The application of Newton or Faber polynomial integra-
T=40K tors is neither restricted to Lindblad dissipati(#®), nor to
time-independent Liouvillians. For illustration, we consid-
0 ered a double minimum potential hydrogen transfer model
60 568) [ _1]1060 1560 similar to the one described in the last subsectigee Ref.
cm

44 for detail$, with two important differences(l) the hy-
FIG. 6. Benzoic acid dimer, embedded in a crystal. IR absorption spectr&l0geN tra_n_Sfer_WE‘S driven by coupling the molecular _de_O|e
computed forT =40, 100, 200, 300 Kfrom lowest to highest frameThe  to an explicitly time-dependent, pulsed electromagnetic field

spectra are scaled in order to keep the peak 5140 cni’ at 80% of the i the IR frequency domain, an@) the dissipation was of
height of the frame. For the lowest temperature a very high peak emerges ﬁedfield form. i.e.. elementwise

59.76 cm', whose features are plotted in Fig. 7, at the same vertical scale.
The analytical spectré35) are indistinguishable from the computed ones.

(ﬁoﬁ)m:i}} Ry ij pij - (36)

(see Fig. %, and(iii) because manw; are needed. Here, the elements of the relaxation tensRy, ;;, and all

To converge the 40 K spectrum around=60cm !, a  other computational parameters were taken from Ref. 44. In
series of orden=4-10" was needed, which took about 40 contrast to Lindblad dissipation, E86) allows for the cou-
min of CPU time on a medium-sized workstation. For thispling of diagonal and off-diagonal density matrix elements,
calculation, the ratio between the modulus of the last coeffias well as for the coupling between different off-diagonal
cient and the first one,,(w)/co(w), was set to 10°. Figure  elements.
7, which is a blow-up of the spectrum around the 60 ¢m For these applications, it turned out that even in the case
peak, shows that this accuracy is indeed sufficient to givef a rapidly oscillating driving field, both the Newton—Leja
agreement with the analytical result even on a high-and the Faber expansion can outperform a standard Runge—
resolution scale. Also, with a ratio,(w)/co(w)=10"°the  Kutta integrator in terms of computation time. This was par-
series(32) gives a reasonable agreement with the analyticaticularly so when when high accuracy was demanded for.
answer. However, by choosing,(w)/co(w)=10"3, the This is not necessarily expected, since polynomial expan-
semianalytical peak becomes too broad, and artificial oscilsions are(due to their exponential convergefhgemost effi-
lations emerge at the wings of the Lorentzian. cient when large polynomial orders and large time steps can

In contrast, for other peaks of the spectrum a ratio ofbe used.
102 gives a spectrum almost indistinguishable from the It further appears that the polynomial integrators are
general enough to cope not only with Lindblad forms of
dissipation, in contrast, e.g., to stochastic wave packet
methods:® Even when the dissipation is chosen artificially
strong, in which case the Redfield fort86) leads to physi-
cally meaningless negative eigenvalues of the density matrix,

34 I the polynomial integrators proved to be stable—only special
5 care had to be taken during the scaling procedure.

2

[

=,

32t V. CONCLUSIONS

3

In conclusion, both the Newton—Lejaterpolation and
the Faber approximation are very valuable tools to integrate
a Markovian, open-system Liouville—von Neumann equation
%70 59.75 59.80 (1) in time. Both integrators are stable and accurate; various
o [em™] measures can be given to keep their accuracy well under

, , control. In particular the Faber approximation appears to be
FIG. 7. The absorption spectrum around the peak at 59.78 @1shown as

computed for three different ratias,(w)/cy(w) of the moduli of the last hlg_h_ly stable _and easy to |mplement; _It further Iea_ds to an
and first expansion coefficients; 10 circles, 10°° (triangles, and 103 €fficient, semianalytical series expansion for the linear ab-

(diamonds. The analytical solutiori35) is depicted as a solid line. sorption coefficient for condensed phase spectra. Both algo-
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rithms are found to be fasteven for explicitly time-
dependent problemsand generalthe dissipative Liouvillian
must only be Markovian
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