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1. Introduction

The fundamental equation of non-relativistic quantum nuclear dynamics is the time-dependent Schrödinger equation
i�hoswðs; qÞ ¼ �
�h2

2m
Dqwðs; qÞ þ VðqÞwðs; qÞ; wð0; qÞ ¼ w0ðqÞ:
It results from the time-dependent Born–Oppenheimer approximation and describes nuclei of mass m moving in a potential
V : Rd ! R, which is obtained from averaging out electronic degrees of freedom. Mostly, the dimension d of the configuration
spaces Rd is very large, since one might consider up to thirty nuclear degrees of freedom. On top of that, the solution w(s,q)
exhibits oscillations both in time and in space. For quantifying the oscillatory behavior, one switches to atomic units and
introduces the crucial semiclassical parameter
e �
ffiffiffiffiffiffiffiffiffiffi
1=m

p
:

On the long time scale t = s/e, on which non-trivial nuclear dynamics develop, the Schrödinger equation rewrites as
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ieotwðt; qÞ ¼ �
e2

2
Dqwðt; qÞ þ VðqÞwðt; qÞ; wð0; qÞ ¼ w0ðqÞ: ð1Þ
Then, all oscillations are roughly characterized by the frequency 1/e, which typically ranges between hundred and thousand.
The conventional interpretation of quantum mechanics does not assign any physical meaning to the wave function w(t,q)

itself, but to quadratic quantities of it. The probability for finding the quantum system at time t within the set X � Rd is
Z
X
jwðt; qÞj2 dq:
The expectation value for the position and the momentum of the system at time t are for example
hwðtÞ; qwðtÞiL2 ; hwðtÞ;�ierqwðtÞiL2 :
More generally, with smooth functions a : R2d ! C on classical phase space R2d, one associates a Weyl quantized operator
op(a) by setting
opðaÞwðqÞ ¼ ð2peÞ�d
Z

R2d
a

1
2
ðqþ xÞ;p

� �
eip�ðq�xÞ=ewðxÞdxdp:
The corresponding expectation values
hwðtÞ;opðaÞwðtÞiL2 ;
then specialize to the components of the position and momentum expectation by choosing aðq; pÞ ¼ qj and aðq; pÞ ¼ pj,
respectively. Also the Schrödinger operator � e2

2 Dq þ VðqÞ can be seen as the Weyl operator op(a) of the classical Hamiltonian
function aðq; pÞ ¼ 1

2 jpj
2 þ VðqÞ.

In the semiclassical regime, the direct approach to quadratic quantities is advantageous, since their dynamics are less
oscillatory than those of the wave function itself. The Egorov theorem provides the following approximation (e.g. Theorem
IV.10 in [1]). Let
_q ¼ p; _p ¼ �rqVðqÞ ð2Þ
be the Hamiltonian system associated to the Schrödinger operator, and let Ut : R2d ! R2d denote its flow. Then
hwðtÞ;opðaÞwðtÞiL2 ¼ hw0;opða �U�tÞw0iL2 þ Oðe2Þ;
where the constant of the error term depends on time t and bounds on derivatives of the function a and the potential V,
which are greater or equal than order three. On the level of this general asymptotic approximation, oscillations in time
do not show up any more, and space oscillations must only be resolved for the initial wave function w0.

Moreover, all expectation values associated with a wave function w can be expressed by its Wigner function
WðwÞ : R2d ! R, which is a function on phase space R2d. The definition
WðwÞðq; pÞ ¼ ð2pÞ�d
Z

Rd
eix�pw q� e

2
x

� �
w qþ e

2
x

� �
dx; ð3Þ
grants
hw; opðaÞwiL2 ¼
Z

R2d
WðwÞðq;pÞaðq;pÞdqdp:
Hence, expectation values can be obtained by phase space integration. The Wigner function has first been proposed by Wig-
ner in [2]. Its main properties will be briefly discussed in Section 3. From the Wigner point of view, the Egorov theorem re-
phrases as
WðwðtÞÞ ¼Wðw0Þ �Ut þ Oðe2Þ; ð4Þ
where the relation holds in a weak sense. One then deduces a simple particle method, which is built of the following steps.

Initial sampling: One samples the Wigner function W(w0) of the initial wave function w0 to obtain phase space points
ðq1; p1Þ; . . . ; ðqN; pNÞ.

Classical transport: The points are transported along the curves of the Hamiltonian system _q ¼ p, _p ¼ �rqVðqÞ until the
desired time t.

Final evaluation: The values of the initial Wigner function W(w0) in the points ðq1; p1Þ; . . . ; ðqN; pNÞ approximate the values
of W(w(t)) in the points Utðq1; p1Þ; . . . ;UtðqN; pNÞ. One computes expectation values.

It is our aim here to contribute to the initial sampling step, in particular to systematically evaluate the achievable accu-
racy of a Monte Carlo approach. To our best knowledge, neither the mathematical nor the chemical literature addresses this
important point so far. In particular, we pursue the following two main objectives. First, the generation of phase space points
according to the Wigner function W(w) of a typical wave function w. Second, the computation of the Fourier integral in (3),
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which defines the value of the Wigner function in a given phase space point. The first task is related to the problem of
approximation, while the second one concerns numerical quadrature.

Our article is organized as follows: The next Section 2, reviews an extension of the simple particle method to Schrödinger
systems with matrix-valued potential, called surface hopping algorithms. In Section 3, we discuss basic properties of Wigner
functions and link them with quadratic quantities of interest like position and momentum densities. Section 4 presents
Monte Carlo methods for the approximation and the quadrature problem at hand, while Section 5 contains the detailed
set up for the numerical experiments. Sections 6–8 validate the proposed methods for initial wave functions, which are a
single Gaussian wave packet, a superposition of two Gaussian wave packets, and a function resulting from a numerically
computed laser excitation, respectively. Then, we offer an assessment of the obtained results in the final Section 9.

2. Surface hopping

For photoinduced molecular dynamics, scalar Schrödinger equations are not appropriate any more. Nuclear motion is
governed by averages derived from at least two electronic eigenstates, and the basic equations are Schrödinger systems
ieotwðt; qÞ ¼ �
e2

2
Dqwðt; qÞ þ VðqÞwðt; qÞ; wð0; qÞ ¼ w0ðqÞ;
with real symmetric potential matrix
VðqÞ ¼ 1
2

trVðqÞ þ
v1ðqÞ v2ðqÞ
v2ðqÞ �v1ðqÞ

� �
:

The associated dynamics essentially differ from the scalar case when the eigenvalues of the potential matrix are not uni-
formly separated, as it happens for conical intersections [3]. The potential matrix V(q) has a conical intersection if its two
eigenvalues kþðqÞ and k�ðqÞ coincide on a smooth submanifold of codimension two. In this case, there is a suitable set of
coordinates such that near the crossing set
fq 2 RdjkþðqÞ ¼ k�ðqÞg
the two eigenvalue surfaces Rd ! R, q#k�ðqÞ look like two cones touching each other in their end points. Conical intersec-
tions violate adiabatic decoupling in the following sense. If v�ðqÞ denotes a normalized eigenvector of the matrix V(q) and
w�ðt; qÞ ¼ hv�ðqÞ;wðt; qÞiC2 the solution’s component in the corresponding eigenspace, then it may happen that
w�ð0Þ ¼ 0 and 9t : w�ðtÞ ¼ Oð1Þ; e! 0:
That is, the wave function performs a leading order non-adiabatic transition from one eigenspace to the other, from the plus
space to the minus space or vice versa. For systems with conical intersections, the particle method has to be supplemented
by a surface hopping step.

Initial sampling: One samples the Wigner functions Wðw�ð0ÞÞ to obtain two families of phase space points
ðq�1 ; p�1 Þ; . . . ; ðq�

N�
; p�

N�
Þ with associated real-valued weights w�1 ; . . . ;w�

N�
, which are the values of the

Wigner function Wðw�ð0ÞÞ in these points.
Classical transport: The phase space points are transported along the curves of the corresponding Hamiltonian system _q ¼ p,

_p ¼ �rqk
�ðqÞ.

Surface hopping: Whenever a trajectory t #ðqt ; ptÞ passes one of its minimal surface gaps at a point (q,p), that is whenever
the function
t #ðkþðqtÞ � k�ðqtÞÞ;

attains a local minimum, then a branching occurs. The transition branch carries the old weight times the
Landau–Zener factor

Tðq;pÞ ¼ exp �p
e
jvðqÞj2

jdvðqÞpj

 !
;

where dvðqÞ denotes the 2 � d gradient matrix of vðqÞ ¼ ðv1ðqÞ;v2ðqÞÞ, and starts a new trajectory in (q,p), which is associ-
ated with the other eigenvalue. The remaining branch continues the old trajectory and carries the old weight times
1� Tðq; pÞ.

Final evaluation : At the desired time t, one obtains two families of phase space points ðq�1 ; p�1 Þ; . . . ; ðq�
M�
; p�

M�
Þ and weights

w�1 ; . . . ;w�
M�

, which approximate the values of the Wigner function Wðw�ðtÞÞ in these points. One com-
putes the final expectation values.

This particle method is called single switch surface hopping, since its constitutive branching condition allows for non-adi-
abatic switches just at minimal surface gaps along trajectories. It has been derived from a rigorous mathematical analysis of



1950 S. Kube et al. / Journal of Computational Physics 228 (2009) 1947–1962
Schrödinger systems with generic crossings. If W�ðtÞ denotes the phase space functions at time t generated by the single
switch method, then a generalization of the Egorov theorem guarantees at least
Wðw�ðtÞÞ ¼W�ðtÞ þ Oðe1=8Þ;
where the relation holds in a weak sense (Theorem 2.2 in [4]). However, all the numerical experiments so far have even
shown a convergence rate of order e1/2, see [4–6] and Section 7.2 later on.

Surface hopping is one of the most popular approaches for simulating non-adiabatic quantum dynamics. The first algo-
rithm of this type has been proposed by Tully and Preston in [7]. The current chemical literature contains an overwhelm-
ing variety of surface hopping methods, which all differ in the way non-adiabatic transitions are performed. Most
algorithms resemble the well established fewest switches method [8] and have random hops at every time step of the
discretization. A comparative numerical study for a benchmark model of the internal conversion in pyrazine has shown
that the single switch method reproduces the long-time oscillations of the system more accurately than the fewest
switches algorithm [9].

3. Wigner functions

Since expositions of the main properties of Wigner functions have been given many times, see for example Chapter 1.8 in
[10] or Chapter 4.3 in [11], we will only focus on those that are relevant for its intended Monte Carlo sampling to start an
asymptotic particle method. Moreover, we compare the properties of Wigner functions with a different phase space repre-
sentation, the Husimi function. In contrast to Wigner functions, Husimi functions are non-negative, which accounts for their
popularity in computational chemistry.

3.1. Basic properties

We use the e-scaled Fourier transform of a function w 2 L2ðRdÞ
ðFwÞðpÞ ¼ ð2peÞ�d=2
Z

Rd
e�iq�p=ewðqÞdq:
Then, the Wigner function
WðwÞðq; pÞ ¼ ð2peÞ�d
Z

Rd
eix�p=ew q� 1

2
x

� �
�w qþ 1

2
x

� �
dx
is the inverse Fourier transform of the product x#w q� 1
2 x

� �
�w qþ 1

2 x
� �

. Hence
WðwÞ : R2d ! R
is a square integrable function on phase space, and one obtains for any q0 2 Rd with wðq0Þ–0 the inversion formula
wðqÞ ¼ �wðq0Þ
�1
Z

Rd
eiðq�q0Þ�p=e WðwÞ 1

2
ðqþ q0Þ;p

� �
dp:
Let a : R2d ! C be a Schwartz function on phase space and op(a) the associated Weyl quantized pseudodifferential operator.
Then, a short calculation yields
hw; opðaÞwiL2 ¼
Z

R2d
WðwÞðq;pÞ aðq;pÞdqdp:
In addition to the relation with expectation values, the marginals are the position and momentum density
Z
Rd

WðwÞðq;pÞdp ¼ jwðqÞj2;
Z

Rd
WðwÞðq; pÞdq ¼ jðFwÞðpÞj2;
if w;Fw 2 L1ðRdÞ \ L2ðRdÞ. Consequently
Z
R2d

WðwÞðq;pÞdqdp ¼ kwk2
L2 :
We note that the condition w;Fw 2 L1ðRdÞ \ L2ðRdÞ ensures absolute convergence of the preceding integrals. The wave func-
tions considered in subsequent sections satisfy this integrability constraint. The balance between position and momentum is
also observed in the identity
WðwÞðq; pÞ ¼WðFwÞðp;�qÞ:
Moreover, WðwÞðq; pÞ–0 implies that (q,p) lies in the convex hull of the supports
suppðwÞ � suppðFwÞ:
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The interpretation of the Wigner function as a phase space density has the defect that it might attain negatives values.
Indeed
WðwÞð0;0Þ ¼ �ðepÞ�dkwk2
L2
for odd functions wðqÞ ¼ �wð�qÞ. However, in an averaged sense the negativity is rather mild. The sharp Gårding inequality
(e.g. Chapter 2.10 in [12]) provides for non-negative Schwartz functions a P 0 a positive constant C = C(a) > 0 depending on
derivative bounds of a such that
Z

R2d
WðwÞðq;pÞ aðq;pÞdqdp P �Cekwk2

L2 :
3.2. Two examples

The simplest examples are Gaussian wave packets centered in a single phase space point z0 ¼ ðq0; p0Þ, which are of the
form
gz0
ðqÞ ¼ ðpeÞ�d=4 exp � 1

2e
jq� q0j

2 þ i
e

p0 � ðq� q0Þ
� �

:

Their Wigner function is a Gaussian
Wðgz0
Þðq;pÞ ¼ ðpeÞ�d exp �1

e
jq� q0j

2 � 1
e
jp� p0j

2
� �

;

whose approximation is unproblematic, of course. However, if the Wigner function was not computable analytically, one
would numerically solve a Gaussian Fourier integral of the type
Fðp� p0Þ ¼
Z

Rd
eix�ðp�p0Þe�

e
4jxj

2
dx: ð5Þ
The relative condition number
jFðp� p0Þ ¼
jp� p0j
jFðp� p0Þj

jrFðp� p0Þj ¼
2
e
jp� p0j

2
;

reflects the oscillatory behavior of the integrand for momenta with large distance from the center.
Also the numerical approximation of the Wigner function suffers from oscillations as soon as the wave function microl-

ocalizes around several phase space points. An illustrative example is the superposition of two Gaussian wave packets with
centers in z1; z2 2 R2d, whose Wigner function
Wðgz1
þ gz2

Þðq;pÞ ¼Wðgz1
Þðq;pÞ þWðgz2

Þðq;pÞ þ 2cðq; pÞ;
contains a cross term
cðq;pÞ ¼ ðpeÞ�de�jðq;pÞ�zþj2=e cos
1
e
ðpþ � q� � ððq; pÞ � zþÞ ^ z�Þ

� �
;

where x ^ y ¼ pðxÞ � qðyÞ � qðxÞ � pðyÞ for vectors x; y 2 R2d (for detailed computations, see Appendix B). The cross term local-
izes around the arithmetic mean zþ ¼ ðz1 þ z2Þ=2 and oscillates with a frequency proportional to z� ¼ z1 � z2. However, an
elaborate integration by parts, see Theorem 7.7.1 in [13], gives a constant C > 0 such that for all smooth compactly supported
functions a : R2d ! C and all k 2 N0
Z

R2d
cðq;pÞaðq;pÞdqdp

				 				 6 Cek
X
jaj6k

jz�ja=2�kkDaak1: ð6Þ
Thus, averages of the cross term are super-polynomially small with respect to the semiclassical parameter e if the difference
of the centers z� is of order one.

The oscillations in the cross term can also be estimated by using another quadratic phase space representation, the ambi-
guity function
AðwÞ : R2d ! C; ðx; nÞ# ð2peÞ�d
Z

Rd
e�iq�x=ew q� 1

2
n

� �
�w qþ 1

2
n

� �
dq:
The ambiguity and the Wigner function are related via Fourier transformation, that is
AðwÞðx; nÞ ¼ ðFWðwÞÞðx; nÞ:
The ambiguity function can be written as the convolution of the modulated wave function q#e�iq�x=ewðqÞ with its inflection
q# �wð�qÞ
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AðwÞðx; nÞ ¼ ð2peÞ�de
i

2ex�nððe�i	�x=ewð	ÞÞ 
 �wð�	ÞÞðnÞ:
The analogous expression holds on the Fourier level
AðwÞðx; nÞ ¼ ð2peÞ�de
i

2ex�nððe�i	�n=eðFwÞð	ÞÞ 
 ðFwÞð�	ÞÞðxÞ:
Hence, AðwÞðx; nÞ–0 implies
ðx; nÞ 2 ðsuppðFwÞ � suppðFwÞÞ � ðsuppðwÞ � suppðwÞÞ;
where the minus sign builds the set of pointwise differences. This estimate on the support of the ambiguity function yields
an alternative explanation that the cross term c has oscillations of order z�.

3.3. Husimi functions

An alternative quadratic phase space representation is the Husimi function [14]. It can be defined as a Gauß transform of
the Wigner function
HðwÞðq;pÞ ¼ ðepÞ�d
Z

R2d
WðwÞðx; nÞe�ðjq�xj2þjp�nj2Þ=e dxdn:
A few lines of computation yield its non-negativity, since it can be expressed as the modulus squared of the Fourier–
Bros–Iagolnitzer (FBI) transform
HðwÞðq;pÞ ¼ jTFBIðwÞðq;pÞj2;
with
TFBIðwÞðq; pÞ ¼ 2�d=2ðpeÞ�3d=4
Z

Rd
eiðq�yÞ�p=ee�jq�yj2=ð2eÞwðyÞdy;
see for example Chapters 3.1, 3.6 in [12]. The Husimi function of the Gaussian wave packet gz0
is the Gaussian
Hðgz0
Þðq; pÞ ¼ ð2peÞ�d exp � 1

2e
jq� q0j

2 � 1
2e
jp� p0j

2
� �

;

whose variance is larger than that of the corresponding Wigner function. Hence, in general the Husimi function’s marginals
are not position and momentum densities. For a superposition of two Gaussian wave packets with centers in z1; z2 2 R2d, one
computes
Hðgz1
þ gz2

Þðq;pÞ ¼ Hðgz1
Þðq;pÞ þ Hðgz2

Þðq;pÞ þ 2cHðq; pÞ;
where the cross term
cHðq;pÞ ¼ ð2peÞ�de�
1
8ejz�j

2
exp � 1

2e
jðq; pÞ � zþj2

� �
cos

1
2e
ðc1;2 � ðq;pÞ ^ z�Þ

� �
;

expectedly localizes around the mean zþ ¼ ðz1 þ z2Þ=2. The cosine has a phase shift c1;2 ¼ qðz1Þ � pðz1Þ � qðz2Þ � pðz2Þ and oscil-
lates with a frequency proportional to the difference z� ¼ z1 � z2. However, due to the damping term, which is exponentially
small in jz�j2, the oscillations are absorbed by the tails of the two Gaussian functions Hðgz1

Þ and Hðgz2
Þ.

The following proposition shows that averages of Husimi and Wigner functions differ by a term of order e. Moreover, for
the Husimi function the Egorov theorem only holds with a remainder of order e, which is worse than the error of order e2

valid for Wigner functions.

Proposition 1. Let a : R2d ! C be a Schwartz function. Then, there is a constant C = C(a) > 0 depending on derivatives of a of order
greater or equal than two such that for all w 2 L2ðRdÞ
Z

R2d
ðHðwÞ �WðwÞÞðq; pÞ aðq; pÞdqdp

				 				 6 Cekwk2
L2 :
Let w(t) solve the scalar Schrödinger Eq. (1) and let Ut be the flow of the associated Hamiltonian system (2). Then, there is a con-
stant C ¼ Cða;UtÞ > 0 depending on derivatives of a and Ut of order greater or equal than two such that for all w0 2 L2ðRdÞ
Z

R2d
ðHðwðtÞÞ � Hðw0Þ �UtÞðq;pÞaðq; pÞdqdp

				 				 6 Cekw0k
2
L2 :
Proof. With the phase space Gaussian Gðq; pÞ ¼ ðepÞ�d e�ðjqj
2þjpj2Þ=e, the averaged Husimi function writes as the convolution
Z

R2d
HðwÞðq;pÞ aðq;pÞdqdp ¼

Z
R2d

WðwÞðq;pÞ ða 
 GÞðq;pÞdqdp:
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Since the integral of G is one, while its mean and variance are zero and e/2, respectively, a second order Taylor approximation
of the function a gives
ða 
 GÞðq;pÞ ¼ aðq; pÞ þ OðeÞ;
where the error depends on second order derivatives of a. Then, the first assertion follows from the Calderon–Vaillancourt
Theorem (e.g. Chapter 2.8 in [12]). For proving the Egorov type result, one observes
ðða 
 GÞ �U�tÞðq;pÞ ¼ ða �U�tÞðq;pÞ þ OðeÞ ¼ ðða �U�tÞ 
 GÞðq; pÞ þ OðeÞ;
where the error depends on second order derivatives for a and Ut . Using (4), one obtains
Z
R2d

HðwðtÞÞðq;pÞ aðq;pÞdqdp ¼
Z

R2d
Wðw0Þðq;pÞðða 
 GÞ �U�tÞðq;pÞdqdpþ Oðe2Þ

¼
Z

R2d
Hðw0Þðq;pÞða �U�tÞðq;pÞdqdpþ OðeÞ: �
4. Monte Carlo sampling

We investigate the achievable accuracy of Monte Carlo techniques for the approximation of Wigner functions and for the
numerical quadrature to compute its function values. Our motivation for a Monte Carlo approach is twofold: First, the
dimension of the configuration space Rd is large, and the computational cost of randomized schemes need not increase expo-
nentially in d. Second, the intended sampling accuracy is rather low, since the eigenvalue surfaces q#k�ðqÞ stem from dif-
ficult electronic structure calculations and typically have low resolution. Moreover, surface hopping is an asymptotic particle
method whose accuracy depends on the size of the problem dependent parameter e. In summary, the accuracy of a Monte
Carlo approach is expected to be sufficient.
4.1. Approximation by Metropolis Monte Carlo

The Metropolis algorithm [15] is one of the most popular and efficient Markov Chain Monte Carlo sampling schemes. We
extend the standard approach to the sampling of real-valued functions W : R2d ! R with disconnected functional support.
We assume a priori given phase space centers fcigs

i¼1 that define regions where W is non-negligible and has a local envelope
of comparable variance. Then we use a jump method as in [16].

Choose a fixed jump rate rjump 2 ½0;1�. Select a point ðqold; poldÞ 2 R2d in one of the sampling regions i 2 f1; . . . ; sg and cal-
culate Wold ¼Wðqold; poldÞ. Then start the following iteration.

1. Proposition step: Generate a random number r from the uniform distribution in the interval [0,1]. If r > rjump, generate a
random vector D from a normal distribution on R2d and give the old point a random displacement
ðqnew;pnewÞ ¼ ðqold; poldÞ þ D:
Otherwise, perform a jump step: Choose uniformly one of the other centers j 2 f1; . . . ; sg; j–i, and generate a new point via
ðqnew;pnewÞ ¼ ðqold; poldÞ þ cj � ci:
Always calculate Wnew ¼Wðqnew; pnewÞ.
2. Acceptance step: Generate a random number q from a uniform distribution in the interval [0,1]. Accept the trial move if
q < jWnewj=jWoldj;
and set ðqold; poldÞ ¼ ðqnew; pnewÞ. Otherwise, reject the trial move and keep the old point ðqold; poldÞ.

The new point is located with respect to the new center as the old point with respect to the old center. Hence, the pro-
posal step keeps the symmetry of the standard Metropolis algorithm. The points ðqk; pkÞ

N
k¼1 shall form a Markov chain with

stationary distribution jWj=kWkL1 . If the chain is uniformly ergodic, then the central limit theorem holds [17], and the empir-
ical means 1

N

PN
k¼1aðqk; pkÞ approximate expectation values
haijWj ¼
Z

R2d
jWðq;pÞj aðq; pÞdqdp=kWkL1
in the following sense. If ha2i <1, then there is a constant ca > 0 such that for all c > 0
lim
N!1

P
1
N

XN

k¼1

aðqk;pkÞ � haijW j

					
					 6 ccaffiffiffiffi

N
p

 !
¼ 1ffiffiffiffiffiffiffi

2p
p

Z c

�c
e�t2=2 dt:
This well-known convergence rate of order N�1/2 does not depend on the dimension of the sampling space.
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For us, W is the Wigner function of a normalized square integrable function. Hence, W is real-valued and satisfiesR
R2d Wðq; pÞdqdp ¼ 1. Among the N sampling points are Np and Nn points with positive and negative value of W, respectively.

For the approximation of expectation values
haiW ¼
Z

R2d
Wðq;pÞ aðq;pÞdqdp
by empirical means, we assign the weight 1=ðNp � NnÞ and �1=ðNp � NnÞ for points with positive and negative function val-
ues, respectively.

4.2. Integration by importance sampling

Evaluating the Wigner function in a given phase space point, one has to solve a d-dimensional Fourier integral. For stan-
dard importance sampling, one rewrites the integral in the form
WðwÞðq; pÞ ¼ ð2pÞ�d
Z

Rd
eix�pw q� e

2
x

� �
�w qþ e

2
x

� �
dx ¼

Z
Rd

f ðxÞ
wðxÞwðxÞdx;
where
f ðxÞ ¼ ð2pÞ�deix�pw q� e
2

x
� �

�w qþ e
2

x
� �

;

and w(x) > 0 is a normalized weight function,
R

Rd wðxÞdx ¼ 1. If one generates sampling points fxkgL
k¼1 according to w, which

build a uniformly ergodic Markov chain, then the central limit theorem holds. One obtains an approximation of the integral
WðwÞðq; pÞ � I :¼ 1
L

XL

k¼1

f ðxkÞ
wðxkÞ

;

with a convergence rate of order L�1/2 as L ?1. For our numerical experiments, we have chosen the Gaussian weight
function
wðxÞ ¼ 4p
e

� ��d=2

exp � e
4
jxj2

� �
; ð7Þ
since we expect integrands f with oscillations modulated by a Gaussian envelope whose variance is comparable to 2/e, see
also the integral in (5).

4.2.1. Convergence test
The possible high-frequency oscillations of the integrand function f cannot be captured by any practicable weight func-

tion w, and convergence of the empirical means might be extremely slow due to a large error constant. We therefore use the
following simple convergence test.

One defines a sequence of chain lengths L0 < � � � < Lmax, sets a tolerance tol > 0, and starts by computing M different values
fImgM

m¼1 of the integral based on independent sampling chains of length L0. We assume that these values are normally dis-
tributed with mean I and variance r2

I

I ¼ 1
M

XM

m¼1

Im; r2
I ¼

1
M � 1

XM

m¼1

ðIm � IÞ2:
One computes a 95% confidence interval according to KI ¼ �zrI=
ffiffiffiffiffi
M
p

with z = 1.96 and checks whether
KI < I tol: ð8Þ
If the tolerance is not met using sampling chains of length Lj, all chains are extended to length Ljþ1 until one reaches the max-
imal length Lmax. Either the last value of the mean I or zero are used as an approximation to the integral determining the
function value W(w)(q,p), depending on whether the convergence criterion has been satisfied or not.

In our experiments, we use the tolerance tol = e1/2, since the expected error of the single switch surface hopping algorithm
is of order e1/2. We obtain satisfactory results with this simple test and therefore have not explored more sophisticated con-
vergence criteria as for example the Gelman–Rubin criterion [18].

Setting the integral value to zero in the non-convergent case is motivated by the special class of wave functions w con-
sidered in our numerical experiments. Writing the integrand function in polar form f ðxÞ ¼ eiUðxÞ=xjf ðxÞj, its phase function
U : Rd ! R does not have any stationary points, that is, there are no points x 2 Rd with rxUðxÞ ¼ 0. Therefore, successive
partial integration yields
Z

Rd
f ðxÞdx ¼

Z
Rd

eiUðxÞ=xjf ðxÞjdx ¼ Oðx1Þ; x! 0;
and we regard integrals that do not meet the convergence criterion as being of this highly oscillatory type.
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5. Numerical setup

In this section, we present the general setup of our numerical experiments. We consider a two-dimensional Schrödinger
system
ieotwðt; qÞ ¼ � e2

2
Dq þ VðqÞ

� �
wðt; qÞ; wð0; qÞ ¼ w0ðqÞ; ð9Þ
with linear E  e Jahn–Teller potential matrix
VðqÞ ¼ cjqj2 þ
q1 q2

q2 �q1

� �
; ð10Þ
which provides the most prominent example for a conical intersection of eigenvalues. Indeed, the potential matrix’s
eigenvalues
k�ðqÞ ¼ cjqj2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 þ q2
2

q
¼ cjqj2 � jqj;
intersect in the point q = 0, which constitutes a codimension two submanifold of R2, see Fig. 1. Jahn–Teller Hamiltonians for
silver, copper, sodium, and potassium fitted by recent electronic structure calculations [19] have associated semiclassical
parameter e = 0.005, 0.007, 0.011, 0.008 and quadratic confinement c = 2.613, 5.097, 0.524, 0.260, respectively. These results
motivate our default choice
e ¼ 0:01; c ¼ 3:
The time interval is set to
½ti; tf � ¼ ½0;10
ffiffiffi
e
p
�:
For the initial data considered, the time interval allows the solution of the Schrödinger equation to pass the crossing point
once and to generate leading order non-adiabatic transitions between the eigenspaces. The key quantity for the evaluation of
the surface hopping algorithm with initial Monte Carlo sampling are the final level populations
P�ðtf Þ ¼ kw�ðtf Þk2
L2 ¼

Z
Rd
jw�ðtf ; qÞj2 dq;
which give the probability of finding the system in one of the two eigenspaces at time tf . The reference values for the final
populations are computed by a highly resolved pseudospectral Strang splitting scheme, see Appendix A.
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Fig. 1. Conical intersection of eigenvalue surfaces of the Jahn–Teller potential (10).
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5.1. Analytic initial data

Our analytic initial data are the pointwise product of a scalar wave function wþ0 : R2 ! C with an eigenvector vþðqÞ of the
potential matrix associated with the eigenvalue kþðqÞ
w0ðqÞ ¼ wþ0 ðqÞvþðqÞ:
For the scalar wave function, we choose
wþ0 2 gz0
;

1ffiffiffi
2
p ðgz1

þ gz2
Þ


 �
;

where gz0
, gz1

, gz2
are Gaussian wave packets centered in
z0 ¼ ð5
ffiffiffi
e
p

; 0:5
ffiffiffi
e
p

;�1;0Þ; z1 ¼ z0; z2 ¼ �z1:
The supports of gz1
and gz2

have negligible overlap, such that the superposition ðgz1
þ gz2

Þ=
ffiffiffi
2
p

can be regarded as a wave
function of L2-norm one. Eigenvectors of potentials with a conical crossing have non-removable discontinuities at crossing
points, and smoothness away from the crossing is only possible if they are complex-valued. We consider the two cases
vþðqÞ 2 evðqÞ; ei
2#q ~vðqÞ

n o
; ~vðqÞ ¼ cos

1
2
#q

� �
; sin

1
2
#q

� �� �T

;

where #q 2 ð�p;pÞ is the polar angle of q 2 R2. The complex-valued phase factor exp i
2#q
� �

compensates the discontinuity of
~v across the left half axis
fq 2 R2jq1 6 0; q2 ¼ 0g:
Since z0 is located in the upper right quadrant of position space, the overlap of the single Gaussian wave packet gz0
with the

left half axis is negligible. Therefore, we choose the real-valued eigenvector vþðqÞ ¼ ~vðqÞ for gz0
. On the other hand, gz2

over-
laps with the left half axis. Thus we use the complex-valued eigenvector vþðqÞ ¼ e

i
2#q ~vðqÞ for the superposition ðgz1

þ gz2
Þ=

ffiffiffi
2
p

.

5.2. Numerically computed laser excitation

Gaussian wave packets associated with the upper eigenvalue are a simple model for a molecule excited by light or a laser-
pulse. As a third test case, we simulate laser excitation for the Jahn–Teller system numerically and use the resulting wave
function as initial datum for the Schrödinger system (9). The real-symmetric matrix
MðqÞ ¼
2 cos#q sin#q cos2 #q � sin2

#q

cos2 #q � sin2
#q �2 cos#q sin#q

 !
;

maps the eigenspaces of the Jahn–Teller matrix V(q) onto each other. Hence, the Schrödinger system
ieot/ðt; qÞ ¼ � e2

2
Dq þ VðqÞ þ EðtÞMðqÞ

� �
/ðt; qÞ; /ð0; qÞ ¼ /0ðqÞ; ð11Þ
with oscillatory electric field EðtÞ ¼ 1
e expð�t2Þ cos t

e

� �
models the excitation between the eigenspaces of the matrix V(q), see

also [20]. We excite a Gaussian wave packet associated with the lower eigenvalue k�ðqÞ
/0ðqÞ ¼ gz0
ðqÞ � sin

1
2
#q

� �
; cos

1
2
#q

� �� �T

;
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Fig. 2. Contour plots of the position densities jw�0 ðqÞj
2 of the numerically excited state.
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and use the resulting wave function /(t,q) at time t = 0.032 as initial datum w0(q) for the Jahn–Teller system (9). This initial
state populates the upper level with a probability of 83%, and the scalar wave functions w�0 have nearly Gaussian shape, com-
pare Fig. 2. However, kw0 � gz0

vþkL2 ¼ 0:65.

6. Gaussian wave packet

The Wigner function of the Gaussian wave packet gz0
is a Gaussian function on phase space. Hence, the sampling of Wðgz0

Þ
can be realized by directly drawing from a normal distribution. However, ignoring the analytic knowledge on the explicit
form of Wðgz0

Þ, we also study the accuracy when using Metropolis Monte Carlo for the approximation and importance sam-
pling for the integration.

6.1. Simple Monte Carlo

Since Wðgz0
Þ is a Gaussian function, one can simply generate approximation points ðqk; pkÞ

N
k¼1 by sampling from a multi-

dimensional normal distribution and transforming it according to
Table 1
Gaussia
samplin
amount

N

Simple
Mean
Standar

Metropo
Mean
Standar
ðq;pÞ ¼ ðq0;p0Þ þ ry; r ¼
ffiffiffiffiffiffiffiffi
e=2

p
; y � N2dð0;1Þ:
We use these sampling points in combination with the surface hopping algorithm. As accuracy criterion, we take the devi-
ation of the final population Pþðtf Þ from the reference value 0.264 stemming from the Strang splitting scheme. The initial
sampling is performed with N = 100, . . . ,2000 different numbers of sampling points. Then, for each fixed N there are
m = 10 runs of the surface hopping algorithm. The results are listed in the upper lines of Table 1. The variance decreases
monotonically as N increases. Hence, the results of a single run become more reliable for larger N. Though the surface hop-
ping algorithm systematically overestimates the reference value, all the mean values differ at most by 2%.

6.2. Metropolis approximation and importance sampling

Approximating the Wigner function Wðgz0
Þ, we use the Metropolis algorithm with normally distributed displacement
D � N2dð0; e=2Þ:
The starting point of the Markov chains is always the phase space center z0 ¼ ðq0; p0Þ of the Gaussian wave packet. Comput-
ing the value of Wðgz0

Þ in a point (q,p), one has to solve the integral
1
4ep3 e�

1
ejq�q0 j2

Z
Rd

cosðx � ðp� p0ÞÞe�
e
4jxj

2
dx: ð12Þ
Using that e
4p

R
R2 e�

e
4jxj

2
dx ¼ 1, the integral can be approximated by importance sampling as
Wðgz0
Þðq;pÞ � 1

Le2p
e�

1
ejq�q0 j2

XL

k¼1

cosðxk � ðp� p0ÞÞ:
The sampling points fxkgL
k¼1 are distributed according to exp � e

4 jxj
2

� �
, which represents the two-dimensional normal distri-

bution with mean zero and variance 2/e.
As the distance jp� p0j gets larger, the oscillation frequency of the integrand increases, which causes severe difficulties in

Monte Carlo quadrature. Fig. 3(a) shows the integrand for computing Wðgz0
Þðq0; pÞ with p ¼ p0 þ ð0:3;0:3Þ. Even though the

integral value is small in this case, the quadrature scheme can yield large errors due to numerical cancellation. We therefore
use the convergence test from Section 4.2.1.

We set the number of chains M = 5 and the sequence of chain lengths L0 ¼ 1000; L1 ¼ 2000; . . . ; Lmax ¼ 10;000. A typical
distribution of relative errors with respect to the exact value of the Wigner function is illustrated in Fig. 3(b). The relative as
well as the absolute error are centered around zero (mean relative/absolute error 0.003/0.564), supporting the expectation
n wave packet. Statistics of Pþðtf Þ for Monte Carlo sampling of the initial Wigner distribution. The results are compared for different numbers of
g points (N = 100, . . . ,2000), where m = 10 runs of the single switch algorithm are evaluated for each N. The reference value from Strang splitting
s to PþStrangðtf Þ ¼ 0:264.

100 200 500 1000 1500 2000

Monte Carlo
0.277 0.267 0.271 0.275 0.273 0.275

d deviation 0.030 0.022 0.012 0.011 0.005 0.004

lis approximation and importance sampling
0.238 0.269 0.243 0.256 0.275 0.271

d deviation 0.088 0.025 0.041 0.032 0.016 0.015



-50 0 -50
0

50-1

-0.5

0

0.5

1

q
y

q
x

0 200 400 600 800 1000 1200
-0.2

-0.1

0

0.1

0.2

Value of W

R
el

at
iv

e 
er

ro
r

meanRelError=0.0034, meanAbsError=0.5642, 
        meanSamSteps=1322, meanAcc=1

Fig. 3. Integration by importance sampling for computing the Wigner function of the Gaussian wave packet gz0
. The left plot shows the integrand for

computing the value of Wðgz0
Þðq0;pÞ with p ¼ p0 þ ð0:3;0:3Þ. The right plot gives the distribution of relative errors with respect to the exact value of the

Wigner function Wðgz0
Þ for 500 different phase space points.
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that oscillations with subsequent small integral value pose the main difficulty. On average, for 82% of the phase points (q,p)
the computation of Wðgz0

Þðq; pÞ does converge according to (8).
If the sampled phase points are propagated by the single switch algorithm, then the statistics for the upper level popu-

lation at time t ¼ tf are slightly worse than for the simple Monte Carlo approach. The lower lines in Table 1 contain the re-
sults for N = 100, . . . ,2000 sampling points and m = 10 surface hopping runs for each fixed N. The mean values differ from the
reference at most by 3%.

7. Superposition of Gaussian wave packets

For the superposition of Gaussian wave packets ðgz1
þ gz2

Þ=
ffiffiffi
2
p

, the Wigner function is no longer positive and has three
pronounced peaks with disconnected support. In the following, we examine the accuracy of the Metropolis type approxima-
tion proposed in Section 4.1. Then, we compare the accuracy for a sequence of surface hopping runs, which are either started
with the sampling of the Wigner or the Husimi function of the initial wave function.

7.1. Approximation of the Wigner function

The Wigner function consists of the sum of the two phase space Gaussians
Wðgzj
Þðq;pÞ ¼ ðpeÞ�d exp �1

e
jðq;pÞ � zjj2

� �
; j ¼ 1;2;
plus an oscillatory cross term localized around the middle point zþ ¼ 0
cðq;pÞ ¼ ðpeÞ�de�jðq;pÞj
2=e cos

1
e
ðq;pÞ ^ z�

� �
;

which has a Gaussian envelope with the same variance and oscillates with a frequency proportional to the difference
z� ¼ ð10

ffiffiffi
e
p
;
ffiffiffi
e
p
;�2; 0Þ.

To sample from this distribution, we apply the Metropolis algorithm of Section 4.1 with jumps between the centers
fc1; c2; c3g ¼ fz1; z2; zþg and jump rate rjump ¼ 0:5. The random displacement D 2 R4 in the proposition step is drawn from
the normal distribution with standard deviation

ffiffiffiffiffiffiffiffi
e=2

p
. This choice of D and rjump results in a mean acceptance ratio of about

56% (jump acceptance ratio about 80%). Examining the accuracy of the computed population Pþðtf Þ, we consider different
numbers of sampling points N = 100, . . . ,2000 and perform the hopping algorithm m = 10 times for each fixed N. The results
are listed in the upper lines of Table 2. Already with hundred sampling points, the mean value differs from the reference
value by five percent. With more points the results improve towards an error of two percent and in the sense of variance
reduction. Hence, fewer sampling points require several simulations, whereas for many sampling points, fewer simulations
are sufficient to obtain reliable results.

Since the difference vector z� has length of order one with respect to the semiclassical parameter e, averages of the cross
term c are super-polynomially small in e, see the upper bound (6). Therefore, in a second set of experiments we ignore the
oscillatory middle peak and approximate the two remaining Gaussians Wðgz1

Þ and Wðgz2
Þ independently by a simple Monte



Table 2
Superposition of Gaussian wave packets. Statistics of Pþðtf Þ for Metropolis approximation of the initial Wigner distribution. The results are for different
numbers of sampling points (N = 100, . . . , 2000), where m = 10 runs of the single switch algorithm are evaluated for each N. The reference value amounts to
PþStrangðtf Þ ¼ 0:275.

N 100 200 500 1000 1500 2000

Complete distribution
Mean 0.325 0.303 0.287 0.288 0.286 0.278
Standard deviation 0.173 0.079 0.034 0.045 0.033 0.019

Without cross term
Mean 0.276 0.270 0.265 0.271 0.275 0.273
Standard deviation 0.022 0.019 0.014 0.010 0.004 0.006
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Carlo approach. Each Gaussian is approximated with the same number of sampling points. The lower lines of Table 2 illus-
trate no loss in accuracy but a reduction of variance.

7.2. Approximation of the Husimi function

The chemical literature often treats the Wigner and the Husimi function on the same footing for the initial sampling of
semiclassical particle methods. In the following, we compare the accuracy of the single switch algorithm when the phase
space sampling of the initial wave function ðgz1

þ gz2
Þ=

ffiffiffi
2
p

is performed for the Husimi function, the Wigner function, and
the Wigner function without cross term.

The quadratic confinement c in the Jahn–Teller potential (10) is set to zero, and the semiclassical parameter e varies as
{0.0005,0.001,0.01,0.1}. All three initial distributions are sampled by the Metropolis type algorithm used in the previous
Section 7.1.

The surface hopping results in Table 3 are mean values over m = 10 runs with N = 5000 sampling points each. The Wigner
functions’ errors are smaller than those for the Husimi function by at least a factor of two. This difference can be explained by
the better asymptotic properties of the Wigner function with respect to classical transport. As discussed in Section 3.3 before,
the Egorov theorem for scalar Schrödinger equations gives an approximation error of order e2 for the Wigner function,
whereas the Husimi function only yields an error of order e. The rougher approximation of the single switch algorithm does
not completely bury this difference. Moreover, the smaller the semiclassical parameter the higher is the oscillation fre-
quency, and neglecting the oscillatory cross term of the Wigner function remarkably improves accuracy. The errors obtained
using Wigner functions are well below e1/2, confirming earlier numerical evidence [4–6].

8. Laser excited state

For the numerically computed laser excitation, the input for the surface hopping algorithm is a vector-valued function
w0 : R2 ! C2, q#/ðt ¼ 0:032; qÞ whose values are only known at grid points in position space. Since this function results
from the excitation of a Gaussian wave packet gz0

, we assume that the two level functions w�0 : R2 ! C have a comparable
localization and frequency range as gz0

, see also Fig. 2.
For the approximation of the real-valued Wigner functions Wðw�0 Þ, we therefore apply the Metropolis type algorithm pro-

posed in Section 4.1 with starting point z0 and displacement vector D � N2dð0; e=2Þ.
Table 4
Laser excited state. Statistics of Pþðtf Þ for Metropolis approximation and integration by importance sampling for the initial Wigner function. The results are for
different numbers of phase space sampling points (N = 100, . . . ,2000), where m = 10 runs of the single switch algorithm are evaluated for each N. The reference
value from Strang splitting amounts to PþStrangðtf Þ ¼ 0:312.

N 100 200 500 1000 1500 2000

Mean 0.369 0.321 0.311 0.324 0.306 0.310
Standard deviation 0.100 0.055 0.026 0.029 0.026 0.020

Table 3
Superposition of Gaussian wave packets. Absolute error of Pþðtf Þ for different values of e and different phase space representations (Wigner or Husimi). The
reference value is calculated with a highly resolved Strang splitting. The surface hopping values are mean values over m = 10 runs with N = 5000 particles each.

e 0.1 0.01 0.001 0.0005
e1/2 0.316 0.1 0.032 0.0224

Husimi 0.125 0.102 0.096 0.096
Wigner 0.018 0.003 0.043 0.052
Wigner (no cross term) 0.010 0.002 0.014 0.015
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For the computation of the function values
Table 6
Input p
semicla

e

10�1

10�2

10�3

5 � 10�4

Table 5
Input p
the bot

wþ0 ¼ gz

wþ0 ¼ 1p

w0 ¼ /ð

Laser e
Wðw�0 Þðq;pÞ ¼ ð2pÞ�2
Z

Rd
eix�pw�0 q� e

2
x

� �
w�0 qþ e

2
x

� �
dx;
we again solve the integrals by importance sampling with sampling points fxkgL
k¼1 distributed according to the Gaussian

weight function w from (7) and use the convergence test with M = 5 chains of maximal length Lmax ¼ 10;000. Similar to
the single Gaussian wave packet, the importance sampling converged within the maximum number of sampling steps for
about 82% of the phase points. The single difference to the preceding experiments is that the functions w�0 are only known
at grid points. Therefore, each evaluation of the integrand in a sampling point xk requires an additional linear interpolation
with respect to the grid points. Nevertheless, the overall computing time for the approximation of Wðw�0 Þ is comparable to
the Metropolis approximation of the single Gaussian wave packet (about 460 seconds CPU-time for 1000 phase points with
MATLAB 7.1 on a 2200 MHz Dual Core Processor).

Table 4 summarizes the numerical results for N = 100, . . . ,2000 phase space sampling points and m = 10 surface hopping
runs for each fixed N. Similarly to the analytic initial data, the mean level population achieves an accuracy of roughly one
percent, and the variance decreases with increasing number of sampling points.

9. Conclusion

We have studied the accuracy of Monte Carlo sampling for Wigner functions in the context of particle methods for non-
adiabatic Schrödinger systems. The approximation step is realized by an adaption of the Metropolis algorithm for real-valued
functions with disconnected support. The quadrature, which computes values of the Wigner function, uses importance sam-
pling with a Gaussian weight function.

Three sets of numerical experiments have shown that the proposed Monte Carlo schemes combined with the single
switch surface hopping algorithm give results with an error of 2–3%, which is in very good agreement with the methodolog-
ical accuracy of surface hopping algorithms. We have also considered the Husimi function as an alternative phase space rep-
resentation. However, the subsequent surface hopping results are systematically less accurate than for the Wigner function.

The presented numerical experiments are low-dimensional, since an accuracy study requires the validation against a con-
vergent solution of the underlying time-dependent Schrödinger systems, which is only feasible for few degrees of freedom.
High-dimensional experiments as well as the Monte Carlo integration of oscillatory functions with stationary points have to
be addressed in future work.

Appendix A. Reference solutions

For evaluating the different initial sampling strategies in combination with the single switch algorithm, we directly solve
the Jahn–Teller system (9) with a pseudo-spectral Strang splitting scheme. For this two-dimensional problem a space dis-
cretization based on the fast Fourier transform and an operator splitting with third order local convergence in time [21] pro-
vides accurate reference solutions. The number of time steps is set to 5000 for all experiments.

Table 5 contains the computational domains, the grid sizes, the final population Pþðtf Þ, and the achieved accuracy. The
accuracy of the solution refers to the difference kwðtf Þ � wcðtf ÞkL2 of the final reference solution wðtf Þ and a coarser solution
wcðtf Þ, which is computed with fourth the number of grid points and half the number of time steps.
arameters and results for the reference solution of the Jahn–Teller system (9) with c = 0, wþ0 ¼ ðgz1
þ gz2

Þ=
ffiffiffi
2
p

, and tf ¼ 10
ffiffiffi
e
p

in dependence on the
ssical parameter e.

Domain Fine grid size Pþðtf Þ Accuracy

½�10;10� � ½�5;5� 2048 � 1024 0.378 1:0 � 10�3

� 3
2 ;

3
2

� 
� � 3

4 ;
3
4

� 
2048 � 1024 0.436 1:9 � 10�4

½�1;1� � � 1
2 ;

1
2

� 
2048 � 1024 0.526 1:6 � 10�7

� 1
2 ;

1
2

� 
� � 1

4 ;
1
4

� 
2048 � 1024 0.544 1:0 � 10�7

arameters and results for the grid-based solution of the Jahn–Teller system (9) in the top lines and for the Schrödinger system with electric field (11) in
tom line. The final times tf are 1 and 0.032 for system (9) and (11), respectively. In all cases, ti ¼ 0, e = 0.01 and c = 3.

Domain Fine grid size Pþðtf Þ Accuracy

0
½�2;2� � ½�1;1� 1024 � 512 0.264 2:3 � 10�6ffiffi

2
ðgz1
þ gz2

Þ � 3
2 ;

3
2

� 
� � 3

4 ;
3
4

� 
2048 � 1024 0.275 2:3 � 10�6

t ¼ 0:032Þ ½�2;2� � ½�1;1� 1024 � 512 0.312 2:3 � 10�6

xcitation ½�2;2� � ½�1;1� 1024 � 512 0.833 2:1 � 10�7
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In Section 7.2, we have varied the semiclassical parameter e to compare Wigner and Husimi functions. The input param-
eters as well as the accuracy of the corresponding reference solutions are listed in Table 6. The achieved errors are all suf-
ficient for the validation of the single switch algorithm, whose accuracy for the computation of quadratic quantities of the
wave function typically varies between 2% and 3%.

For the computation of the laser excited initial state, the Schrödinger system with time-dependent electric field (11) is
solved by a pseudo-spectral Trotter splitting with second order local convergence in time. Again, the two-dimensional
Laplacian is realized by the fast Fourier transform. The time interval [0,0.04] is discretized by 500 time steps.

Appendix B. Analytical Wigner transformation

The Wigner function of Gaussian wave packets can be calculated explicitly. Here, we give some details for the analytic
computation of the cross term of the Wigner function Wðgz1

þ gz2
Þ. One solves the integral
Wðgz1
; gz2
Þðq; pÞ ¼ ð2pÞ�d

Z
Rd

eix�pgz1
q� e

2
x

� �
�gz2 qþ e

2
x

� �
dx

¼ ð2pÞ�dðpeÞ�d=2
Z

Rd
eix�pe�

1
2e jq�

e
2x�q1 j2þjqþe

2x�q2 j2ð Þei
e p1 � q�e

2x�q1ð Þ�p2 � qþe
2x�q2ð Þð Þ dx;
where q1,2 and p1,2 denote the position and momentum component of the phase space points z1,2 for the rest of the calcu-
lation. Rewriting the quadratic part as
q� e
2

x� q1

			 			2 þ qþ e
2

x� q2

			 			2 ¼ jq� q1j
2 þ jq� q2j

2 þ e2

2
jxj2 þ ex � q�;
one has
Wðgz1
; gz2
Þðq; pÞ ¼ ð2pÞ�dðpeÞ�d=2e�

1
2ejq�q1 j2� 1

2ejq�q2 j2 e
i
eðp1 �ðq�q1Þ�p2 �ðq�q2ÞÞ

Z
Rd

eix� p�pþþ i
2q�ð Þe�e

4jxj
2

dx:
One uses the value of the Gaussian integral
Z
R

eiywe�ay2
dy ¼

ffiffiffiffi
p
a

r
e�w2=ð4aÞ; w 2 C; a > 0;
for wj ¼ pj � pj
þ þ i

2 qj
� with j = 1, . . . ,d and a = e/4. Since
Xd

j¼1

ðwjÞ2 ¼ jp� pþj
2 � 1

4
jq�j

2 þ iðp� pþÞ � q�;
one gets
Wðgz1
; gz2
Þðq; pÞ ¼ ðpeÞ�de�

1
2ejq�q1 j2� 1

2ejq�q2 j2 e
i
eðp1 �ðq�q1Þ�p2 �ðq�q2ÞÞe�

1
ejp�pþj2 e

1
4ejq�j

2
e�

i
eðp�pþÞ�q� :
Observing that � 1
2 jq� q1j

2 � 1
2 jq� q2j

2 þ 1
4 jq�j

2 ¼ �jq� qþj
2 and
p1 � ðq� q1Þ � p2 � ðq� q2Þ � ðp� pþÞ � q� ¼ ððq; pÞ � zþÞ ^ z� � pþ � q�;
one arrives at
Wðgz1
; gz2
Þðq; pÞ ¼ ðpeÞ�de�

i
epþ�q�e�

1
ejðq;pÞ�zþj2 e

i
eððq;pÞ�zþÞ^z� :
and
cðq;pÞ ¼ 1
2
ðWðgz1

; gz2
Þðq;pÞ þWðgz2

; gz1
Þðq;pÞÞ ¼ ðpeÞ�de�

1
ejðq;pÞ�zþj2 cos

1
e
ðpþ � q� � ððq; pÞ � zþÞ ^ z�Þ

� �
:
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