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This article gives a semiclassical description of nucleonic propagation through
codimension two crossings of electronic energy levels. Codimension two crossings
are the simplest energy level crossings, which affect the Born—Oppenheimer ap-
proximation in the zeroth order term. The model we study is a two-level ‘Schro
dinger equation with a Laplacian as kinetic operator and a matrix-valued linear
potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We
discuss the case of well-localized initial data and obtain a description of the wave-
function’s two-scaled Wigner measure and of the weak limit of its position density,
which is valid globally in time. ©2003 American Institute of Physics.

[DOI: 10.1063/1.1527221

I. INTRODUCTION

The quantum-mechanical description of molecular dynamics is given by the time-dependent
Schralinger equation

ih o, " =H"_ " $h(0)=oh. @)

Ignoring spin degrees of freedom, we assume initial dzﬁ‘ta L2(R3N,C), N=1, and a self-adjoint
molecular HamiltoniarH!, ., to have a unique solution

d"(t) e C(R,LA(R3N,()).

If the molecule consists &, electrons andk, nuclei withk.+k,=N, the molecular Hamiltonian
H" ,, can be written as

2
Hrr:wI: - ?Axn'i'He(Xn)a

whereA, denotes the Laplacian acting on thi,3ucleonic coordinates, whilklg(x,) is the
electronic Hamiltonian acting on thekg electronic coordinatedd ((x,) depends parametrically
on the nucleonic coordinates, and comprises the electrons’ kinetics as well as the interaction
between electrons and nuclei. The scale-parantetdd is given byh=m,/M, wherem, is the
electronic mass an is the average mass of the molecule’s nuclei. In the following, we will
study the limit

h—0, ie., M—x,
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We will concentrate on a closed subsgt(x,) of the electronic spectrum(H(x,)), which is the
union of two eigenvalues ; A(x,) with the same multiplicityk and which is uniformly isolated
from the rest of the electronic spectrum. That is, there is a condtaft such that

dist( o, (X,),0(Ho(X,) N0y (X,) )=d  for all  x,e R,

We denote the spectral projectiontdf(x,) associated witlr, (x,) by P¢(X,) and the extension
to L2(R3N,C) by Py = [ pa, Pe(Xn) dX, . If {xj(x,)(-)}7X, is a family of normalized eigenfunc-
tions of He(x,) for the eigenvalued; 5(x,), then we can write

2k
RanP, =1 > f . Bi(Xn) X (Xn) dXq : = ()71 € LA(R3¥n,C24) ¢
j=1 R3Kn

This description of RarP,, induces an isometrdf: Ran P, — L2(R3*n,C2X). Now, time-dependent
Born—Oppenheimer theory, as carried out by H. Spohn and S. Teufel in Ref. 20, gives the follow-
ing: If we choose initial datap)e RanP, with ||}l 2=1, such that [(h?A ¢}l 2)n=0 is a
bounded sequence, then the solutighof the molecular Schidinger equatioril) can be approxi-
mated by a Born—Oppenheimer solution modulo an error of ohdeThat is, there exists a
constantC>0, such that

[¢"(t)— oDl 2<C(1+]t]) h,

for all timest e R, wheregao(t) =U* exp(i () Hio) U 45 . If the eigenfunctiong;(x,)(-) can
be chosen real-valued, then the Born—Oppenheimer Hamiltonian is given by

2
HBo= = 5 A, +V(xa), @

whereV(x,) is a potential, whose values ard:22k matrices. In this framework, RaR, is
referred to as an adiabatically protected subspad&abatos-impassablg We also note that this
type of observation dates back to the late 1920s and is originally assigned to M. Born, V. Fock,
and R. Oppenheimer.

If the eigenvalues.; and\, also satisfy the gap-condition, that is, if

IN1(Xn) — Na(Xp)|=d  for all  x,eR%n,

then Born—Oppenheimer theory shows again adiabatic decoupling between the subspaces associ-
ated withA; and\,, and the two-level Hamiltonia(®) splits into two scalar Born—Oppenheimer
Hamiltonians, modulo an error of ordbr If the preceding gap-condition is violated, we have to
consider two cases: either the eigenvalues cross, i.e.,

A%, e R¥*n\ (%) =Ny(X,) (crossing,

or they do not cross, but cannot be separated unifofmlgided crossing For generic crossings
with mimimal multiplicity k, general symmetry considerations, as carried out in G. Hagedorn’s
monograph? restrict the codimension of the crossing manifold to be one, two, three, or five:

codim pak{X, e R%n:\ (X)) =Np(xn)}=1,2,3, or 5.

Codimension two, three, and five crossings affect the Born—Oppenheimer approximation in the
zeroth order term. This means that there is leading order exchange between the eigenspaces
associated ta.; and\,. In the following, we will turn to the simplest model system showing a
codimension two crossing and study the Wigner measure associated with its solution. Reducing
the nucleonic configuration spa&&*n to R?, we study
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FIG. 1. The eigenvalues.

2
ih at«/f“:—h;Axw“wmwh. ¥"(0)= 1y}, ()

with ()=0 a bounded family il_?(R?,(?), andV a matrix-valued potential of the form

X1 X2
. xeR2

V(x)—(

X —Xg

The Hamiltonian— (h?/2)A,+ V(x) is an essentially self-adjoint operator bA(R?,C2), and we
have a unique solutiop" e C(R,L2(R?,(?)). The potential’s eigenvalues|x| cross forx=0 as
depicted in Fig. 1 below, which plots |x| versusx; andx,.

The mathematical analysis of the above model system has been initiated by G. Hagedorn in
Ref. 12. His result describes the evolution of the solutidhitself, given special initial data, so
called semi-classical wave packets. Recently, the first author andr&dSkave studied codi-
mension two crossings from a Wigner measures’ point of view. Their method applies to general
initial data and covers Hamiltonians of the forf"Y(x,hD,) with symbol H(x,&)=K(&)
+V(x), KeC*(R%R).

Here, we aim at applying their result to well-localized initial data and the case where the
kinetics is given by a Laplacian, i.e., f&(&) =|&|2/2. For this special situation, we will obtain an
asymptotic description of the solutioff'(t), which is validglobally in time

Actually, we consider for a family of solutions/{(t)),-o of (3) the Wigner transforms

(WhyP) (t,x, €)= if expliy - &) ¢"| t,x— hv) |tk Dy ay

1Ny (277_)2 \HZ ) 2 ’ 2 [l
wheret e R and (x,&) e T* R?>=R?X R2. Sincey(t,x) is a vector inC?, the Wigner transform is
a Hermitian matrix inC22 The families "(t)),- o inherit uniform boundedness Ir?(R?,(?) for

all times teR from the initial data. Therefore, the familyWy")~o is bounded in
L*(R,8'(T*R?,C29), which means
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“T*RZ(Wh‘ﬁh)(t'Xé) a(x,é) dxdé| < C

for all te R and allae S(T*R?,(2?. Thus, there exist weak-limit points of (W"y") -, in
L*(R,S'(T*R2,C%?). These limit points are calledligner measuresince for fixed times they
are positive matrix-valued Radon measures on the phase $patee We refer to Refs. 7, 8, 17,
and to Ref. 10 for a complete treatment of these measures.

One important property of the Wigner measurds, - ) is their relation to the position density
|4"(t,x)|%. Let us consider some fixed times R. If the family of initial data (ng)h>0 is
h-oscillating that is, if

lim sup |f(&)]? dg —— 0,
h—0 |&= R/h R— 400

then (/"(t))n=o inherits this property as welsee the proof of Corollary 1 in Sec. JVRoughly
speaking h-oscillating families have frequencies of oscillations, which are of order less or equal
than 1h. Furthermore, as in Ref. 9, givénoscillation, the weak limit points of |¢/"(t,X)]|?)n=0

in LY(R2,C?) can be described by Wigner measugegg, -) of (4"(t))n=0 via

Wi [ 0= [ tr(u(tx,de). @

h—0 £

In the following, we will perform acompletestudy of the evolution of Wigner measures
associated with solutions t®), assuming specific initial data. The reader will find precise as-
sumptions and statements in Sec. IV, Theorem 2. For example, our result applies to initial data
microlocally localized on a sl of the form

So={(x,&) e T*R%|x|=R,x=¢&}

with radiusR>0, which means

Vaecg(T*Rz\Eo,Cz*z):f Z(Whtjxg)(x,g) a(x,&) dxdé —— 0.
T*R h—0

Thus, (¢g)h>0 concentrates asymptotically on a circle in position space and has asymptotically
equal position and momentum. Moreover, we assume th@)thgo is h-oscillating and localized
on the eigenspace associated, say, with the eigenvalugof V(x). For example, we suppose

I (x)gf(x) ——0
h—0

strongly inL2(R?,C?), wherell*(x)= 1/2 (Id+V(x)/|x|) denote the spectral projectors \b{x)
associated with-|x|. Assuming these initial data, the solutiof(t)),-, stays localized on the
mode plus until it hits the crossing manifo]l@d=0}. At the crossing, we observe a Landau—Zener
exchange between the eigenspaces, @f(t});- o will be localized on both modes. Our analysis,
which is summarized later on in Sec. IV, Theorem 2, results in the following description of the
weak limit of the position density for all times.

Theorem 1: Let (43)1-o be bounded in B(R?,(?), h-oscillating, microlocally localized on
3.0, and localized on the mode plus. L(ef"(t)),- o be a family of solutions of (3) given the initial
data (wg)h>o. We denote &R?%2+R and choose a smooth, compactly supported function
peCq({xeR%|x|>C},C). Then we have
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lim f2¢(x)|n+(x)¢h(t,x)|2dx=o
R

h—0

for all times te R. Moreover, there exists a positive, increasing sequétge., with tj— +o as
j—+>, a sequencd«;);=o of positive Radon measures @t, and a sequencéx;) = in
C(R,RR?), such that

lim f L0000 Pt Pax= > f (D)) (dw)
R O<k=<j JS

h—0

for te(tj_1,tj), j € Ng, where t ;=0.

Thus, on the mode plus the solution asymptotically stays inside the ball of radi@n the
mode minus, points outside the ball are charged recurrently in time. Explicit formulas fas the
t; andx; are given in Sec. IV.

We will proceed as follows: In Sec. Il, we discuss propagation of Wigner measures and study
the classical trajectories associated with the Sdingeer equatior{3). Section IlI introduces two-
scaled Wigner measures and gives some examples for well-localized data. In Sec. IV, we discuss
Landau—Zener transitions between the two eigenspaces at points, where classical trajectories hit
the crossing manifoldx=0} recurrently in time, and obtain an asymptotic description of the
solution’s position density, which is valid globally in time.

II. PROPAGATION OF WIGNER MEASURES

Let (40)n-o be a family of initial data, which is bounded IP(R?,C?), (4"(t))n-o be a
family of solutions of(3), andw(t,-) be an associated Wigner measure. The evolution of Wigner
measures associated with solutions of a system, whose principal symbol admits eigenvalues of
constant multiplicity(and thus no crossingjshas been studied in Ref. 10. These results apply to
system(3) outsidethe crossing manifold

S={(x,£) e T*R%x=0}.

We consider initial data wg),»o, such that the associated Wigner measytgshave support
outside the singular seb. By the results of Ref. 10, outsid® the Wigner measure(t,-)
commutes with the projectodd* and thus can be decomposed as

,u(t,~)=H+,u(t,‘)l_[++l_[_,u,(t,~)l_[_

in D' (R,S'(T*R?,C%9). Since the eigenspaces are one-dimensional, the decomposition simpli-
fies to

p(t, ) =p (6 )T+ p (8,1,
whereu ™ (t,-)=tr (II* u(t,-)) are scalar positive Radon measures satisfying the transport equa-

tions

=+ + — X + + +
Ip”+E V™ F - Veu ™ =0, wT(0)=tr(II* po). (5)

|

These transport equations give continuity of the mapsu=(t,-) and thus a description of
w*(t,-) on any given time interval, provided that the supportsudf(t,-) do not intersect the
crossing manifoldS. We consider the flows of the associated Hamiltonian systems

YE(H)— £F 4 — — Xi(t)
x“()=&(1), & (t)—+m, (6)
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which describe the classical motion corresponding to the quantum-mechanical motion issued by
the Schrdinger equatior(3). Therefore, their solutions are callethssical trajectoriesThe fol-

lowing proposition characterizes the trajectories, which touch the singul&: §etr this, we will

use the symplectic product

XOé=x"-E=x16,— %€,

for (x,&) e T*R2.
Proposition 1: We consider classical trajectories with initial data(®)=x,, £*(0)=¢&;,
(X0.&0) € T*RA{(0,0)}.
1. If xo0&,#0, then x*(t)0&*(t)#0 for all t € R, and the classical trajectories do not reach
S={x=0}.
2. If xg0&,=0, then x“(t)Jé*(t)=0 for all t € R, and the trajectory associated with the mode
+|x| is the first classical trajectory to hit S for a positive timg t

to= & w+ V| &o|*+ 2[Xql,

wherew= Xq/|Xo| for xq#0 and w= &y/|&y| for xo=0. Moreover we have foré (0.t)

t2

xi(t)=15w—l—t§0—l—x0, EN)=Ftot+&. (7)

Proof: Omitting the plus-minus superscripts foft) and £(t) unless the context requires, we
start with the observation that the Hamiltonian systei@)sare equivalent to the Newtonian
equations

X()=—VU=(x(1), %(0)=&, x(0)=xo,

with central fieldU *(y) = = |y|. Motion in a central field conserves the angular momentum. Thus,
we have

X()OX(t)=%xo0&p, i.e., x(t)TE(t)=xo0¢é, for all teR,

and the first assertion follows.
We turn to the case&,[1¢,=0. Inserting a Taylor expansion &{t) into (6), we get

Xo

— if Xg#0,
X(t) |Xol
[ s W=
X(t
X(®) t—0" é if X,=0.
| &l

We rewritex(t),&(t) for smallt>0 asx(t) =k(t)w, &(t)=I(t) w with k(t),I(t) e R, and are left
with

K*()=17(t), 17()=7%1, k(0)=ky, 1(0)=l,.

Thus, we havel “(t)=Ft+ly, k™(t)=Ft%2+I5t+k, for small t>0. Sincex(t)=xy+t&,
+0(t), we haveko=|x,|. Moreover,lo=sgnfy: &)|&| if Xo#0 andly=|&y| if xo=0.

The determinant for the zeros kF (t) is 15+ 2k,. We distinguish different cases.

If IS<2k0, then only the plus-trajectory hitS for some positive timd,, i.e., forty=I,

+\I2+ 2k,
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FIG. 2. The classical trajectories.

If 13=2k,, thenlo#0 and we have to distinguish two cases. If $gi¢0, then only the
plus-trajectory has a positive hitting tintg, and we get agaity=1q+ \/I02+ 2ko. If sgn(p)<O,
then the minus-trajectory also has a positive hitting tsge |l | — \/I02—2k0. However, an easy
calculation giveg,<sy, and we are done.

The preceding proof contains the following easy observation concerning the trajectory asso-
ciated with the mode- |x|, which will be useful later on.

Remark 1: The minus-trajectory with initial data €0)=0, £~ (0)= &, with £ #0 is given
for positive times € R* by

t2 t
x(t)=(—+t)§ , & t)=(—+1
2|&o| 0 ( | &ol
This trajectory does not hit S for times 2.
Next, we consider the plus-trajectory with initial date, (&), Xo&n=0, Xo# 0. By Propo-
sition 1, we can also calculate the plus-trajectory after the first hitting tgné-or this, we set
againw= Xq/|X,| and

L= V] &ol*+2|xol, ti=&or 0+ (2] + 1L (jelNyp).

Remark 2: The positive times, at which the plus-trajectory hitar& given by , j € Ny, and
we have for & (tj,t;, 1), j € No,

€o-

2
xF(t)=(—1)] %—L(t—tj) o, EM=(-Di(t-t;-L) w.
We point out, that at any hitting timig we havef*(tj) =(—1)"Lw#0. Thus, the preceed-
ing remark is an immediate consequence of Proposition 1, using the change of sign of the fraction
x*(t)/|x=(t)| at the hitting timeg=t;.
Figure 2 summarizes our discussion, depicting the trajectotiesmponent: Classical trajec-
tories touching the singular s&tare contained in the hypersurface

| ={(x,&) e T* R%:x0&=0}.

Starting a plus-trajectory with initial datx{,&g) € I\S, its x-component runs along the straight
line given byw. It hits S at timet=t, for the first time, and we start a minus-trajectory going off
in the opposite direction. The plus-trajectory Htgagain at timeé=t;, and the mode minus goes
off in the opposite direction, and so on.
If we consider initial data z(x('})h>0 for the Schrdinger equatior(3), such that the associated
Wigner measureg. are supported if(xq, o)} with (Xq,&0) € I\S, then the transport equations
(5) describe the evolution of the measuge$(t,-) until the hitting timet,. When arriving onS,
we will observe some exchange between the plus and the minus mode, a Landau—Zener phe-
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nomenon. This quantum-mechanical effect has been described quantitatively for the first time by
L. Landau in Ref. 16 and C. Zener in Ref. 21, independently from each other. The work of the first
author and P. Gard® shows that this transfer does not depend on microlocal, i.e., phase space,
information only, but that a second level of observation, which can be called “two-microlocal,”
must be taken into account as well. Their Landau—Zener type formula relies on some two-scaled
variant of Wigner measures, which we will focus on in the following, such that we can continue
the evolution ofu™(t,-) for timest>t, in the manner described for the classical trajectories
above.

These two-scaled Wigner measures, which have first been introduced in Ref. 19 in another
context, quantify the way a wave packet concentrates on the hypersutfgdatroducing a new

variabley e R, which, roughly speaking, describes the position of the core of a wave packet with
respect td versus the scalgh, that is,

B x0é
n= \/ﬁ .

We note that, for all types of crossings, avoided and real crossings, the\$tienown to play
an important role(see the work of Y. Colin de Verdie, M. Lombardi, and J. Pollét,G.
Hagedorn't*2G. Hagedorn and A. Joy&:**A. Joye®® P. Exner and A. Joy&pr P. Martin and G.
Nenciul®

Ill. TWO-SCALED WIGNER MEASURES

The critical hypersurfacd ={x[0¢=0} is an involutive (or coisotropi¢ submanifold of
T*R2\{0,0}, i.e., we have T,I)*CT,l for all zel, where {T,I)* denotes the symplectic
complement of the tangent spatg in T,R?. This is an immediate consequence of the obvious
fact that (T,I)* is the linear span of the Hamiltonian vector field associated with the function

g:T*R?>=R, (x,&)—>xOE.

We now define a two-scaled Wigner transform ¢f'),, for | ={x0&=0} with scale h by

Wh(x, €, 1) = Wgh(x,€) ®

— X—D§> . (X,Em) e T*R?XR,

Jh
which acts on the following class of test functions
A={aeC*(T*R?xR,(??:supga) CK xR for compactKCT*RA{(0,0)},

Ja,eC*(T*R?x{*1},(??, AR=R(a)e[0,+=),Vx,£c RV |5|>R:

a(x,&,m)=a.(x,&sgrn))}.

These test functions differ from standard matrix-valued test functions in two ways: first, as func-
tions of (x,£) alone they are compactly supported outsi@0)}. This restriction assures that we
are working in regions of the phase spacelR?, where the gradient of the functianchosen to
describel does not vanish. Second, there is an additional coordinat®&, which is used for
measuring the position of points T R? with respect to the hypersurfateversus the scalgh.
We denote byR the one point compactification @f and continuea(x, ¢,-) continuously onR.

Let (") =0 be a bounded family im?(IR?,C?). Theorem 1 in Ref. 6 shows that there exists
a subsequencéf) -, with h,—0 and a positive matrix-valued Radon measui@ | X R, such
that for allae A
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f L r(WhyR(x, € m)a(x, €, 7)) dxdédn
T*R“XR

XDg hk~>0
= f tr(W“wa,g)a(x,g, —) )dxdg - f tr(a(x,£,sgrix0é)e) u(dx,d¢))
T* R2 vh T*R2\|

N f. _tr(@0,E ) d, i), (®)

whereu is a Wigner measure of{")~o.

Definition 1: Let(4"),~o be a bounded family in 4(R?,C?). Then we call the Radon mea-
suresy, which are associated via (8) to theeak: -limit points of (\Wj¢™) .~ in A’, two-scaled
Wigner measures dfiy") -, for | ={x0&=0} with scale h.

We note that a two-scaled Wigner measum@epends on the functiam chosen to describe the
hypersurfacd ; we consider another functidi= fg with f(x,£)#0 for all x,ée R? to describe
the hypersurfacé and a two-scaled Wigner measureassociated witf via (8). Then, we have
forae A

ﬁxﬁa(X,é,n)?(dX,df,dn)=ﬁxﬁa(X,é,f(X,é)n) v(dx,dg,d7). ©)

This relation allows a geometrical interpretation gfsee Sec. 1.3 in Ref. 6. For our purpose,
however, it will be enough to have relatio8). The key property of two-scaled Wigner measures
is

1I(va) M(X7§) = J%V(nyadﬂ)-

That is, we can recover a Wigner measupe'sestriction tol by projecting a two-scaled measure
vontol. Indeed, if we considea e Ci(T* R?,2?) with support outside (0,0), then we obviously
have

|t oWh g m a6 dzdn= [ trwhyPoc,g ac ) axe,
T*R“XR T*R

and passing to the limit, we obtaif« 2, w+1,/zv(dy)=pu outside(0,0).

In Ref. 12, G. Hagedorn has also studied molecular propagation through codimension three
and five crossings. For those systems, the codimension of the associated critical subrhagifold
greater than one, but the submanifoldare still involutive, and two-scaled Wigner measures of
the same type as here can be applied. We refer to Ref. 6 for a definition of two-scaled Wigner
measures associated with general involutive submanifolds. Notice that two-scaled measures can
also be associated with symplectic subspasegs Ref. 5 the measures obtained are then more
complicated and close to those of Ref. 4.

In the following, we discuss some examples for two-scaled Wigner measures associated with
| ={x0O&=0}. For simplicity, the considered functions are all scalar-valued.

A. Some coherent states
We start with some coherent states of the form

X_XO_ hyﬂo |
- U I T
with @ e L2(R?,C), 0<pB=<1, 0<y<p, andxg,&y, 70 R? with x,0&,=0.
If we chooseB= 1/2, 5,=0, and®(x) =exp(-BA x)/2) with A,Be C?? invertible, then

" is a semiclassical wave packet as considered by G. Hagedorn in Ref. 12. More®Ygr,qis
h-oscillating, and we have for scalar-valued test functiarsA

P(x)=h"AD

Downloaded 29 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



516 J. Math. Phys., Vol. 44, No. 2, February 2003 C. Fermanian Kammerer and C. Lasser

h./h xUg _ -2 ; &
fT*sz Ph(x,é)a x,f,ﬁ dxdé=(2m) L*]l_{zx]ﬁzexpmy-§)<I>(x—y/2)<I>(x+y/2)><a(x0

+hfx+h77,&+hPEh™ Y2d(x, £)) dydxdé,
whered(x, £) = hxO&+ hPx0&y+ ht ™ Pxo0é+htt Y By 0é+hYpy0&,, so that

d(x,$)
vh

Ignoring thez-component ofa, we obtain the Wigner measure af),

=hf~12x0¢0+hY2 B xo0é+h7 Y2 p0ég+0(hY? Ay +o(1). (10)

p(x,8) =[®|7; S(x—x0)® 8(&— &),

which shows that ¢") concentrates oh={x¢=0}.

However, the two-scaled measure fowith scale h depends ony, and y. If = 1/2 and
700&,=0, then the concentration ofy{) on | is issued from finite distance. Otherwise, the
concentration occurs from infinite distanaersusyh). Below, we discuss some significant cases.
For simplicity, we assumxy|=|&;|=1.

B=1/2 andn,0é,=0: The dominating term if10) is x0O&y+ X,0&. Forte R andze R?, we
setW (x) =exp( (i/2) |x|?sgnfo- £&))P(x). Then,

v(X,&,7m)=6(X—Xg)® 8(&— §o)®(277)2< LJ‘AP(U(O"' 7%g)|% dt | dn.

y<pB= 1/2 andz0é,#0: The dominating term iti10) is h?~25,0¢, and

v(X,&,7)= u(X,£)® 8( 77— sgr(77o&o) ).

y<B<1/2: The dominating term if10) is h?~ Y25,0¢, if 7o0&#0 andh?~Y0¢, if
1no0€x=0. In the first case we obtain as before

V(X,f, 77) = M(X1§)® 5( U_Sgr( 770D§0) OO)

In the second case we have to consider

fR2I<1>(X)|2a(xo £0,SgNMXLEg) ) dx= Lzlfb(t&ﬁ né9)%a(Xo, €0, — Sgr( 7)) dtdy.

Therefore,

v(X,£,m)=6(X—Xo)® 6(£—&o)®

2 o0
f§>0|<1><x>| dx) S(n+e)

X-O

+

'S0

f . |<I><x)|2dx) 5(77—00)}
X- &, <0
The caseB>1/2 leads to a similar discussion with results depending on the sign-¢fL— ).

B. Arbitrary phase

Replacing the linear phase by an arbitrary one, we now consider families of the form

¢“<x>=hﬁ<b(%) exp(;—hfule))
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with & e L?(R2,C), feCY(R,R), 0<B<1, andxye R?\{0}. Again, this family ish-oscillating.
Writing

f(|xo+hPz|?) —f(|xg+hPz'|?)

!

z+27'\ (1
=2hﬁ(z—z’)~(x0+h3 > )f f/(t|xo+hPz|?+ (1—1)|x+hPz'|?) dt
0

ﬁz+z’ )
Xoth — h(Xo,2,2"),

for z,z' € R?, we calculate for scalar-valuete A

=:2hf(z—2')-

Whyh(x, €)al x, & x0¢ dxdé
T*R? ’ DY

=(2w)*2f exp(iy - &)@ (x—y/2)D (x+y/2)
T* RZx R2

y Yy ., d(x,€)
Xa( x0+h5x,lh(xo,x+ 53X 5 (Xo+hPx)+h1 A¢, N dydxdé,
with
d(x,
(Thg): h2 =B (xo+hPx)0¢ = N2 =B x 0+ 0(1).

(11

Since lim,_q 1h(X0,2,2") =" (|x0|?), we obtain the Wigner measure
(%) =[|P[F28(x—X0) ® S(£— 1 (|X0|*) Xo),

and have again concentration bs{xJ&=0}. However, /h-concentration is issued from finite
distance if and only if3< 1/2. We distinguish three different cases, assunhiqg= 1.
B<1/2:

v(X,&,17)=p(x,§) @ (7).
B=1/2:

V(X,& 1) = 8(X—Xo)® (£~ ' (1) Xo)®(277)2< fR|€p(txo+ nx3)|2dt> dz.

B>1/2:

(X, & 7m)=8(x—X0)® 8(§—1'(1) xo) ®(2m)

U |€I><§>|2d§> 5(n—=)
xg/\é>0

+

f |€I><§>|2df) S(m+ )
Xo/\é<0

Of course, the above discussion easily extends to families

—xa—h? '
lph(x):hﬁq)(%) exl{zl_hf(qu))
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with 0< y< B and 5, e R2.

C. Concentration on a circle

Finally, we consider families of the form

x|~ R?

i
— Ix—h7x.l2
G exr<2h|x h”Xo|

where® e C5(R,C), xoe R2, R>0 and 0< y<1. Once again, such families aneoscillating. We
have for scalar-valued e A

lﬂh(X) =h- l/4q)

x[é
|h:: fT*RZthh(X'f)a( X,g,w) dde
_ . (X=y/2l?~R?) [ [x+y/2*~R?®
a jT*RZX]Rz eXpliy - ) \/ﬁ \/ﬁ
dy dx d¢

X a(x,x—h"xy+hé, JhxOg+hr™ Y2 Ox) ———,
( o+ hé, VhxOg 0 )<zw>2¢ﬁ

and thus by the Fourier inversion formula

= f a(x,x—hxo+hé,JhxOg+hr™ W% 0x) b (u— v/2)$(,u+ v/2)

2 du dv dy dx d
|x|2+w—R2) pe o dy dx de

4 (2m*h

2i i
Xexpliy-é)expp ——=ux-y——v
pliy - &) p( \/HM y o
Substitutingé by 2h~ Y2ux+h~ Y4 andy by h'*z, we obtain
Ih=fa(x,x—h7x0+2\/ﬁ,u X+ h34z W07+ hr~ W% Ox) S (w—0v/2)

du dv dzdx dZ
(2m*h

Then, the stationary phase method in the variablesd p=|x| yields that

Xg(,u,-l-Z/v)eX[{iZ[— Ll—lvlle)exp( — ﬁv(IXIZ—RZ)

Iy ~ (277)*2||<I>||fzf a(x,x,h?~ 2x,0x) dx.
h—0 Ix|=R

Therefore, we obtain the Wigner measure
p(x,€)=(27) O[> 1 -y (%) dx® 8(£-),

and observe again concentration lba{x0&=0}. The two-scaled measure provides additional
information concerning the exponemtand the directiorx,. There are three different cases.
y<U2: v(x,€ 1) = p(X, )@ 6(n—sgngx)),
y=1/2: v(X, &, 1) = n(X,6) ® 6(n—XoX),
y>12: v(X, &, m)=p(X,6)®6(7).
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IV. LANDAU—-ZENER TRANSITIONS AT HITTING POINTS

A. Propagation outside the crossing

Next, we discuss the propagation of two-scaled Wigner measures outside the sing@lar set
As before,IT1*(x) denote the orthogonal projectors W{x) corresponding to the eigenvalues
+|x|. The weak-limit points in L*(R,.A") of (W54"(t))n=0, which are associated vi&) with
solutions ¢"(t))n-o Of the Schidinger equatior(3), are referred to as two-scaled Wigner mea-
suresy(t,-) of the family ("(t))h=0.

Proposition 2: Let("(t))n-o be a family of solutions of the Schtiager equation (3) with
given initial data(y§),-o, which are bounded in #(R?,(?). Let »(t,-) and v, be two-scaled
Wigner measures qf"(t))n-o and (z//B)h>0 for the hypersurface+{x/\¢=0} and the second
scaleh. If supp (v)) NS=J, thenu(t,-) can be decomposed iR’ (R, A’) as

v(t, )=vH(t, )1 +v(t,-)[I" outside S (12

wherev™(t,-) are scalar-valued positive Radon measures supportedmﬁ,l

8tvi+§‘vatI% -Ver™=0 outside S (13
Proposition 2 is a consequence of Theoremir2 Ref. 6. We note, however, that Theorem 2
shows transport terms im-direction, which vanish in our case. This is due to the fact that
{|&?2=|x|,x0&} =0, where{f,g} = V,f - V,g— V,g- V; denotes the Poisson bracket of two func-
tions f and g on phase spac&* R2. For the convenience of the reader, we give a proof of
Proposition 2 in the Appendix.

From the above transport equatioii) we deduce the continuity of the map>»= on any
given time interval, provided the support of does not intersect the singular €tTo obtainy™
on S and to restart the tranport equations every time when hiinthe work in Ref. 6 provides
us with a local result describing the branching/6f near some point (gg) € S\{(0,0)}, which we
shall explain next.

B. A local Landau—Zener formula

We consider some hitting point &) € S with £,#0 and some neighborhodd of (0,£,)
with (0,0)¢ W, such that any classical trajectory includedvihcrossesS at most once for some
given bounded time interval. Such an open \8&exists due to the geometry of the trajectories
described in Sec. lll. We denote By ' (p~ pas} the sets of classical trajectories, which go into
SNW,

J5P={(x,£) e T*R%3(0,{o) e smw,35e(—w,O),X=X§O(S),§=§§O(S)},

where Q(fo(s),gfo(s)) are the plus-minus trajectories with initial datum {§), Similarly, we
define the setd™' (f~ future) of classical trajectories, which go out 8YW,

J=T={(x,6) e T*R%:3(0,4o) e SNW, T (0,+ %), x=x[ (5),£= & ()}

Measuresy™ with support inW are supported inJ*PUJ*)NW and propagate along the
classical trajectories of the corresponding mode. For an)8,J“ PNWN S the tangential space
T(o,go)(Jivavv) is spanned by {y,e;) and (,,€,), where thee; denote the canonical unit
vectors of[R?. SinceT(ogO)(S) is spanned by (@;) and (0g,), and since/,#0, J='PNW andS
intersect transversally, and the restriction0f to J**PNWNS is a well-defined distribution,
which we denote by ™ P. Analogously, we define™:'.

If v*Pandy™P are mutually singular of »| <+ =}, then according to Theorem 3 in Ref. 6
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pHf 1-T T \[p*P
(V,f)=( T 1_T)<V,p) in SNW (14

with T=T(¢,7)=exp(— =77|&%. We point out that we have describddby the function
g(x,£&)=x0¢, while in the framework of Ref. 6 the hypersurfacés specified by the equation
G(x,€) =&~ 1(x0¢). Thus, our transfer coefficieri is different from the one in Ref. 6. It is
obtained using relatiof9).

The proof of the above Landau—Zener formula reduces the Rftihger equation(3) to a
scattering problem, which is close to the original system studied by Lahdad Zenet in the
early 1930s and can be solved explicitly; see the Appendix of Ref. 6. The reduction is achieved by
a change of symplectic time-space coordinates, ¢, £)—(s,z,0,¢), such that in the new coor-
dinates

J*P={0+s=0,{,=05s<0},
Ji'f={a'1 s=0, {,=05>0},

| ={{,=0},S={0=s={,=0}.

The system(3) reduces to
h
i—&svh= Q%W(s,z,hDg,hD,)v"

with

S a(o,2){,
Q= _ :
a(o,2){, s
a(z,0)#0 for all ze R?, oeR, andv"=Uy", whereU is a suitably chosen unitary, matrix-
valued Fourier integral operator. Of course, most of the work in Ref. 6 deals with the
o-dependence of the functiom
Roughly speaking, the singularity condition on the incident measeirésand v~ P excludes
Jh-interferences betweeH " ¢" and IT-¢" at the crossing. One might expect that after one
hitting time this seemingly restrictive condition does not hold any more. However, the following
result shows that for several interesting cases the singularity condition is indeed satisfied for all
hitting times. Thus, the local resu{i4) can be used to describe the evolution of two-scaled
Wigner measureglobally in time Recovering the Wigner measure from the two-scaled measure,
we also obtain a global description of the weak limit of the position density via relédion

C. A global result

We consider a family of initial datay}),- o bounded inL?(R2,(?) and we suppose that its
two-scaled Wigner measureg, is supported in some s&tC| such that

S={(k(w)w,l(0)w):weQ}

with QC St and measurable functiois Q) — (0,+ %) andl:Q—R. Such families can be easily
built provided the examples of Section 3. If we also assume localization on the mode plus, we
have an associated two-scaled Wigner measyref the form

Vo(X,g, 7]) = Vg(xagr 77)H+(X)

Using the one-to-one mapping betweerand (), we rewrite v, as
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v (X,€, 7))=( L)Po(ﬂ,dw)@? S(x—k(w))® §(é=1(w)w) [TI7(x), (19

wherep, is a positive Radon measure &< ().

In this situation there are two types of classical trajectories, which carry the energy. The first
type are plus-trajectories with initial datag &g) for Xo=Kk(wg) wg, &,=1(wg) wg With wge ().
The second type consists of minus-trajectories, which are issued by plus-trajectoriesShiéyng
Remarks 1 and 2, there are two important facts:

(i) At any of the hitting points {,0,¢, %), the incident energy is only carried in® by the
plus-trajectories, so that the required singularity assumption holds.

(i) At any of the hitting points(,0,£, ) we have¢+0, so that we can use the Landau—Zener
formula (14).

We denote by X™(t,w),£" (t,w)) the plus-trajectory described in Remark 2 with initial data
(k(w)w,l(w)w), 0e, and we set

L(@)=\[I(@)P+2[k(o)], tj(w)=1(o)+2(j+1)L(w), jeNo.

Moreover, fort=t;(w) we denote by X; (t,w),¢; (t,w)) the minus-trajectory, which has initial
data (Of*(tj(w),w)) at timet=t;(w). By Remark 1, we have far=t;(w)

X (to)=(—D((t—tj(0)*2= L(o)(t—tj(0)),
& (Lw)=(—Dl(t—tj(w)~L(0) .
Now, we can describe the evolution of a two-scaled Wigner meas(tre) for the solutions
(4"(1))n=0 Of the Schidinger equatior(3) as follows.
Theorem 2: Let (4"(t))p-o be a family of solutions of the Schfinger equation
(3) with initial data (¥§)n-o, which are bounded in #(R?(?). Let (45)n-o have a
two-scaled Wigner measurg, for | ={x&=0} and scaleyh, which is of the form (15). If we

decompose a two-scaled Wigner measur@,-) of (4"(t))n-o for | and scale Vh as
v(t,-)=v(t,)II"+» (t,-)II~ in D'(R,A"), then we have for all+0

V+(t1X!§177): JQP-'—(L ﬂ:dw)®5(x_x+(t’w))®5(§_§+(t,w)),

v(tXEm) =2 fﬂp;u. 7,d0)® S(X— X[ (t,0))® (£~ & (t,0)),

]=0

wherep*t and pj » |=0, are time-dependent positive scalar-valued Radon measurds>of)
given by

p+(t1 nlw):jzo Jl(tj7:]_(¢1)),'[J-(Lu))(t) (1_T( 771‘“))’ pO( 7710’):

Py (4,7,0) =1 (0)+2)(1) T(7,0) (1=T(7,0))) po(7,)

with T(7,w)=exp(— 777/L(»)°) and t_;(w)=0 for all e R, weQ.
Proof: We consider first some, of the form

vo(X,€,7) = (8(X—X0) ® 8(§— £0) @Po( 7)) I (X).
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As mentioned before, we just have to use the description of the classical trajectories issued from
the point &g,&q) = (Kowo,lgwg), wge 2, which is contained in Remarks 1 and 2. We know that

for all t e (0to(wo)) the measure™ propagates along the trajectony™((t, wo), & (t,w0)). Thus,

we have

V(t,X,g, 7]):(5(X_X+(tuwo))®5(§_§+(tawo))®7)o( 7]))H+(X),

when testing against functionse C§(R,.A) with supp@) C (0to(wg)). At time t=ty(wq), there
occurs some Landau—Zener partition of energy. Usii), we obtain

V(X € =vT (LX,Em) T () + v (6X,€ I (x),

when testing ontp(wg),t1(wg)), where
V+(t,X,§,7]):(1_T( 77!0)0))‘50( 77)®5(X—X+(t,w0))®5(§—§+(t,w0)),

v (6X,€,7) =T(7,00) Po(7) © 8(X—Xq (1,00)) © 5(§— & (1, 00)).

The measures™ propagates alongx({ (t,wo),&; (t,wg)) for te (to(wg),t1(wg)), while for v*
there happens a new Landau—Zener phenomenon atttimvg wg) at the point (O, (wq) wg),
which opens another trajectory on the mode minus. Now, that ist €dt,(wg),to(wg)), the
measurev™ propagates along the two trajectories (t,wo),§; (t,@o)), j=1,2. The same argu-
ments apply recurrently for any of the hitting points

t=tj(wg), x=0, &=(—1)1" L(wp)wp.

This proves Theorem 2 for a measwg ,w) of the formpy(7) ® 6(w— wg). By linearity, the
above arguments directly extenddg( 7, ), which is a discrete Radon measure with respeat.to
Since discrete Radon measures are dense in the set of positive Radon measures, this observation
also closes our proof.
Remark 3: Ifvg({| 7|=+2})=0, then(1—T(7,w))’ goes to zero fof 7,w) € supplp,) as
j— +o, and

f, p*(t,dy,do) —— O.
]

RxQ t— 4+

Thus, as t goes te-« all the energy is transferred from the mode plus to the mode minus

Remark 4: Since the singularity assumption guaranteeing (14) concerns only the parts of the
two-scaled measure supported{jm| < + <}, the result of Theorem 2 easily extends to initial data
vy, Which are also localized on the mode minus vétipp(, ) C{| 7| = +}.

Remark 5: We note that for the linear codimension three and five crossings considered by
G. Hagedorn in Ref. 12, again the classical trajectories are the Hamiltonian curves of the func-
tions|&|2/2+ |x|. Therefore, provided the expected generalization of Ref. 6 to these crossings, the
same result as in Theorem 2 will hold for them as well

We close by a corollary concerning the welak(IR2,C)-limit of the position density, which
implies Theorem 1 of the Introduction when appliedde- 3.

Corollary 1: Let us suppose initial dat@yf) -, which are bounded in #(R?,(?), which are
h-oscillating, and which have a Wigner measwg with supf() CS and o= g 7. If we
denote

C=sufk(w)|+ 3[I(w)|*w e},

then we have for the solutiorig/"(t)),~ of the Schrdinger equation (3) for all times=0 and
for all ¢ Cy({xeR?|x|>C},0)
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|imf S(X)|TTT (x) g"(t,x)|? dx=0,
h-o JR?

fm fR2¢(x>|H‘(x>wh(t.x>|2dx= fﬂ 2 Iy, (0 S0 (L0)) aj(do),

whereaj(w) = [3T(7,0)(1=T(7,0)) po(dn, ).

Proof: First we prove that for all times=0 the family of solutions ¢"(t)),-o inherits the
property of h-oscillation from the initial data 1(8)h>0. We consider some function
x €C”(R?,R) with x(u)=1 for |u|>1 andy(u)=0 for |u|<3. We study

Wh(t,x)=XW( hsx) Yh(Lx)

for h,R>0. We have

Osf IN(t, €)|2 de<|Wh(1)[2 o
h|§|>R|¢( §)| § ” R( )HL2(]R2)

Moreover, if we denotéd (x,€) = (|£|%/2) +V(x), then we have

h
ih gwh=HY(x,hD,) Wi+ = ME y"
with MR=(R/h) [xV(hD4/R),V(x)]. Analyzing M%, the linear growth ofV(x), prevents a
direct application of semiclassical Weyl calculus. However, sMé‘gis a linear polynomial irx,

the standard arguments still apply—see the proof of Proposition 7.7 in Ref. 2 for example—and
we have

1
Me=27 (DX Vi={V.xh ¥(x.hDy).

Thus,Mg is a bounded operator, whose norm is independent figRy and will be denoted by
[M]|. SinceHY(x,hD,) is symmetric, we have for all times

M

d
hyy )2 h
a”WR(t)”LZ(]W) = R ||¢h(t)||L2(ua2) [Wr()[L2(r2) -

Since ("(t))n=o is bounded inL?(R?,C?) uniformly for all timest=0, we obtain

Clm|t

IWR() | L2r2) =< WR(0) | L2r2) + 5R

Passing to the limith—0 andR—x, we get theh-oscillation of (4"(t))n~o for all timest.
Finally, integrating over the distancg and the momentung in the formulas of Theorem 2, we
conclude our corollary’s proof.

Observe that|k(w)|+ 3|I(w)|?=L(w)?2 describes the boundaries of the strip in the
]Rf(-plane, between which the plus-trajectory oscillates. In other words, Corollary 1 means that if
we considerx=ero with weQ,se{=1},r>/k(w)|+ 1/2|l(w)|?, then the weak limit of
(| I~ (%) ¥"(t,x)|?) h~o chargesX recurrently at times

t=t(w)+L(w)+ VL(w)?+2[X],
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for ke N such that ¢ 1)=&. Moreover, the mass aboveis a, ().

Remark 6: Theorem 2 and thus Corollary 1 rely on the special features of the Hamiltonian
curves of the functionst|%/2+|x|. We emphasize that the special form of the initial data has been
assumed, such that explicit calculations can easily be performed. However, as long as we choose
initial data, which have a Wigner measure, with support outside S and a two-scaled Wigner
measurev, with supp@y)C{|n|=+=}, the assumption for applying (14) is fulfilled for each
hitting time at the crossing. Thus, the evolution of the weak-limit of the position density is utterly
described by the transport equations (13) and the Lardaner formula (14)

APPENDIX: PROPAGATION OUTSIDE THE CROSSING

Proof: Proposition 2 gives a description of the two-scaled Wigner measuwatside the
singular setS={x=0}. Thus, all the test functionmae.A4 used in the following have
supp@)NS=(J, assuring that in the region under investigation the projecibf¢x) depend
smoothly onx. There are two steps:

(1) First, we show »(t,-),I1*]=0 in D'(R,.A") by analyzing

Lh(t)=f tr| (WhygM)(t,x,€) a| x,& e dxdé
1 T*RZ 1Ny 16 \/H

for matrix-valued test functionge . A. Due to this commutativity, we can then decompose
v(t,-) asv(t,-)=v"(t, )II"+» (t, )T~ with »™(t,-)=tr(v(t,-)I1F).

(2) Second, we show the transport equations for the scalar-valued measgtey. Thus, we
study the evolution of

0
L3(t) = JT*RZtr< (W) (t,x,£) TT=(x) a(x,g,%) ) dxde,

for scalar-valued test functiorese A.

First step: Let (¢"(t))n-o be a family of solutions of the Schdinger equatior(3), whose
Hamiltonian’s symbol will be denoted bii(x,&) = (|£|%/2) +V(x). Testing against functions
ae A, we will use the notatiom,(x, &) =a(x, &, (x0&/+h)). In the distributional sense, we have
by the duality of Wigner transformation and Weyl quantization

d
ih £ L1(0) = (¢"(0)]ai(x,nD) HY(x,hD) y"(1) ) zsy
—(HY(x,hD) ¢"(t)]|ay(x,hD) ") ) 2x2)
=(y"(v)|[a) (x,hD),HY(x,hD)] ¢"(1))  2(z), (A1)

where the last equation is due to the symmetryHdf(x,hD). Analyzing this commutator by
semiclassical Weyl calculus—see for example Proposition 7.7 in Ref. 2—we apply a cut-off
function y e C5(R?,R) compensating the linear growth inof H(x, ). We choosey with support
outside{x=0}, such thaty(x)=1 for all xe R?, which lie in the projection of supp) onto
position space. Sincga=a anda(V,y)=0, we have

ay'(x,hD)=a}’(x,hD) x=x a/(x,hD)

and therefore
h
[axv(x,hD),V]:[axv(x,hD),XV]:[ah 1XV]W(X1hD)+ E({ah =XV}_{X V,ah})W(X,hD).

Moreover,

Downloaded 29 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 44, No. 2, February 2003 Wigner measures and codimension two crossings 525

2

w hi o 1e°]" 200
ah(x,hD),—?A =—jan,—( (x,hD)+h°R",

i 2

where R"),,~, is a sequence of bounded operatord 8tR2,(?) built with second order deriva-
tives of a,. We note, thatl?-continuity here and in the following is always implied by the
Theorem of Calderon-Vaillancourt; see for example, Theorem 7.11 in Ref. 2. Since every deriva-
tive of a, produces an extra factor i, we have

[an'(x,hD),H"(x,hD)]=[an,V]"(x,hD) + Vh Q" (A2)

with (Q" -0 @ bounded sequence of bounded operatord #ii?,C?). Since we also have
4 ()]l 2=y}l 2 for all te R, we obtain

d
ih LAt = fT* ATCOVYN X8, V6] an(x, ) dxdg + vh a'(D)

with (")~ a bounded sequence i (R,C). Obviously, we have for aliy e C5(R,.A)

ih EL"(t) ¢(t)dt=ihth(t)i¢(t)dt—>0
pat 1 r 1 dt heo

since Q_Q)h>o is bounded in.”(R,C). Therefore, in view ofA2), passing to the limit ifAl), we
obtain[ »,V]=0 and thug »,IT*]=0. Since thdl* are rank one projectors, we can simplify the
decompositionv=T1"vI1"+11 vII~ to v=»" 11"+ v 11, wherev™=tr(vII").

Second stepNow, we consider scalar-valued test functians . A. We have

d i + = W h h
&Lz(t): H<[Hfah (hD)IT=, HY(x,hD)] ¢ ()] "(1) ) 2(r2) -

We denote\ . (x,€) = (|£|%/2) =|x|. Obviously,
[TT*a(x,hD)IT*, HY(x,hD)]=[TT*a}(x,hD)IT*, \¥(x,hD)].

We reuse the cut-off functiol and obtain

h
xIT* )\‘Q’(x,hD)zx‘i’(x,hD)XHivLErw(x,hD)vLo(h),

h
AY(x,hD) x TT* = xIT= A W(x,hD) — Erw(x,hD)Jro(h),

wherer (x,&)={xI1",|&?2}. Here and in the following, the-notation refers to the space of
bounded operators dr?(R?,C?). Therefore,

'H[Hiah (x,hD)IT*, A\W(x,hD)]

[ 1
= 'ﬁxnf [al(x,hD) \Y(x,hD)] xy I*+ S(x I*a)(x,hD)r'"(x,hD)
+r%x,hD)a)(x,hD)x T*)+0(1).

Sinceya=a anda(V,x) =0, we obtain
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x 1 a)Y(x,hD)rY(x,hD) +r™(x,hD)a’(x,hD) y T+
=11" a(x,hD)r"(x,hD) + r"(x,hD)a}"(x,hD)IT*
=qy(x,hD)+o0(1)

with q=q(x,¢,7),
g=a(Il=r+rII*)=a(II={I1*,|£|%/2} + {11~ ,| £?/2} 11 7).

Moreover, usingxOé N . (X, &)} =0, we have
i
HX[a‘gv(x,ho), AY(x,hD)]x=b{(x,hD)+0o(1),

with b(x,&,7)=—¢&-Vya* (x/|x|) - Via. Thus, thes-dependance drops, and we obtain

d

im g L= [ Ar(II00 DO & ) TT (0 + 00,67 it e )

- f DO E ) v (1o, d,d) + f (@€, 7) w(t, 0,0, d7)).
T*R T*R

For concluding the proof, it remains to show thafq v(t,-))=0. Using (17)2=1I1", we get
IT{I15, | |22 T =TT {11, | £|2/2 T+ + TT {11, | £|?/2} 11" = 0. Since traces are invariant un-
der cyclic permutations, and sinfe(t,-),I1=]1=0, we finally have

tr(qu(t,-))=tr(all™{I1~,| &2 T v(t, ) +all={I1*,|£]%/2 11 * v(t,-))=0.
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