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This article gives a semiclassical description of nucleonic propagation through
codimension two crossings of electronic energy levels. Codimension two crossings
are the simplest energy level crossings, which affect the Born–Oppenheimer ap-
proximation in the zeroth order term. The model we study is a two-level Schro¨-
dinger equation with a Laplacian as kinetic operator and a matrix-valued linear
potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We
discuss the case of well-localized initial data and obtain a description of the wave-
function’s two-scaled Wigner measure and of the weak limit of its position density,
which is valid globally in time. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1527221#

I. INTRODUCTION

The quantum-mechanical description of molecular dynamics is given by the time-depe
Schrödinger equation

ih ] tf
h5Hmol

h fh, fh~0!5f0
h . ~1!

Ignoring spin degrees of freedom, we assume initial dataf0
hPL2(R3N,C), N>1, and a self-adjoint

molecular HamiltonianHmol
h to have a unique solution

fh~ t !P C~R,L2~R3N,C!!.

If the molecule consists ofke electrons andkn nuclei withke1kn5N, the molecular Hamiltonian
Hmol

h can be written as

Hmol
h 52

h2

2
Dxn

1He~xn!,

whereDxn
denotes the Laplacian acting on the 3kn nucleonic coordinates, whileHe(xn) is the

electronic Hamiltonian acting on the 3ke electronic coordinates.He(xn) depends parametrically
on the nucleonic coordinatesxn and comprises the electrons’ kinetics as well as the interac
between electrons and nuclei. The scale-parameterh.0 is given byh5Ame /M , whereme is the
electronic mass andM is the average mass of the molecule’s nuclei. In the following, we
study the limit

h→0, i.e., M→`.

a!Electronic mail: clotilde.fermanian@math.u-cergy.fr
b!Electronic mail: classer@ma.tum.de
5070022-2488/2003/44(2)/507/21/$20.00 © 2003 American Institute of Physics

9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



-

t
ollow-

Fock,

associ-
r
to

rn’s
:

in the
nspaces

a
ducing

508 J. Math. Phys., Vol. 44, No. 2, February 2003 C. Fermanian Kammerer and C. Lasser

Downloaded 2
We will concentrate on a closed subsets* (xn) of the electronic spectrums(He(xn)), which is the
union of two eigenvaluesl1,2(xn) with the same multiplicityk and which is uniformly isolated
from the rest of the electronic spectrum. That is, there is a constantd.0, such that

dist~ s* ~xn!,s~He~xn!!\s* ~xn! !>d for all xnPR3kn.

We denote the spectral projection ofHe(xn) associated withs* (xn) by Pe(xn) and the extension
to L2(R3N,C) by P* 5*R3kn

% Pe(xn) dxn . If $x j (xn)(•)% j 51
2k is a family of normalized eigenfunc

tions of He(xn) for the eigenvaluesl1,2(xn), then we can write

RanP* 5H (
j 51

2k E
R3kn

%

f j~xn!x j~xn! dxn : f5~f j ! j 51
2k PL2~R3kn,C2k!J .

This description of RanP* induces an isometryU:RanP* →L2(R3kn,C2k). Now, time-dependen
Born–Oppenheimer theory, as carried out by H. Spohn and S. Teufel in Ref. 20, gives the f
ing: If we choose initial dataf0

hPRanP* with if0
hiL251, such that (ih2Df0

hiL2)h.0 is a
bounded sequence, then the solutionfh of the molecular Schro¨dinger equation~1! can be approxi-
mated by a Born–Oppenheimer solution modulo an error of orderh. That is, there exists a
constantC.0, such that

ifh~ t !2fBO
h ~ t !iL2<C~11utu! h,

for all timestPR, wherefBO
h (t)5U* exp(2i (t/h) HBO

h ) U f0
h . If the eigenfunctionsx j (xn)(•) can

be chosen real-valued, then the Born–Oppenheimer Hamiltonian is given by

HBO
h 52

h2

2
Dxn

1V~xn!, ~2!

where V(xn) is a potential, whose values are 2k32k matrices. In this framework, RanP* is
referred to as an adiabatically protected subspace~adiabatos;impassable!. We also note that this
type of observation dates back to the late 1920s and is originally assigned to M. Born, V.
and R. Oppenheimer.

If the eigenvaluesl1 andl2 also satisfy the gap-condition, that is, if

ul1~xn!2l2~xn!u>d for all xnPR3kn,

then Born–Oppenheimer theory shows again adiabatic decoupling between the subspaces
ated withl1 andl2 , and the two-level Hamiltonian~2! splits into two scalar Born–Oppenheime
Hamiltonians, modulo an error of orderh. If the preceding gap-condition is violated, we have
consider two cases: either the eigenvalues cross, i.e.,

' x̃nPR3kn:l1~ x̃n!5l2~ x̃n! ~crossing!,

or they do not cross, but cannot be separated uniformly~avoided crossing!. For generic crossings
with mimimal multiplicity k, general symmetry considerations, as carried out in G. Hagedo
monograph,12 restrict the codimension of the crossing manifold to be one, two, three, or five

codim R3kn$xnPR3kn:l1~xn!5l2~xn!%51,2,3, or 5.

Codimension two, three, and five crossings affect the Born–Oppenheimer approximation
zeroth order term. This means that there is leading order exchange between the eige
associated tol1 andl2 . In the following, we will turn to the simplest model system showing
codimension two crossing and study the Wigner measure associated with its solution. Re
the nucleonic configuration spaceR3kn to R2, we study
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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ih ] tc
h52

h2

2
Dx ch1V~x!ch, ch~0!5c0

h , ~3!

with (c0
h)h.0 a bounded family inL2(R2,C2), andV a matrix-valued potential of the form

V~x!5S x1 x2

x2 2x1
D , xPR2.

The Hamiltonian2 (h2/2)Dx1V(x) is an essentially self-adjoint operator onL2(R2,C2), and we
have a unique solutionchPC(R,L2(R2,C2)). The potential’s eigenvalues6uxu cross forx50 as
depicted in Fig. 1 below, which plots6uxu versusx1 andx2 .

The mathematical analysis of the above model system has been initiated by G. Haged
Ref. 12. His result describes the evolution of the solutionch itself, given special initial data, so
called semi-classical wave packets. Recently, the first author and P. Ge´rard6 have studied codi-
mension two crossings from a Wigner measures’ point of view. Their method applies to ge
initial data and covers Hamiltonians of the formHW(x,hDx) with symbol H(x,j)5K(j)
1V(x), KPC `(R2,R).

Here, we aim at applying their result to well-localized initial data and the case wher
kinetics is given by a Laplacian, i.e., forK(j)5uju2/2. For this special situation, we will obtain a
asymptotic description of the solutionch(t), which is validglobally in time.

Actually, we consider for a family of solutions (ch(t))h.0 of ~3! the Wigner transforms

~Whch!~ t,x,j!5
1

~2p!2 E
R2

exp~ iy•j! chS t,x2
h

2
yD ^ chS t,x1

h

2
yDdy,

wheretPR and (x,j)PT* R25R23R2. Sincech(t,x) is a vector inC2, the Wigner transform is
a Hermitian matrix inC2,2. The families (ch(t))h.0 inherit uniform boundedness inL2(R2,C2) for
all times tPR from the initial data. Therefore, the family (Whch)h.0 is bounded in
L`(R,S8(T* R2,C2,2)), which means

FIG. 1. The eigenvalues.
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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U E
T* R2

~Whch!~ t,x,j! a~x,j! dxdj U < C

for all tPR and all aPS(T* R2,C2,2). Thus, there exist weak* -limit points of (Whch)h.0 in
L`(R,S8(T* R2,C2,2)). These limit points are calledWigner measures, since for fixed timest they
are positive matrix-valued Radon measures on the phase spaceT* R2. We refer to Refs. 7, 8, 17
and to Ref. 10 for a complete treatment of these measures.

One important property of the Wigner measuresm(t,•) is their relation to the position densit
uch(t,x)u2. Let us consider some fixed timetPR. If the family of initial data (c0

h)h.0 is
h-oscillating, that is, if

lim sup
h→0

E
uju> R/h

uc0
ĥ~j!u2 dj ——→

R→1`

0,

then (ch(t))h.0 inherits this property as well~see the proof of Corollary 1 in Sec. IV!. Roughly
speaking,h-oscillating families have frequencies of oscillations, which are of order less or e
than 1/h. Furthermore, as in Ref. 9, givenh-oscillation, the weak limit points of (uch(t,x)u2 )h.0

in L1(R2,C2) can be described by Wigner measuresm(t,•) of (ch(t))h.0 via

w2 lim
h→0

uch~ t,x!u25E
R j

2
tr ~m~ t,x,dj!!. ~4!

In the following, we will perform acompletestudy of the evolution of Wigner measure
associated with solutions to~3!, assuming specific initial data. The reader will find precise
sumptions and statements in Sec. IV, Theorem 2. For example, our result applies to initia
microlocally localized on a setS0 of the form

S05$~x,j!PT* R2:uxu5R,x5j%

with radiusR.0, which means

;aPC 0
`~T* R2\S0 ,C2,2!:E

T* R2
~Whc0

h!~x,j! a~x,j! dxdj ——→
h→0

0.

Thus, (c0
h)h.0 concentrates asymptotically on a circle in position space and has asymptot

equal position and momentum. Moreover, we assume that (c0
h)h.0 is h-oscillating and localized

on the eigenspace associated, say, with the eigenvalue1uxu of V(x). For example, we suppose

P2~x!c0
h~x! ——→

h→0
0

strongly inL2(R2,C2), whereP6(x)5 1/2 (Id6V(x)/uxu) denote the spectral projectors ofV(x)
associated with6uxu. Assuming these initial data, the solution (ch(t))h.0 stays localized on the
mode plus until it hits the crossing manifold$x50%. At the crossing, we observe a Landau–Zen
exchange between the eigenspaces, and (ch(t))h.0 will be localized on both modes. Our analysi
which is summarized later on in Sec. IV, Theorem 2, results in the following description o
weak limit of the position density for all times.

Theorem 1: Let (c0
h)h.0 be bounded in L2(R2,C2), h-oscillating, microlocally localized on

S0 , and localized on the mode plus. Let(ch(t))h.0 be a family of solutions of (3) given the initia
data (c0

h)h.0 . We denote C5R2/21R and choose a smooth, compactly supported func
fPC 0

`($xPR2:uxu.C%,C). Then we have
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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lim
h→0

E
R2

f~x!uP1~x!ch~ t,x!u2 dx50

for all times tPR. Moreover, there exists a positive, increasing sequence(t j ) j >0 with tj→1` as
j→1`, a sequence(a j ) j >0 of positive Radon measures onS1, and a sequence(xj ) j >0 in
C(R,R2), such that

lim
h→0

E
R 2

f~x!uP2~x!ch~ t,x!u2dx5 (
0<k< j

E
S1

f~xk~ t !v!ak~dv!

for tP(t j 21 ,t j ), j PN0 , where t2150.
Thus, on the mode plus the solution asymptotically stays inside the ball of radiusC. On the

mode minus, points outside the ball are charged recurrently in time. Explicit formulas for tha j ,
t j andxj are given in Sec. IV.

We will proceed as follows: In Sec. II, we discuss propagation of Wigner measures and
the classical trajectories associated with the Schro¨dinger equation~3!. Section III introduces two-
scaled Wigner measures and gives some examples for well-localized data. In Sec. IV, we
Landau–Zener transitions between the two eigenspaces at points, where classical trajecto
the crossing manifold$x50% recurrently in time, and obtain an asymptotic description of
solution’s position density, which is valid globally in time.

II. PROPAGATION OF WIGNER MEASURES

Let (c0
h)h.0 be a family of initial data, which is bounded inL2(R2,C2), (ch(t))h.0 be a

family of solutions of~3!, andm(t,•) be an associated Wigner measure. The evolution of Wig
measures associated with solutions of a system, whose principal symbol admits eigenva
constant multiplicity~and thus no crossings!, has been studied in Ref. 10. These results apply
system~3! outsidethe crossing manifold

S5$~x,j!PT* R2:x50%.

We consider initial data (c0
h)h.0 , such that the associated Wigner measuresm0 have support

outside the singular setS. By the results of Ref. 10, outsideS the Wigner measurem(t,•)
commutes with the projectorsP6 and thus can be decomposed as

m~ t,• !5P1m~ t,• !P11P2m~ t,• !P2

in D8(R,S8(T* R2,C2,2)). Since the eigenspaces are one-dimensional, the decomposition s
fies to

m~ t,• !5m1~ t,• !P11m2~ t,• !P2,

wherem6(t,•)5tr (P6m(t,•)) are scalar positive Radon measures satisfying the transport e
tions

] tm
61j•¹xm

67
x

uxu
•¹jm

650, m6~0!5tr ~P6m0!. ~5!

These transport equations give continuity of the mapst°m6(t,•) and thus a description o
m6(t,•) on any given time interval, provided that the supports ofm6(t,•) do not intersect the
crossing manifoldS. We consider the flows of the associated Hamiltonian systems

ẋ6~ t !5j6~ t !, j̇6~ t !57
x6~ t !

ux6~ t !u
, ~6!
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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which describe the classical motion corresponding to the quantum-mechanical motion iss
the Schro¨dinger equation~3!. Therefore, their solutions are calledclassical trajectories. The fol-
lowing proposition characterizes the trajectories, which touch the singular setS. For this, we will
use the symplectic product

x∧j5x'
•j5x1j22x2j1

for (x,j)PT* R2.
Proposition 1: We consider classical trajectories with initial data x6(0)5x0 , j6(0)5j0 ,

(x0 ,j0)PT* R2\$(0,0)%.

1. If x0∧j0Þ0, then x6(t)∧j6(t)Þ0 for all t PR, and the classical trajectories do not reac
S5$x50%.

2. If x0∧j050, then x6(t)∧j6(t)50 for all t PR, and the trajectory associated with the mod
1uxu is the first classical trajectory to hit S for a positive time t0 ,

t05j0•v1Auj0u212ux0u,

wherev5 x0 /ux0u for x0Þ0 and v5 j0 /uj0u for x050. Moreover we have for tP(0,t0)

x6~ t !57
t2

2
v1t j01x0 , j6~ t !57 tv1j0 . ~7!

Proof: Omitting the plus-minus superscripts forx(t) andj(t) unless the context requires, w
start with the observation that the Hamiltonian systems~6! are equivalent to the Newtonia
equations

ẍ~ t !52¹U6~x~ t !!, ẋ~0!5j0 , x~0!5x0 ,

with central fieldU6(y)56uyu. Motion in a central field conserves the angular momentum. Th
we have

x~ t !∧ ẋ~ t !5x0∧j0 , i.e., x~ t !∧j~ t !5x0∧j0 for all tPR,

and the first assertion follows.
We turn to the casex0∧j050. Inserting a Taylor expansion ofx(t) into ~6!, we get

x~ t !

ux~ t !u
——→

t→01

v5H x0

ux0u
if x0Þ0,

j0

uj0u
if x050.

We rewritex(t),j(t) for small t.0 asx(t)5k(t)v, j(t)5 l (t)v with k(t),l (t)PR, and are left
with

k̇6~ t !5 l 6~ t !, l̇ 6~ t !57 1, k~0!5k0 , l ~0!5 l 0 .

Thus, we havel 6(t)57t1 l 0 , k6(t)57t2/21 l 0t1k0 for small t.0. Since x(t)5x01tj0

1o(t), we havek05ux0u. Moreover,l 05sgn(x0•j0)uj0u if x0Þ0 andl 05uj0u if x050.
The determinant for the zeros ofk6(t) is l 0

262k0 . We distinguish different cases.
If l 0

2,2k0 , then only the plus-trajectory hitsS for some positive timet0 , i.e., for t05 l 0

1Al 0
212k0.
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



asso-

-
raction

-

ht
off
s

d
s

er phe-

513J. Math. Phys., Vol. 44, No. 2, February 2003 Wigner measures and codimension two crossings

Downloaded 2
If l 0
2>2k0 , then l 0Þ0 and we have to distinguish two cases. If sgn(l0).0, then only the

plus-trajectory has a positive hitting timet0 , and we get againt05 l 01Al 0
212k0. If sgn(l0),0,

then the minus-trajectory also has a positive hitting times05u l 0u2Al 0
222k0. However, an easy

calculation givest0,s0 , and we are done.
The preceding proof contains the following easy observation concerning the trajectory

ciated with the mode2uxu, which will be useful later on.
Remark 1: The minus-trajectory with initial data x2(0)50, j2(0)5j0 with j0Þ0 is given

for positive times tPR1 by

x2~ t !5S t2

2uj0u
1t D j0 , j2~ t !5S t

uj0u
11D j0 .

This trajectory does not hit S for times tPR1.
Next, we consider the plus-trajectory with initial data (x0 ,j0), x0∧j050, x0Þ0. By Propo-

sition 1, we can also calculate the plus-trajectory after the first hitting timet0 . For this, we set
againv5 x0 /ux0u and

L5Auj0u212ux0u, t j5j0•v1~2 j 11!L ~ j PN0!.

Remark 2: The positive times, at which the plus-trajectory hits S, are given by tj , j PN0 , and
we have for tP(t j ,t j 11), j PN0 ,

x1~ t !5~21! j S ~ t2t j !
2

2
2L~ t2t j ! Dv, j1~ t !5~21! j~ t2t j2L ! v.

We point out, that at any hitting timet j we havej1(t j )5(21) j 11LvÞ0. Thus, the preceed
ing remark is an immediate consequence of Proposition 1, using the change of sign of the f
x6(t)/ux6(t)u at the hitting timest5t j .

Figure 2 summarizes our discussion, depicting the trajectories’x-component: Classical trajec
tories touching the singular setS are contained in the hypersurface

I 5$~x,j!PT* R2:x∧j50%.

Starting a plus-trajectory with initial data (x0 ,j0)PI \S, its x-component runs along the straig
line given byv. It hits S at timet5t0 for the first time, and we start a minus-trajectory going
in the opposite direction. The plus-trajectory hitsS again at timet5t1 , and the mode minus goe
off in the opposite direction, and so on.

If we consider initial data (c0
h)h.0 for the Schro¨dinger equation~3!, such that the associate

Wigner measuresm0 are supported in$(x0 ,j0)% with (x0 ,j0)PI \S, then the transport equation
~5! describe the evolution of the measuresm6(t,•) until the hitting timet0 . When arriving onS,
we will observe some exchange between the plus and the minus mode, a Landau–Zen

FIG. 2. The classical trajectories.
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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nomenon. This quantum-mechanical effect has been described quantitatively for the first ti
L. Landau in Ref. 16 and C. Zener in Ref. 21, independently from each other. The work of th
author and P. Ge´rard6 shows that this transfer does not depend on microlocal, i.e., phase s
information only, but that a second level of observation, which can be called ‘‘two-microloc
must be taken into account as well. Their Landau–Zener type formula relies on some two-
variant of Wigner measures, which we will focus on in the following, such that we can con
the evolution ofm6(t,•) for times t.t0 in the manner described for the classical trajector
above.

These two-scaled Wigner measures, which have first been introduced in Ref. 19 in a
context, quantify the way a wave packet concentrates on the hypersurfaceI by introducing a new
variablehPR̄, which, roughly speaking, describes the position of the core of a wave packet
respect toI versus the scaleAh, that is,

h5
x∧j

Ah
.

We note that, for all types of crossings, avoided and real crossings, the scaleAh is known to play
an important role~see the work of Y. Colin de Verdie`re, M. Lombardi, and J. Pollet,1 G.
Hagedorn,11,12G. Hagedorn and A. Joye,13,14A. Joye,15 P. Exner and A. Joye,3 or P. Martin and G.
Nenciu.18

III. TWO-SCALED WIGNER MEASURES

The critical hypersurfaceI 5$x∧j50% is an involutive ~or coisotropic! submanifold of
T* R2\$0,0%, i.e., we have (TzI )

',TzI for all zPI , where (TzI )
' denotes the symplectic

complement of the tangent spaceTzI in TzR
2. This is an immediate consequence of the obvio

fact that (TzI )
' is the linear span of the Hamiltonian vector field associated with the functio

g:T* R2→R, ~x,j!°x∧j.

We now define a two-scaled Wigner transform of (ch)h.0 for I 5$x∧j50% with scaleAh by

W2
hch~x,j,h!5Whch~x,j! ^ dS h2

x∧j

Ah
D , ~x,j,h!PT* R23R,

which acts on the following class of test functions

A5$aPC `~T* R23R,C2,2!:supp~a!,K3R for compact K,T* R2\$~0,0!%,

'a`PC `~T* R23$61%,C2,2!, 'R5R~a!P@0,1`!,;x,jPR2,;uhu.R:

a~x,j,h!5a`~x,j,sgn~h!!%.

These test functions differ from standard matrix-valued test functions in two ways: first, as
tions of (x,j) alone they are compactly supported outside$~0,0!%. This restriction assures that w
are working in regions of the phase spaceT* R2, where the gradient of the functiong chosen to
describeI does not vanish. Second, there is an additional coordinatehPR, which is used for
measuring the position of points inT* R2 with respect to the hypersurfaceI versus the scaleAh.
We denote byR̄ the one point compactification ofR and continuea(x,j,•) continuously onR̄.

Let (ch)h.0 be a bounded family inL2(R2,C2). Theorem 1 in Ref. 6 shows that there exis
a subsequence (hk)k.0 with hk→0 and a positive matrix-valued Radon measuren on I 3R̄, such
that for all aPA
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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E
T* R23R

tr ~W2
hch~x,j,h!a~x,j,h!!dxdjdh

5E
T* R2

tr S Whch~x,j!aS x,j,
x∧j

Ah
D D dxdj →

hk→0E
T* R2\I

tr ~a~x,j,sgn~x∧j!`!m~dx,dj!!

1E
I 3R̄

tr ~a~x,j,h!n~dx,dj,dh!!, ~8!

wherem is a Wigner measure of (ch)h.0 .
Definition 1: Let(ch)h.0 be a bounded family in L2(R2,C2). Then we call the Radon mea

suresn, which are associated via (8) to theweak* -limit points of (W2
hch)h.0 in A8, two-scaled

Wigner measures of(ch)h.0 for I 5$x∧j50% with scaleAh.
We note that a two-scaled Wigner measuren depends on the functiong chosen to describe th

hypersurfaceI ; we consider another functiong̃5 f g with f (x,j)Þ0 for all x,jPR2 to describe
the hypersurfaceI and a two-scaled Wigner measureñ associated withg̃ via ~8!. Then, we have
for aPA

E
I 3R̄

a~x,j,h! ñ~dx,dj,dh!5E
I 3R̄

a~x,j, f ~x,j!h! n~dx,dj,dh!. ~9!

This relation allows a geometrical interpretation ofn, see Sec. 1.3 in Ref. 6. For our purpos
however, it will be enough to have relation~9!. The key property of two-scaled Wigner measur
is

1I~x,j! m~x,j!5E
R̄
n~x,j,dh!.

That is, we can recover a Wigner measure’sm restriction toI by projecting a two-scaled measu
n onto I . Indeed, if we consideraPC 0

`(T* R2,C2,2) with support outside (0,0), then we obvious
have

E
T* R23R

tr ~W2
hch~x,j,h! a~x,j!! dxdjdh5E

T* R2
tr ~Whch~x,j! a~x,j!! dxdj ,

and passing to the limit, we obtain1T* R2\I m11I* R̄n(dh)5m outside~0,0!.
In Ref. 12, G. Hagedorn has also studied molecular propagation through codimension

and five crossings. For those systems, the codimension of the associated critical submanifI is
greater than one, but the submanifoldsI are still involutive, and two-scaled Wigner measures
the same type as here can be applied. We refer to Ref. 6 for a definition of two-scaled W
measures associated with general involutive submanifolds. Notice that two-scaled measu
also be associated with symplectic subspaces~see Ref. 5!; the measures obtained are then mo
complicated and close to those of Ref. 4.

In the following, we discuss some examples for two-scaled Wigner measures associate
I 5$x∧j50%. For simplicity, the considered functions are all scalar-valued.

A. Some coherent states

We start with some coherent states of the form

ch~x!5h2bFS x2x02hgh0

hb DexpS i

h
j0•xD

with FPL2(R2,C), 0,b<1, 0,g,b, andx0 ,j0 ,h0PR2 with x0∧j050.
If we chooseb5 1/2 , h050, andF(x)5exp((x•BA21x)/2) with A,BPC2,2 invertible, then

ch is a semiclassical wave packet as considered by G. Hagedorn in Ref. 12. Moreover, (ch)h.0 is
h-oscillating, and we have for scalar-valued test functionsaPA
9 Apr 2010 to 160.45.118.211. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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E
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj5~2p!22E

T* R23R2
exp~ iy•j!F~x2y/2!F̄ ~x1y/2!3a~x0

1hbx1hgh0 ,j01h12bj,h2 1/2d~x,j!! dydxdj,

whered(x,j)5hx∧j1hbx∧j01h12bx0∧j1h11g2bh0∧j1hgh0∧j0 , so that

d~x,j!

Ah
5hb2 1/2x∧j01h1/22b x0∧j1hg2 1/2h0∧j01o~h1/22b!1o~1!. ~10!

Ignoring theh-component ofa, we obtain the Wigner measure of (ch),

m~x,j!5iFiL2
2 d~x2x0! ^ d~j2j0!,

which shows that (ch) concentrates onI 5$x∧j50%.
However, the two-scaled measure forI with scaleAh depends onh0 andg. If b5 1/2 and

h0∧j050, then the concentration of (ch) on I is issued from finite distance. Otherwise, th
concentration occurs from infinite distance~versusAh). Below, we discuss some significant case
For simplicity, we assumeux0u5uj0u51.

b5 1/2 andh0∧j050: The dominating term in~10! is x∧j01x0∧j. For tPR andzPR2, we
setC(x)5exp(2 (i/2) uxu2sgn(x0•j0))F(x). Then,

n~x,j,h!5d~x2x0! ^ d~j2j0! ^ ~2p!22S E
R
uĈ~ tx01hx0

'!u2 dt D dh.

g,b5 1/2 andh0∧j0Þ0: The dominating term in~10! is hg21/2h0∧j0 and

n~x,j,h!5m~x,j! ^ d~h2sgn~h0∧j0! `!.

g,b,1/2 : The dominating term in~10! is hg21/2h0∧j0 if h0∧j0Þ0 and hb21/2x∧j0 if
h0∧j050. In the first case we obtain as before

n~x,j,h!5m~x,j! ^ d~h2sgn~h0∧j0! `!.

In the second case we have to consider

E
R2

uF~x!u2a~x0 ,j0 ,sgn~x∧j0!`! dx5E
R2

uF~ tj01hj0
'!u2a~x0 ,j0 ,2sgn~h!`! dtdh.

Therefore,

n~x,j,h!5d~x2x0! ^ d~j2j0! ^ F S E
x•j0

'
.0

uF~x!u2 dxD d~h1`!

1S E
x•j0

'
,0

uF~x!u2 dxD d~h2`!G .
The caseb.1/2 leads to a similar discussion with results depending on the sign ofg2(12b).

B. Arbitrary phase

Replacing the linear phase by an arbitrary one, we now consider families of the form

ch~x!5h2bFS x2x0

hb DexpS i

2h
f ~ uxu2! D
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with FPL2(R2,C), f PC 1(R,R), 0,b,1, andx0PR2\$0%. Again, this family ish-oscillating.
Writing

f ~ ux01hbzu2!2 f ~ ux01hbz8u2!

52hb~z2z8!•S x01hb
z1z8

2 D E
0

1

f 8~ tux01hbzu21~12t !ux01hbz8u2! dt

5..2hb~z2z8!•S x01hb
z1z8

2 D l h~x0 ,z,z8!,

for z,z8PR2, we calculate for scalar-valuedaPA

E
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj

5~2p!22E
T* R23R2

exp~ iy•j!F~x2y/2!F̄~x1y/2!

3aS x01hbx,l hS x0 ,x1
y

2
,x2

y

2D ~x01hbx!1h12bj,
d~x,j!

Ah
D dydxdj,

with

d~x,j!

Ah
5 h~1/2! 2b~x01hbx!∧j 5 h~1/2! 2b x0∧j1o~1!. ~11!

Since limh20 l h(x0 ,z,z8)5 f 8(ux0u2), we obtain the Wigner measure

m~x,j!5iFiL2
2 d~x2x0! ^ d~j2 f 8~ ux0u2! x0!,

and have again concentration onI 5$x∧j50%. However,Ah-concentration is issued from finit
distance if and only ifb< 1/2. We distinguish three different cases, assumingux0u51.

b,1/2 :

n~x,j,h!5m~x,j! ^ d~h!.

b5 1/2 :

n~x,j,h!5d~x2x0! ^ d~j2 f 8~1! x0! ^ ~2p!22S E
R
uF̂~ tx01hx0

'!u2 dtD dh.

b.1/2 :

n~x,j,h!5d~x2x0! ^ d~j2 f 8~1! x0! ^ ~2p!22F S E
x0`j.0

uF̂~j!u2 dj D d~h2`!

1S E
x0`j,0

uF̂~j!u2 dj D d~h1`!G .
Of course, the above discussion easily extends to families

ch~x!5h2bFS x2x02hgh0

hb DexpS i

2h
f ~ uxu2! D
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with 0,g,b andh0PR2.

C. Concentration on a circle

Finally, we consider families of the form

ch~x!5h2 1/4FS uxu22R2

Ah
D expS i

2h
ux2hgx0u2D ,

whereFPC 0
`(R,C), x0PR2, R.0 and 0,g,1. Once again, such families areh-oscillating. We

have for scalar-valuedaPA

I hªE
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj

5E
T* R23R2

exp~ iy•j!FS ux2y/2u22R2

Ah
D F̄S ux1y/2u22R2

Ah
D

3a~x,x2hgx01hj,Ahx∧j1hg2 1/2x0∧x!
dy dx dj

~2p!2Ah
,

and thus by the Fourier inversion formula

I h5E a~x,x2hgx01hj,Ahx∧j1hg2 ~1/2!x0∧x!F̂~m2v/2!F̂̄ ~m1v/2!

3exp~ iy•j!expS 2
2i

Ah
m x•y2

i

Ah
vS uxu21

uyu2

4
2R2D D dm dv dy dx dj

~2p!4Ah
.

Substitutingj by 2h2 1/2mx1h2 1/4z andy by h1/4z, we obtain

I h5E a~x,x2hgx012Ah m x1h3/4z,h1/4x∧z1hg2 ~1/2!x0∧x!F̂~m2v/2!

3 F̂̄ ~m12/v !expS iz•z2
i

4
vuzu2DexpS 2

i

Ah
v~ uxu22R2!D dm dv dz dx dz

~2p!4Ah
.

Then, the stationary phase method in the variablesv andr5uxu yields that

I h ;
h20

~2p!22 iFiL2
2 E

uxu5R
a~x,x,hg2 ~1/2!x0∧x! dx.

Therefore, we obtain the Wigner measure

m~x,j!5~2p!22iFiL2
2 1$uxu5R%~x! dx^ d~j2x!,

and observe again concentration onI 5$x∧j50%. The two-scaled measure provides addition
information concerning the exponentg and the directionx0 . There are three different cases.

g,1/2: n(x,j,h)5m(x,j) ^ d(h2sgn(x0∧x)`),
g51/2: n(x,j,h)5m(x,j) ^ d(h2x0∧x),
g.1/2: n(x,j,h)5m(x,j) ^ d(h).
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IV. LANDAU–ZENER TRANSITIONS AT HITTING POINTS

A. Propagation outside the crossing

Next, we discuss the propagation of two-scaled Wigner measures outside the singularS.
As before,P6(x) denote the orthogonal projectors ofV(x) corresponding to the eigenvalue
6uxu. The weak* -limit points in L`(R,A8) of (W2

hch(t))h.0 , which are associated via~8! with
solutions (ch(t))h.0 of the Schro¨dinger equation~3!, are referred to as two-scaled Wigner me
suresn(t,•) of the family (ch(t))h.0 .

Proposition 2: Let(ch(t))h.0 be a family of solutions of the Schro¨dinger equation (3) with
given initial data(c0

h)h.0 , which are bounded in L2(R2,C2). Let n(t,•) and n0 be two-scaled
Wigner measures of(ch(t))h.0 and (c0

h)h.0 for the hypersurface I5$x`j50% and the second
scaleAh. If supp (n0)ùS5B, thenn(t,•) can be decomposed inD8(R,A8) as

n~ t,• !5n1~ t,• !P11n2~ t,• !P2 outside S, ~12!

wheren6(t,•) are scalar-valued positive Radon measures supported on I3R̄,

] tn
61j•¹xn

67
x

uxu
•¹jn

650 outside S. ~13!

Proposition 2 is a consequence of Theorem 28 in Ref. 6. We note, however, that Theorem 28
shows transport terms inh-direction, which vanish in our case. This is due to the fact t
$ uju2/26uxu,x∧j %50, where$ f ,g%5¹j f •¹xg2¹xg•¹j denotes the Poisson bracket of two fun
tions f and g on phase spaceT* R2. For the convenience of the reader, we give a proof
Proposition 2 in the Appendix.

From the above transport equations~13! we deduce the continuity of the mapt°n6 on any
given time interval, provided the support ofn6 does not intersect the singular setS. To obtainn6

on S and to restart the tranport equations every time when hittingS, the work in Ref. 6 provides
us with a local result describing the branching ofn6 near some point (0,j0)PS\$(0,0)%, which we
shall explain next.

B. A local Landau–Zener formula

We consider some hitting point (0,j0)PS with j0Þ0 and some neighborhoodW of (0,j0)
with (0,0)¹W, such that any classical trajectory included inW crossesS at most once for some
given bounded time interval. Such an open setW exists due to the geometry of the trajectori
described in Sec. III. We denote byJ6,p (p; past! the sets of classical trajectories, which go in
SùW,

J6,p5$~x,j!PT* R2:'~0,z0!PSùW,'sP~2`,0!,x5xz0

6 ~s!,j5jz0

6 ~s!%,

where (xz0

6 (s),jz0

6 (s)) are the plus-minus trajectories with initial datum (0,z0). Similarly, we

define the setsJ6, f ( f ; future! of classical trajectories, which go out ofSùW,

J6, f5$~x,j!PT* R2:'~0,z0!PSùW,'sP~0,1`!,x5xz0

6 ~s!,j5jz0

6 ~s!%.

Measuresn6 with support in W are supported in (J6,pøJ6, f)ùW and propagate along th
classical trajectories of the corresponding mode. For any (0,z0)PJ6,pùWùS the tangential space
T(0,z0)(J

6,pùW) is spanned by (z0 ,e1) and (z0 ,e2), where theej denote the canonical uni
vectors ofR2. SinceT(0,z0)(S) is spanned by (0,e1) and (0,e2), and sincez0Þ0, J6,pùW andS

intersect transversally, and the restriction ofn6 to J6,pùWùS is a well-defined distribution,
which we denote byn6,p. Analogously, we definen6, f .

If n1,p andn2,p are mutually singular on$uhu,1`%, then according to Theorem 3 in Ref.
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S n1, f

n2, f D5S 12T T

T 12TD S n1,p

n2,pD in SùW ~14!

with T5T(j,h)5exp(2 ph2/uju3). We point out that we have describedI by the function
g(x,j)5x∧j, while in the framework of Ref. 6 the hypersurfaceI is specified by the equation
g̃(x,j)5uju21(x∧j). Thus, our transfer coefficientT is different from the one in Ref. 6. It is
obtained using relation~9!.

The proof6 of the above Landau–Zener formula reduces the Schro¨dinger equation~3! to a
scattering problem, which is close to the original system studied by Landau16 and Zener21 in the
early 1930s and can be solved explicitly; see the Appendix of Ref. 6. The reduction is achiev
a change of symplectic time-space coordinates (t,x,t,j)°(s,z,s,z), such that in the new coor
dinates

J6,p5$s6s50,z250,s,0%,

J6, f5$s7s50, z250,s.0%,

I 5$z250%,S5$s5s5z250%.

The system~3! reduces to

h

i
]sv

h5QW~s,z,hDs ,hDz!v
h

with

Q5S s a~s,z!z2

a~s,z!z2 2s D ,

a(z,s)Þ0 for all zPR2, sPR, and vh5Uch, whereU is a suitably chosen unitary, matrix
valued Fourier integral operator. Of course, most of the work in Ref. 6 deals with
s-dependence of the functiona.

Roughly speaking, the singularity condition on the incident measuresn1,p andn2,p excludes
Ah-interferences betweenP1ch and P2ch at the crossing. One might expect that after o
hitting time this seemingly restrictive condition does not hold any more. However, the follo
result shows that for several interesting cases the singularity condition is indeed satisfied
hitting times. Thus, the local result~14! can be used to describe the evolution of two-sca
Wigner measuresglobally in time. Recovering the Wigner measure from the two-scaled meas
we also obtain a global description of the weak limit of the position density via relation~4!.

C. A global result

We consider a family of initial data (c0
h)h.0 bounded inL2(R2,C2) and we suppose that it

two-scaled Wigner measuren0 is supported in some setS,I such that

S5$~k~v!v,l ~v!v!:vPV%

with V#S1 and measurable functionsk:V→(0,1`) and l :V→R. Such families can be easil
built provided the examples of Section 3. If we also assume localization on the mode plu
have an associated two-scaled Wigner measuren0 of the form

n0~x,j,h!5n0
1~x,j,h!P1~x!.

Using the one-to-one mapping betweenS andV, we rewriten0 as
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n0
1~x,j,h!5S E

V
r0~h,dv! ^ d~x2k~v!v! ^ d~j2 l ~v!v! DP1~x!, ~15!

wherer0 is a positive Radon measure onR̄3V.
In this situation there are two types of classical trajectories, which carry the energy. Th

type are plus-trajectories with initial data (x0 ,j0) for x05k(v0)v0 , j05 l (v0)v0 with v0PV.
The second type consists of minus-trajectories, which are issued by plus-trajectories hittingS. By
Remarks 1 and 2, there are two important facts:

~i! At any of the hitting points (t,0,j,h), the incident energy is only carried intoS by the
plus-trajectories, so that the required singularity assumption holds.

~ii ! At any of the hitting points (t,0,j,h) we havejÞ0, so that we can use the Landau–Zen
formula ~14!.

We denote by (x1(t,v),j1(t,v)) the plus-trajectory described in Remark 2 with initial da
(k(v)v,l (v)v), vPV, and we set

L~v!5Au l ~v!u212uk~v!u, t j~v!5 l ~v!12~ j 11!L~v!, j PN0 .

Moreover, fort>t j (v) we denote by (xj
2(t,v),j j

2(t,v)) the minus-trajectory, which has initia
data (0,j1(t j (v),v)) at time t5t j (v). By Remark 1, we have fort>t j (v)

xj
2~ t,v!5~21! j~~ t2t j~v!!2/22L~v!~ t2t j~v!!!v,

j j
2~ t,v!5~21! j~ t2t j~v!2L~v!!v.

Now, we can describe the evolution of a two-scaled Wigner measuren(t,•) for the solutions
(ch(t))h.0 of the Schro¨dinger equation~3! as follows.

Theorem 2: Let (ch(t))h.0 be a family of solutions of the Schro¨dinger equation
(3) with initial data (c0

h)h.0 , which are bounded in L2(R2,C2). Let (c0
h)h.0 have a

two-scaled Wigner measuren0 for I 5$x∧j50% and scaleAh, which is of the form (15). If we
decompose a two-scaled Wigner measuren(t,•) of (ch(t))h.0 for I and scale Ah as
n(t,•)5n1(t,•)P11n2(t,•)P2 in D8(R,A8), then we have for all t>0

n1~ t,x,j,h!5E
V

r1~ t,h,dv! ^ d~x2x1~ t,v!! ^ d~j2j1~ t,v!!,

n2~ t,x,j,h!5(
j >0

E
V

r j
2~ t,h,dv! ^ d~x2xj

2~ t,v!! ^ d~j2j j
2~ t,v!!,

wherer1 and r j
2 , j >0, are time-dependent positive scalar-valued Radon measures onR̄3V

given by

r1~ t,h,v!5(
j >0

1(t j 21(v),t j (v))~ t ! ~12T~h,v!! j r0~h,v!,

r j
2~ t,h,v!51(t j (v),1`)~ t ! T~h,v! ~12T~h,v!! j r0~h,v!

with T(h,v)5exp(2 ph2/L(v)3) and t21(v)50 for all hPR̄, vPV.
Proof: We consider first somen0 of the form

n0~x,j,h!5~d~x2x0! ^ d~j2j0! ^ r̃0~h!!P1~x!.
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As mentioned before, we just have to use the description of the classical trajectories issue
the point (x0 ,j0)5(k0v0 ,l 0v0), v0PV, which is contained in Remarks 1 and 2. We know th
for all tP(0,t0(v0)) the measuren1 propagates along the trajectory (x1(t,v0),j1(t,v0)). Thus,
we have

n~ t,x,j,h!5~d~x2x1~ t,v0!! ^ d~j2j1~ t,v0!! ^ r̃0~h!!P1~x!,

when testing against functionsfPC 0
`(R,A) with supp(f),(0,t0(v0)). At time t5t0(v0), there

occurs some Landau–Zener partition of energy. Using~14!, we obtain

n~ t,x,j,h!5n1~ t,x,j,h! P1~x!1n2~ t,x,j,h!P2~x!,

when testing on (t0(v0),t1(v0)), where

n1~ t,x,j,h!5~12T~h,v0!!r̃0~h! ^ d~x2x1~ t,v0!! ^ d~j2j1~ t,v0!!,

n2~ t,x,j,h!5T~h,v0! r̃0~h! ^ d~x2x0
2~ t,v0!! ^ d~j2j0

2~ t,v0!!.

The measuren2 propagates along (x1
2(t,v0),j1

2(t,v0)) for tP(t0(v0),t1(v0)), while for n1

there happens a new Landau–Zener phenomenon at timet5t1(v0) at the point (0,L(v0)v0),
which opens another trajectory on the mode minus. Now, that is, fortP(t1(v0),t2(v0)), the
measuren2 propagates along the two trajectories (xj

2(t,v0),j j
2(t,v0)), j 51,2. The same argu

ments apply recurrently for any of the hitting points

t5t j~v0!, x50, j5~21! j 11L~v0!v0 .

This proves Theorem 2 for a measurer0(h,v) of the form r̃0(h) ^ d(v2v0). By linearity, the
above arguments directly extend tor0(h,v), which is a discrete Radon measure with respect tov.
Since discrete Radon measures are dense in the set of positive Radon measures, this ob
also closes our proof.

Remark 3: Ifn0($uhu51`%)50, then (12T(h,v)) j goes to zero for(h,v)Psupp(r0) as
j→1`, and

E
R̄3V

r1~ t,dh,dv! ——→
t→1`

0.

Thus, as t goes to1` all the energy is transferred from the mode plus to the mode minus.
Remark 4: Since the singularity assumption guaranteeing (14) concerns only the parts

two-scaled measure supported in$uhu,1`%, the result of Theorem 2 easily extends to initial da
n0 , which are also localized on the mode minus withsupp(n0

2)#$uhu51`%.
Remark 5: We note that for the linear codimension three and five crossings consider

G. Hagedorn in Ref. 12, again the classical trajectories are the Hamiltonian curves of the
tions uju2/26uxu. Therefore, provided the expected generalization of Ref. 6 to these crossing
same result as in Theorem 2 will hold for them as well.

We close by a corollary concerning the weakL1(R2,C)-limit of the position density, which
implies Theorem 1 of the Introduction when applied toS5S0 .

Corollary 1: Let us suppose initial data(c0
h)h.0 , which are bounded in L2(R2,C2), which are

h-oscillating, and which have a Wigner measurem0 with supp(m0)#S and m05m0
1 P1. If we

denote

C5sup$uk~v!u1 1
2 u l ~v!u2:vPV%,

then we have for the solutions(ch(t))h.0 of the Schro¨dinger equation (3) for all times t>0 and
for all fPC 0

`($xPR2:uxu.C%,C)
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lim
h20

E
R2

f~x!uP1~x!ch~ t,x!u2 dx50,

lim
h20

E
R2

f~x!uP2~x!ch~ t,x!u2 dx5E
V

(
j >0

1(t j (v),1`)~ t ! f~xj
2~ t,v!! a j~dv!,

wherea j (v)5* R̄T(h,v)(12T(h,v)) jr0(dh,v).
Proof: First we prove that for all timest>0 the family of solutions (ch(t))h.0 inherits the

property of h-oscillation from the initial data (c0
h)h.0 . We consider some function

xPC `(R2,R) with x(u)51 for uuu.1 andx(u)50 for uuu, 1
2. We study

wh~ t,x!5xWS hDx

R D ch~ t,x!

for h,R.0. We have

0 <E
huju>R

uĉh~ t,j!u2 dj<iwR
h~ t !iL2(R2)

2 .

Moreover, if we denoteH(x,j)5 (uju2/2) 1V(x), then we have

ih ] twR
h5HW~x,hDx!wR

h1
h

R
MR

h ch

with MR
h5(R/h) @xW(hDx /R),V(x)#. Analyzing MR

h , the linear growth ofV(x), prevents a
direct application of semiclassical Weyl calculus. However, sinceMR

h is a linear polynomial inx,
the standard arguments still apply—see the proof of Proposition 7.7 in Ref. 2 for example
we have

MR
h5

1

2i
~$x,V%2$V,x%!W~x,hDx!.

Thus,MR
h is a bounded operator, whose norm is independent fromh,R, and will be denoted by

iM i . SinceHW(x,hDx) is symmetric, we have for all timest

d

dt
iwR

h~ t !iL2(R2)
2 <

iM i
R

ich~ t !iL2(R2) iwR
h~ t !iL2(R2) .

Since (ch(t))h.0 is bounded inL2(R2,C2) uniformly for all timest>0, we obtain

iwR
h~ t !iL2(R2)<iwR

h~0!iL2(R2)1
CiM i t

2R
.

Passing to the limitsh→0 andR→`, we get theh-oscillation of (ch(t))h.0 for all times t.
Finally, integrating over the distanceh and the momentumj in the formulas of Theorem 2, we
conclude our corollary’s proof.

Observe thatuk(v)u1 1
2 u l (v)u25L(v)2/2 describes the boundaries of the strip in t

Rx
2-plane, between which the plus-trajectory oscillates. In other words, Corollary 1 means

we consider x̄5«rv with vPV,«P$61%,r .uk(v)u1 1/2u l (v)u2, then the weak limit of
(u P2(x)ch(t,x)u2)h.0 chargesx̄ recurrently at times

t5tk~v!1L~v!1AL~v!212ux̄u,
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for kPN such that (21)k5«. Moreover, the mass abovex̄ is ak(v).
Remark 6: Theorem 2 and thus Corollary 1 rely on the special features of the Hamilto

curves of the functionsuju2/26uxu. We emphasize that the special form of the initial data has b
assumed, such that explicit calculations can easily be performed. However, as long as we
initial data, which have a Wigner measurem0 with support outside S and a two-scaled Wign
measuren0 with supp(n0

2)#$uhu51`%, the assumption for applying (14) is fulfilled for eac
hitting time at the crossing. Thus, the evolution of the weak-limit of the position density is u
described by the transport equations (13) and the Landau–Zener formula (14).

APPENDIX: PROPAGATION OUTSIDE THE CROSSING

Proof: Proposition 2 gives a description of the two-scaled Wigner measuren outside the
singular set S5$x50%. Thus, all the test functionsaPA used in the following have
supp(a)ùS5B, assuring that in the region under investigation the projectorsP6(x) depend
smoothly onx. There are two steps:

~1! First, we show@n(t,•),P6#50 in D8(R,A8) by analyzing

L1
h~ t !5E

T* R2
tr S ~Whch!~ t,x,j! aS x,j,

x∧j

Ah
D D dxdj

for matrix-valued test functionsaPA. Due to this commutativity, we can then decompo
n(t,•) asn(t,•)5n1(t,•)P11n2(t,•)P2 with n6(t,•)5tr (n(t,•)P6).

~2! Second, we show the transport equations for the scalar-valued measuresn6(t,•). Thus, we
study the evolution of

L2
h~ t !5E

T* R2
tr S ~Whch!~ t,x,j! P6~x! aS x,j,

x∧j

Ah
D D dxdj,

for scalar-valued test functionsaPA.
First step: Let (ch(t))h.0 be a family of solutions of the Schro¨dinger equation~3!, whose

Hamiltonian’s symbol will be denoted byH(x,j)5 (uju2/2) 1V(x). Testing against functions
aPA, we will use the notationah(x,j)5a(x,j, (x∧j/Ah)). In the distributional sense, we hav
by the duality of Wigner transformation and Weyl quantization

ih
d

dt
L1

h~ t !5^ch~ t !uah
W~x,hD! HW~x,hD! ch~ t ! &L2(R2)

2^ HW~x,hD! ch~ t !uah
W~x,hD! ch~ t ! &L2(R2)

5^ch~ t !u@ah
W~x,hD!,HW~x,hD!# ch~ t !&L2(R2) , ~A1!

where the last equation is due to the symmetry ofHW(x,hD). Analyzing this commutator by
semiclassical Weyl calculus—see for example Proposition 7.7 in Ref. 2—we apply a c
functionxPC 0

`(R2,R) compensating the linear growth inx of H(x,j). We choosex with support
outside$x50%, such thatx(x)51 for all xPR2, which lie in the projection of supp(a) onto
position space. Sincexa5a anda(¹xx)50, we have

ah
W~x,hD!5ah

W~x,hD! x5x ah
W~x,hD!

and therefore

@ah
W~x,hD!,V#5@ah

W~x,hD!,x V#5@ah ,x V#W~x,hD!1
h

2i
~$ah ,x V%2$x V,ah%!W~x,hD!.

Moreover,
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Fah
W~x,hD!,2

h2

2
DG5

h

i H ah ,
uju2

2 J W

~x,hD!1h2Rh,

where (Rh)h.0 is a sequence of bounded operators onL2(R2,C2) built with second order deriva
tives of ah . We note, thatL2-continuity here and in the following is always implied by th
Theorem of Calderon-Vaillancourt; see for example, Theorem 7.11 in Ref. 2. Since every d
tive of ah produces an extra factor 1/Ah, we have

@ah
W~x,hD!,HW~x,hD!#5@ah ,V#W~x,hD!1Ah Qh ~A2!

with (Qh)h.0 a bounded sequence of bounded operators onL2(R2,C2). Since we also have
ich(t)iL25ic0

hiL2 for all tPR, we obtain

ih
d

dt
L1

h~ t !5E
T* R2

tr ~@~Whch!~ t,x,j!,V~x,j!# ah~x,j!!dxdj1Ah qh~ t !

with (qh)h.0 a bounded sequence inL`(R,C). Obviously, we have for allfPC 0
`(R,A)

ih E
R

d

dt
L1

h~ t ! f~ t ! dt5 ih E
R
L1

h~ t !
d

dt
f~ t ! dt ——→

h20
0,

since (L1
h)h.0 is bounded inL`(R,C). Therefore, in view of~A2!, passing to the limit in~A1!, we

obtain@n,V#50 and thus@n,P6#50. Since theP6 are rank one projectors, we can simplify th
decompositionn5P1nP11P2nP2 to n5n1P11n2P2, wheren65tr (nP6).

Second step:Now, we consider scalar-valued test functionsaPA. We have

d

dt
L2

h~ t !5
i

h
^@P6ah

W~x,hD!P6, HW~x,hD!# ch~ t !uch~ t ! &L2(R2) .

We denotel6(x,j)5 (uju2/2) 6uxu. Obviously,

@P6ah
W~x,hD!P6, HW~x,hD!#5@P6ah

W~x,hD!P6, l6
W~x,hD!#.

We reuse the cut-off functionx and obtain

x P6 l6
W~x,hD!5l6

W~x,hD! x P61
h

2i
r W~x,hD!1o~h!,

l6
W~x,hD! x P65xP6 l6

W~x,hD!2
h

2i
r W~x,hD!1o~h!,

where r (x,j)5$xP6,uju2/2%. Here and in the following, theo-notation refers to the space o
bounded operators onL2(R2,C2). Therefore,

i

h
@P6ah

W~x,hD!P6, l6
W~x,hD!#

5
i

h
x P6 @ah

W~x,hD!,l6
W~x,hD!# x P61

1

2
~x P6ah

W~x,hD!r W~x,hD!

1r W~x,hD!ah
W~x,hD!x P6!1o~1!.

Sincexa5a anda(¹xx)50, we obtain
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x P6 ah
W~x,hD!r W~x,hD!1r W~x,hD!ah

W~x,hD!x P6

5P6 ah
W~x,hD!r W~x,hD!1r W~x,hD!ah

W~x,hD!P6

5qh
W~x,hD!1o~1!

with q5q(x,j,h),

q5a~P6r 1rP6!5a~P6$P6,uju2/2%1$P6,uju2/2%P6!.

Moreover, using$x∧j,l6(x,j)%50, we have

i

h
x@ah

W~x,hD!, l6
W~x,hD!#x5bh

W~x,hD!1o~1!,

with b(x,j,h)52j•¹xa6(x/uxu) •¹ja. Thus, theh-dependance drops, and we obtain

lim
h20

d

dt
L2

h~ t !5E
T* R2

tr ~~P~x!6b~x,j,h!P6~x!1q~x,j,h!!n~ t,dx,dj,dh!!

5E
T* R2

b~x,j,h! n6~ t,dx,dj,dh!1E
T* R2

tr ~q~x,j,h! n~ t,dx,dj,dh!!.

For concluding the proof, it remains to show thattr (q n(t,•))50. Using (P6)25P6, we get
P6$P6,uju2/2%P65P6$P6,uju2/2%P61P6$P6,uju2/2%P650. Since traces are invariant un
der cyclic permutations, and since@n(t,•),P6#50, we finally have

tr ~q n~ t,• !!5tr ~a P6$P6,uju2/2%P6n~ t,• !1a P6$P6,uju2/2%P6n~ t,• !!50.
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