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Absract 

The function of many important biomolecules comes from their dynamic 
properties and their ability to switch between different conformations. In a 
conformation, the large scale geometric structure of the molecule is understood 
to be conserved, whereas on smaller scales the system may well rotate, oscillate 
or fluctuate. In a recent article [J. Comp. Phys., 151,1 (1999)], the present au­
thor and his coworkers demonstrated that (a) conformations can be understood 
as almost invariant sets of some Markov chain being defined via the Hamil 
tonian system governing the molecular dynamics and that (b) these sets can 
efficiently be computed via eigenvectors of the corresponding Markov operator 
The present manuscript reviews the mathematical modelling steps behind the 
novel approach, includes a rigorous analytical justification of this approach and 
the corresponding numerical realization, and illustrates the performance of the 
algorithm when applied to realistic molecular systems 
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ntroductio 
This manuscript presents a novel approach to the direct numerical approxima­
tion of the so-called "conformational dynamics", that is, the essential dynam­
ical behavior of mechanical systems moving on multi-minima energy surfaces 
It includes the derivation of the underlying mathematical model, its theoretical 
analysis, and a first proposal for its efficient numerical realization, all this tai­
lored to the application to biomolecules. Hence, this introduction should start 
with a brief description of the importance of this application and of the origin 
of the phrase "conformational dynamics": 

Conformational Dynamics The classical description of molecular processes 
deals with the molecule's microscopic configuration (positions q and momenta p 
of all atoms) and leads to a mathematical model in terms of some Hamiltonian 
differential equation (cf. Sec. 2.1). The solution of this equation, given by the 
associated Hamiltonian flow, is understood as the representation of the motion 
of the molecular system. 

The chemically interesting function of many important biomolecules, like 
proteins or enzymes, results from their dynamical properties, particularly from 
their ability to undergo so-called conformational transitions (cf. [116]). In a 
conformation, the large scale geometric structure of the molecule is understood 
to be conserved, whereas on smaller scales, that is, in the details of each micro­
scopic configuration visited, the system may well rotate, oscillate or fluctuate 
Thus, the phrase "conformation" means a meta-stable quasi-equilibrium of the 
molecule. In comparison to the configurational fluctuations inside every confor­
mation, transitions between different conformations are extremely rare events 
As an implication, the computational characterization of such conformational 
changes via direct simulation of the associated Hamiltonian system often re 
quires inaccessibly long time spans. Even worse, long-term simulation of a 
single trajectory comes out to be ill-conditioned (cf. Sec. 2.1.5). Nevertheless 
most applications of molecular dynamics (MD) to the characterization of con­
formations deal with some kind of statistical analysis based on averages over 
long term trajectories or with remodelling steps for artificial acceleration of the 
process, compare [4, 47, 104]. Herein, a different line of method is advocated: 
it is suggested to attack the determination of conformations and the transi 
tion probabilities between them directly, i e , without long term simulation or 
artificial remodelling. 

Dynamical System Approach The key insight having finally led to the ap­
proach presented herein goes back to P . DEUFLHARD. He observed that the 
problem of algorithmic characterization of conformations is related to the prob­
lem of the identification of almost invariant sets of dynamical systems as studied 
by M. DELLNITZ and O. JUNGE: If the conformations were invariant sets of 
the flow of the Hamiltonian system, then there could not be any transitions 
between different conformations Since such transitions exist but are rare, we 



may understand every conformation as being a lmot" i n v i a n t subset o 
the phase space of the Hamiltonian system. 

In [19], M. DELLNITZ and O. JUNGE suggest the direct computation of in­
variant and almost invariant sets of deterministic discrete dynamical systems 
via eigenmodes of the associated Frobenius-Perron operator without long-term 
simulations. In broad terms, their key idea is the following: since the natural 
invariant sets and measures of the dynamical system are given by the eigen­
vectors of the Frobenius-Perron operator for its (maximal) eigenvalue Ao = 1 
(infinite relaxation time), the eigenvectors for eigenvalues |Aj| < 1 near Ao = 1 
should correspond to "almost" invariant structures ("large" finite relaxation 
times). The eigenmodes of the Frobenius-Perron operator are approximated by 
means of a discretization of this operator embedded in a multilevel subdivision 
algorithm. Dellnitz and Junge show that this technique is efficient whenever the 
part of the phase space, which is important for the long-term dynamics of the 
system, is some "low-dimensional" object [19, 18]. Otherwise, even the subdivi 
sion technique produces an exploding number of discretization boxes (a pitfall 
which we will call the "curse of dimension" in the following). 

Deuflhard's suggestion to use similar techniques for the identification of con­
formation as almost invariant sets has been realized for small Hamiltonian sys 
tems. As reported in [21], the numerical results are intriguing and seem to 
catch the essential features of the dynamics. However, the main problem was 
obvious: the essential dynamics of highly-dimensional Hamiltonian systems is 
not supported on any low-dimensional object so that any kind of determinis 
tic discretization —whether adaptive or not— must inevitably suffer from the 
curse of dimension. But the investigation also revealed some unexpected, deep-
lying theoretical problems: In the space of measures with Lp(r)-densities, the 
Frobenius-Perron operator for Hamiltonian systems has infinitely many invari­
ant densities and its entire spectrum lies on the unit circle (so that the iden­
tification of (almost) invariant sets via eigenvalues near A = 1 but inside the 
unit circle makes no sense).1 Despite these problems, this "dynamical system 
approach" to the identification of conformations has been an important inter­
mediate step for the development of the "ensemble approach" advocated herein. 
This ensemble approach does also exploit the intriguing idea of computing con­
formations as almost invariant structures via an eigenvalue problem. However 
the underlying statistical operator and the notion of "almost invariance" are 
fundamentally different (see below) 

Ensemble Approach The starting point of this approach is the following in­
sight: at least in the biomolecular context molecular dynamics (MD) deals with 

1 The underlying reason is that the unavoidable discretization of the Hamiltonian flow in 
time destroys some of the conservation properties of the flow such that the essential dynamics 
of the discrete solution is supported on subsets of the full dimension of I \ Hence, the spatial 
discretization of the Frobenius-Perron operator has to deal with measures supported on such 
sets, and thus, numerically, with Lp(r)-densities. The above statements concerning invariant 
densities and spectrum of the Frobenius-Perron operator are substantiated in Sees. 2.2 and 
2.3 below. For more details see [21, 94] 



Statistical ensembles of molecules instead of single molecular systems, since only 
such ensembles can be an object of experimental investigation. Consequently 
the rate of conformational transitions has to be characterized with respect to 
some experimentally given stationary ensemble, i e , in terms of statistical me 
chanics and not for any single Hamiltonian system (cf. Sec. 2.2): 

Suppose that the probability of systems in the ensemble to be in some state 
x € r at time t = 0 is given by the density /o : T —> [0,1]. Then, the transition 
probability w(B, C, r) from B c Y to C C Y during some fixed observation time 
r , is given by the fraction of systems in the ensemble, which are found in B at 
t = 0 and in C at t = r. Since all systems move due to the Hamiltonian flow 
3>r, this transition probability can be expressed as 

W(B,C,T) = (J f0()dx\ J Xc($)f0()dx. 

We are interested in almost invariant subsets, i.e., in sets B c T with large 
probabilities to stay within, which, for the time being, can be expressed as 
W(B,B,T) PS 1. In particular, conformations are given by sets of configurations 
with similar large scale geometric structure, that is, they are spatial subsets A 
of positions A such that the associated phase space fiber 

T(A) = {(qP) r , i ) 

is almost invariant in the above sense. It should again be emphasized that there 
are two fundamentally different notions of almost invariance: 

1. We may call some set A almost invariant if the single dynamical system 
under consideration remains inside of A for some long period of time before leav­
ing it. The "dynamical system approach" to the identification of conformations 
due to [21] should be understood in this sense.2 

2. In the ensemble approach, A is called almost invariant, if the fraction of 
systems in the ensemble, which leave A during some fixed observation time r, 
is small. 

In [95], the differences between the two notions are discussed in detail by 
applying both concepts to the same kind of randomly perturbed dynamical 
system. 

In terms of statistical mechanics, the Frobenius-Perron operator of the 
Hamiltonian system under investigation has to be interpreted as the propa­
gator of the ensemble governing the evolution of the corresponding probability 
density. As illustrated in detail in Sec 2 below, this observation implies that 

2 Not only the "dynamical system approach" to the identification of conformations but 
the entire approach of Dellnitz and Junge is often interpreted in this sense. However, in 
order to give a rigorous justification of their approach for general discrete dynamical systems, 
Dellnitz and Junge have to add small random perturbations to the discrete mapping, cf 
[19]. For nonvanishing perturbations, their approach may also be interpreted as an ensemble 
approach in the above sense with exactly the same interpretation of almost invariance. What 
is herein called the "dynamical system approach" corresponds to the limit of vanishing random 
perturbations 



every invariant density of the Frobenius-Perron operator corresponds to the ini 
tial experimental preparation of some specific stationary ensemble. This insight 
led the present author to the definition of some transition operator T as a certain 
"restriction" of the Frobenius-Perron operator to the unique invariant density 
induced by the ensemble under consideration (for more details see SCHÜTTE et 
al. [94] and Sec. 2.3 herein). This can be realized such that T in fact describes 
the corresponding transition probabilities within the ensemble (cf. Sec. 3.1). As 
we will see in detail in Sec. 3, the transition operator T is a Markov operator (in 
an appropriate i1-space) and self-adjoint (in the associated Z2-space). This im­
plies that its spectrum is real-valued and satisfies o(T) c [—1,1]. Similar as in 
the dynamical system approach, the basic algorithmic idea is the identification 
of almost invariant sets of the ensemble via the eigenvectors of the transition 
operator for eigenvalues near the (maximal) eigenvalue A = 1 

V= V= 

E 

-a +a q 

F i g u r e 1: Illustration of the particles-in-a-box ensemble. A statistical ensemble of free 
particles is moving without interactions between three ideally reflecting walls. Every particl 
(position q and momentum p) with energy E = p2/2 < Eg is locked between q = 0 and q = ± o 
by a reflecting barrier of energetic height Eo; particles with p 2 / 2 > E do not feel this barrier 
and move between q = —a and q = a. 

Guiding Example In order to illustrate the key idea "Identification of con­
formational subsets via eigenvectors of the transition operator'1, consider the 
simple particles-in-a-box ensemble explained in Fig. 1. In terms of the zigzag 
functions from Fig. 1, the position z = z(q,p) of some particle with initial 
position q and momentum p after some time span r can be denoted as 

z(qp) = 
Zaq + rp) 

ztq + rp) 
\ 
otherwise ± 

Let the initial distribution of energy E — p2 /2 for the particles in the ensemble 
be given by the Boltzmann distribution V(p) = exp(—ßp 2) /Z with ß being 
Boltzmann's inverse temperature and Z such that JRV(p)dp — 1. In addition, 
suppose that the initial positions are equidistributed in (—a, a). Then, the 
transition probability in the ensemble from B C (—a a) to C (—a a) is given 



W(T(B)T(C)T) = 
) 

c(z(qp))T(p)ddq 

Whenever ß and E0 are chosen such that particles with energy E > E0 are rare 
that is, whenever e = J i i2>E ~P(p)dp *S small, then the two sets B = (—o, 0) 
and C — (0, a) are almost invariant in the sense that only a small fraction of 
the particles can move from B to C. In this case, the fundamental difference 
between the two notions of almost invariance is particularly significant: the 
ensemble has two obvious almost invariant sets, while for none of the singl 
particles the notion of "almost invariant sets" makes sense. 

The associated transition operator T acts on functions u : (—a a) —> f and 
is defined via 

Tu(q) =u(z(qp))V(p)dp 

In fact, this transition operator allows to represent the transition probabilities: 
Using the usual scalar product {, •) in the Hubert space L(—a a) we find that 

w(T(B)T(C)r) = 
(X 

l =0.974 

0. 0. 

0.0 

-0.0 

- 0 . 

-0.0 

- 0 . 

l =0.477 

0. 

0.0 

-0.0 

- 0 . 

1 -0.5 0.5 

F i g u r e 2 Eigenvectors for the largest eigenvalues Ai = 1, A2 = 0.974, and A3 = 0.477 (from 
the left to the right) of the tans i t ion operator T for the particles-in-a-box ensemble from 
Fig. 1 above (a = 1, ß = 25, r = 2, EQ = 1 / 0 , leading to e m 0.025). The eigenvectors for 
Ai = 1 and A2 = 0.974 are constant on the two almost invariant sets (—1,0) and (0,1) and 
their signs suffice to decompose (—11) into these two almost invariant sets. For details see 
Sec. 3.2. 

We will see in detail in Sec. 3. that, with respect to L—aa), the spec­
trum of T lies in the interval (—1,1] and is discrete. For e — JI,2>E ^ ( P ) ^ P 

being small, it shows some significant gap between the two dominant eigenvalues 
Ai = 1 and A2 ~ 1 — and the remaining eigenvalues. As can be seen in Fig. 2 
the eigenfunctions v± and v2 for these two dominant eigenvalues suffice to de 
compose (—11) into these two almost invariant sets simply by the two different 



combination of signs ( ( p o s i t i p o s i t i v ) for ( — 1 ) and ( p o s i t i n e g a t i ) fo 
(01)) 

Properties of the Transition Operator It is the fundamental strategy of 
our approach to compute conformational subsets from eigenstates of T for eigen­
values near A = 1. It is, thus, of main importance, whether such eigenvalues 
exist and the eigenvalue A = 1 is simple. Since we are interested in a numeri 
cally stable approximation result, we have to demand for the existence of isolated 
eigenvalues near A = 1. Hence, the second part of the manuscript (Sec. 4) is 
concerned with the construction of conditions which guarantee that the essential 
spectrum aeBS (T) of the transition operator is strictly bounded away from A = 1 
(Sec. 4.2). Under some additional mixing assumption (open set accessibility) 
the specific properties of the Markov operator T also guarantee that the eigen­
value A = 1 is simple and dominant (Sec. 4.4). So far the manuscript follows 
the "operator-oriented" approach mainly by using classical results from linear 
functional analysis. 

The investigation of the fundamental properties of the transition operator 
T reveals another crucial insight: T is associated with some specific stochastic 
dynamical system, which can be simulated via the corresponding Markov chain 
(Sec. 3.6). We will see that some results of the operator-oriented approach 
(e.g., that A = 1 is simple and dominant) can also be shown under weaker con­
ditions by means of the wellestablished convergence theory for Markov chains 
(Sec. 4.5). 

The abstract conditions for the above mentioned results are worth the effort 
only if we can give explicit evidence that they are in fact valid for some realistic 
"biomolecular" type of Hamiltonian systems. This is the case as we will see in 
the final subsection of Sec. 4. Thus, at the end of Sec. 4, it will be obvious that 
our novel approach is built on solid mathematical ground. 

Numerical Realization Typical biomolecular systems contain hundreds or 
thousands of atoms such that any direct spatial discretization of the transition 
operator T suffers from the curse of dimension. This problem can be (at least 
partly) circumvented by two decisive insights 

1. Chemical observations reveal that conformational transitions of biomole 
cules can be described via relatively few conformational degrees of freedom 
or essential variables. Hence, only the essential configuration space associ 
ated with these variables has to be discretized which leads to a tremendous 
reduction of dimension. Therefore, some restricted transition operator has 
to be introduced which now acts on the essential configuration space only 
(Sec. 3.5) but inherits all the crucial spectral properties of the full spatial 
transition operator discussed above (Sec. 4.6) 

. Since the underlying invariant density is given in advance by the experi 
mental realization of the ensemble, one can use appropriate Monte-Carlo 
(MC) schemes to sample this distribution. Hence the transition operator 



can be discretized via some Galerkin ansatz and the entries of the result­
ing transition matrix can be evaluated simply by counting the transitions 
between discretization boxes during the MC sampling. The details of the 
MC scheme will result from the deep connection between our transition 
operator T and the associated Markov chain, which will lead us to so-called 
Hybrid Monte-Carlo (HMC) schemes. The specific Markov chain induced 
by HMC can be seen as an approximation of the original chain associated 
with T and inherits all its fundamental properties (see Sec. 54) 

Last but not least, we need some algorithm for the final identification of almost 
invariant sets on the basis of the discrete eigenvectors of Tn. The molecular 
dynamics group at the Zuse Center developed some prototype which is based 
on the interpretation of almost invariant sets as perturbed invariant sets (see 
DEUFLHARD et al. [24]). This identification algorithm is discussed in detail in 
Sec. 5.3. It exploits that the transition matrix Tn is a stochastic matrix with a 
cluster of eigenvalues near A = 1 and associated eigenvectors that are approxi 
mately constant on the underlying almost invariant sets (compare Fig. 2). With 
the HMC-based evaluation of the transition matrix Tn discretizing T the appli 
cation to realistic molecular systems comes into reach. The applicability of the 
ensemble approach to realistic molecular systems including Galerkin discretiza­
tion of the transition operator and identification of conformational subsets is 
documented in Sec. 6. 
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athematical and Physial Mdelling 
In this section, we complement the introductory comments on the modelling 
issue. In the first part of this section, some aspects of molecular dynamics are 
collected which are of special importance for the understanding of the side 
conditions of realistic applications to biomolecular systems: the structure of the 
energy function determining the Hamiltonian equations of motion, the neces­
sity of periodic boundary conditions, the existence and origin of conformations 
and conformational degrees of freedom, and the numerical background of the 
fundamental difficulties of long-term simulation. The second part is concerned 
with some notions and concepts from statistical mechanics which are necessary 
for the final definition of transition probabilities and almost invariance. It also 
includes a short discussion of the Frobenius-Perron operator in the context of 
statistical mechanics and molecular dynamics 

2.1 Classical M l e c l a r Dynamics 

2.1.1 Hamiltonian and Flow 

In classical MD (cf. textbook [1]) a molecule is modeled by a Hamiltonian 
function 

H(qp) \pTM + V(q) (1) 

where q and p are the corresponding positions and momenta of the atoms, M 
the diagonal mass matrix, and V a differentiable potential. The Hamiltonian 
H is defined on the phase space T c R2rf. Realistic MD-simulations typically 
include a large number N of atoms resulting in d = 3N spatial coordinates 
Thus, the dimension of r is d = 6N. The corresponding canonical equations 
of motion 

= M p , -gvadV(q) 

describe the dynamics of the molecule. The formal solution of (2) with initial 
state xo — (q(0)p(0)) is given by (t) — (q(t)p(t)) — <f>*o, where $ f denotes 
the flow. 

It is well-known that Hamiltonian flows have several important conservation 
and invariance properties. For the considerations herein, three of these prop­
erties are of main importance [5]: First, the conservation of energy iJ($*x) = 
H(x); second, the symplecticness of the flow, which implies the wellknown vol 
ume conservation property the local expression of which is 

AetD& = 1 for all x £ T, (3) 

where -D$* denotes the Jacobian matrix of the flow; and, third, the reversibity 
of $*: 



LEMMA 2.1 Let R denote the momentum reversion, ie., R(qp) = (qp). 
Then, the flow $* is Rreversible, ie. 

Proof: The equations of motion (2) are invariant under the substitution t — —t 
and p — p, a fact which directly implies 3 * o R = R o $* D 

An x e T is called a state of the system. For a given state qp) we will 
make frequent use of the notations 

= - and = T 4) 

which allow us to extract the position and momentum information from x. The 
set 0, = 7ril7 c M.d is then called the position space. In most cases the phase 
space is simply given by V — Q x R, i e , for every position Q arbitrary 
momenta Rd are allowed. 

2.1. Potentials and Atomic Interactions 

In classical molecular dynamics, the interaction potential V of a molecular sys 
tem is modelled as a sum of contributions from different types of interaction. To 
explain this, let the N atoms in the molecule be numbered by 1 , . . . ,N and let 
the position of the fcth atom in the molecule be denoted qk R3 such that the 
molecule's entire position state is given by q — (q[,... , qJi)T G 0. The typical 
interactions and associated types of potentials can be divided into "local" inter 
actions and "long-range" interactions. Typically, local interactions are induced 
by the bond structure of the molecule as, eg . 

stretching of a covalent bond between two atoms k and I, modelled by 
some potential with radial symmetry for example by a harmonic potential 
Vb(q,qi) = a(ri - r with rl = - qi\ 

changes in the angles between some bonds, modelled via bond angle poten­
tials VL (depending only on the angle between two bonds, i.e., depending 
on three atomic positions),3 and via so-called dihedral angle potential 
Kih (depending on the "dihedral angle" between the two planes which are 
spanned by four neighboring atoms, compare Fig. 3) 

while typical long-range interactions are independent of the bond structure eg . 

electrostatic interactions induced by the (partial) charges of the atoms k 
and I modelled by the Coulomb potentials Vc ~ r^ 1 

van der Waals interactions, modelled by Lennard-Jones potentials VLJ of 
the form br2 — ar 

3 The bond angle contribution of the two bonds between atoms k and I, and I and j depends 
only on the bond angle <pUj given by cos<pklj = (qk - q)1'(? )/rkij, i e . , i of the for 



The r u l t i n g t a l p o i a l then r d s : 

V(q) ^ q k , q ) + ^V(qkqqj)+ ^ Vdh(qk,q,qjqm) 
k k 

^ V^{qk, q) + ^ Vc(qk q 

where the sums run over each pair, triple, or quadruple of atoms which con­
tributes to the corresponding type of interaction. Generally speaking, all other 
many-body interactions are incorporated in an "average" way via these pair-
triple-, quadruple-additive terms. Errors in one term are compensated by pa­
rameter adjustments in other terms, so that the applicability of the resulting 
force field is always limited: it is never more than semi-empirical. There are 
some other types of interaction like, e.g., polarizability, which are included in 
essentially different ways For more details, the interested reader is referred to 

10 

8 

" 0 1 2 3 4 5 6 
m (radiant) 

F i g u r e 3 : United atom model of n-pentane with the two dihedral angles wi and u>2- On the 
right: Dihedral angle potential Vdih as a function of the dihedral angle due to [89]. The main 
minimum corresponds to the so-called t a n s orientation of the angle, the two side minima to 
the socalled igauche orientations 

REMARK 2.2 Some of the contributing potentials are unbounded. This is an 
artifact contradicting the physical situation: when excited with enough energy 
any bound will break (thus the harmonic form of Vb is inappropriate for large 
energies); for any pair of atoms the situation \qk — qi\ — 0 is impossible, i.e. 
Coulomb and Lenard-Jones potential are inappropriate for \qk — qi\ < ö for 
some 6 representing, e.g., the size of the atoms.4 One can deal with these 
problems by simply adapting the potentials: For example, we may introduce 
hard core collision conditions for two atoms k and I whenever \qk — qi\ = S 
As a consequence, we may assume that all types of potentials are smooth and 
bounded but we have to pay for this by accepting collision boundary conditions 

4 Obviously, these problems ca only occur when the kinetic energy of the system is huge 
which typically is not the case. Nevertheless, in typical models (as, for example, in the 
canonical ensemble, see Sec. 2.2.2) such a situation is a rare event but not impossible. 

10 



F i g u r e 4 : The triribonuclotide a,denyly\(3'-5')cytidyly\(3'-5')cytidin [r(ACC)] in the ex­
tended atom representation of GROMOS96 [109]. A and C denote the bases adenine and 
cytosine. Small greek letters refer to the set of torsion angles, which is necessary for a rough 
reconstruction of the molecule's configuration. The torsion angles of the ribose can be ap­
proximated by the pseudorotation angle P and the phase 6 [3] 

2.1. Essential Variables and onformations 

The typical molecular force fields are mixtures of bond-structure effects and 
strong long-range interactions. The potentials modelling bond interactions are 
functions of certain internal degrees of freedom like bond angles or dihedral an­
gles. It suggests itself to rewrite the equations of motion in terms of these inter­
nal coordinates. Unfortunately, this provokes a whole bunch of nasty problems 
e.g., with the efficiency of the evaluation of the forces, in particular of the long-
range forces. However, the internal coordinates represent the (spatial) geometry 
of the molecule so that changing some internal coordinate affects the molecule's 
"form". But most of the energetically possible changes are of minor importance; 
they can be seen as small fluctuations around the actual (meta)stable "global" 
molecular geometry, called the conformation. Biomolecules typically appear in 
different conformations and the coordinate changes which transform one confor 
mation into another one are object of main chemical interest. Normally, these 
conformational transitions can be described in terms of only a few internal coor 
dinates, which are therefore called conformational degrees of freedom or essential 
variables. In many cases, essential variables simply are specific dihedral angles 
connecting some otherwise nearly rigid subgroups of the molecule (cf. Fig. 4) 
but they may also be combinations of different internal coordinates (see [4] or 
Sec. 3.3 of BERENDSEN'S survey in [23]). Clearly, whether a certain internal 
variable may be an essential variable, depends on the structure of the whole 
molecule and can be made sure only by inspection of its dynamical behavior 



Nevertheless, chemical experience and intuition can often point out a collection 
of candidates and the statistical analysis of simulation data (for example via 
diagonalization of the covariance matrix [4, 30]) can supply other candidates. 

The dynamics of every (bio)molecular system contains a large number of 
extremely different time scales: On the smallest time scales (around 1 femtosec 
ond) , the motion of the molecule consists of fast oscillations around equilibrium 
positions,5 while all chemically significant molecular processes like conforma­
tional changes will show up, e.g., on a millisecond time scale. Thus, investiga­
tion of conformational transitions requires extremely long time spans so that 
it still is inaccessible to conventional simulation methods (compare Sec 2 1 
below). 

Today, a varied collection of methods for describing conformational dynam­
ics is available. These approaches are substantially different; they range from 
"simply" visualizing a hypothetical path for conformational transitions via in­
terpolation between experimentally observed crystal structures [111] to methods 
artificially changing the atomistic description of molecular dynamics for allow­
ing the acceleration of conformational transitions. The latter kind of approach 
includes such different concepts as the combination of molecular dynamics with 
reaction path methods [84], so-called "conformational flooding" via subsequent 
modifications of the original potential energy surface [47], or "steered molec 
ular dynamics" by simulating atomistic force microscope experiments [59, 48] 
Despite all differences, these methods share the same basic idea: to circumvent 
the inaccessibility of conformational transitions by means of changing the phys­
ical model. In contrast to this, our direct approach tries to leave the (reliable) 
atomistic model intact but replaces long-term simulation by an appropriatel 
chosen ensemble of short subtrajectories 

2.1. Boundary onditions 

Typically, biomolecular experiments are concerned with large numbers of some 
certain type of biomolecule embedded in a crystal or in solution. For modelling 
a crystal, it suggests itself to use periodic boundary conditions,6 because a crys 
tal may be understood as an infinite repetition of some elementary cell, where 
each of these cells contains, e.g., one of the molecular systems under investiga­
tion. Similarly, periodic boundary conditions are also used to model biomolec 
ular solute/solvent systems in the typical test-tube situation: a large number 
of biomolecules of the same type is irregularly, but nearly homogeneously dis 
tributed in a solute which itself consists of (small) molecules (e.g., water and 
ions). Each of the "large" biomolecules is surrounded by its "hydration shell" 
consisting of many solute molecules, so that the molecule together with its shell 
can be understood as a large "biomolecular unit". These large units are only 
loosely coupled to each other via the exchange of electrostatic energy and so-

5These are nothing but fluctuations (e.g., bond length or bond angle vibrations) inside the 
otherwise (meta-)stable conformation of the system. 

6 In molecular dynamics the phrase "periodic boundary conditions" means the reformula 
tion of the associated Hamiltonian equation of motion on some torus fl. 



lute molecules. Typically this situation is modelled by a system containing 
one of the biomolecular units with periodic boundary conditions allowing for 
some exchange with its neighbors (=copies), see Fig. 5.7 In this sense, periodic 
boundaries are of main importance for modelling the intermolecular exchange 
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F i g u r e 5: Illustration of periodic boundary condiions for modelling intermolecular exchange 
In the lower left corner of each periodicity cell a water molecule is exchanged between neigh­
boring cells 

While efficient algorithmic realization of periodic boundary conditions for 
the long-range interactions has achieved a lot of attention (cf. [67, 17]), there 
is no general strategy for dealing with bond-interactions in a periodic setting. 
Normally, one tries to fix the biomolecule inside the periodicity cell and imple 
ments periodic boundaries only for the motion of the small solute molecules and 
for the long-range interactions. 

Summarizing, for crystals or pure liquids, it is realistic to assume that the 
potential used in MD simulations is periodic, while this is a crude but not totall 
misleading assumption for biomolecular systems in solution. 

Assumptions concerning Potentials and Position Space As a conse 
quence of the above considerations the subsequent investigation is restricted to 
the following cases: We always assume that the potential is smooth and that 
singularities in the interior of the position space 0, are avoided, for example by 
means of collision boundary conditions. Whenever Q is unbounded (that is, in 
most cases, Q Rd) we always suppose that the potential V is binding, i.e 
satisfies lim^i^oo V(q) — oo. The case that the position space 0 is bounded 
is always considered in context with periodic boundary conditions: Then, V 
is some rectangular box in M.d (that is, in particular, Q, is compact) and the 
potential V is assumed to be bounded and smooth at the boundary (that is, it 
can be extended smoothly as O-periodical function) 

7Without the periodic boundary, i.e., if the model would only include a single "free" 
biomolecular unit, the polarization of the water molecules in the hydration shell would be 
significantly different. But the hydration shell has important influence on the behavior of the 
biomolecule, which i l lustates the importance of the periodic boundary. 
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2.1. Problem with Long-term Simulation 

Despite all problems mentioned so far, let us assume, now and in the follow­
ing, that we are concerned with some potential V and corresponding bound­
ary conditions which together appropriately model the interactions of a certain 
molecular system. In order to analyze the dynamical behavior of this system, 
we then have to approximate the associated flow $*, i.e., we have to apply some 
numerical discretization technique to the equation of motion (2). Typically, one 
uses symplectic one-step methods like the well-known "Verlet" scheme, named 
after its early inventor L. VERLET [110]. Generally, in the process of one-step 
numerical integration of (2) we replace $* by a discrete flow \ tA t , so that 

k+ = yAt = (*A t) 

with stepsize At (assumed to be constant, for the time being). 
It is an important feature of molecular processes that long term predictions 

over periods tremendously longer than the time steps applied in the discretiza­
tion are required. As already mentioned, the dynamics of every (bio)molecular 
system contains extremely different time scales, from fast vibrations on scales 
around 1 femtosecond to chemically significant molecular processes on, e.g., a 
millisecond time scale. Unfortunately, every numerical discretization schemes 
is forced to use time-steps of the order of magnitude of the fastest vibrations; 
already time steps of about 5 femtoseconds result in dramatic instabilities [98] 
Consequently, inspection of most chemically relevant processes by direct long-
term simulation requires such a huge number of time steps that it still is inac 
cessible to conventional MD methods. 

But numerical long term predictions seem to be inappropriate also for an­
other, perhaps more important reason: Numerical analysis of present discretiza­
tions restricts the validity of the discrete solution to only short time spans and to 
comparatively small discretization steps. Let us shortly illuminate this statement 
by summarizing the results of so-called "forward" and "backward" analysis: 

In "forward" analysis, one is interested in the propagation of initial pertur­
bations along the flow $* of (2), i.e., in the growth of the perturbations 
Sx(t;xo) = $*(xo + ÖXQ) — <&*£o. The condition number n(t) may be defined 
as the worst case error propagation factor (cf. textbook [20]), so that, in first 
order perturbation analysis and with a suitable norm | • | 

(£ ;o) | < K ( £ ) | O | for all 

Note that this number n(t) is independent of any discretization. From this 
point of view, numerical integration is reasonable only over time intervals [0, T] 
with K(T) sufficiently small compared to expected input errors. In real life 
MD problems, however, K seems to be exponentially increasing (see [1 1] for 
examples). 

The results of "backward" analysis [91, 49, 7] are more specific: For sym­
plectic discretizations, the discrete solution of a certain Hamiltonian system 
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with Hamiltonian H is "exponentially close" to the exact s lut ion of some per­
turbed Hamiltonian system, in which, for consistency order p and stepsize At 
the perturbed Hamiltonian has the form 

= H £ AtP (5) 
k= 

This means that the discrete solution nearly conserves the Hamiltonian H and, 
thus, conserves H up to 0(Atp).s In fact, numerical observations show that the 
average of the total energy is nearly constant over rather long time spans for large 
stepsizes, say At ss 1 femtosecond. Whenever one is not interested in a single 
discrete trajectory but in approximating time averages of (macro-)observables 
over a time interval [0,T] via associated mean values of Xk, k — 1 . . .T/At, the 
results of backward analysis may lead to much better error estimates than the 
worst case estimates of forward analysis (but clearly only as long as T (or At) 
are small enough). Compare [87] for more details 

2. Statistical Mechanics 

It is not the only problem that long term prediction of single solutions of the 
Hamiltonian system (2) is numerically ill-conditioned. There also are purely 
physical reasons which let it seem questionable to compute any single solution, 
even if this solution were arbitrarily accurate. This may come as a surprise, but 
it has a simple reason: We can never know the precise initial state —all the 
positions and momenta— of the whole molecule, simply because we in principle 
always have to accept measurement uncertainties when determining the initial 
state. When modelling the physical reality, this simple insight always forces 
us to propagate a collection of trajectories which "samples" the distribution of 
possible initial states. In this sense, we always have to simulate an ensemble 
of molecular systems which represents the distribution of possible initial states 
determined via the initial measurement. Then, every comparison of later mea­
surements with simulation results will concern mean or expectation values and 
not any single system in the ensemble. Hence, we have to consider an ensemble 
of systems described by a time dependent probabilty density f — f( t) in phase 
space, which obviously has to satisfy 

f(xt) with / / ( * = 0) (6) 

i.e., the probability fo() of being in x £ T at time t = 0 is simply transported 
along the trajectory $*x of the system. Even if the initial density /o is concen­
trated near an initial position xo, it may become disintegrated or "smeared out", 
so that the trajectory $*o alone cannot describe the situation appropriately 

In general, however, the above formal series diverges as N —> o and the term "exponen­
tially close" has to be specified carefully. See [50] for details 



Initial Preparation of an Ensemble The density /o describes the initia 
probability distribution in the statistical ensemble, i.e., fo() is interpreted as 
the relative frequency in the ensemble of systems in state x at time t = 0. 
Therefore the density /o has to be defined in accordance with the initial experi 
mental preparation of the ensemble. The phrase "preparation" reflects that the 
ensemble should be imagined as a collection of copies of the same system, each 
initially in one of the possible states with the collector having to "prepare" the 
collection such that the correct relative frequencies are achieved. In this sense 
the evolution of the density / = f(x, t) should not be interpreted as describing 
the "possibility" of finding a certain single system in a certain state, but as a 
"relative frequency" of systems in the ensemble occupying this certain state: 
The latter can be measured, the first not at all 

2.2.1 Liouville quation 

Another formulation of the evolution (6) of the probability density uses the 
Liouville equation associated with the Hamiltonian H 

= iCf if,/} f(t = 0) fo 7) 

where {-,-} denotes the well-known Poisson bracket.9 £ = —i{H,-} is a self 
adjoint operator on the Hubert space L2(T), called the associated Liouville 
operator (cf. [65, 62]). The solution of (7) in fact satisfies (6) On the other 
hand, it can be denoted using the semigroup generated by C 

f(t)exp(itC)f o* (8) 

for example, on the Hubert space L(T) 

2.2. Stationary Ensembles and Invariant Densities 

By far the most experiments are performed using equilibrium ensembles, i.e., 
ensembles which are described by stationary densities of the Liouville equation. 
In view of (6), these stationary densities / are given by invariant densities of 
the flow, i.e., densities / such that f(x) = f(^fx) for all instances t and all  

r . In particular for arbitrary smooth functions T E K with 

T{H())d 

the associated densities f(x) = T{H(x)) are invariant. In our context the most 
important features of these "energy prepared" densities are the following two: 

/ o , i.e., / is invariant (9) 

/ o R, i e / is p-symmetric (10) 

9 That is, for smooth functions / , g : T -» R: {f,g} = Dqf • Dpg — Dqg • Dpf, w i h Dq and  
denoting the derivatives with respect to positions and momenta, respectively. 
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where R denotes the momentum revrsio R(qp) — ( p) 

Canonical Densit Most experiments on molecular systems are performed 
under the equilibrium conditions of constant temperature, particle number, and 
volume. The corresponding stationary density is the canonical densiy associ 
ated with the Hamiltonian H 

-$ exp (—ßH()) with exp(—ßH())d 

where ß = 1/fcßT, with T being the system's temperature and kß Boltzmann' 
constant10 Since H was assumed to be separable / is a product 

/ „ ^ exp L ^ ±- exp(-ßV(q)) (11) 

=V(p) =Q( 

where we normalize V and Q such that 

r(p)dp=Q(q)dq = l (1 

For the case that the position space f2 is unbounded, we have to guarantee 
that the partition function Z is finite and the normalization (12) is possible 
Thus, we restrict our consideration to the case of binding potentials, for which 
we always assume that the asymptotic growth is fast enough to guarantee that 
J*exp(—ßH())d oo. 

2.3 F r o b e n i s - P e r r o n d K o o p n Operators 

One can analyze the statistical properties of rather general deterministic dy­
namical systems independent of any connection to statistical mechanics and its 
interpretation. Typically, this is realized by means of the Frobenius-Perron op­
erator of the dynamical system on the set M of probability measures. For the 
discrete Hamiltonian system k+ $Tk, the Frobenius-Perron operator can 
be defined by 

(Pß)(B) = ß (ß) for all measurable B cT and ß 

We are mainly interested in absolutely continuous measures ß and, thus, in the 
form of the operator acting on the associated densities. When restricted to 
densities, the Frobenius-Perron operator takes a particularly simple form for 

The canonical density is often called the Boltzmann distribution or Gibb 's canonical distri 
bution. It is known to be the maximizer of Boltzmann's entropy function S(f) = — J f log fdx 
in the space of all densities under the condition of given energy expectation (H) of the ensem­
ble. If ß is associated with the temperature T , the maximal entropy 5(/COn) — log-Z + ß{H) 
is just the thermodynamic entropy for systems with fixed temperature T and internal energy 
{H) and for given volume and particle number (cf[117] Chap. 1.3) 
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measure-preving maps like our d i s e Hamiltnian s y s m . In this c e it 
is defined by 

/ o $ (13) 

a definition, which we may extend, eg., to the usual function spaces LP(T) = 
{/ : Jr\f(x)\p dx < oo}, p = 1,2. Our short encounter with the Liouville 
equation, especially equality (8), allows us to rewrite our Frobenius-Perron 
operator P in terms of the Liouville operator £ as 

e x p ( £ ) in L(T) p = 1 (14) 

The associated adjoint operator P* = exp(—irL) is called Koopman operator 
due to B.O. KOOPMAN [62]. Koopman's lemma (cf. Lemma A.16 in Appendix 
A) states that P*, and herein also P, are unitary as operators on L 2 ( r ) n Con­
sequently, for Hamiltonian systems, the L2-spectrum of the Frobenius-Perron 
operator lies on the unit circle, i.e., it has no eigenvalues inside the unit cir­
cle. As already mentioned in the introduction of this manuscript, this is the 
central difficulty of the "dynamical system approach" to the identification of 
conformations 

Ensembles versus Single Systems There are at least two significantly dif­
ferent interpretations of the Frobenius-Perron operator P for Hamiltonian sys 
tems: 

Due to (14), we can understand P in the context of Statistical Mechanics as 
the propagator of an ensemble. Its norm-preserving properties guarantee 
the possibility of this statistical interpretation (no "loss" of probability) 

One can also interpret P in a probabilistic sense for single systems as typ­
ically done in the theory of dynamical systems, via its invariant measures 
i.e., measures ß £ M such that Pß ß. If an invariant measure ß is 
ergodic B R K H O F F S ergodic theorem states that we have 

— 
lim - Y ( $ (y)ß(dy) (15) 

for yu-almost every x e T and every integrable function . Hence, ß de 
scribes the relative frequency with which the single system visits a certain 
phase space region during its evolution in time 

The total energy of our Hamiltonian system (2) is preserved along its trajectory 
so that the system stays on a certain energy surface i e on a d— 1dimensional 
submanifold of the phase space T. This implies 

n F o r the special case of Hamiltonian systems, P is norm-preserving in i 1 ( r ) , too. Thi 
results from [66], Prop. 3.1.2. 

1 2 That is, it satisfies ß(B) e {0,1} for every invariant set flcT. 
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OPOSITION 2.3 Every ergodic invariant measure of our Haminian s 
(2) is singular with respect to the volume measure on V. 

In the context of molecular dynamics, the two above interpretations are 
mostly expected to be equivalent, in the sense of the physical ergodicity hypoth­
esis which states that the ensemble average (expectation value for the stationary 
ensemble) equals the running average A(x) for some single system in the en­
semble. Prop. 2.3 states that this can be true only for ensembles which are 
distributed according to singular measures on T, that is, only such ensembles 
can be simulated by following the long-term dynamics of some single system in 
the ensemble.1 

In turn, the ensembles with L^iT)densities considered herein (like the canon­
ical ensemble, for example), cannot be generated by iterates of a single system. 

In general, the invariant density associated with the evolution of any single 
system is determined by the corresponding initial state, while every stationary 
ensemble density is determined by the initial preparation of the ensemble 

2.4 C o n f o r a t i o n s as A o s t Invariant Sets 

Assume that an (arbitrary) stationary density /o is given. How to define the 
transition probability from one region B c T o f the phase space to another one 
C C r ? We are herein only interested in considering transition probabilities 
which allow for an experimental determination. The typical measurement pro­
cess for any kind of transition probabilities is the following two-step experiment 

1. Pre-Seection: Select from the ensemble /o at t — 0 all such systems with 
states B. This selection prepares a new ensemble which now has the 
density 

/ fo()dx )U{ 

Transition-Counting: After a time span r, determine the relative fre­
quency of systems in the ensemble fs with states in C. Since all systems 
evolve due to $* this relative frequency is equal to 

/ c{ )dx. 

Hence, in order to get a measurable quantity, the transition probabities have 
to be defined as 

1 T h e physical ergodicity hypothesis is mostly used in the context of the micro-canonical 
ensemble which is given by the equidistribution on a certain energy surface (with respect to the 
projected Lebesgue measure). Then, it has to be understood as the assumption that Birkhoff's 
ergodic theorem holds with ß being this microcanonical measure. Systems satifying thi 
condition are called "physically ergodic". 



to n \ ($T f)d 
)d 

(16) 

Using this definition we can introduce our notion of "almost invariance": A 
subset ß c T i s called invariant under the flow $* iff, for all K, 

(B) and, thus w(B,B,t) = 1 

where the last equality is independent of the choice of the stationary density 
/o- We are interested in subsets B with W(B,B,T) sufficiently close to 1 to be 
denoted as almost ivariant subsets. This first rough "definition", 

T almost invariant W(BBT) &1 (17) 

clearly depends on the interpretation of "sufficiently close to 1". For the next 
steps we will ignore the question how to define PS 1 precisely; it will later come 
out to be problem-dependent and related to the eigenvalue structure of the 
associated transition operator. However, our definition of almost invariance 
depends on the choice of the stationary density / and on the time span r . 

Conformations Before introducing a mathematical definition of the phras 
"conformation", let us collect the main aspects of the chemical intuition behind 
this phrase. Every conformation contains a lot of configurations that is, it is a 
set of configurations characterized by the following properties 

• Geometric similarity: Every configuration in the set induces nearly the 
same global geometry of the molecule which can be described in terms of 
a certain set of internal variables, the so-called essential variables of the 
molecule (cf. Sec 13) 

Meta-stability: The trajectory of a single system including all its fast 
oscillations around equilibrium positions remains inside this set for a long 
period of time before leaving it eventually 

Hierarchy of conformations: Every conformation corresponds to one of the 
"main wells" of the potential. The potential has a huge number of local 
minima. Thus, every such main well must contain many local minima 
and must be separated from the remaining parts of the potential energy 
surface by substantially large energy barriers such that the trajectory of 
a single system is trapped in this well for some long period of time. Thus 
there is a hierarchy of potential wells (every main well will decompose into 
several wells with less significant meta-stability). In turn, we also have to 
deal with a hierarchy of conformations 



Consequently, the connections between these three aspects are as follows: 
We need some measure of meta-stability in order to define the hierarchy of 
conformations. Then, we have to decide which level of this hierarchy we are 
willing to resolve and this decision determines whether two different kinds of 
global geometry are distinguished as indicating two different conformations or 
not. 

Unfortunately, the above characterization of meta-stability is related to the 
concept of a single system. In order to define the notion "conformation" in terms 
of the ensemble under consideration, we have to transfer these characterization 
to the statistical level of description. The statistical concept of meta-stability 
is given by the notion of almost invariance due to (17), which leads us to the 
following statistical definition: every conformation is an almost ivariant set of 
the ensemble in the sense of (17). 

As the above considerations indicate, the chemical usage of the phrase "con­
formation" never refers to any momentum information. Consequently, we are 
only interested in spatial subsets, i.e., subsets of the position space Ü. The tran­
sition probability between such spatial subsets B c Q, and C C ft, is given by 
the transition probability between the associated phase space fibers T(B) and 
r(C): 

W(B,C,T) = w(r(B)r(C)T) with r(B) {(qP) r, } (IS) 

where the notational ambiguity is accepted for the sake of simplicity; in every 
case, the meaning of W(B,C,T) is clear from the context. Consequently, some 
spatial subset S c f i i s called almost invariant iff w(B, B, r) s» 1. 

The probability w(B,B,r) to stay within some set B C fi induces our kind 
of a statistical hierarchy: an almost invariant set B may contain almost invariant 
subsets Bj but, whenever W(BJ,BJ,T) < W(B,B,T), the decomposition of B is 
interesting at most on finer levels of resolution. We will see that this statistical 
hierarchy induces an associated hierarchy of potential wells. In this sense, a 
decomposition of the potential energy landscape into several "main wells" cor 
responds to a decomposition of the position space into almost invariant sets 
with superior probability to stay within. 

If we —due to the usual belief in chemistry— suppose that conformational 
transitions can be characterized via some few essential variables only, then we 
may further restrict the form of the almost invariant sets of interest: We do no 
longer consider arbitrary spatial sets B c Ü o r the associated fibers T(B) C T 
but only such sets which can be characterized in terms of the essential variables 
alone. This final restriction to such conformational subsets will be discussed in 
Sec. 3.5 in detail. 

Summarizing, in order to characterize the conformational dynamics of the 
molecular system, almost invariant (spatial or conformational) subsets with su­
perior probability to stay within and the transitions between them are the ob­
jects of interest 



r o b m - A a p t e d T n s t i o n Oera to rs 
We are now ready to define the transition operator T for replacing the inappro­
priate Frobenius-Perron operator P. The needs explained above require that 
must have the following properties 

T must have a unique invariant density reflecting the distribution in the 
experimentally prepared ensemble 

T has to represent the correct transition probabilities between subsets of 
the position space 

Considered in appropriate spaces, T must have isolated eigenvalues which 
allow to identify the conformations via the associated eigenvectors 

To this end, we will first define a spatial transition operator, which acts on func 
tions living on the entire position space. After studying its basic properties, we 
will generalize this definition for allowing to include the restriction to essential 
variables (Sec. 3.5) 

3 .1 S p a t i a l T r a n s i t i o n O p e r a t o r 

Let us now assume, that the statistical ensemble under consideration is described 
by a (nonnegative) invariant phase space density /o G LX{T) which satisfies 
conditions (9) and (10) and leads to a positive reduced densi 

F(q) [ (qp)dp, (19) 
s.d 

which is smooth and finite on f2. The transition operator is given by 

u{q) - ^ - J qp) fo(qp)dp, 0) 

where u = u(q) is a function u : Q —> C. Thus, T is defined by a suitable 
weighted average of the Frobenius-Perron operator over the momenta in each of 
the trivial fibers 

T(q) T, = q] {q} x 

where the weights are given by the experimentally prescribed stationary density 
/o- Hence, the transition operator describes the statistics of the redistribution 
of systems in the ensemble via the flow $ r with respect to the time scale r . 
Since /o is stationary the shape of the ensemble distribution does not change 
It is thus more adequate to say that T describes the spatial fluctuations inside 
the ensemble /o induced by the flow $ r . 
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We c n s i d r T as an o p e r on the w e i g d spa 

Vt) {u : V C, u{q)\F(q)dq< } p = l 

Obviously, Lil) is a Hubert space with scalar product 

u, q)v{q)F{q)dq 

and induced norm \\u\\F — (U,U)F- On LF(Q), we use the canonical norm 
| |U| | I ,F = JQ \u(q)\F(q)dq. In the subsequent paragraphs we will discuss the 
important properties of T with respect to these spaces. But before going into 
details let us consider the special case of the canonical ensemble: 

EXAMPLE 3.1 For f , the definition (11) yields F(q) = Q(q), so that 
together with ( 0 ) 

Tu(q) f u(7qp))P(p)dp 1) 

Hence, in this case, T describes the momentum weighted fluctuations inside the 
canonical ensemble with respect to the time scale r. In the following, always 
if /o = /can, we simplify our notation and denote the weighted spaces LPQ(Q) 

from above by LP(Q) , and, consequently, the associated norms by 

II " l = II " l 

1.1 Transition Operator for Periodic Potentials 

Let us now discuss the case of a periodic potential, where 

V(q + mljej) = V(q), Vm G Z 

with ej being the unit vector in the j th coordinate direction. The associated 
position space is the "periodicity cell" Q = rXfciPMj) an<^ a n considered en­
semble densities /o are supposed to be normalized with respect to the restricted 
phase space d x l 1 ' . Hence, the transition operator T should also be restricted 
to spaces of periodic functions on f2. That is, we may consider T as acting on 
L£ep(f2) instead of Lp(Rd). It will later turn out that it is convenient to do this 
in the following way: Let us first define the periodicity map £, : M.d —> 0, as 
follows: For every y G Rd there is a unique q such that there is a tuple 
(m n) € Z yielding 

q + 

This function y h-> q is the periodicity map £, ie. , £(y) = q. Via £r(Q,p) = 
(£(q)p), the map £ induces a periodicity map £ : T ü x Rd for the original 



phase space T = Rd x B.d. With its help, we restrict the flow $* to the torus 
given by fi and the periodic boundary conditions by considering the flow 

£ o $ 22 

instead of $*. The transition operator is then defined by 

Tu(q) J^- J u (mj) (qp)dp, 3) 

now acting on the spaces Lil) of functions : Q weighted with the 
density F\ 

1. xemplifying Spectral Properties of 

In the following three examples, we will always consider the case of canonical 
ensembles (/ / ) with reduced density F Q. 

EXAMPLE 3.2 As a first example consider the one-dimensional harmonic oscilla­
tor (H(q,p) — (q2+p2)/2 and f2 R). From (21) we get with the abbreviations 

= cos r and s = sin r: 

Tu(q) u(cq — sp)V(p)dp with V(p) — \ — exp — 
JR V V 

Thus, we have to distinguish between two essentially different cases: 
First, assume c = 1, i e , r = 2nm, m € Z. Then, we immediately observe 

that Tu = u for all u € LQ). That is, T is the identity with spectrum 
u(T) = {1} and any subset B c l i s invariant. For c = —1, T is the identity 
on the subspace of all symmetric functions (u(q) = u(—q)). 

Second, for \c\ < 1 we can generate a sequence of eigenvectors by the fol 
lowing construction: Assume that u e L2(Q,) is a smooth eigenvector for the 
eigenvalue A, i e , that Tu Aw. Differentiation of this equation with respect 
to q yields 

q(Tu) q 

Thus, A* is an eigenvalue with eigenvector w* — Dqu. Since %R G L2(Q) 
satisfies T\R = X , we can find a sequence of eigenvectors given by polynomials  

LVt) G N, satisfying 

q and q 

If we additionally choose these to be pairwise orthogonal with respect to 
, -) we end up with 

(q) = q (q) = q - s (q) = q - 3sq, 

with s = J p2T(p)dp — 1/ß. The corresponding eigenvalues are A„ = cos"(r). 
These eigenvectors are illustrated in Figure 6. We will see in Section 4.2 that 
for \c\ < 1, T indeed has purely discrete spectrum with a single accumulation 
point at zero. 



/.2=COS(IT) 

F i g u r e 6: Probabilit density vn(g) — \unq)2Q() of the e i n v e c t o r s u for a harmoni 
oscillator (H(q,p) 2 ) 2 and ß = 1) 

EXAMPLE 3.3 As a worst case example let us consider a canonical ensemble o 
free particles in space dimension one ( i e , V = 0, M = l ) 4 For simplicity, set 

= 1. From ( 1 ) we then get 

Tu(q) u(q- p) V{p) d with T(p) = - ^ exp (-^ 

Applying the Fourier transform u(k) — (l/n) u(q) exp(ikq)dq, the convolu­
tion is reduced to a simple multiplication: 

Tu)k) - VV(k)u(k) Tu(jfc) 

Since the Fourier transform is unitary on L2(R) and the transformed operator 
T is a multiplication operator we simply have15 

a(T) a(f) - ( T T ) 1 / Range(P) Range (exp ( - k /3)) = [01] 

EXAMPLE 3.4 The simplest example for a bounded system is the free particle 
in a box with reflections at the walls: choose 0 [—a a] for an a 0, with 

1 4In this case our initial assumption / e ^(T) is hurt. For the scope of this example w 
ignore this. 

1 5Compare Appendi B, Thm. B.41. 



V(q) = 0 for — a < q < a and reflecting walls (V() = for |g| ). The flo 
map associated with this "irregular" potential is 

g p ) = (Za{q + TP),pS(q + TP)) 

with the 4a-periodic zigzag (cf. Fig. 1) and sign functions Za and S given on 
[ a] by 

2«(?) < Z , ["««] and (g) = \ 
n - « nl 

a — a [—2a, a) 

a — g aJ 

Hence, the definition of the transition operator reads 

ufa) u(q-TP))V(p)dp, 

acting on L2(—a,a).16 We now choose a somewhat unusual representation of 
(—a a): The trigonometric functions 

g) c o s - and k(q) = sin f (A; + -— = 0 1 

indeed1 span L2(—a, a). Fortunately, these basis functions satisfy k ° Za 

and s Za k, which directly leads us to 

cos(-Tp)V(p) dp k = exp(_f^T^  

cos((k + -^TP)V(p)d k = e x p - ( -

showing that Ck and Sk are e igenvtors o T. M o , we may expand any  
L2(—aa) in this basis yielding 

^ 

Henc, we may rwr i te T in the f f a d i s e mult ipl icion o p e r : 

T(k)k£N = (A/t a/t)fcGN with Xk = exp ~k—-y-r = 0 1 

This proves that its spectrum is discrete: o(T) = {Xk, k G No} U {0} 

The reduced density is F{q) = Q(g) = l /2a . 
1 7With = {exp(iknq/a),k e Z} also B2 = {exp(i(A; + l/2)Ttq/a),k e Z} is a basis 

system in L2(—o,a), because with u G £2(—a, a) also the function «(g) exp(— iq/2a) lies 
in L2( —a, a). The basis chosen herei consists of the symmet ic part {c^} of , and the 
a n t i s y m m e t i c part { s } of 



These examples taught us several important lessons about the properties o 
the transition operator T: If T is considered as an operator in L2, the spectrum 
of T is real-valued, and may be discrete. The eigenvalues depend on the time 
length r , converging to one with r —>• 0, while the eigenvectors need not depend 
on r . For r > 0, the largest eigenvalue A = 1 is simple and the associated 
eigenvector is the constant function \n- But we must not forget that, in worst 
case situations (e.g., T — Id if cos(r) — 1 in Example 3 . ) , the spectrum may 
degenerate (no eigenvalues of finite multiplicity). 

But the above examples do not contain anything like an almost invariant set 
Thus, for illustrating the connection between certain eigenvectors of our tran­
sition operator T and almost invariant structures, we have to consider another 
example: 

3. The G d i n g E x a l e 

Let us now consider a simple system for which the distinction between different 
"conformations" or almost invariant subsets makes sense. For this purpose we 
return to the particles-in-a-box ensemble from the introduction. That is, we 
add a thin reflecting barrier of energetic height E0 at q — 0 to the system of 
Example 3.4 (cf. Fig. 1) and consider the Hamiltonian H(qp) — 2/ V(q) 
in Q — [—a a] with the potential 

if 0 < q\ < 
V(q) if \q\ 

ifg = 

This has to be understood such that the flow $* is given by the zigzag functions 
from Fig. 1. More precisely, the flow consists of: reflections between —a and a 
if the total energy is sufficient to cross the barrier i e 

qp) {qp) = {Zaq + T p ) q + Tp) if H(qp) E0 

with the zigzag and sign functions Za and Sa from Example 3 . ; and reflections 
between ±a and 0 if the total energy is too small, i e 

(qp) qp) {a/2(q ± a/ + rp) T a / p q ± a/ + rp) 

if H(qp)<E0 

with q G (—a, 0) for the + sign and q £ (0, a) for the — sign. 
With respect to the canonical ensemble the probability that the total energy 

of some system in the ensemble is sufficient to cross the barrier is given by 

pvob(H(qp) E0) V(p)dp, 
>^/E^ 

which is temperature-dependent via V. Suppose that the temperature and 
the barrier height E0 are chosen such that this probability is very small, i e 



pxob(H(q,p) > E0) — e. Then, the two sets (—a, 0) and (0, o) are almost 
invariant. In order to see how this intuitively obvious fact is described by the 
eigenvectors of the transition operator T, consider the following decomposition: 

Tu(q) u(qp))V(p)dp l) 
/:^ 

r 

T_u if 

u(n(qp))V(p)d </) 
V^ 

v  
T+u if 0 

u ( 7 ( « P ) ) P ( p ) d p 
>VE^  

T0u(q 

We know that X-a,o) a n d X(o,a)
 3Jce eigenvectors to the largest eigenvalue A = 

1 — of T and T+ , respectively. If we now consider 

V - ~ X 

we therefore find that 

v(q) (1 - ) v(q) + T0v(q) < (1 - ) v(q) + 

Thus, we may interpret v as a good approximation of an eigenvector of T to an 
eigenvalue A w l - 6 . We already know that A = 1 is the largest eigenvalue of 
T with eigenvector xn- As w e already observed in the introduction (compare 
Fig. ), v approximates the eigenvector to the second largest eigenvalue A2 « 
1 — e of T (they are identical in "picture norm"). Moreover, this eigenvector 
indicates the two almost invariant sets via its sign, that is, the eigenfunction 
takes positive values on the first almost invariant set and negative values on the 
other. For the parameter values of Fig. 2 (a = 1, ß — 25, r = 2, E0 — 1/10, 
leading to e 0 2 5 ) , the dominating eigenvalues Xk of T are given in the 
following list 

Af 974 478 53 56 54 

We observe that the third largest eigenvalue is well-separated from Ai = 1 and 
A2. As we will see in the following, this is the "generic" situation if the system 
mainly has two almost invariant sets: There is a cluster of two eigenvalues 
Ai = 1 and A2 « 1, clearly separated from the remaining part of the spectrum 
of T, and the two corresponding eigenvectors indicate the almost invariant sets 
via their signs: Denote the two eigenvectors by v\ = X[-i,i] anc^ V anc^ define 
their sign structures s(q) = (sign(vi(q)),sign(v2(q))) via the signum of the cor 
responding entries of the eigenvalues for every position q g [—1,1]. Then, the 
almost invariant sets are given by all q with the same sign structure 



REMARK 3.5 When cons id ing the limit E0 —>• oo, i an unbounded increase 
of barrier energy leading to e —> 0, we observe that A ) —> Ai(e) = 1. Hence, 
in the limit, the eigenspace of T for the eigenvalue 1 is two-dimensional 
and spanned by the two eigenfunctions X(-o,o) a n d X(o,a)j SO that (—a, 0) and 
(0, o) are strictly invariant sets. That is, we may interpret the above almost 
invariant case as a specific perturbation (with small perturbation parameter 
) of the unperturbed invariant case. As a consequence, the eigenvectors of 

A ( ) and A (e) for the perturbed situation (cf. Fig. 2) correspond to the basis 
-a,o) + X(o,o)5 X(-afl) ~ X(o,o)} o f t h e "unperturbed" eigenspace for A = 1. 
Under this perturbation, the eigenvalue cluster (Ai(e), A2(e)) remains iso­

lated from the remaining part of the spectrum: For example, the third and 
forth largest eigenvalues, \z{e) and Ai(e), both converge to e x p ( 2 2 / 2 ß ) 
this is an implication of the results of Example 3.3) 

F i g u r e 7: Eigenvectors to the second (A = 0.948), third (A = 0.914), and forth (A = 0.465) 
largest eigenvalues of the transition operator T for a free particle in a box with two reflecting 
barriers at q = - 0 . 5 and q = 0.5 (a = 1, ß = 25, r = 2, = 1 / 0 , leading to e 0.025) 
Results of a discretization of due to Sec. 5. 

Two Barriers Figure 7 indicates that this concept can be generalized. It 
shows the interesting eigenvectors for a particle in a box with two reflecting 
barriers separating three almost invariant subsets. We observe that now there 
is a cluster of three eigenvalues near A = 1 with a distinct gap to the remaining 
part of the spectrum and with eigenfunctions indicating the almost invariant 
subsets via their sign structure.19 

Again, the step-like shape of the eigenfunctions indicates that they corre 
spond to a certain "unperturbed" situation (given by the limit EQ —> oo, see 
Rmk. 3.5 above) where the eigenvalue A 1 is threefold and the associated 
eigenspace is spanned by X i / X i / i / , and X i / i ) 

For the p a a m e values from above, e x p ( — - / 2 a 2 ß ) 0.454. 
1 9The sign structure of the three eigenvectors = X( i , i )> "2 (left i Fig. 7), and ^3 

(middle in Fig. 7) for the three largest eigenvalues A = 1, A2 = 0.948, and A3 = 0.914, is as 
follows: (+ , —, —) for the almost invariant set (—1, —1/2) (+, fw 0, +) for the almost invariant 
set (—1/2,12) (+, + , —) for the almost invariant set ( 1 2 , 1 ) 



REMARK 3.6 Almost invariant sets can be interpreted as specific perturbations 
of invariant sets. The associated perturbation parameters are small crossing 
probabilities or large barrier energies, but not the fluctuation length r or "ex­
ternal" parameters like the temperature. To see this, observe that in the limit 
T —> 0 or T —¥ oo, the specific isolation of the eigenvalue cluster near A = 1 is 
destroyed, because most the eigenvalues (and/or the essential spectral radius) 
of T converge to 1 

3.3 Consideratio as arkov Operator 

We now consider the probability space (il,B,ß), where B denotes the u-algebra 
of Borel sets of 0, and the probability measure ß is given by 

H(B) f F(q) dq for 

The set of all densities ( i e , nonnegative functions) in the corresponding L1 

space Lp(Q) is denoted T>F (cf. Def. A.2 in appendix A). We want to show that 
T can be considered as an Markov operator on Lfl) (cf. Def. A.3) 

LEMMA .7 T defines a bounded lear Markov operator Lp(il) — fl) 

Proof: Consider an arbitrary fl). Via definition ( 0 ) we find 

\\Tu\ - L - (gp) fo(qp)d F(q)dq 

qp) fo(qp)ddq 

)d 

U ( ) \ f0()d 

u(<l)\ fo(qp)ddq \\u\ 

v  
F 

where the step from the third to the forth line uses the substitution x —• $ r x 
and exploits the invariance of /o with respect to this transformation and the 
volume conservation property of the flow. Thus, T is well-defined on the en­
tire space Lp(il). In the second line, equality holds iff u > 0, which shows that 
11̂ *11 i,i? = | |U| |I ,F for u e Dp. Since F, / 0, we also have Tu 0 for D 
Hence, T is a Markov operator D 

REMARK 3.8 The property of being a Markov operator already implies the 
boundedness | | r | | 1 (cf. [66] Prop. 3.11) 
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3.4 S e l d j o i n t n e s s a Transti P r o b a b i e s 
Now, T is considered as an operator on the Hubert space LQ) 

LEMMA 3.9 The transition operator T : LFfl) LFil) is a bounded lear 
operator with ||TW| \\U\\ 

The following proof is nothing but an application of the Cauchy-Schwarz 
inequality. Nevertheless, it is presented in detail because the same strategy will 
be used again in the subsequent 
Proof: For an arbitrary Q), definition ( 0 ) yields 

\\Tu\ 
F{ 

qp) (qp)dp F{q)dq 4) 

Consider the following family of Hilbert spaces " : Fo the space T 
consists of all functions Md C with 

w(p)\ fo(qp)dp 

with the associated scalar product 

(w (p)(p)fo(qp)d 

The induced norm is denoted || • . For all 0,, the constant function xw 
is an element of "K because 

/ fo(qp)dp F(q)< 
Rd 

Next, consider the family of functions wq : M.d —> C defined by wq(p) = 
u(-jT$(qp)) A short calculation like in the proof of Lemma 3.7 reveals 
that 

(p)\ qp)d dq \\u\ 5) 

= |h, | if < 

Thus, we have wq € Hq for almost every 0,. Then, the Cauchy-Schwarz 
inequality yields (again for almost every q) 

/ 
Rd 

U(T (qp))fo(qp) 

F(q) 
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H 

Inserting this into equation ( ) yields 

u\ dq 

where the last equality results from 5) D 

Next, we are interested in the transition probabilities defined by T. There 
fore, let us consider two arbitrary measurable subsets £?, C C 0. We again use 
the notation 

T(B) x e T , B} 

The characteristic functions \ and \ are elements of LQ). Thus 

X ~ E ^ - T ( q P ) ) qp)dq)F(q)dq 
r W 

) x ) d 

) x (§ )d 6) 

where the last equality results from the transformation x = $ r y together with 
the invariance of /o and the volume conservation property of the flow. We also 
find that 

(XX F(q)dq = fo()d 

which together with equation ( 6 ) finally reveals that 

^ T ™ ' * MT(BmClr> 7) 
{XX k{)d 

showing that T indeed represents the transition probabilities of our interest. 
Using the other invariance of / it is easy to prove another crucial property 

ofT 

LEMMA 3.10 The transition operatorT : LQ) fl) is selfadjoint Hence, 
ts spectrum satisfies a(T) c [—11] 

Proof: First, consider two arbitrary, measurable subsets B , C c f i . Using ( 6 ) 
and the reversibility of the flow (Lemma 1) we get 

X )X R($ )dx. 



Now, since /o is p-symmetric (eq.(10)) and the sets T(B) and T(C) include all 
possible momenta (ie x e T{B) R r (B) for example) a transformation 

— R yields 

y ) X R { y ) fa{y)dy 

)X f 0 ( ) d = (X 

Since the step-functions are dense in L2(Q), we get (TU,V)F = {UTV)F for 
all u,v € L|i(n), i.e., the self-adjointness of T. Thus, its spectrum a(T) is 
real-valued, which together with the boundedness (Lemma 3.9) implies <r(T) C 
- 1 1 ] Ü 

3.5 Restriction to Esential Variables 
In the following we study the consequences of the restriction from full spatial 
coordinates to other essential degrees of freedom. Let this set of essential vari 
ables be given in terms of the state of the system by a continuously differentiable 
function 1? : T - W, 

${ ( ^ , ^ ) ) 

and denote the corresponding essential configuration space by 9 = #( r ) . We 
always assume that 1? is independent of the momenta p, i.e., the function 1? 
depends only on the positions q. For simplicity, we use the notation i? = i?(g) 
as well as the more general form •& = $(x), where the meaning is always clear 
from the context. For any possible value 9 0 we denote the corresponding 
level set by 

r(0) - { r, #() = 9} 

We assume that these level sets are smoothly embedded submanifolds of dimen­
sion 2d — v in r.2 0 Let do~g{x) be the intrinsic volume element on T(ö).21 

Let 0, C M.d be the position space so that T = Q x Rd. Since -& does not 
depend on the momenta p, the volume elements have the special product form 

dag ( da/) (q) A dp, 

where dq) denotes the intrinsic volume form of 

n(6>) {q 0, m = 9} 
2 0Thus, we assume that the associated Jacobian matri D-&(q) has full rank for any q ft. 

Due to Sard's lemma, this is the generic situation. 
2 1 Now and in the following, we assume that dcrg(x) is appropriately denned on all connected 

submanifolds of T(0). Moreover, it herein is of no importance whether F(0) consists of more 
than one component or not 
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which is a smoothly embedded, (d — ^-dimensional submanifold of f2. 
For any invariant density /o we define the reduced probabity density as 

{9) f0()d 

which is an element of L1(9) if /o € i 1 ( r ) . 
The transition operator associated with this set of essential variables then is 

u(0) ^rW {$(< )dae( 8) 

where u — u{9) is a function u : 0 —> C. 
Thus, T$ is again defined by a suitable fo-weighted average of the Frobenius-

Perron operator over every "essential fiber" T(9), that is, the average includes 
all momenta p and that part of the degrees of freedom which are "orthogonal" 
to the considered essential variables -&. 

We consider T as an operator on the weighted spaces 

p
FQ) {u C u(9)\4e) d } p = l 

with the sa la r p r d u c 

u , F , (d)v(0)(d)dß 

for the Hilbert space LF (@), and induced norm ||«| | |^ u,u)Fi}. 
For subsets B c Ö, the union of all fibers T(9) with 9 B is denoted by 

T{B) = [ T(6») T : i?( 

in analogy to the notation used above. By repeating the computations from 
Sec. 3.4, we observe that T in fact describes the transition probabilities between 
subsets B, C C 6 , that is 

{ T X 

(X 
W(T(B)T(C)T) 

EXAMPLE 3.11 For the above considered spatial case, we have to choose 
Tri, that is d(q) q with v = d. Then, Vl(q) = {q} and T(q) = {q} x R 
implying daq(x) = dp and the reduced probability density is Fq) = F(q) so 
that definitions ( 8 ) and ( 0 ) coincide 
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REMARK 3.12 Suppose that we are dealing with the canonical ensmble /o = 
/can. Due to [64, 104], the so-called conformational free energy A A{9) for a 
set of essential variables may be defined via 

A{9) = -ß\nZ{9) with 2(0) exp(-ßH())d 

that is it is defined via the contribution Z{9) of the T(9) to the classical partition 
sum J exp(—ßH)d. With this definition, we obviously have 

Z{9) exp(-ßA(9)) = Z(6) 

which allows to rewrite the transition operator as 

u{9) (tf($) exp(-ß(H()-A(0))) 

Consequently, the transition operator T# describes the fluctuations inside the 
ensemble /o induced by the flow 3>r and weighted by the difference between the 
potential energy surface and the conformational free energy surface 

Restriction Operator and Adjoint We next show that T$ may be written 
as a specific restriction of the full spatial transition operator T. The associated 
embedding is given by the following 

DEFINITION 3.13 Assume p = 1,2 and let i? : T - be a set of essential 
coordinates with the reduced probability density (ff). The restriction 
operator R : L(Q) — L (Q) is defined by 

u(9) -—— u()fo()d 
W 

while the prolongation operator B : LF 0) Q) is simply given by 
{Bu){q)=u{d{q)) 

We next show that these operators allow to express the transition operator 
for the given essential coordinates as T — RTB. To see this, first consider 

MO) P T T u($(qp)))fqp)d 
r KQ) 

ince als 

u{9) Tw^r u(q) ( )d dag{q) 
(?) 

v  

F 

-±— u{q)F(q)dq) 9) 



we inded end up wi 

u(6) — L - u($(qp)))f0(qp)dq)d u(8) 

Thus for further purpose we note the following 

PROPOSITION 3.14 For ay intrable function u : 0 —̂  C, the restriction a 
prolongation operators R and B allow to rewrie the transition operator T 
as 

u = 

Moreover, B is an isometr, ie., for p = 1 we hav 

u\\PtF ||w| V u ^ 0 ) 

and R is a contraction with Markov propert, ie., for p = 1 

w | F t ||W| VW il), and u\F^ I M Vi Vt) 

In addition, R$ : LF(il) —>• LF ( 0 ) and B# : LF ( 0 ) —• L | i f i ) are adjoint to 
each other, i.e., R$ = B# and B# R# Thus, in particlar, ifT : LQ) 
LF(fl) is self-adjoint, then T : LF@) — LF (Q) is, too 

Proof: The isometry of B directly results from «otf being constant on every 
submanifold T(9) 

U\ HV{q))\F{q)dq= u(0())\ ) d 

M6)\ h{)d ||«| 

The contraction property for R# for p — 1 and the associated Markov property 
are obvious. The contraction property for p — 2 can be proved with the similar 
technique as the Z2boundedness of T in the proof of Lemma 3.9. Therefore 
define a family of Hilbert spaces Ti with scalar product 

u, q)v(q)F(q)d(q) 

and associated norm || • \\g. Then, with similar arguments as in the proof of 
Lemma 3.9, we can show for arbitrary (fl) that the Cauchy-Schwarz 
inequality yields for almost every 9 

u(q)F{q)d{q) (Xu \\uf{9) 
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which p e m i s us to e m a 

u | . F „ Mö)\ (6)d 

-Vm u(l)F(q)dq) 
W 

\\u\ u{q)\F{q)dq = \\U\ 
Jn 

In order to show B = R choose arbitrary fl) and F @) 
Then B L(tt) and 

(Bu,u^{q)Yv{q)F{q)dq 

u(0(q)yv(q)F(q)dq)d  

u(9) v{q)F(q)dae{q) 

„i 

) 

which demonstrates that B$ — R. Since we are working in Hubert spaces this 
also implies R B" D 

3.6 Asociated Stochastic D y n a i c a l System 
Let us return to the case t? = 7Ti, that is, to the spatial transition operator and 
the position space Q. The following paragraph is crucial for the final interpre­
tation of our approach and its results. For the sake of conceptional simplicity 
we restrict the presentation to the case of the canonical ensemble, i e , we onl 
consider f0(qp) = fcaa{q,p) = Q(q)V(p). 

Assume B(il) to be the u-algebra of Borel subsets of Q. Moreover 
let Mf and M\ C Mf be the spaces of all finite and probability measures 

B —> R+ , respectively. 
We now define a specific stochastic dynamical system, which will later be 

identified as the dynamical system associated with the spatial transition oper 
ator T. For a given initial position c/o 0, we define 

qk = K(qkPk) = 0 1 (30) 

with every p^ G M.d being randomly chosen from the probability distribution V 
on Rd. According to [66], Chap. 12.4, this defines a regular stochastic dynamical 
system which is described by a sequence of probability measures ß M given 
by the probability of finding q^ in a subset B B of 0, i e 

(B) prob( B) 
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The sequence {ßk} is also g i n by the iterates of the socalled Foias operato  
Mf Mf defined by 

Pß(B) ( i q p ) ) V(p) d ß(dq) B, (31) 

in the sense that ßk = Pkßo if ßo Mi is the probability measure according 
to which the initial random position qo is distributed. 

In the following we consider measures ß M with densities i e 

(B) f u(q)Q(q)dq 
JB 

According to (31) the Foias operator acts on such measures as follows: 

Pß{B) { K ) ) U(-) fm) d 

u ( ) f c ) d 
i 

j y^u((qp))V(p)d Q(q)dq 

Thus Pß has the density 

Tu{q) u(Tqp))V(p)dp, 

given by the transition operator T. That is, T : L1(f2) —> I/1(0) is the density 
operator associated to the Foias operator P and therefore also associated with 
the stochastic dynamical system (30). Consequently: If the initial position qo of 
(30) is distributed according to the probability density u 2?(fi), the probability 
density Uk V(Q) of finding qk = q is given by k{q) = Tku(q) 

Associated Markov Chain and Control Model In addition, we know 
from Sec. A.l of the appendix, that the Markov operator T induces a Markov 
chain. Every iteration of (30) is a realization of this Markov chain. MEYN AND 
TWEEDIE [79] call the stochastic dynamical system (30) a "nonlinear state space 
model" and also discuss its interpretation as a Markov chain (see Sec. 3.5.5 in 
[79]). And they stress another important point: (30) may also be interpreted as 
a "control model", which describes the control of the positions q via the "control 
variables" p. If we use the recursively defined notation 

k+qPo-- ,Pk) = 7 ( f c ( g , p o ,P)Pk) e N (3 

with (q) = 7 $ r ( g ) ) the iterates of (30) can be denoted as 

qk k(q0,po, Pk), (33) 

Hence, we see that (po,- • • ,Pk-i) may be interpreted as some control sequence 
which can be designed such that some desired final position is accessibe from 
the initial position q 
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ast to the mathematical analogy betwee  
and the stochastic dynamical system— 
n the physical meaning of the two levels  
physical reality (the ensemble) and the 
e associated Markov chain) (cf. Fig. 8) 

hi«0 

F i g u r e 8: Illustration of transitions in an ensemble in contrast to the evolution of the as­
sociated stochastic dynamical system for the double well potential V(q) — (q2 — l ) 2 . Left: 
Canonical ensemble / c a n in the two-dimensional phase space. The white lines indicate trajec 
tories of single systems during some time span r inside the ensemble. Since /COn is invariant 
under the flow, all trajectories are parts of isolines Only some trajectories of systems with 
small probability cross the separation line q = 0 between the two almost invariant sets around 
q = — 1 and q = 1. Right: First 2000 steps of the discrete trajectory of a single realization 
of the associated stochastic dynamical system. Again, jumps across the line q = 0 are rare. 
Below: Histogram of the distribution of positions after these 2000 steps compared with the 
appropriately scaled canonical position densit Q. Asymptotically, the distributions converges 
to Q. 

7.1 Ensemble versus Stochastic Dynamical System 

The transition operator T describes the redistribution or fluctuation in a sta­
tionary ensemble, i.e., it describes a statistical collection of single systems with 
different actual states and measures how many of these single systems may per 
form some kind of transition during a single "time step" r . Hence, some power 
T™ of this operator can not necessarily be interpreted as describing fluctuations 
in the ensemble on time scales mr. As a consequence, the spatial transition 
operator has no semigroup property: Let TT denote the transition operator for 
fixed time span r as in ( 0 ) then, in general 

r ^ T 

This can easily be illustrated if we assume that TT is the transition operator of 
Example 3. for the harmonic oscillator H(qp) = (q2 2)/2 with | cos(r)| < 1 



Then, TTU c o r ) with (q) = q for all such r . Hence 

T' = cos(r) cos( cos(r + r T' 

if only sin(r) sin(r') / 0. Consequently, we cannot simply "link" fluctuations 
on some short time scale to get fluctuations on longer scales. One can ex­
plain this observation by considering the underlying measurement processes 
{(TT)2XB,XC)/(XB,XB) belongs to a two-fold repetition of the two-step ex­
periment from page 19 —therefore including two pre-selection steps—, while 
{T2TXB, Xc)I{XB, XB) corresponds to a single realization with double stepsize 
but with only one pre-selection step. But the physical observables associated 
with the pre-selection step and the transition counting procedure do not com­
mute with respect to the Poisson bracket {-,-}. Hence, the additional pre 
selection step changes the ensemble irreversibly so that, in general, the two 
transition probabilities are different. 

Independent of the interpretation with respect to an ensemble, the operator 
T is associated with the stochastic dynamical system (30) and the corresponding 
Markov chain {Xk}. On the one hand, the running time averages of the Markov 
chain approximate the ensemble averages (see Sec. 4.5 below). But on the other 
hand, the multiple-step transition probabilities P(Xm g B\Xo e A) of the 
Markov chain from A c O to 5 C fi after time mr can be expressed via the 
powers Tm of the transition operator (see Sec. A.l in Appendi A), although 
these powers have no direct interpretation for the ensemble. 

Summarizing, multiple-step fluctuations (m > 1) of the Markov chain {Xk 
cannot be interpreted as fluctuations in the ensemble on time scales mr; only 
single-step fluctuations and the invariant distribution of the Markov chain rep­
resent properties of the ensemble. 

In this sense, the stochastic dynamical system and the corresponding Markov 
chain are only artificial representations of the ensemble in an iterative way, in 
form of some stochastically linked chain of single systems from the ensemble 
But in addition, the stochastic dynamical system (30) should not be taken as a 
model of a single physical system. 

These considerations are typical for the discussion of the correspondence 
between statistical ensembles and stochastically embedded single systems. The 
contributions to this discussion are varied and range from modelling decisions,22 

over algorithmically oriented realizations23 to systematic investigation in, e.g. 
"stochastic realisation theory" .24 For the context discussed herein, it is only of 
importance that the stochastic dynamical system (30) correctly represents the 

2 2 A typical example is the representation of a heat bath by means of adding some stochasti 
excitation —external "noise"— as in Langevin dynamics [1, 115]. 

2 F o r example, so-called "constant-temperature" embeddings of the Hamiltonian system 
vi Nose-Hoover dynamics [81, 82] or it variants are often used in real-life applications. 

2 4 Stochastic realization theory or dilation theory stands for an overlap between systems 
theory and statistical mechanics: dilations are embeddings of "small" systems into "large" 
ones ("heat baths"), which have the property that the time-reversible, conservative motion of 
the large system reduces to a disipative, ireversible evolution of the small system. Use [73] 
as a pointer to the literature 
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fluctuations in our ensemble moderating the tansitions b e w e n c a i n subs 
of phase space on the given time scale r . 

Algorithmic Differences In addition to this conceptual differences between 
ensemble and stochastic dynamical systems, we also have to distinguish between 
transition operator and Markov chain on the algorithmic level: 

1. If the system really contains almost invariant sets, then direct long term 
iteration of the associated chain is algorithmically inappropriate: When­
ever some set B c 0 is almost invariant with respect to the ensemble 
it is almost invariant for the Markov chain in the dynamical sense ("long 
relaxation time"), that is, the chain is trapped in B for many iterations 
before it undergoes some conformational transition which then allows the 
chain to sample other regions of the phase space 

. As we will see in Sec. 5.4 below, it is difficult enough to construct an 
efficient algorithmic realization of the Markov chain associated with the 
spatial transition operator for the canonical ensemble fcaD. In this case 
we will exploit the specific multiplicative form of /ca„. However, for some 
arbitrary set of essential variables #, we in general will not even have 
any explicit expression for the associated reduced density F#. Therefore 
there is no way —at least not with the strategies considered herein— to 
construct any efficient realization of the Markov chain associated with the 
transition operator T 

Despite these problems, we will exploit the mathematical analogy between tran­
sition operator, Markov chain and stochastic dynamical system not only for 
proving convergence results (see Sec. 4.5) but also to construct an appropriate 
numerical algorithm for evaluating the transition probabilities (cf. Sec. 5.4) 

7. Fluctuation Length and Almost Invariance 

How important is the choice of the "fluctuation length" r for the identification 
of almost invariant sets? In the context of the examples in Sec. 3.1, we already 
observed that the eigenvectors for eigenvalues of T near A = 1 do not show any 
dramatic dependence on the actual value of r, while these eigenvalues tend to 
one with r —> 0. We will now present two additional insights which may help 
to understand this observation and may support our hope that r may not have 
decisive influence on the shape of almost invariant sets. 

The first of these insights is illustrated in Fig. 9 and states roughly that 
mainly the (topological) properties of the potential energy surface determine 
the shape of the almost invariant sets of the associated system: Around the 
main minima of the energy landscape there are large flow-invariant regions 
Such a region is the "core" C of an almost invariant set, if the probability 
to be within this region is large enough. In addition, each of these regions is 
surrounded by some set Sc of unlikely states (shaded in light grey in Fig. 9) 
which have enough energy to leave Sc under the action of the flow. The almost 
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F i g u r e 9: Phase portrait of the 27r-periodic potential shown in the left figure. The saddl 
point at (<7s,0) between the minima separates two regions, shaded in dark grey and marked 
B and C, which, both, are invariant under the flow. With the minima of the potential, the 
maxima of the canonical density are located inside B and C. Thus, if the temperature is only 
small enough, the canonical density is (exponentially) small for any state x $ B U C. But 
only trajectories starting in such unlikely states from the surroundings S f l U S c o f B U C can 
cross the line q — qs, so that A\ — {q : q < qs} and A2 = {q : q > qs} are almost invariant 
sets. This implies that some variation of the fluctuation length r may change the transition 
probability between A and A , but t the almost invariant sets themselves 

invariant sets are given by the projection of these objects onto the essential 
coordinates chosen. Whenever the degree of almost invariance is large enough, 
the value of r will have only minor influence, since it merely determines how 
many of the unlikely states from Sc will have enough time to finish the possible 
transition between two almost invariant subsets (see Fig. 10). In this sense, r 
controls a kind of "melting process" for the flow-induced mixing; this mixing 
generates conformational transitions but only in regions of the phase space with 
insignificant probability to be within. 

To understand the second observation, we have to introduce some suitable 
notation: Let $y denote the flow associated with the equations of motion ( 
induced by the potential V. A simple rescaling of time in ( ) reveals that 

WlP) v^P) 0 

which shows that we can map an increase of the fluctuation length (a > 1) onto 
an increase of potential and momenta. When considering the canonical density 
and using a generalized notation for the transition probabilities, we find that 

where T — pTM1p/2 denotes the kinetic energy and the exponential prefactor 
ß/a2 belongs to some increased temperature Ta = o?T• Thus, this simple trick 
reveals that an increase in the fluctuation length r may be understood as a 
certain rescaling of parameters of the ensemble. Again, r appears as some kind of 
temperaturelike "melting parameter". This identification of changes in r with 



F i g u r e 10: Illustration of the flow-induced mixing of the surroundings Sc and SB of the 
system from Fig. 9. The three figures correspond to three different values ( 1 0 / 2 . / 3 . 0 ) of the 
fluctuation length r . In all three cases the sets A\ — {q : q < qs} and A 2 — {q : q > q3} are 
almost invariant (if the temperature is small enough). States (q,p), which are transported to 
A2 under the action of the flow during r , i.e., for which niQT(q,p) > , are colored in dar 
grey. States ending up in A are colored in light grey. 

simply rescaling the ensemble is of particular interest, since biophysical intuition 
states that (mainly) the interactions (=potential) determine the conformations 
while the temperature only redistributes the probabilities to be within. 

While the conformational subsets may be relatively insensitive to changes 
in r, this is different for all quantities characterizing the actual conformational 
dynamics: The transition probabilities between the conformational subsets de 
pend crucially on r and converge to zero in the limit r —> 0. The same holds 
for the eigenvalues of T near A = 1. This should not come as a surprise: the 
fluctuation length r is determined by the two-step experiment from page 19 as 
the time span during which the ensemble can fluctuate freely; that is, the transi 
tion probabilities can only be understood relative to the measurement procedure 
defining them. 

43 



ectral nd s y t o t r o e r t i e s 
We now switch to the consideration of the spectrum a(T) C [—1,1] of our 
spatial transition operator T : LF(Q) —• LF(Q). We will see in Sec. 4.6, that 
it is possible to get all crucial results for the spectrum of T$ for some set of 
essential variables by transferring them from the spatial transition operator T 
to Tfi via the restriction and prolongation operators introduced in Sec. 3.5. 

We already observed that the simple constant function x satisfies 

)(q) -Jh: fo()d for all q 0, 

that is, T\n XQ- Thus, xn is an invariant density of T. The reader might 
notice, that xo is an element of LF(Q) because we initially assumed /o G -^1(r)-

It is the fundamental strategy of this approach to compute conformational 
subsets from eigenstates of T for eigenvalues near A = 1, and to quantify the 
degree of invariance of the subsets. It is, thus, of main importance, under which 
conditions such eigenvalues exist and the eigenvalue A = 1 is simple. 

Since we are interested in a numerically stable approximation result, we 
have to demand for the existence of isolated eigenvalues near A = 1, i.e., for 
eigenvalues of finite multiplicity which are separated from continuous parts of 
the spectrum by a finite gap. According to the well-known spectral theory of 
linear operators, the spectrum may be decomposed into two disjoint subsets: the 
set of all isolated eigenvalues of finite multiplicity and the essential spectrum 
(cf. Appendix B). Thus our first crucial question is 

A. Under which conditions can T have isolated eigenvalues of finite multiplic 
ity near A = 1, i.e., which conditions guarantee that the essential spectrum 
7e6(T) is bounded away from A = 1? 

For an answer to this question, we will show that, in the Hubert space LF{0) 
our transition operator T is quasi-compact. More precisely: We will show that 
T —as an operator in LF(il)— can be decomposed into two linear operators, 
T = Ti+T2, where T\_ is a strict contraction (||Ti||2ji < 1), while T2 is compact 
Thus, due to the general results of spectral theory (cf. Appendix B), the essential 
spectrum of T is given by that of T and, therefore is bounded away from A = 1 
(cf. Sec. 4.2). 

For the uniqueness of the invariant density, the following two questions are 
of comparable importance: 

B. Under which conditions is A = 1 a simple eigenvalue, i.e., when is xn, up 
to a factor, the unique eigenvector for A = 1? And, when is A = 1 the 
dominant eigenvalue that is, —1 ̂  cr(T) 

In order to find such conditions, we will exploit the stability theory for Markov 
operators. That is we will analyze the asymptotic behavior of the iterates Tn 

for densities u € LF(il), in order to prove asymptotic stabily of T : LQ) —> 
fl) (cf Sees. 4.3 and 4.4). This will imply that, in L(Ü) and 2(Sl) 
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A = 1 is simple and dominant. It will come out to be relatively easy to realiz 
this "operator-oriented" approach for bounded position space 0 (Sees. 4.3 and 
4.4). However, we will also see that we can easily show the same results under 
weaker conditions when exploiting the well-established convergence theory for 
the associated Markov chains (Sec. 4.5). In particular, we will then be able to 
include the case of unbounded position space Q. Unfortunately, this "Markov 
chain theory" approach can only be applied to the spatial transition operator 
But we will be able to include the case of unbounded Vt also in the operator 
oriented approach, when considering the transition operator T associated with 
some set of essential variables. 

In this section, we will always consider the case of canonical ensembles (/o = 
/Ca„). This simplifies a lot of arguments and avoids some nasty computations 
But the reader might notice, that, if not explicitly stated otherwise, the following 
steps can also be realized for an arbitrary smooth stationary density /o L1 (T) 

1 T r a n s i t i o K e r n e l s 

We now want to examine whether the spatial transition operator T, or at least 
a part of it, has a representation as an integral operator with transition kernel 
That is, we ask whether there is a nonnegative measurable function k : Ü x Q 
R such that 

Tu(q) k(qy)u(y)Q(y)dy (34) 

To this end, let us first proceed purely heuristically: Assume that for every  
Q the function yq(p) = TTi$T(q,p) is invertible for all p £ E.d and let 

vq = vq(y) denote the inverse of . Then, the transformation p i y — (p) 
applied to the integral 

Tu{q) [ u(y{p))V(p)d 

results in 

Tu{q) V{y)) d e t £ ( i / ) | u{y)dy 

so that we have to define our transition kernel as 

Hqy) •QT-T'P ((y)) detDy)\ 

in order to achieve a representation like (34) 

4.1.1 Momentum I nve t i b i l i t y 

Certainly, our functions yq will in general not be invertible for all momenta. 
Therefore we define the following weaker notion of invertibility: 



DEFINITION 4.1 The Hamiltonian flo T is called momentm-rtibe if bo 
of the following two conditions hold: 

1. For almost every g ! ) there is an open set M(q) C Krf such that the func 
tion (p) = TT(qp) is locally invertible in M(q), i e , det D(p) ^ 0 
for M(q) 

. There is an 0 such that 

essinf V(p)dp (35) 
n 

In this case, the set X = {(q,p) G T : q G Vt, p G M(q)} T is called the 
"accessible phase space" with respect to the sets M(q) 

REMARK 4.2 Every set M{q) may consist of disjoint subsets. It follows from 
the Inverse Function Theorem that in every of these subsets m(q) C M(q) there 
exists a smooth function vq : yq(m(q)) C fi —¥ M.d such that vq(yq(p)) = p for all 
p G m(q). In most of the subsequent, we mostly refer to all of these functions 
as to "the inverse" vq defined on the whole of M{q)) without stating the 
different subsets explicitly 

For compact position spaces, momentum invertibility holds under consider 
ably weak conditions 

LEMMA 4.3 Let the position space Q, be compact and the potential V be smooth. 
Assume that for every q G 0, there is a momentum p Rd such that det D(p) 
0. Then, the flow is momentuminvertible. 

Proof: Consider arbitrary q £ Q and p G M. such that det Dyq (p) / 0. Since yq 

is smooth, there is an open neighborhood of p where yq is invertible. Moreover 
since the entire flow is smooth, there even is an open neighborhood U(q) C 0 
of q such that, for all q G U(q), yq is invertible in an open neighborhood O of 
p. We may, without loss of generality, assume that the sets M(q) contain O. 
Then, there is an j 0 V(p)dp such that 

q) V{p)d > 0 for all U(q) (36) 
( 

Since q has been arbitrary, such a > 0 and neighborhood U(q) exists for all 
q G Q. Consequently, there is a covering of 0, consisting of such open neighbor 
hoods U(q). Since 0, is compact, this system of open sets covering Ü contains a 
finite subsystem U(qi),... , U(qm) m G N, also covering Vt. Let ai denote the 
a-value for the neighborhoods U(q). Hence, m i n = i > 0 which implies 
the assertion. D 
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Decomposition of T If the system is momentum-invertible in the sense of 
Def. 4.1, we may define the following partial ransition orato 

T2u(q) = f u(Tn^-T(q,p))T(p)dp. (37) 
J M{q) 

relative to the sets M{q) chosen. Because of our assumption, the so-defined 
operator has a transition kernel, ie . 

(q) = f k(q,y)u(y)Q(y)dy. 

The kernel can be written as: 

HQ,y) = pZÄ E P K f o ) ) |det£>v(j,)| (38) 
^y> p€M(q) 

{p)=y 

where the sum runs over the disjoint subsets of M(q), and we used the sim­
plifications introduced in Remark 4.2, i.e., vq denotes all different branches on 
yq{M(q)). In order to guarantee that the summation in (38) is welldefined, we 
introduce the following simplification: 

DEFINITION 4.4 Let n(q) denote the number of disjoint subsets in M(q), where 
n(q) = oo whenever M(q) contains infinitely many disjoint subsets. For every 
family of sets M(q) define MM = sup ? e n(q) 

It is obvious that, if the flow is momentum-invertible, it is always possible 
to choose the sets M(q) such that each M(q) contains at most a given number 
of disjoint subsets25 so that MM < o . This suggests to make the following 

ASSUMPTION 4.5 In the following, we mostly suppose that the sets M(q) are 
chosen such that MM < oo. This simplifies some arguments drastically but does 
not change anything crucially. Whenever the case MM — oo is considered, we 
suppose tht every M(q) contins t most ountably many disjoint susets 

REMARK 4.6 The reader might notice that we may choose specific sets M(q) 
without loss of generality, as long as we are only interested in qualitative proper 
ties of the full transition operator T, because, in this case, some freedom is left 
concerning the selection of the decomposition T — T\ + T2 induced by the M(q) 
For example, in order to show that T is quasi-compact, it suffices to prove the 
existence of some family M(q) that leads to a compact T2 with the property 
that Ti = T — T2 is a strict contraction (thus, we are free to show this under 
the side-condition MM < oo, cf. Sec. 4.2). We are not necessarily interested in 
the "maximal" family of sets M(q). 

2 5 The conditions 1 and 2 from Def 4 1 remain intact only the value of 7] may change 



7 The kernel is an / f u n c t i o n , ie. , it is € L ^ x fi), since  

(q,y)Q(y)Q(q)dydq V(p)dpQ(q)dq < 1. 
(q) 

s another direct consequence of the definition, we find that 

/ (q,y)Q{y)dy = V(p)dp. 
J ( a ) 

=V(Q 

That is, rj(q) is the probability with which q is accessible via $ in the canonical 
ensemble (relative to the position density Q) Thus, the constant from Def. 4.1, 

n = essinf (q) = essinf V{p)dp, 

may be interpreted as the minimal accessiity via $ in the canonical ensemble 
(with respect to the sets M(q)) 

The two parts Xi and T-2 of the decomposition T — Ti+T-2 are linear bounded 
operators on the Lp-spaces: 

LEMMA 4.8 Let the fow $ r be momentum-invertibl. Then, the transition op­
rators T2 and Xi = T — T2 are bounded operato Tj : Lp{Vl) —> LP(Q) for 
— 1,2 and p = 1,2. Moreover, in (Q), the orato no of T\ tisfies 

^ilh < 1, « , mo precisel 

< K 2 , VU e I ( ( l ) with K = \ - r ) < 1, 

whe r] > is the onstnt from Def. J^l 

REMARK 4.9 In Lemma 4.8, the stated property of T\ depends on the specific 
sets M{q) which were selected from all the possible sets with respect to which 
the flow $ r is momentum-invertible. The reader should be aware that, now and 
in the following, statements like that of Lemma 4.8 should always be understood 
in this sense "relative to the specific sets M(q)v. 

Proof of Lemma 4-8: Clearly, the assertions for T2 follow from those for T 
and the properties of T itself. The operator T\ has the representation 

u(q)= j ^-T(q,p)V(p)dp, 
Rd\(q) 

which immediately implies the assertion for L(r2). In order to establish the 
asserted bound in L ( 0 ) , consider the measurable function g : T — {01} 
defined by g(q,p) = — X(q)(p) a n d its integral 

( 9 ) = / 9(l,P)V(p)dp = I V(p)dp, 
Rd Rd\(q) 



for which the normalization (p dp 1 and condition 2 of the momentum-
invetibility implies that 

ess-sup(c/) = 1 — essinf V(p)dp = 1 — r) < 1. 
q€ 9 6 i J 

(39) 

In close analogy to the proof of Lemma 3.9, the following estimate esults from 
using the Cauchy-Schwarz inequality in the Hilbert space L {w : M.d —> C 
JRd\w(p)\2V(p) dp < o } fo the inne integation: 

/ / g(q,p)u$-T(q,p) V(p) 
Rd 

(q)dq 

J g(q,p)T(p)dp u(m$-T(q,p))V(p) p 

=7(? 

(q) dq 

ess-sup(g 
«so 

Togethe with (39), this yields the assetion. D 

Let us now check what is needed to establish a simila b o n d fo in the 
space. Obviously, 

Ti / ( T T 1 ( q , p ( ( q d q 
m\M(q) 

u\Wt - T 2 H | i , 

whee we have equality in the first line if u is nonnegative. Hence, fo proving 
||Tiu||i < 1, we have to show that there is a K > such that |i > K fo all 
densities u € £>(fi). But for these u G V(Q): 

T2« / u(nl^-T(q,p))V(p)Q(q)dpdq 
M(q) 

/ u(n~Tx) f0() d / u(n) f0() d 

where X is the set i n t o d e d in Def. 4.1. We thus d e n e new moment subsets 
M(q) such that 

{(q,p) S T : q€il,p€ M(q)}, (40) 

which, inseted into the equation above, yields the equied bound: 

T2u essinf / V{p)dp. 
« e Q (q) 

file://u/Wt


Hence, one observes that the condition for ||Ti||i < 1 requires an analogy to ou 
condition (35) (which implies 11Ti112 < 1 as we have aleady observed). Now, the 
condition concerns the final momenta of trajectories starting in the accessible 
phase space X, instead of the initial momenta in ( 3 ) 

ITION 4.10 T : L^ft) (0) is ounded by with 

fj = essinf V(p) dp, 
V£Q (q) 

where the sets M(q) are given by (40) 

Merging the above constuction with the stategy of the poof of Lemma 4.3, 
we end up with 

P R O P I T I O N 4.11 Let the flow be smooth and momentuminveriible with ac 
cessibl phase space X and suppose that the position spae 0 is ompat. Assume 
that for every y € 0, there is some (q,p) G X suh th y = {p) Then, the 
is some p > 0 such tha | T i i < 1 

4.1.2 Symmetric Momentum Invertibility 

Let fj again be the constant from Prop. 4.10. Unfortunately, fj > 0 is not 
consequence of our condition ( 3 ) . Because of this, we intoduce a stonge 
notion of invertibility: 

DEFINITION 4.12 The Hamiltonian flow $ is called symmetrially momentum 
inveriible if it is momentum-invertible and if the sets M(q) in Def. 4.1 can be 
chosen such that, simultaneously to the two conditions in Def. 4.1, the following 
two conditions are satisfied, too. For all q G Q: 

1. M(q) is almost eveywhee momentum evesible, that is p G M(q) 4 
-p G M{q) 

2. If p G M(q) and (y,v) = $~T(q,p) then v G M(y) 

REMARK 4.13 Since <& is (momentum) reversible, the two conditions imply 
that, fo p G M(q), also v G M(y) when (y,v) = $ r(g,p) . Hence, if $ r is 
symmetically momentum-invetible: 

{$(q,p) : q&n,p&M(q)}  

{(y,v)=$(q,p): y £ Ü, v & M(y)} = X, 

which diectly implies that M(q) = M(q) fo almost all q G V 

Thus, as a consequence of P o p . 4.10: 



ROPOSITION 4.14 / / $ is mmetricall momentuinvertible thenTi : L ( 0 
(f2) is ounded by T\i < — n with given by 

•n = essinf V(p) dp. 
qen J 

(q) 

Moeove , this kind of momentum-invetibility has othe advantages: 

LEMMA 4.15 / / $ r is smmetrically momentuminvertible, then the transition 
oprato T2 : L(Q) - (tt) is sefadjoint 

Proof ince the step-functions a e dense in L(Vt), it is sufcient to pove 

T2XB,XC) = XB,T2XC) 

for the characteristic functions of two abi trary measurable sets B, C C 0. Fo 
notational convenience, let us intoduce fo every subsets i c f i : 

1(A) = {(q,p) G T : q&A,p& M(q)} C 1. 

Following the same stategy as in the proof of Lemma 3.10, we find, by exploiting 
the evesibility of 3 and the invaiances of /o, that: 

XB,T2XC) X r ( * T ) f ) d XT(R$TR) f ) d 

/ Xr(^T)f)d = ($~T) f ) d 
J 

fo()d 
)n 

But we also have 

T2XB,XC) = Xr($~T)f)d )d 
J )n 

Hence, the assertion is poved if 

r(C) n $TRI(B) = 2(C) n $rr(B) 
In order to finally see this, we exploit conditions 1 and 2 of Def. 4.12 and 
Rmk. 4.13: 

I ( C ) n $ T r ( B {(q,p): q£C,n1$-T(q,p)£B,p&M(q)} 

{(q,p) : « e C , (y,v) = $~T(q,p), yCB,v€ M(y)}  

(C)n{$ T ( j / , v ) : yeB,v&M(y)}  

(C) n * I ( B ) = T(C) n $R1(B) 

D 

2 6 That is, T2 is lf-adjont f the sets M(q), with respect to whch T 
conditions for s y m e t r i c momentum-invertibility. Cf. Rmk 4 9 



1 l fadoin tnes of T2 implies the s y m m e y o he kenel: 

T2 selfadjoint (q,y) = (y,q) almost eveywhee in Q x Vt. (41 

This observation allows a symmetric interretation of the minimal accessibility 
of the system (cf. Rmk. 4.7). In other words: we no more have to distinguish 
between tansitions to and from q. Let us intoduce the set A(q) of all positions 
y which are accessible fom q via $ ~ r 

(q) = {y G Vt, t h e e is p G M(q) s t . y = y(p)} (M(q)) (42) 

which now is also the set of all positions y which a e accessible fom q via $ 
In pa t i cu l a , the symmety of k yields 

y G A(q) q G A(y) 

4.1.3 llustrative Example 

Consider the Hamiltonian system H(q,p) — p2/2 + V(q) with the smooth, pe 
iodic potential (cf. Fig. 11) 

1 - (q + 2)2/2, f o - 2 < g < - l 
(q) = q2/2, fo - 1 < q < 1 with V(q) = V(q + 4) 

1 - ( g - 2 ) 2 / 2 , fo 1 <q<2 
(43) 

F i g u r e 1 1 : Left: Periodic potential V of (43). The shaded domain is the periodicity cell f2 
Right: Phase portrait of the flow $ 7 T for total energies E = 0.4/0.9/1.0/2.5. The thin vector 
lines indicate that the end points of the curves for E = 2.5 are connected via the periodicit 
map f Along the flow < _ T the curves are circled clockwise 

It is easy to see that the a d j n t of T2 may r e p r e n t e d as T^ulg) = 

f k(y,q)u(y)Q(y)dy, cf. [113], Chap. VII. If we define T2u(q) = fnk(q,y)u(y)dy, the 
kernel k is not directly symmet ic but satisfies the wellknown detailed balance condition: 
Q{q){q) = Q{{yq) 



Fi g u r e 12: The function yq for diffeent q for the ial (4 i 
7 r i - r ( g p ) for q — 0 / 0 9 / 1 5 versus momentum p 

Let $ : E —> be the associated flow. We restrict ou description to 
the periodicity cell Vt = [—22], i.e., we define the flow $£ due to (22) via the 
periodicity map £ and the tansition opeator acting on functions u : Q> 
due to (23) via 

Tu{q) = u(w1<i
T(qp))v{p)dp, fo q e fi. (44) 

Let us choose r = 2TT. Then, we immediately observe that for the hamonic 
part of the potential and low enegy, <7 T is the identity. M o e pecisel 

q G [ -11] , \\ < \ sT(qp) = qp) 

One also finds28 that sufcient kinetic enegy guaantees invet i i l i ty of y ) = 
7Ti$7r(c/ )) ie-5 f° eve q € Q: 

i > l detDy(p)0 

Thus, $1 is symmetically momentum-invertile with M(q) = {p : p2/2 > 
1}. But we also observe that, particularly for g| > 1, the function yq is also 
invertible for some momenta with p2/2 < 1 (cf. Fig. 12). This nicely illustrates 
that t h e e is a significant freedom in the choice of the sets M(q), and that it 
is a remarkable problem to identify "maximal" sets M{q) such that the flow is 
(symmetically) momentum-invetile. 

Worst Case Scenario Let us go to the extreme of this example and conside 
the Hamiltonian H(q,p) = p2 /2 + V(q) with the potential V(q) = q2/2 for 
\q\ < 1 as a 2-periodic function, i.e., with V(q + 2) = V(q).29 We again take  

2TT, define the transition operator by equation (44) via the periodic flow 
3r , and denote yq{) = $7T(q, ) (cf. Fig. 13) The flow is again symmeticall 
momentum invetible, now, e.g., with 

M(g) = { p e R : H(qp) > 2} = {p e E : \p\ > x - c } 
2 8Compare Sec. 4 7 for more details. 
2 9Within the l i t e d scope of thi example the discontinuity of the force DV does not 

matter 



with a s i a t d minimal a i l i t 

7] = 2 V(p) dp. 

But this time, p $ M(q) implies $7T(qp) = (q,p), so that the sets M{q) 
"maximal". Fo the associated opeato T\ this yields 

TiU(q) = u(iri^T(qp))V{p)dp = (q)u(q) 

<^/q2 

with (q) = f /7^—2'P(p)dp. That is, T\ is a multiplication opeato Due 

to Thm. B41 and Thm. B41 , its spectum is given 

{TI) = aUTi) = RMi = 0 1 - 7 7 ] 

ie. , the spectrum of T\ contains no discrete part. 
Explicit computations show that the Jacobian Dvq is unifomly bounded 

in q and y (cf. Fig. 13) The sums in the definition (38) of the kernel k 
contain infinitely many terms but come out to be also uniformly bounded in 
q and y.30 Moeover, the weight factor Q(y)^ is bounded since infj-^i] Q = 
exp(—ß/2)/Zq > 0. Thus, k is bounded. We will see in the subsequent sections 
that this implies that the associated operator T2 = T — T\ is compact31 so that 
due to Thm. B.43, the essential spectrum of the full ransition operator T is 
identical to that of T\. This illustrates that, in the "worst case", the (maximal) 
minimal accessibility r\ describes the spectral ap etween the essential spectum 
of T and the dominant eigenvalue A = 1. 

Fi g r e 13 : Worst ca s c a r i o : Functions q = yq{p\ Dyq = Dyq[p): and Dvq = D(y) 
for q = 0.6 and p > i l — Q2- Observe that Dyq is bounded and the branches of Dy for 
increasing momenta i converge to — 2 = — r so that Dv converges to — 1 / T 

3 0 The Jacobian is uniformly bounded and th sequence of t e possibl values of vq(y) is 
asymptotically equidistributed so that the decay properties of V together with the majorant 
criterion yield a uniform bound  

Compare Prop 417 



4.2 Compactness in L 

Let us assume all over this subsection that $ is momentum-invertible so that 
the transition kernel of T2 is given b (38) Now, we want to collect useful 

iteria guaranteeing compactness of T2 in L{0). 
To this end, we will exploit that T2 is a Hilbert-Schmidt operato (and, thus 

compact) in L2{Vt) if and only if its kenel satisfies G L2(Vt x O ) , i e , if an 
only if 

I() = [ f (qy)Q(y)Q(q)dydq < (4 
J 

As a first observation, the oundedness of the kernel is enough to guarantee 
compactness of T2, since k s L(Q, x fl) implies € I(Q, x Q) (cf P o p . A l ) 
Thus, we note that 

R O P O I T I O N 4.17 e transiion operator T2 : L ( Q ) - 2(fl) is a Hilber 
Schmidt operar an thus ompact, if its kernel is boud, ie ere is 
C < o suh 

esssup q y) = C. 

This criterion suffices in many situations, particularly if the position space 
£} is bounded (cf. the wost case scenario in Sec 4.13) But we can easily fin 
weake i teia: 

Bounded Position Space If Q, is ounded, we have infg6o Q(q) > 0. Due 
to ss. 4.5 the sums in (38) defining k contain at most NM < oo t e m s Thus  

is ounded, if only the Jaco ian det Dv is uniforml ounded: 

P I T I O N 4.18 Le be bouded and assume at t sets M(q) are hosen 
su MM and the Jaian detDv is uiforly boud, ie er 
is su for almos ery q € ft: 

detDv(y(p))\ < C, fo all p G M(q) (46) 

en is a Hlberchmid operar 

REMARK 4.19 The uniform boundedness of the Jacobian det Dvq will also e of 
importance for other consideations Theefore, let us call the flow $ r (symmet 
rically) momentum invertible with uniform bound, if the sets M(q) can be chosen 
such that the above condition (46) is satisfied together with the conditions fo 
symmetic) momentum invetibility. 

3 2Compare Thm. B . 7 and Prop. B.46 in Appendix B. 
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REMARK 4.20 Whenever MM = oo in the sense of ss. 4.5, we need some 
additional condition on the convergence of the sum in (38) in order to prove 
that k is ounded. The following condition is sufficient: Let the disjoint subsets 
of M(q) denoted by M(q), I G N, and the different branches of the functions 
yq and vq on these sets by yq and vl

q. Moreover, suppose that the flow is 
momentum-invetible with unifom bound. Then, t h e e must be some C 
such that 

{y) C, unifomly fo all qy € ft. 
' ( q ) ) 

This condition is valid, for example, if vq(y) asymptotically increases like some 
owe of I (as it is the case fo peiodic potentials, see Rmk. 4.48) 

Unbounded Position Space If Q is unbounded, we cannot hope (to show) 
that k is bounded or that a condition as simple as in Prop. 4.18 can be valid. 
Thus, we need an alternative criterion for k G L2(Q x fl). Since we will consider 
the case of unbounded f2 in Sec. 4.6 again, we may heein estict the presenta­
tion to the following result which exploits particular propeties of the canonical 
density. In order to derive this esult we have to intoduce some notation: 

Let us denote the disjoint subsets of M{q) by M(q), I £ { 1 , . , M M } , an 
the corresponding branches of the functions y and v by yq and vl

q. Some j / 6 Q 
may be accessible via different branches of y. Therefore, introduce the index 
set h{q,p) = { : y[{p) € y{Mj(q))}. Fo j g h(q,p), the position y = yq(p) 
is accessible fom q via the branch yq with initial momentum (y) Taking this 

anch, we a i v e at y — y(p) with final momentum 

vl*qp) = TT2<S>-T (qvq(y(j>)) (47) 

The d i s t u t i o n of these final momenta influences whethe is H i l t S c h m i d t  
not: 

LEMMA 4.21 Suppose that te flow is momentum inertble wi unifom bou 
en the transitio operato T-2 : L (fl) — L (fi) is a Hlberhmid opera  

followi rab ditio is stisf 

j E / pW E qp)dp 
[Ml(q) J£l(q 

wher fuctions i a given by (47) 

(48) 

Proof: Inserting the defnition (38) of the kenel into the condition I < o 
from ( 4 ) yields 

tW = n( ) detDv(y)detDv(y) Q(q)dyd 



Applying the transfomations y *} yl
q(j>) and using the boundedness of the 

Jacobians t ans foms results in the following stonge condition: 

,,öSrk £ nv(y(p)))dp Q(q)dq < (49) 

The flowinvaiance of the canonical density foq,p) = Qiq^ip) leads to 

Q(a)v(vM(p))) = Q(y{p))nvli(qP)) 
Inseting this into (49) finally yields the assetion. D 

In oder to ealize that this condition is satisfied, it is, e.g., sufficient to show 
that \vq,p)\ —> oo fo q —> oo fast enough for every fixed momentum p and 
every pair of indices for which it is defined. Fo an illustation of the usefulness 
of Lemma 4.21, conside the following 

EXAMPLE 4.22 Let us conside the one-dimensional harmonic oscillator, i.e. 
H(q,p) = (q2 +p2)/2 in T = M2. Choose r such that sin(r) ^ 0. Then, the 
associated flow is symmetrically momentum-invetible with M(q) = (and, 
thus MM ) and 

(p) = ^cos(r) — psin(r) implying d e t £ h | = . , , | < 

Thus, condition (48) of Lemma 4.21 is satisfied, because 7r2<I>~T(e/,p) = pcos(r) + 
q sin(r) increases linearly with q. Consequently, the tansition opeato T = 
is a H i l b t S c h m i d t operato in this case 

Essential Spectral Radius Suppose that our partial transition operato 
is a Hilbert-Schmidt operator and, thus, compact. Moreover, let T\ = T — be 
a strict contraction in L2(Q), i.e., let t h e e be some K < 1 such that ||Ti||2 < K. 
Then, the essential spectrum of the full tansition operator T is bounded away 
from one.33 We have just observed that Xi satisfies this condition, if only the 
flow is momentum-invertible (Lemma 4.8), and that, in this case, the opeato 
norm of T± can be estimated via the minimal accessibility r\ > 0 due to ||Ti ||2 < 
\ / l — 1]- That is, the ssential spectral radius r„s(T) is stictly smalle than one 
and can be estimated via the minimal accessiility: 

rT) = max A| < — n 
A e < r e ( T ) -

We, thus, e interested in sets M(q) C M.d for which the associated opeato  
is a H i l t S c h m i d t opeato and the minimal accessibility 

essinf V(p) dp 
^n (O) (q 

3 3Compare Thms. B.4 and B.35 in A p p x B. It should be noticed that, for t appli­
cation of Thm. B.43, it i not necessary that is self-adjoint: The essential spec tum of T i 
realvalued and bounded by ||T whether T is selfadjoint or not 



is maximal. These sets would gain the best estimate for the essential spect 
adius. Thus, maximize the minimal accessibility in choosing the sets M(q). 

The worst case example of Sec. 4.1.3 illustrates that the essential spectrum 
of T may indeed be as large as these estimates indicate so that the maximal 
minimal accessibility in fact gives the gap between the essential spectum of T 
and its dominant eigenvalue A = 1. 

In other wods, ou best estimate for the essential spectral radius is given 
by the maximal statisical weight of the momenta for which one of the functions 
Vq Vqip) is n t invertible. Howeve, the pesent autho wants to expess his 
opinion in form of the following 

ONJECTURE 4.23 Genetaly f poen odeng ralti ecr sys­
em he funcons y re nvertible expt r ery fw men e he s 
en sperl diu n L2 (fi) wi be ry ll. 

REMARK 4.24 Due to FOGUEL [39], there exists an "optimal" decomposition of 
T such that the kernel k is "maximal" and the remaining part T\ is "singular 
(for details see Thm. A.6). However, this maximal kernel k will not necessarily 
define a compct operator T2 on L2(Q). Nevertheless, the worst case example 
in Sec. 4.1.3 is one example for a situation, in which we may adopt FOGUEL' 

maximal decomposition (which in this case yields a compact T2 and a multi 
plication operator Ti). According to FOGUEL, the idea of studying a Makov 
process, which is a sum of a kernel and a singula p a t , goes ack to DOEBLIN 

26, 27] and YOSIDA AND K A K U A N I [114] 

4.3 Constrictiveness in L 

We herein are interested in proving that our Markov operator T : i 1 (0) —> 
1(fi) has a unique invaiant density. As a f s t step to this aim, we pove that  
is ontriive. Conictiven res he poiblity tht th iter Tnu 
so enity u S T> en onen on of very al 
asur (cf. Def. A.7). 
This is of i m p t a n c e , since for constrictive Markov operatos a s tong spec 

tral decmposition theorem holds. Roughly speaking: Whenever T is constric 
tive, there is a finite dimensional subspace S of L1, such that the i teates Tnu 
converge towards S for every u € L. Moeover, there is a (disjoint) partition 
{Bj} of Q such that S — spanjx^.}, and T acts on {XBJ } as a weighted pemu­
tation.34 In other wods: The i teates Tnu fo constictive T ar syptal 
peiodic. 

For this subsection, assume that our decomposition T Ti + T2 guarantees 
that Ti is a s t ic t / c o n t a c t i o n , ie. , that Ti||i < cf ops 4.10, 4.11, an 
P o p . 4.14) 

In order to prove the (diect) constictiveness of T, we have to show that 
there exists some 6 > 0, and 7 < 1 and a measurable set B c Vt, such that fo 

3 4For a rigorous formulation see Thm. A.12 in Appendix A. 



ve dens u G 

u(q) Q(q) dq < 
l(Q 

for all measurable subsets E c B with JE Q(q) dq < S. We will do this 
exploiting again the decomposition T Ti + 

Bounded Position Space Let us first analyse the ather simple case that  
is ounded and fix B = Q. Our assumption | T i i < fj 1 implies that fo 
it u e V(Vt) and m e a s u l e E C Q 

f Tu{q) Q(q) dq [ U{q) Q(q) dq u(q) Q(q) d 

v  
= | T i « | | i 

u{q) Q(q) dq 0) 

Consequently, direct constrictiveness wee poved if t h e e exist some ö 0 an 
K > 0, such that fo v e y density u e V 

u(q)Q(q)dq < [ Q(q)dq 
JE 

fo all m e a s u l e suse t s Ecu with J Q(q)dq < 5. This leads to the following 

O I T I O N 4.25 Le be bun um ha w mmenum 
verible wi unifm wi | |X|| 1 en nson oper 
: L(f2) — (Q,) di onctive 

Proof: We will show that the assumed boundedness implies condition ( 5 ) from 
above. To this end, we first remem that we may (without loss of generality) 
adjust the sets M(q) such that MM < 00 (cf. Rmk. 4.6). This bound for the 
number of t e m s and the bound | det Dv\ < imply k G L°°(i x Q), i e 

esssup (qy) < min maxT^p) = K 
ye Q(y) PeRd 

Moeove the paticula fom of T yields: 

/ u{q)Q{q)dq qy) Q(q)u(y) Q(y) dqdy 
JE 

Since u £ T>(Vt), we thus have 

u(q)Q(q)dq < (esssup q y)) Q(q)dq 
J V J J 

which implies condition ( 1 ) and, thee foe d i c t constictiveness of T. D 

mp Rmk 



nbounded Position Spac For unbounded f2 C M.d we not only may have 
problems in finding a bound for k but in addition need something which pevents 
the iterates Tnu to be dispersed throughout the entire space. Therefore, we 
may combine our above strategy with the approach outlined in [66], Chap. 5.7, 
showing that the existence of a certain type of Ljapunov function suffices to 
make T constrictive. This, in fact, is possible and one can easily show that, e.g. 
for the onedimensional harmonic oscillator H(q,p) — (q2 +p2)/2 with Q — E 
and sin(r) 7̂  0 such a Ljapunov function exists. But unfortunately, one again 
needs the guaranty that ||Ti||i < 1 and the construction of such a Ljapunov 
function for some realistic potential seems to be a significant problem. Since 
Sec. 4.5 will ovide us with a m o e convenient way we avoid to go into the 
details now. 

However, as we will see in Sec. 4.6, constrictiveness may be estalished, inde 
pendent of any boundedness of k or Q, for the tansition opeato geneated 
by some set of essential v a i a l e s 

Contrictiveness and Compactness The reader might expect that the 
is a general connection between an appopriate compactness result for T2 an 
constrictiveness of T. Theefoe , it should be pointed out that, in fact, constric­
tiveness of T results from T2 being compact as an operator acting on i ( Q ) : 
Since the set T>(Q) of all densities is bounded in Ll(Q), the opeator T2 takes 
it into a precompact set in L ( 0 ) 3 Due to Lemma A.11 from Appendi A 
this pecompactness implies that for all e > 0 t h e e is a ö > 0 such that fo all 
m e a s u b l e suse t s F c O with fF Q(q)dq < 5: 

u(q)Q(q) d < e fo all u e V{ü) 2) 

Now, peat estimate 0) to get 

/ u{q)Q{q)dq<T11+ u(q) Q{q) dq + u{q) Q(q) dq 
J J 

UE 

and choose a ounded ß large enough such that JQ\B Q(q)dq < S fo the 
6 associated with e 3. Then, (52) d i c t l y yields the following 

P R O I T I O N 4.26 Let t be moenuminer T2 be mpa s an 
opera ing on L1^) an Ti\\\ < 1 en nson oper T : 
L1 (f2) (f2) s di onctive 

4. symptotic Sability 

As already explained, contrictiveness implies asymptotic perdicy. Hence 
whenever T is constrictive, we a e in the same situation as fo Markov chains 
in finite dimensional state space: in order to get a unique invariant density we 
need some additional accessibty condion which guaantees aperiodicity 

3 6Compare Def. B . 6 i Appendi B. 



4.4.1 en t Accessibili 

Ou accessibility assumption is a athe general mixi umon: 

ASSUMPTION 4.27 Th w h he following mi roperty: F ry 
open ts B C C her n no G N 

(q) Q(q)dq X B ) Q 0 Vn n0 
B 

This kind of mixing should not be confused with the notions of "mixing" 
for the flow map $ r or for the Markov operato T (see Appendix A.4). A 
sumption 4.27 alone does imply neither the one nor the other. But the nex 
lemma will show that, whenever additionally T is constrictive, assumption 4.27 
implies that T is mixing (which, fo constictive Makov o p e a t o s is equivalent 
to asymptotic stability, see T h m . 1 5 ) 

LEMMA 4.28 Let the sumon 1^.2 be alid t t ranson oper 
: L1(0) —• L(f2) be onritive. Ten has unique invari den  
G T>{Vl) s y p a l , is: Fo ry u G T>(Vl) 

u - I - 0 n -

Proof: T is constictive an satisfies Txn — Xn- For such Markov opera­
tors the literature rovides strong results concerning the asymptotic behaviour 
(cf. Appendix A). ccording to this, T has the spectral decomposition (98) as 
explained in Thm. A.12. Let the integer r, the permutation a, and the sets Bj 
be as in Thm. A12 and the weighted chaacteristic functions of Thm. A12 b 
denoted b 

Bi = Q(q)d XBi, i l . , r 

In a first step we prove that each of these sets Bj contains an open subset. To 
this end, choose an arbi tray j G { 1 , . . . r} and denote I = a _ ( j ) , such that 
Tl due to Thm. A12. Moeove conside an a i t q G B Then, 

guaantees that 

(p) - r(</p) G B Vp G R 3) 

But since the system is assumed to be momentum invertile, there is a momen­
tum p* G M.d such that y is invertible in an open ne ighbhood U(p*) C M.d of 
p*. Thus, yU(p*) C Vt is an open neighborhood of y(p*) G Bj, and, because of 

3) yU{p) is a subset of B. Consequently, eve contains an open subset 
c 
For oving asymptotic stability we have to show that = 1. To this end, 

assume r > 1 and choose j , I G { 1 , . . , r} , j ^ I. Let a G N be the peiod of the 
pemutation a. Due to Thm. A12 we then have fo all n G N: 

Bj Bj and = 0 



d, t h e f o e , fo all n € N 

l , T J 0 

which is in contadiction to the mixing assumption 4.27, since 

^ ° cause of Vi 

Thus 1, and the esentation 98) implies fo all u € L(Vt) that 

lim X(u)x 

If u € £>(fi), then l i m ^ Tnw £ X>(fi) and thus u) = 1. D 

REMARK 4.29 We will see in Sec. 4.5 below, that asymptotic s tai l i ty can also 
e poved without the "detou" via constictiveness 

4.4.2 The Dominan igenvalue is S l e 

From the previous section we know that under certain assumptions, the t a n ­
sition operato T : L(f2) (r2) may e asymptotically stable. 

LEMMA 4. ssume tht te on opeor T considre Mark 
operr a on L^) is syoticaly e. Ten f ry ali 

L(f2) t i \\u 1) th ondion T im hat u = 
u — — Xn and ter s no nalized u S L ( Q ) s Tu —u. M 
if we onider T operor on L%(ü) with ± $ re(T) then A 
simple ienal 7 In ddition is n ienal so 

omi 

Proof: The weight function Q in the definition of the spaces Lp(£}), p 1,2, 
satisfies Jn Q(q)dq = 1. Thus, every element of L2(Q) is contained in £ ( 0 ) 
i.e., I/2(f2) c L(f2) (cf. Prop. A l ) . Hence, the assertions fo I 1 ( 0 ) imply the 
assertions for the eigenvalues in L2(Q) 

In i 1 ( 0 ) , we may use a s tandad agument (cf. [66], poof of Prop. 5.6.1): 
Consider an arbitrary nomalized € L1(0). Then, split u into its positive 
and negative part, i.e., u — u+ — with u+(q) max(0w(c/)) and u_ 
max(0, — u(q)). Next, introduce v± u±/ | |u±| | i such that v± € T>{Q). Since T 
is asymptotically stable with T\Q = % , we have the convegence: 

lim v± = X in L^fi) 
n— 

Now, Tu = u implies that in L ( 0 ) fo n — oo: 

= Tn w + X i T 

K l l i X l|w-||i w+ ) X 
37That is, {u G L T u} is onediensional 



Hence, Tu = u with ||w 1 implies u xn or u = — xn- In addition, 
Tu = —u yields Tnu = (—l)nu, so that the above convegence is only possible 
if u — 0, which obviousl contadicts the nomalization 1. D 

4.5 symptotic Sability ia Marko Chain Theo 
We already know from Sec. 3.6 that the spatial ansition operator T induces 
an associated stochastic dynamical system given (30) or (33), that is 

Qk+ m$T(qkPk = ^ k i ( P - ,Pk 

with the momenta Pj being randoml chosen fom the canonical momentum 
density V on Rd. We are now again interested in the interpretation of this 
system as a Markov chain {Xk}. As explained in Sec. 3.6 and Sec. l, the 

ansition function of this chain is 

T(qA) XAq) = TXA(q) XA(n-T(qp) V{p) dp. 

We also know that this chain has the p r a b i l i t y measure / IQ, given by ^Q(A) = 
JA Q(q)dq, as an invariant distribution. The welldeveloped theory of general 
state space Markov chains (cf. [83, 79]) yields strong results concerning the 
convergence of the chain {Xk} to its invariant distibution /ig. We will now 
exploit some of these results for our purpose. Therefore, we will make use of the 
definitions and notations fo Makov chains as given in the Appendi (Sec A 
and Sec A ) 

LEMMA 4.31 t te fw be moenum d lt te mixi ump­
on 4-27 be sfid. Ten e Mrk n {Xk sociad wih 
on oper redu aperdi potiv ren 

Proof: This lemma is a simple corollary to the results of [79] for the "nonlin­
ear state space model": According to [79] Prop. 7.15, momentum-invertibility 
implies that our Markov chain {Xk} is a so-called "Tchain". Due to [79] 
Thm. 6.0.1, a T-chain is irreducible if P(TA < oo|X0 = q) > 0 for all open 
sets A C ft, and all q g Ü. But momentum-invertibility and mixing assumption, 
together, in fact imply this last property so that {Xk} is rreducible. In the same 
way, P o p . 7.3.4 and Thm. 7.3.5 of [79] together with our assumptions guarantee 
that {Xk} is aperiodic. Finally, momentum-invetibility and Thm. A23 of the 
appendix imply that our chain is positive Harris recurent. 

In order to illustrate the ole of momentum-invertibility and mixing assump­
tion in these proofs, we now add a diret proof for the irreducibility assertion 
which mimics the stategy of the proofs in [79]. To this end, consider the decom 
position T = T\ + T2 induced by the sets M(q) chosen in accordance with the 
momentum invertibility of the flow and denote the corresponding accessibility 
weight of the position q G Q by n{q) = Jn (qy)Q(y)dy. Then, we choose some 
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g, e Ü such that i](q) > 0 and consider the associate p i l i t y d i s t ru t ion 
p defined by tp(A) — T-2XA(Q)T](Q) f° r a u measurable i c f i . Afte these 
prepaations consider anothe arbitrary position q G Vt and a set A C Vt fo 
which <p(A) > 0. Due to Def. A.21, it is sufficient to show that t h e e is an n G 
such that Tn2(q A) > 0. We will do this in three steps: 

Step 1: We aleady know that 5 r]()(A) > 0, o equivalently 

A( {qz)Q(z)dz 0. 

Since the flow is smooth, we can always choose the sets M(q) and with it the 
kenel such that the is an open n e i g h h o o d O C f2 such that38 

T(yA) {y) = (y,z)Q(z)dz 2 f all y € O. 4) 
JA 

Step 2: Now, return to the q € 0, chosen and consider some p € M(q). Set 
7 = (q,yq(p)). We can assume, without loss of generality, that there is an 
open, bounded neighborhood m(p) C M(q) of p such that the smoothness of yq 

guarantees that there is an open, bounded neighborhood U = y(m(p)) C Q, of 
(p) such that k(qz) > /2 fo all z £ U. s a consequence: 

qA) te) > JuT(z)qz)Q(z)dz 

ZfuTn(zA)Q(z)dz 

Step 3: Finally, intoduce the set of all sequences (po, • • • ,pn-i) of momenta 
which guide the system om some z £ U into the set O, that is define 

(z O { ( , . ,p n _ G ( ( z p • ,P G O} 

with the function defined in (32) s a consequence: 

(Zo Xow / p f e ) d>< 
M„(z 

with c — dp dpi, so that we gain the estimate 

/
T ( ( * P . . , p ) ^ P(Pj) dP> 

v  

M„(Z >(5/ ecause of  

- ( z 0 | ( s ) 

Inseted into 55), this yields  

(gA) > l l , T X o ) 

3 8We just o s M( £ O 
continuous i ) 



Sine U an 0 re open sets, the mixing asumptio nally guaantees tha 
the is an n e N such that Tn+2(q A) > 0. D 

REMARK 4.32 It should be emphasized that the quoted esults of [79] allow to 
gain the same result under weaker conditions. It is, for example, possible to 
replace the supposed momentum-invertibility by a so-called rank condiion on 
the function defining the iterates of the stochastic dynamical system (30): 

( R ) For all initial positions q G f, there is an integer k G N and a sequence of 
momenta v — ( • Pk-i) G (M.d) such that the rank of the generlid 

onroll tri k(qv) cf Sec. 7.1.4 in [79]) is maximal 

For k 1, it is C1(qo,po) — Dyq(p0), i.e., condition ( R ) is equivalent to the 
invertibility of y in po. For k > 1, we get generalized invertibility conditions fo 
\&jt at (po,. iPk-i)- The reade might notice, that we could have introduced a 
similar generalization in the operator appoach presented above by considering 
decompositions of some power T" of the transition operator; this would just fit 
pefectly into our approach since, in geneal, quasicompactness of T means that 
the is a decomposition Tn = K + for some £ N with K eing compact 
an being a strict contaction. 

Lemma 4.31 guarantees the convegence in distibutions of iterative ealiza­
tions of our Markov chain (see, e.g., Thm. A.24, Thm. A.26, and Cor. A.27 
in Appendix A). For our purpose, the following immediate consequence of 
T h m . 6 is of main impotance: 

C O L L A R Y 4.33 Lt t flo be entumerbl and t th mixing s 
umpon 4-27 be atisf. Then sp on operor T : L(£l) 

($l) s y a l able 

Proo See C o 2 7 in ppendi D 

Hence, asymptotic stability can be proved without any boundedness condi 
tion on Q and without any condition which guarantees ||Ti||i < 1 like, e.g., the 
symmetric momentum invertibility of the flow. In this sense, the application of 
Makov chain theory leads to stonger results than those presented in Sec 4.3 
an Sec 4.4.1 cf. Rmk. 4.29) 

4.6 ssential V i a l e s 

Let iJ : T -> 0 c 1" denote a set of essential variables, exactly as in Sec 3. 
where we established the representation of the associated transition operator T# 
as a specific restriction of the spatial transition operator T.39 We now exploit 
this representation of T$ to finally tansfe the decomposition esult fo to all 
sets of essential degrees of feedom. 

39Since we restricted our considerations to the canonical density i e to / = /c the 
reduced spatial density no is Fq) = Q(q) 



MA Aume t t the l on opetor T : L2(V) — (Q) 
decmpose s T = T\ + T wi be operato T\ ct 
oncton 

Ti , V« e L( f i ) 

wi a ons K 1 Then nsion operar T ener by 
f en crdite : T 4 1" also be m 

Ti wi be ct t conon 

Tiu\\2 , Vit e 1 

with ons K < r T. M e r en sedj 
en dj too 

Last not is di onsctive M operr, i di 
onstive M ope e p o n sp s b 

Proof: Let R& and B the estriction and polongation operatos from Sec. 3.5 
Then we have T# = R$TB$. Choose T^ R$T2B#. Its compactness follows 
from the general composition theorem fo compact operatos (cf [2] Lemma 8.2 
or 6] Thm. 9.5). T2^ is also self-adjoint if T2 is, since B$ and R$ e adjoint 
due to Prop. 3.14. The contraction poperty for the emaining part T ^ = 

$TiB# then is a simple consequence of the isomet of and the contaction 
operty of R$ stated in Prop. 3.14. 

With T, also T is Markov operator cause of the isometry of B and 
the contraction and Markov properties of R stated in Prop. 3.14. When is 
assumed to e directly constictive, there a e constants 5 > 0 and 0 < < 1, 
such that fo all densities u £ V(Q) and evey m e a s u b l e subset with 

Q(l)dQ < ö> ^ i s 

u{q)Q{q)dq< 6) 

We have to show the coesponding statement fo . To this end, conside an 
arbitrary E C 0 with JE F#(9)d9 < 6. Fo an also arbitrary density u G T 
we then o s e v e b using the spatial fo (29) of the estriction operato 

u{9) {9) dß u(9)(9)d9 

u)(q)Q(q)d(q)d9 
(9) 

f u)(q)Q(q)d 

where the last inequality esults from (56), since u e T>(Q) and the choice of 
E implies JF(9)d9 Q(q)d < S D 



Compactness nd Constrictiveness for Unbounded Position Space In 
Sec. 4.2, it has been demonstrated that it is easy to see that the transition 
operator T2 is compact in L2(Vt), more exactly, that T2 is a Hilbert-Schmidt 
operator, whenever its kernel k is bounded (cf Prop. 4.17). Due to Sec 4.3, the 
same condition suffices to guarantee direct constrictiveness of the full transition 
operato T. If the position space Q is unbounded, establishing a bound fo  

is dificult In by far the most cases the essential variables will be given  
internal ngles of the molecule (cf. Sec. 2.1.3) so that is of the form 

0 [0, 27T]". Hence, the essential configuration space 0 may be bounded, even 
if Q is unbounded. Thus, we may generalize our results by analyzing the kernel 
of T2,$ = R#B After some simple calculations s tat ing with the definition 
of the kenel (q y) of T , we end up with: 

u(9) ( 0 ) u ( ) d 

with the erd kern 

^ -1^-i-r / [ qy)Q(q)Q(y)d(y)dq) 7) 

By simply repeating the proofs of P o p . 4.17 and P o p . 4 . 2 , one ealizes that 
the following statement is valid (MM < oo): 

POSITION 4.35 Le e essenal configuon sp 0 the kernel k 
be b . Then T2 : L2

F (9) — L\ berthmidt operato 
n on oper : Lp ( ) — dire onstive 

REMARK 4.36 Assume that the sets M(q) defining the original kernel k, may 
b chosen such that fc is continuous Then, even if Ü is unbounded, the averaged 
kenel k# is continuous in 0 x 0 , and, thus ounded if 0 is bounded. If k$ 
were continuous and 0 bounded, we may infe om Thm. B.39 that is also 
compact in L ) 

Asymptotic Stability In order to answer the question concerning the sim­
plicity of the eigenvalue A 1 fo T we again have to intoduce a mixing 
assumption: 

ASSUMPTION 4.37 ery open se C 

Xc(0) (9) d9 XB,TXC) 0 Vn 

REMARK 4.38 As one might expect, this form of the mixing assumption is an 
implication of the vious fo (assumption 4.27) and the momentum invet 
bility of the flow. 

4 0 Compare the paragraph "Constictiveness and Compactness" on page 60 



With assumption 4.37 being valid and Lemma 4.34 in mind, we may rove 
the following lemma in exactly the same way as we did fo Lemma 4.28 a o v e . 

LEMMA 4.39 Asum ssumption 4-37 to be valid nson oper 
or T : L (0) — 0) o be onstrctive. Ten as i 
eny \ S V (0 d i s y a l is: 

1 ry u G £ ) 

u - i 0 rn -

2 For eery lid u G {&) (at = conditon 
Tu im = \ r u — x er s no u 

—u 

4.7 eriodic Boundar Conditions 

In this subsection, we will show that fo pedi poentls: 

1. The flow is (symmetrically) momentum invertible with uniform bound. 
As we have seen, this is sufficient to guarantee that the essential spectrum 
of the transition operator T is bounded away from 1, ie . that the 
essential spectal adius is stictly smalle than one. 

2. The mixing assumption 4.27 is valid for smooth periodic otential. As we 
have seen, this moeove guaantees that the eigenvalue 1 is simple 
and dominant 

In the following, we again use the notation intoduced a o v e : Fo all q G Q we 
define y : M.d -> f b 

(p) = i {$~T(qp) 

The statements 1 and 2 from above will both be proved by analyzing the func 
tions yq yq{p) asymptotically, i.e., by studying their ehavior fo |p| —> oo. 
The idea behind this is that, in a periodic —and, thus, bounded— potential 
a particle with high kinetic energy will asymptotically move like a free par 
ticle. For a free particle, symmetric momentum invertibility and the mixing 
assumption are valid. Hence, for proving the statements 1. and 2., we first 
show that the flow in some periodic potential asymptotically approximates the 
free flow (Sec. 4.7.1). Then, the mixing assumption and symmetic momentum 
invetibility will be implications. 

Without loss of generality, we may assume that the mass matrix M asso­
ciated with the system is given by the identity m a t i (this equies only 
escaling of the potential). 

In order to study the asymptotic behavio igoously, choose p € {p G M.d : 
p\ = 1} and conside the equations of motion 

qe = -pe pt=DV(qe qe0) = q p e 0 ) = p o e 8) 



That is, we analyze the asymptotic bhavio of in y s d y i n g the limit 
behavio of (r) — y{p/e) fo e — 0. 

4 . 1 ptotic cessibilit for Periodic P o t e n t i l s 

In order to prove the desied convegence \qe(t) — q — pote)\ 4 0 fo e -
0, we will exploit the averag princile of perturbaton teory of ingrabl 
Hamiltonian sytems as it can be found, e.g., in the survey [6], Chap. 5. We 
could also follow the line of argumentation of [12, 13, 93], using appropriate 

mactness principles, or exploit some clever two-time scale ansatz (cf., e.g., 
[61], Chap. 5). Howeve the averagi ovides us with a nice tool 
fitting perfectly to ou lem: 

T H E O E M 4.40 ([6] Thm. 4 a Thm. 5 in Cap. 5) Assume fg : M.d x Rd x R 
to be mooth fuons f — f(I,e) g(I,p,e) whih th re 2-K-periodi 
wi espect he ond v (I ) be on lwi 
eqon of mon 

ef(Ip,e) J ( 0 ) = J „ 
9) 

eg(Ie) 0) = 

wi a ctr w M.d connt "freqencs" er, dene by J 
soon er eqon of mon 

F(J) 0 ) = wi F(J) - ^ f(J0)< (60) 

27 

en wi eraging re ld: 

1. L u be rongly immensble. Ten er on 
t t \I(t) - J(t)\ < al £ [ 0 1 e ] 

2. L u! be icomenrable. Ten, for ery n > 0 ther is 
t t for l e < , i s \I(t) — J(t)\ < n l £ [ 0 1 e ] 

The used notions of i ncommensu i l i t y a e the following 

DEFINITION 4.41 A vecto Kd is called incommens if JTJ ^ 0 fo all 
nonzero integer vectors S Zd\ {0}. It is called ron mmense if 
t h e e are constants c, b > 0 such that 

ÜJ\ > c - \ - \ fo all G Z {0} 

4 1 T d g re p c w 
(Ae) 



REMARK 4.42 Accoding to [80], the set of vectors to G Rd, which are no 
strongly incommensurable, is of measure zero. Thus, the set of stongly incom­
mensurable vectors is everywhee dense in M.d 

In order to apply the averaging esult to our situation, we, first, have to 
introduce peiodicity assumptions for the potential V, and, second, have to 
tansform our equation of motion (58) into an appropriate form. 

We summaize ou peidi umtions in the following 

ASSUMPTION 4.43 Let he tenal be ooth on entir space M.d, 
assume t to be periodic wi peridicity domain f ^^k] 'wi per 
k > , ie fr al q £ 0 an ery € { 1 , . , d} 

V(q + ljej) = V(q) Vm Z, 

where ej e Rd t th unit ver. W lo of e n y w y assum 
= 27 l 1 . ,d s pedi wi spe 02-jr]d 

To transfo ou equation of motion 8) into an a p p o p i a t e fom, we 
intoduce 

(t) qe(ert) and (t) = pe(ert) - Poe (6 

which, inseted into 8), yields new equations of motion 

rpo + rv 0) = q, 
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erDV(z) (0) = 0 

We observe that, via the identifications zt —> if and vt —> I, (61) gets the form 
of (59) with Ü — rpo and / = —TDV. Consequently, whenever p0 is (strongly) 
incommensuable, the conditions of Thm. 4.40 a e satisfied. The peiodicity of 
V yields F — 0, so that the theoem states that v emains small eveywhee in 
0 1 e ] . Retansformation due to (61) gives 

Qe(t) q ~ Pot/ er (s) ds 

Pe(t) Po/e - v(ter) 

which esults in 

C L A R Y 4.44 L perdi sumion 4-3 be alid. Ten, 
er 440 es the des ongene \(t) — q—poe)\ — 0 fo 
e —> entum po er mmensurty ondi 
tions: 

1. I Pa strongly incmmens en er ons > 0 
all t £ [ 0 T ] : 

Pe(t) - PoAl < qt(t) ~ q-Pote)\ < t (64) 



on ensu en, for ev on n > 
e < t € [ 0 T ] : 

(t) - Pe\ < \(t) - (q-pe)\ < r 

This insight finally allows us to show that the mixing assumption 4.27 is valid 
for periodic potentials, see Cor. 4.46 below. This corollary will be a simple con­
sequence of the following well-known theoem stating that harmonic oscillations 
with incommensuble =nonesonant) equencies fill out the coesponding 
t o u s densely: 

THEOR 4.45 ([6] Thm. 4 hap. 41) Let be n rbry open ub 
n fl and asum th al enum mmene. Ten 
eery q £ Q: 

lim - (Z(q-Pos))ds > 0 

where £ : M e perdi 1 

Together with Cor. 4.44 this implies the mixing assumption fo the tansition 
opeato T fo peiodic potentials (cf. Def. (23)): 

LLARY 4.46 Let te boe periodity umptions 4 be lid en  
ry open ssets B C C f er no € N 

Xc(q) Q(q)dq XBxc) 0 Vn 

Proo Conside i t y open sets B C c S . We have to show that 

Txcili) Q(q)dq XB,TXC) 0 (6 

Instead of showing (65) directly, we will rove that for evey q g B and stongly 
incommensurable po there is some 0 such that £(yq(po/e)) € C. This 
is sufficient, since the maps yq and >-> 7ri$~r(e/po/e) are smooth so that 
t h e e must be open neighbrhoods O(po/t) C Rd and U(q) C B such that 
£(Vq(p)) e C f° r a n P e Oipo/e) and q £ U(q), which implies (65) 

In oder to demonstrate that there is some e > 0 such that £(j9(po/e)) € C 
conside an arbitrary q S B. Since po is strongly incommensurable, Cor. 4.44 
holds fo the solution qe of (58). Consequently, since C is open, we find anothe 
open set C togethe with an > 0 such that fo all e < : 

£(« - Pe) Z(q(j)) £ ( f ( A ) ) e C. 

ith the placement e this implies 

{£{q - otpoT)) < €(y(aPo))) f all a > 



H e e , a smple t a n s m a (s ) y i d s 

l i m - xc(t(yap)))d l i m - {£{q - apr)) d 

lim — (€(q - Po)) ds > 0 
^ at 

where the last s t ic t inequality results from Thm. 4. Thus t h e e must 
momenta p ap such that £(y(p)) G C. U 

4.7.2 A s t o t i c Invertibili for Periodic Potentials 

LEMMA 4.47 abve perodi assumons 4 be lid en 
s o d fl enum er with u 

REMARK 4.48 We again want to consider the periodic flow $T, introduced via 
the periodicity map £ due to (22). The replacement $T —• $J does not touch the 
validity of the statement of Lemma 4.47. That is, the flow $1 also is momentum 
invetible with unifo bound with the same minimal accessibility. The onl 
difference is that, for 3 , the sets M(q) contain infinitely many subsets (from 
which we perhaps have to choose countably many) each inducing a different 
branch of the functions y and vq. This results from the fact that in the pro­
cess e —> 0 the curve yq(po/e) with incommensurable "direction" p crosses the 
peiodicity cell fl again and again (infinitely many times) 

Proof of Lemma 4-4^ The strategy of the proof is as follows: We will use 
the asymptotic properties of qe(r) = y{pol^) to show that there are constants 
0 < c < T, C > T such that fo all £ Ü and all strongly incommensuble 
momenta po the following holds: Ther is ane > 0 such that 

c < detDy(p0e)\ < C, fo all |e| < (66) 

If we suppose that (66) holds, we have that yq is invertible for the momenta po/ 
with e < e*. Thus, its inverse vq satisfies the estimate |det£>i;g| < 1/c, since 
det Dyq detDvq 1. In general, the values e* in (66) depend on the specific 
momentum p and the initial position q chosen, a fact which may be reflected 
by writing e = e(qp). But the smoothness of y guaantees that we find some 
open n e i g h h o o d 

M(qp) D {pe e\ < (g-p)} 

for each strongly incommensurable po 5
 m which y is invertible with an uniform 

bound for the Jacobian of the inverse. Then, the set M(q) may be defined as 
the union of these sets M(q,po). Since fi is compact, the system is momentum 
invertible with unifor ound (see Lemma 4.3). 

4 2Compare Rmk 419 



Hece , we have to pove (66) for arbitrary q € 0 and strongly incommensu 
rable po- Therefore, we consider in the dependence of qe(r) — yq(o/e) on its 
initial momentum po/e. Consequently, we are interested in the Jacobian matrix 
D-2QfXT) — Dyq(po/e) wher D2 denotes the derivative of qe — qe(t;po/e) with 
respect to the second variable (the initial momentum) Instead of Dqe, we 
analyze the extended Jaco ian 

(t) (t) + tld. 

Diffeentiation of the equation of motion ( 8 ) govening qf then esults in: 

0) = 0 0) - 0 

which afte two-fold integation in time yields 

Je(t) = qe()) (Je() - d) dds 

Using the matrix norm induced by the norm | | used on M.d, the egulaity 
of V gives us the bound 2 ! which then implies 

Ut) 2V(q())d 

0 J e ( s 

Clealy, t h e e a e num f > 0 such that 

(qe))dds fo alH e [0r ] 

(67) 

(68) 

In fact the bound ||.D2V|| < C ensures that (68) is satisfied with pe = C r 3 / 3 
But we can find significantly sharper estimates when using the asymptotic prop­
erties of qe: We will see below that —if the initial momentum po is strongly 
incommensurable— these asymptotic properties and the peiodicity of V indeed 
imply — 0(e) However, estimates (67) and (68) together with a genealiza­
tion of Gonwalls lemma (see Lemma 4.49 elow) imply that 

MT) t exp ^ ) . (69) 

If we suppose = 0 e ) f a moment, (69) shows (r) = Oe), which means 
that f e —> 0: 

DV(Poh) ( r ) - r l r i implying detDy(p0e) - r 

which obviously implies the assertion (66). 
Hence, it only remains to show that we wee allowed to assume pt = (9(e) 

f r some fixed stongly incommensuble initial momentum To this end, we 
st intoduce 

I(t) V(q - —)ds 



Co 4.44 and the Lipschitz continuity of 2V then yield tha t t h e e is some 
C 0 such tha t for sufficiently small e: 

qe all G [ 

so tha t it suffices to show tha t max (i) 0(e) To this end, we use the 
F o u i e s e i e s expansion of V: 

q) a.j ex.p(-iq) , 

with coefcients otj G C. Thus diffeentiation 

{q) ^2 xp-i 
£Zdj= 

The smoothness of V guarantees that the expansion coefficients atj decay expo­
nentially with \j\. ff we inset the Fouie expansion into the definition of 
the single terms ehave like: 

exp — i — ) ds ^ -

fo very j G Z \ { 0 } with constant C independent of j . The strong incommen­
surability of po guaantees l/(jTpo) < c\j\ and, together with the exponential 
decay of the Fourier coefficients, the uniform convegence of the seies This 
implies I 0(2), which completes the poof D 

In order to fill the last gap in the proof of Lemma 4.47 we now prove the 
following genealization of Gonwall Lemma fo "second d e " diffeential 
inequalities: 

L E M M A 4.49 Assum hat th fuon ,' '• [ 0 T ] re nontiv 
diren equal 

ip(t) < )ip() d ds 

G [0 r] wi 0. Ten wi im 

tp(t) < exp )dds J , G [0 r] 

Proo alon roo Le 9 [20]: Conside 

(£) )'tp()dds 



such that \t > > 0 a tp ue to the assumptions. Differentiation of 
with espect to yields tp < ^ This implies the estimate 

(log 

which yields y integation that 

(0) 
l o g ( * ) < l o g 0 ) +^ä) )tds 

Since 0) and 0) = 0, this implies the assertion. D 

REMARK 4.50 The entire asymptotic constructio can be genealized in the 
following way: We can allow for initial momenta pe(0) = p° = po/ + pi (with 
Pi being e-independent), without changing the asymptotic esults That is, if 
only p0 is strongly i n c o m m e n s u l e , we have \qe(t) — (q — Pot/e — Pt)\ < Cte 
Pe ~ (Po/ + P ) | < Ce, and 

c < det D(t)\ < C, 

for all e being small enough. Consequently, the sets M(q), with espect to 
which the system is momentum-invetile with unifo ound, can e chosen 
such that 

U B1 (e) = { p + p i : \e\ < (qp, \pi\ < 1} C M(q) (70) 
(qp0 

for all strongly incommensurable po and q € Q, where e*(e/Po) is used in the 
same sense as in the proof of Lemma 4.47. In general, e*(g,Po) will depend on q. 
However, the smoothness of the map q >> $~ r(g,p) guarantees that, for every 
q G there is an open neighborhood q) C 0, such that (70) is valid for all 
q € 0(q) with the same (q,po). Since 0, is compact this finally implies43 that 
t h e e even is some (po) such that fo all q € f2: 

(poe) { p o e + p : |e| < (po), | | < 1} C M(q) (71 

This ena les us to show the following extension of Lemma 4.47: 

LEMMA 4.51 t th pedi umons 4- be alid. Then, e s 
M(q) n be cosen hat ow mmenum ivertible with unifom 

un and, s i m t a s l X i i 1. Thu, du o Prop. 42 e s a l 
nstion opeator T is directly onctive 

4 3Compare the proof of Lemma 4 3 



Proof: Due to P o p . 4.11, we have to show that the sets Mq) an b chose 
such that evey y G Q is accessible, that is for every G f t h e e ar q £ Q 
and p G M(q) such that y yq(p). Therefore, conside an a i t a r y y G 0, a 
stongly i n c o m m e n s u l e momentum p 0 , and define 

u(e) (yp0e) - $ ~ r ( y - p 0 e ) 

Cor. 4.44 guaantees that there e some constants C > 0 and e > 0 such 
that \v(e) —po/e\ < Ce for all e < eo- Suppose that the sets M{q) are chosen 
according to the construction of Rmk. 4 . 0 and let us use the notation (po) 
intoduced theein. Now, choose some 

e < - m i n { e ( p 0 ) C , o } 

an ealize that then t h e e is some q & Q such that 

$T{yPoe) = (q,v(e)) that is (yPoe) = $~T(qv(e)) 

withv(e) (pae) C M{q) Thus y is accessile and the assetion is poved. D 

As a final remark, it should be stated that, along a similar line of argu­
ment, we can also construct the sets M(q) such that the flow is symmeticall 
momentum i n v e t i l e with unifo ound with espect to these M(q) 

4.8 Commen 

The results pesented so far are connected to diffeent branches of the literature. 
Some have already been indicated; some further comments should be added: 
We roved quasi-compactness of the spatial ansition opeator T in L2(Q) in 

der to show that the essential spectrum of T is strictl bounded away fom 
A 1. Then, we exploited Markov operator theory in L to show that A = 
is a simple and dominant eigenvalue of T. So ar, our considerations have been 
based on operator theory/fuctional analysis. But we also o s e v e d , that via the 
stochastic dynamical system associated with T, Mrk chain theory permitted 
us to get similar and even more general results. As far as the author can see, 
these a e the two main categories for approaches in this field: via operator theory 
and via Markov chain theory, with the latte mainly dealing with the asymptotic 
behavior of the chain (convergence of distribution, rate of convegence), while 
the first is also interested in non-asymptotic properties of the operato. 

In the literature on operator theory, quasi-compactness44 of an opeator has 
extensively been discussed in its connection to unifm ergodicity of the op­
erator.45 Following an early contribution of KYRLOV ND BOGOLIUBOV [63] 
it was shown that any quasicompact Markov opeato on a Banach space is 

4 4In general, an operator T is called quasicompact if \\Tn — K\\ < 1 for some n £ N with  
being compact. 

4 5 A positive operator T on a Banach lattice is uniform ergodic iff the sequence of averages 
= X / n converges in the uniform operator topology cf [72] 
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uniformly ergodic and that, reversly, an ope is quasi-compact, if it is uni 
formly ergodic and the eigenspace E {u : T = u} is finite dimensional (fo 
a survey see [72]). The connection to Markov chain theory was initialized b 
Y O I D A AND KAKUTANI [114], who proved that Markov chains satisfying D O E 

BLINS condition [ ] a associated with quasicompact o p e a t o s , fo example, 
inL00. 

Hence, DOEBLIN'S condition —abbreviated (D) in the following— can be 
used as a link between quasicompact operators and special Markov chains It 
is, again, the book of MEYN AND TWEEDIE [79] which provides us with criteria 
under which Markov chains satisfy (D): For educile and aperiodic Makov 
chains, (D) is equivalent to the chain eing uniformly ergodic46 (cf Thm. 16.2.3 
in [79]). This result is impotant fo the context consideed heein, because 
any irreducible and aperiodic T-chain —like the stochastic dynamical system 
associated with the spatial transition operator (cf. Sec. 4.5) is known to be 
uniformly ergodic, if the state space is compact (Thm. 16.2. in 79]) or if the 
chain satisfies certain stability conditions (Thm. 16.2.6 in [79]). Hence, this 
line of argumentation may serve to establish m o e general results concerning 
quasi-compactness of transition operators, at least for such operators which a 
directly associated with some Markov chain like our spatial tansition operator 

In addition, unifom and "geometric" egodicity of Markov chains imply 
central limit theoms (see Thm. A.30) desribing the rate of convergence to 
the invaiant distribution of the chain. The reader will find some connection 
between central limit theorems and compactness of the associated tansition 
operator in the literature on Metropolis-Hastings and Gibbs Sampler Markov 
chains, e.g., in [92, 70] and in the appendix of [100]. However, in these arti 
cles compactness of the transition operator is used as an assumption implying 
uniform geometic egodicity and different cental limit theorems; compare 
the contribution of KUNG SIK CHANG and GEYER to the discussion in [106] 
Some aspects of this discussion will reappear in the construction process of some 
appopriate discretization fo the spatial tansition opeato (see Sec 4) 

4 6 The definition of "uniform ergodicity" for a Markov chain can be found in Appendix A 
(see Def. A.28); as the above results indicate this definition is much s tonger than that used 
in operator theory 



Discretization 
For simplicity of notation, from now on, the position s p a e or, respectively, 
essential configuration space under consideration is denoted by Q, which always 
is assumed to be a Lipschitz-bounded domain. Moeover, we write LF for the 
associated weighted H u t spaces LF(il) o LF () respectively, and denote 
the corresponding scalar products and noms {-, )p and || • \\F- In accordance 
to this, the weight function F(q) o F F(0) espectively, a e simpl 
denoted by F = F(q). 

In the following, we follow the line of arguments of SCHÜTTE et al. [94] (in 
Sec. 5.1 and Sec. 5.4) and D E U F L A R D et al. 24] (in Sec. 5.3). However, 
significant p a t the mateial is new in paticula the appoximation esults in 
Sec. 4) 

5.1 patial Discretizatio 

In the weighted Hubert space LF, we as in [ 9 , 21]) derive a Grkin procedur 
to discretize the eigenvalue prb lem Tu = Au Let By,. , Bn c 0 e a covering 
of f2 so that Bk n Bi is of (Lebesgue) measure zero for k ^ I and ö^=1Bk = 0 
Then, the sets T(Bk), k = 1 , . . . ,n, are a coveing of V. Our finite dimensional 
ansatz space V — span{%i. . . ,Xn} is spanned b the associated chaacteist ic 
functions X XBk- The Galekin ojection U L —>• V of u LF is 
defined b 

f 
<-o \ with (B X / F(q)dq 

The resulting discretized tansition operato n n T n induces the appoximate 
eigenvalue problem n „ T n t — Xu in Vn. Let A be one of the correspond­
ing eigenvalues and let the related eigenvecto b = Y^l Then, the 
discetized eigenvalue p l e m has the fo 

TXkX (Bk)k 1 . ,n. 

Afte division (B (known to e positive), we end up with the convenient 
fo 

w i t h . , 

whee in fact the entries of the n x n m a t i e given y the tansition 
bilities fom Bk to B 

= (T%£? w(Bhr) (72) 

Hence, Tn is the mat epesentation of T in Vn with respect to the or 
thonomal asis { < { B ) } - F° simplicity, we often identify T with 



n r a r n n (and M. with Vn) in the following and call T as well as TI the 
Galekin discetization of T o , altenatively, the tnsion ti 

REMARK 5.1 The result (72) is the main reason for the choice of the simple box 
function ansatz spaces V suggested herein. In fact, one could also apply finite 
element ansatz spaces, for example, which would result in better approximation 
properties of the eigenelements (cf. Rmk. 5.5 in Sec. 5.2). But only our box 
function ansatz spaces allow for diect i n t e re t a t ion of the entries of the 
discetization matrix as transition proabilities — a property, which will be 
important for the identification algorithm to b pesented in Sec. 5.3 and for the 
efficient evaluation of the enties of T via H y i d Monte Calo (cf. Sec. 4) 

Properties of the Transitio Matrix Since T is a Markov o p e a t o , its 
Galekin discretization is a (row) stochastic matrix, i.e., Tn^i > 0 and 
YA=I Tn,ki — 1 for all k — 1 , . . . ,n (for details about stochastic matices see 
8]). Hence, all its eigenvalues A satisfy A| < 1. 

Indeed, for rbitrary coverings B \ . ,Bn C Q, the discretization matices  
e also inheiting othe important opeties of the opeato T: 

ITION 5. The alrki d i t i o n T on ope 
th win ropers: 

1. T diceti t dens e row vect \ n ) 
(Bk) ien ienl e 

2 ery egr m T the Gerki d i t i z o n poer 
T nsition oper T — al 

. I s y a l l sta then rimitive e e eigen 
1 is sim nd domin. Hen discretiz ens 
e unique onry d i o n f Tn 

4 Since discreized dens p h positiv enes, indu 
igh lar produ on V Tn is symm wi respec t 
-)p- As consequen v e s i l e , ie ondion  
detailed alance: 

k Pi>ik c,Z G { 1 . , n } . (73) 

4 7In fact, if finite element ansatzes are used, the entries of the transition matrix would only 
be the coefficients of the polynomial approximation on the discretization cells Thus, the re­
construction of the transition probabilities would always require some addition computations 

4 8 A nonnegative square matrix P is called primtive, if there is a positive integer m such 
that P m > 0 (entrywise) Any p r i t i v e m a t i x i irreducible and aperiodic and conversel 
(cf. [96], Thm. 1.4.). 

4 9 That is, for column vectors y,z G Vn , we define {y,z)p = yTdia,g(pj) z. 
5 0 Stochastic matrices satisfying a detailed balance condition have been extensively analyzed 

in the context of Monte-Carlo techniques. For details and implications like such in the proof 
below, compare e g [38] 



ovr, v i , igen n a real [ 1 ] 

Proo Let us check the assetions as they are numbered:  
Exploiting T\ , simple calculus reveals that 

—TXX 

TxX 

Ad 2) Using the orthonomal asis {<j)j XjfPj) of (72) and the 
selfadjointness of T yield 

(T 7 T ^ ^ <t>JTX - k X 

simple induction argument then proves the assertion for all m € N. 
Ad 3) ve row vector y — (y,... ,y) with nonnegative entries yj > 0, 

satisfying YljV 1, is called a probbility vector Since p is positive, we 
can ove that Tn is rimitive by showing that yT fo m —> oo fo 
v e y probability vector y. To this end, choose an arbitrary prbability vecto 

y Consequently, the function u — YljVjXj/Pj is a density, i.e., u T 
and the asymptotic s tai l i ty of T together with assertion 2) yield fo eve 

€ { l n}: 

(yT X X f m -

Thus, Tn is primitive and the assertion concerning the eigenvalue A = 1 then 
follows from the well-known Pron-Frobenius Theoem (cf. [96], Thm. 1.1). 

Ad 4) F s t , introduce the diagonal matrix D p diag(v/pj) and define 
S — DpTnD^. Simple calculus, using the self-adjointness of T, then shows 
that S is symmetric with respect to the Euclidean scala oduct, i e , that 
ST S. In t u n , this eveals that, fo itself 

^ jD^, 

which is nothing else than the matrix notation of the detailed balance condition 
(73). Rewritten in terms of the /9-weighted scala product this finally means 
fo evey pai of (column) vectos y, z € V 

y,T dmg( T y,z) 

ie. , the asseted symmety of T D 

Let the stochastic matrix Tn have a ight eigenvecto r € M.d, ie. , assume 
that the is a A G [ 1 1 ] such that T Ar. Then, 



is an e i g e n v e r of n„XTIra with a s s i a t e d eigenvalue A. Thus, the riht eige 
vectors of Tn a e to be interpreted as approximate eigenvectors of T. The lef 
eigenvector of Tn associated with r and A then is given componentwise mul 
tiplication of with , i e . by the ow vecto 

L 

Consequently, if r is the ight eigenvector approximating the eigenfunction u of 
T, the left eigenvector rD2

p approximates the weighted eigenfunction u • F. 
For Tn, as for evey primitive stochastic matrix, the unique ight eigenvector 
to the eigenvalue A = 1 is 1 1)T , which esults in T)2

p fo the 
associated left eigenvector. 

Finally, let R = [n,... , n] denote the matrix whose columns are the p 
nomalized51 right eigenvectors of Tn for the n eigenvalues2 (Ai, . . . , A ) Let 
L h, • • • ,l] denote the m a t x whose ows a e the left eigenvecto k = 

H'p Then, has the following spectrl compositon: 

d i a g ( ) L with d, since kj 

REMARK 5.3 This technique of discretizing the transition operator is similar to 
the approach to discretizing the Frobenius-Perron operator of a discrete dynam­
ical system via subdivision techniques due to DELLNITZ AND JUNGE [19] and 
to the concept of "cell-to-cell-mapping" due to Hsu [57]. However, the main 
difference is obvious: we have to deal with a stochastic dynamical system whose 
essential dynamics covers significantly large parts of some highly-dimensional 
state space; both of the other approaches have been designed for deterministic 
dynamical systems in state spaces with relatively small dimension. For mo 
details see [21 94] 

5.2 Convergenc of igenvaues and igenvect 

From our results concerning the spectral properties of the tansition opeato 
we may infer that the following situation is valid: 

There a e some intege / and k such that the discete spectum of T can 
itten as 

< 7 d i ( T ) = i . , A U { i . ,A f e } 

where the second set may e empty 0) The eigenvalues may e o d e e d 
such that 

1 = Ai and 1 < < A • < fc < 0 
5 1 That is, {rk:rk)p = 1. 
5 2Note, that each eigenvalue has to be repeated with respect to its multiplicity 
5 3In fact, I and k may also be infinite, e g i is compact n this case consider only the 

I largest and smallest eigenvalues of T. 



where some of the Ajs may occur repeatedly acording to their multiplicity. 
The associated eigenvalues are denoted Uj, j £ { 1 , . , 1} U { — 1, . . — k}; fo 
every repeated eigenvalue they a e assumed to be nomalized and to chosen 

thogonal with respect to {-, -)p. 
For the discretized repesentation II„Tn of the transition operator, we 

denote the eigenvalues by A". For n > m a x ) the lagest and smallest ones 
e assumed to e o d e e d accodingly: 

> A > X an 1 < . < _k 

again epeated due to their multiplicity. The associated eigenvectors a e denoted 
by u" again being assumed to be othogonal an nomalized with espect to 

Finally, let us to assume that we are consideing a sequence Vn C Vn+i C .. 
of ou simple box function ansatz spaces V span{xB»}, which is dense in 
L|*. Hence, the associated coverings B™, j = 1 . . . , n, of Q are supposed to 
result from an appropiate iteative subdivision process, such that the maximal 
"diamete h = max diam(B vanishes asymptotically, ie . h —¥ 0 fo n — 
oo. 

Unde these assumptions we can prove the following simple convegence 
esult fo the eigenelements associated with the d i s e t e p a t of the spectum. 

LARY 5.4 r eery j € { 1 . , 1} i e { 1 . , er er 
al n > n 

A,- < A < Xj an < (74) 

wi a" < 0 and " i > 0 bu —>• 0 ad i r n — oo. Moreoer f 
all j £ { 1 . . , 1} U { — 1, — } th onverence associated ienvec 
s guraeed, ie er appro djuen ienecto repe 
ienals: 

lim UJ — b 0 

Proof The asserted convergence is a simple corollary of the Lemmas B.48 and 
B.49 from Sec. B.3 of Appendix B. In order to meet the assumptions of these 
lemmas for the I lagest eigenvalues Xj e { 1 , . . . ,1}, of our transition ope 
ato T, conside the selfadjoint opeato A = (1 + )Id — with an a b i t 

0.5 B D 

REMARK 5.5 The explanations in Appendix B concerning Lemma B.49 illus 
ate that the rate of the convergence u" Uj crucially depends on the dis 
bution of the eigenvalues in the spectrum of T. Moreove, as explained in 

That is, for ever and every > 0, there i an N and a. v £ V M such that 
« — "||2 < e-

5 5For the eigenvalues X-i, i {1 we may foll exactly the same idea using A = 
( l + 7 d + T. 



more detail in Rmk. B.50, we can establish explicit convergence rates for the 
convegence in Cor. 5.4, if we use finite element ansatz spaces instead of ou 

ude ox function ansatz spaces 

5.3 dent i fa t io lmost nvarian regates 

In Sec. 3.2, we aleady observed that almost invariant sets of the system under 
investigation may be identified via the eigenvectors Uj of the largest eigenvalues 
of the transition operator T. Let us now switch to the situation afr prope 
discretization of T, assuming that the discrete eigenvectors of the resulting 
transition matrix Tn are appropriate approximations of these Uj. 

The problem emains how to appoximate the almost invariant sets on the 
basis of these discrete eigenvectors. Obviously, we have to identify the almost 
invariant sets in the discrete state space { 1 , . . . ,n} of the tansition matrix 
Tn, which then can be interpreted as approximate almost invariant sets in the 
essential configuration space 0, by identifying index sets A C { 1 , . . , n} with 
subsets UJ^ABJ C fi. In order to avoid confusion, we adopt the phase "aggre 
gate" for any (nonvoid) index sets A { 1 . . , n} . 5 6 Thus, our stategy is to 
approximate almost invriant sets of T via almost invarint aggregates of Tn 

In the following, the connection between almost invariant aggregates and 
eigenvectors of the dominant eigenvalues of Tn is worked out. We will see that 
such almost invariant aggregates exist if the Markov chain associated to Tn is 
n l led which means that it can be i n t e r e t e d as a perturbation of 
an uncoupled Makov chain (UMC). Then, it will be demonstrated that the 
decoupling of an UMC can be managed by inspection of the ign structure of 
the dominant eigenvectors of the associated transition matrx. This technique 
will be transferred to the nearly uncoupled case via an appopriate p e r t u a t i o n 
esult, which finally yields the required identification algorithm. 

The idea of analyzing nearly uncoupled Markov chains as perturbed UMCs 
is far from being new (compare, e.g., the approaches via coupling matrices 
[78, 102, 103], via the "conductance" of a Makov chain [97], o via the "uncou­
pling measure" [52]). However, a special algorithmic concept for the identifi 
ction of almost invariant aggregates has (to the authors knowledge) first been 
presented in our article [24] and we will closely follow this presentation heein. 
In [19], an essentially different treatment of the identification problem has een 
demonstrated, mainly aiming at identifying almst cyclic aggregates (wheeas 
the case of almost invariant aggegates has only been vaguely indicated). 

We f s t have to give a suitable definition of "almost invariance" of agg 
gates this end, we start with the following 

DEFINITION 5.6 Given a Markov chain and its tansition m a t x P not nec 
essaril primitive) and a stationay distribution > 0.57 Let A and B be two 

5 6This phrase has its origin in the literature concerning Markov chains with discrete state 
space. Hence, it may also be used for the associated stochastic transition matrices. 

5 7 That is, the row vector p is a probability vector with positive en t ies which satifies 
P = p 
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arbitrary aggregate Then the tansition p i l i t wee wit 
espect to is given 

(A a 

Let the aggregates A\,. ,A be a disjoint decomposition of the state space 
Then, the stochastic matrix W, the entries of which a e the tansition p r o a ­
bilities etween the Aj, i e . 

(Aj 

is called the ng m i of the decomposition. 

The statistical characteization of uncoupled Makov chains (UMC) is based 
on tansition probabilities etween aggregates. An aggegate A is said to be 
invariant, if wp(A, A) — l.58 A Markov chain is then called uncupled, if it allows 
to decompose the state space into disjoint invar aggegates A\ At, i e . 
wp(Ai,Aj) = 5ij, or equivalently, Wp Id. 

Before discussing m o e details about UMCs, let us switch to the case of some 
Markov chain with primitive transition matrix. Then, its stationay distrbution 
is unique and we may simply wi te w(A, B) instead of wp{A, B) An aggregate 

is said to be lmost invariant if w(AA) ss 1. The Markov chain is called 
nrly nc (NUMC), if its state space can be decomposed into disjoint 

l aggregates A i . ,Ak such that 

w(AAj) w ij that is (7 

Thus, the almost invaiant character of the decomposition A \ . . ,A/. means 
that the conditional probability of leaving Aj, ie. , ^ w{Aj,A{), is small fo 
ever 1 . ,k That is, we demand that 

diag(W0 

is sufficiently small.59 

Before being able to present the algorithm for identifying almost invaiant 
aggegates we have to collect some consequences of these definitions 

5 . 3 1 ncoupled and Nea n c o u l e d arko ains 

s a consequence of (75), the states of a NUMC with almost invaiant ag­
egates can be ordered such that the transition matrix P is of block-diagonally 

5 8Note that in the case of an UMC, the stationary distribution is not unique, because 
the corresponding transition matrix is not irreducible. However, in this special case the 
probabilities are independent of the chosen stationary distribution. 

59Herein, diag(Ty) denotes the diagonal m a t i x whose diagonal entries are identical to that 
of W, i e d i a g ( i ) = diag(w(A )) 



mi fo 

u 

(76) 

Dk 

whe the mat is small. Hee , smallness of E means 

d i a g ^ e 

where Dp d i a g ( i ) is the weighting m a t x fom ove. We a e inteested 
in the limit e —> 0. 

Uncoupled Markov Chains For e = 0, i.e., fo 0, we end up with a 
block-diagonal transition ma t ix associated with an uncoupled Markov chain. In 
fact, as a consequence of the definition of an UMC, any associated transition 
matrix takes this form after suitably renumbring the state space. Thus, each 
of the block matices Dit is a stochastic matrix, and it is primitive if k is the 
maximal number of uncoupled aggegates. Then, each block Da possesses a 
unique eigenvector ; = ( 1 , . . , 1 of length dim(.Dji) corresponding to its 
Peron oot Aj = 1. Therefore, A = 1 is a fc-fold eigenvalue of the transition 
ma t ix P and the coesponding eigenspace is spanned y the vecto 

0 0 0 ) l 

Here our notaion delierately emphasizes that the eigenvecto e int 
eted as haracteristic fuctions of the uncoupled aggegates. 

In geneal, any basis {r^}, i = 1 , . . . , k, of the eigenspace corresponding to 
A 1 can e written as linear combinations of the chaacteist ic functions \At 

ie. , t h e e a coefcients a M. such that 

(77) 

As a consequence, eigenvectors corresponding to A 1 are constant on each 
aggregate This structure implies the following lemma, which is a simple conse 
quence of the pothogonality of the eigenvectos (fo a poof see [24]) 

LEMMA 5.7 iven lok-diagon anon ri onstng r e v e , 
rimitive blo onary d i o n pogonl is { = i 

iensp spondi 1 wi ery S i 

sign(( sign(()) (78) 

en 



on wi on i 

2 diferen agg xhi diren i s 

Summarizing, Lemma 7 states that —for uncoupled Markov chains the 
set of all k eigenvectors can be used to identify all uncoupled aggegates via sign 
structures. In principle this can also b done by using both eft eigenvectors 
and right eigenvectors, since their sign structures are the same: Just recall that 
for evey left eigenvecto I there exists an associated ight eigenvecto r with  

r, hence s i g n ( s i g n r ) 

Perturbation of Uncoupled Markov ains In what follows we want to 
analyze nearly uncoupled Markov chains as weak perturbations of uncoupled 
Markov chains. In analogy to the nearly block-diagonal form (76) of the transi 
tion matrix of a NUMC, we assume that the pertubation can be embedded in 
a family of block-diagonally dominant matrices P = P(e) which is analytic in 
a domain of the complex plane containing the oigin: 

P(e) P(0) + + . , 

where P(0) represents the uncoupled situation, i.e., P(0) is lock-diagonal with 
k pimitive blocks Da, i — 1 . . . , k. As normalization, let HD2^1) H^ = 1 to fix 
the cale of e. Since the discretization process of the transition operator results 
in a revesible and primitive transition ma t ix Tn, we, moreove, may assume 
that P(e) also is symmetric with respect to ( , -)p fo e € M and imitive for all 
e ^ 0. Consequently, we may exploit the usual theory for symmetric matrices for 
the details of the perturbation analysis cf [60]). Finally, we have to assume that 
the unique stationay distributions6 p = e) of the P P(e) a e "unifoml 

ounded away fom zeo" (for all e > 0). 
These regularity conditions imply that, fo sufficiently small e e l , the eigen­

values are continuous in e and the spectrum of P(e) can be divided into three 
parts [60, 78, 102]: the Perron root i(e) = 1, a cluster of k 1 eigenval 
ues A2(e),... , Afc(e) that approach 1 for e 0, and the emaining pa of the 
spectum, which is bounded away fom 1 for e —> 0. 

In particular for small real e there is a spectral gap between the "Perron clus 
t e " Ai (e) , . . . A* e) and the remaining part of the spectrum. The following per­
turbation theorem gives a characteization of the eigenvectos n e ) , r e ) 
corresponding to the erron cluste (fo a proof see [24]) 

THEO 5.8 Let P(e) be a fmiy of matrs t i s g t bo nrodu 
reguarit conditons. Ten, for eal t, ere exi p-rionmal eigenrs 
n(e) , fc(e) of he folwing form: T eienctr r i e ) 1 . , 1) r 

spons to the Perron ro 1. The other — 1 ien spon 
6 0For e > 0 the Pe) are p r i t i v e . For e = 0 define p(0) = lim (e) 



ien r A e ) A e ) n r A 

e) ij + ) X - j — j - r ^ r j + 0( (79) 

v v  

C) /) 

with rori ficients a € R, {r 0)} öemg igenvct 
-P(O), agg A i . , respondi blok-dional 
P(O) 

This result permits an intriguing observation: the first terms (I) are just 
shifts (up or down) of the locally constant levels to be associated with the 
almost invaiant aggregates wheeas the second terms (II), which depend on the 
spectral gap between the Perron root and the remaining part of the spectrum, 
will spoil the constant level pattern to some extent. It may, however, affect the 
sign structure associated with any almost invariant aggregate only to a smalle 
extent. Indeed, it is one of the key ideas of this subsection to identify the 
almost invariant aggregates via their sign stucture. Clearly, caution must be 
taken with espect to the pertubation of any "almost zeo" levels (cf. Fig. 14) 

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 

F i g u r e 14: Illustratio of Thm. 5.8 for a situation wit k — 3 (almost) invariant aggrgates . 
n this example, the P(e) are 90 x 90 matrices acting on a state space { 1 , . . . ,90}. Left: 

Eigenvectors spanning the eigenspace of A = 1 for the uncoupled case -P(O). The state space i 
decomposed into three invariant aggregates by different sign structures. Right: Eigenvectors 
for the eigenvalues Ai = 1, A2 = 0.75, and A3 = 0.52 of the Perron cluster for the nearly 
uncoupled case P(e) versus the (discrete axis of the) 90 states. The eigenvectors are almost 
constant on the three almost invariant aggregates. The sign structures are the same as for the 
uncoupled case except for rz on the third aggregate, where perturbations introduce "e ra t i 
sign structures See 24] for the constuction of the underlying tans i t ion mat i ces 

REMARK 5.9 This approach to almost invariant aggregates as pertrbat ion of 
invaiant aggregates of uncoupled Markov chains should be compared to the 
understanding of almost invariant sets as perturbed invariant sets as illustrated 
in the guiding example, compare Sec. 3.2, Rmk. 3.5 n i n t e e t a t i o n of the 
p e t u b a t i o n paamete e is given in Rmk. 3.6. 



Error Indicator The identification p o c e s eploiting the sign s u c t u r e is 
justified only via the perturbation result. Theefoe , it is of main importance to 
estimate the influence of the "weak modes" k + 1 . , n, on the coupling 
of the "dominant modes" r^, i — 1 , . . . ,k. 

To this end, let us assume that we aleady know the almost invaiant aggre­
gates Ai,. A fo P = P(e). In t e m s of the n x k matrices x = XAt • -XAk] 
and R = [ ] = e) the pertubation result (79) may also e expressed 
in the form R = x^ + eB, with a k x k coefficient matrix A A(e) and a 
n x k matrix B = B(e) representing the "weak-dominant" coupling terms (//) 
This permits the computation of the associated coupling matrix in terms of the 
eigenvectos R and the corresponding eigenvalues A d i a g ( i Xk) = A(e): 

( x p X ) (XTD^PX) A + eA. 

Herein, the matrix A represents the contribution of the "weak-dominant" in­
teraction to the coupling matrix, while the fist t e m , AAA, desribes the 
interaction between the dominant modes The reade might emembe, that, in 
the case of an led Makov chain, we had B = 0 and A = Id, implying 
A = 0 and W — A1AA = Id. F r the nearly decoupled Makov chains unde 
consideation, we may expect A^ d and i n t e e t the k k mat 

( A u . ,k) = - A ^ (80) 

as error indicatr measuring the influence of the weak modes on the coupling 
between the aggregates (Ai,... ,Ak). Hence, if an e n t y of e ( A A) is 
lage, this may essentially have o diffeent easons: 

1. Our assumptions concerning the perturbation wee not valid (e.g. e was 
too lage, o the egulaity conditions wee h u t ) 

2. The identification process exploiting the sign structure esulted in "wrong" 
almost invariant aggregates This may happen if the perturbations had 
crucially spoiled the sign structure esulting in an assignment of some 
states to the "wong" aggegate see elow) 

5 . 3 2 Identificatio lgorithm 

In this section we present the basic concept of an algorithm for the identification 
of almost invariant aggregates As derived above, this algorithm xploes the 
sign s t u c t e of eigenvectos coesponding to an eigenvalue cluste nea 1. 

In a first step we have to determine the number k of almost invaiant aggre 
gates. This is done by computing the cluster of eigenvalues near A 1 which is 
well-separated from the remaining part of the spectrum y a gap (Thm. 5.8). It­

ative eigenvalue solves with simultaneous suspace iteration see, eg. [90, 68] 
[22, Section 4]) are a natural way to perfom this task. 
We now assume the k right eigenvectors n, associated with the Peron clus 

t e , to b computed and explain the suggested identification algoithm in t h e e 
steps: 



tep 1 We are mainly i n t e t e d in sign structures which ar particularly 
table with respect to the perturbations of the eigenvectors. Heuristically, the 

sin of an e n t y of one of the eigenvectors is the more likely to remain unper 
turbed, the lager this entry is Hence, we a e particularly interested in all 
those states s € { 1 , . , n}, fo which at least one of the eigenvectors ; has 
some "significantly large" entry ri(s). Since "significantly large" will vary fo 
each eigenvecto we introduce an appopriate scaling: we nomalize the positive 
and negative p a t s of each eigenvector by their maximum norm, yielding scaled 
eigenvectors f;.6 Now, we are interested in such states s for which at least 
one of the scaled eigenvectors has an entry larger than a given theshold value 
0 < 5 < 1. Hence, the first step of the identification algoithm is 

(51) Detemine £ s : max {s)\ > 6}. 

Step 2: Based on the sign structures of the states in S, we now identify 
specific classes of "nonequivalent" sign structures The sign structure (s,e) = 
(i7i,... ,dk) of some state s with respect to the theshold ale e is defined 
as follows: if |r;(s)| > e, then CT = sign(n(s)) otherwise i 0. Then, the 
entry "0" is used as a kind of joke being intepretable as "+1" as well as " 1 " . 
Consequently, two sign structures o\ and -2 are equivalent, denoted by o\ = 
(72, iff their ointwise multiplication yields only nonnegative entries. Despite 
the fact that = defines no equivalence elation, it serves to decompose X into 
"nonequivalent" classes of sign structues yielding a surjective map a : £ — 
{ 1 , . . . , k}. For ease of presentation, we refer the reader for the details of these 
procedues to our article [24]. Summaizing, the second step of the identification 
algoithm contains: 

(52) Determine k classes of (incommensurable) sign structues and the associ 
ated map a. Due to a, £ decomposes into k disjoint subsets S i , . . . , £/t, 
each of which esents the "core" of the almost invaiant aggegates 

Step 3: We finally have to assign the remaining states s g { 1 , . . . , n} \ £ to 
one of the sign stucture classes, aiming at a complete decomposition of the state 
space into k aggregates. Instead of using the possibly heavily perturbed sign 
structures of these states, we exploit the fact that the k eigenvectors Ti allow 
to approximate the k characteristic functions of the aggregates. Since a subset 
Sj of each aggregate is already available, we may again apply a least squares 
fit, now based only on the states from £, in order to detemine appoximate 
characteistic functions \ That is, evaluate coefcients such that 

XEi - otjTjXY = min! fo 1 . , (8 

6 1For every vector X, we define entrywise X+(s) = max(0,X(s)) a n d X ~ ( s =min (0 ,X(s ) ) 
such that X = X+-\-X~. In this notation, we set f, = r ^ / l l r ^ l l o + r - r r - r l l o n particular 
the eigenvector for A = 1 remains unchanged: = (1 1 ) T . 



where TJXY. means pointwise multiplication. Then, define Xj — Y^j=iaji'rj-
Having computed the \j •> a state s is assigned to aggregate j if \j (s) is maximal 
in the set {x(s)i = 1 . , }. Thus, the third step of the algoithm is: 

(S3) Evaluate coeffcients due to (81), set Xj = ajrh a n d detemine 
the aggegates via 

s e {1 n} : s) > ) , f all i } 

The resulting aggregates can finally be validated with respect to different 
criteria, for example, via the entries of the e r r r indicator matrix, via the devia­
tion of the approximations Xj om being true characteristic functions, or via a 
comparison etween the P r r o n cluste and the diagonal enties of the coupling 
matrix. 

The performance of the resulting algorithm applied to a ealistic lem 
will be illustated in detail in Sec 6 below. 

5. vauation f the Transition atr via Hybr on 
C a l o 

Our next question is how to compute the m a t x Tn fo given boxes Bk C Q 
Accoding to (72) we have to determine the transition probabilities between 
these boxes. For the scope of this section we restrict our consideration to the 
case of the canonical ensemle /o / That is, we have to compute the 

ansition babilities 

( B B T 
Ir(Bk) Xr( ($T) f ) d 

dv\ Q(a) d 
(82) 

r(Bf) / a ; ) «a; 

JBk UR' {•^{qp))V{p)dp} Q(q)d 

fBh(Q)d 

where the notation assumes for a moment that Q indeed denotes the poon 
spce of the system under consideration. 

The two altenative formulae show that we have at least two options fo 
evaluating W(BJ,B[T) explicitly. We can realize the first formula by working 
in the phase space T (option x), pefoming the following two steps 

(XI) "Sampling of the canonical density": That is, we have to generate a se 
quence of states S = {xt, k = 1 , . . . ,M} c T that is appoximatel 
d i s tbu ted according to the canonical density / n 

6 2In case of ambiguity, the state is assigned to an a rb i ra ry aggregat with maximal Xj 
owever, this case was never ose rved n any of the numercal e e r m e n s performed 
6 3 The deviation ep = 1 — A of th Perron c l t e r Ai > > As, from Ai = 1 s h u l d b 

comarab l e t the deviation ew = 1 i n ^ w(Aj Aj) of the diagonal entres from 1, especall 
f th gap g = j , — i ween th erron c l e r and the r e m a g par of the s e c 
s l a r e enough (g 3 ) 



( X ) Approximation of the transition probailities: Having computed S, one 
has to count all such Xj € S for which Xj € T(Bk) and $TXj e r(B/) . For 
checking the last condition, sufficient approximations Xj $ r £ j of all M 
subtrajectories starting from S are needed. 

The second formula of ( 8 ) allows to restrict the sampling problem to the po­
sition space Q (option q) but requires an additional momenta sampling in the 
approximation step of the transition probabilities. We will see that the options 
can oth e realized by su i ta le MonteCarlo strategies 

5.4.1 Evaluation a M t r o i s o n t e - o ( C ) 

The main problem with sampling the canonical density is that, in most realistic 
cases, we cannot explicitly evaluate its value fca(x) — exp(—ßH(x))/Z for a 
given state x € T, because the partition function Z is not known explicitly.4 

The typical approach to sampling the canonical density /can in the entire phase 
space is via Monte Carlo (MC) techniques. The literature on this topic is ex­
tremely rich and varied [11, 44] and we surely will not give particular merits to 
any particular MC variant. Let us shortly recall the basic steps of a Metropolis 

C approach (for additional details see, e.g., [101]): 
Metropolis MC realizes a Markov chain {X} which is asymptotically dis 

tributed according to /oan without evaluating /can itself. Each "update step" 
j — +i of the Metropolis construction consists of two parts: 

1. The proposal step xj —> xy The numerical realization of the proposal step 
should exclude any evaluation of /can and must ield a final update step 
which satisfies the detailed balance condition. 

. The cceptance step: evaluate AE — H(XJ) — H(xj) and choose r ran­
domly equidistributed from [0,1]. The state xj is accepted as X+i if 
r < min{l ,exp(—ßE)}, otherwise we set X+i — x 

Thus, we may apply any such Metropolis MC variant to realize option x 
from above by producing a sequence S = {xt, k — 1 , . . . , M} c T sampling 
/can. In an additional, second step we then have to realize problem ( ) via 
appropriate approximations of the flow. That is: 

relfreq. (xj € T(Bk) A &Xj € F(B,)) 
r e L f r e q . ( x . G l W ) • r(BB„T) (83) 

It is obvious, that this idea of approximation is not restricted to the case where 
£} is the position space and the Bj are spatial boxes. On the contrary, we may 
use every box covering induced b a set # of essential variables, onl that, then, 
we have to replace (83) b 

relfreq. (flfa) g Bk A 0(& Bj) 
r e L f r e q . W x . ) • w(Bk,Blr) (84) 

6Z = Jr fa(x)dx is an integ in a h i g y d i m e s i a l space. Its c o m p u t a t n of w 
s a remendo ask comparabl the e v a l t i o n of th ranst ion p r o b a b t i e s tsel 
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Evaluation via A s s i a t d Markov Chain Let us now discuss how a real 
ization of option q ma loo like, i.e., how we may restrict the sampling to the 
position space of the system under consideration. We know from Sec. 3.6, that 
our transition operator is associated with the Markov chain 

ft+i = qkP) (85) 

if the pk are independently chosen randomly with respect to the canonical mo­
mentum distribution V, and the initial position q0 from an arbitrary initial 
distribution in position space. Thus, iterations of (85) realize sequences {qk} 
which are (asymptotically) distributed due to Q. Simultaneously, such iterations 
allow us to determine the relative frequency of transitions qk £ Bj —> qk+i £ B 
for arbitrary box numbers j and I. The convergence guarantees that —as in 
step (X2) above— the relative frequencies approximate the desired transition 
probabilities in the sense similar to (83), ie . 

relfreq. (qk 6 B qk+i € Bt) 
relfreq. ( Bj) r) 

or, for essential variables, in a sense similar to (84). 
Thus, another idea for evaluating Tn could be to realize the iteration (85) by 

replacing the exact flow $T by an appropriate approximation. Therefore, let us 
apply a symplectic and reversible discretization \t* to the Hamiltonian ss tem 6 5 

and let us use, for example, 

= ( T / m \ ^ e ^ 

instead of $ r with m being large enough such that the stepsize r/m is adequate. 
Consequently, we are inheriting nearly all necessary properties of the flow, with 
only one disadvantage: The underlying stationary density is not invariant 
under the action of g, since g does not preserve the energy of the system.66 

As a consequence, the iteration (85) with $ r replaced by g will not sample the 
distribution Q, thus destroying the basis of our approximation idea. Hence, we 
have to look for a Markov chain, iteration of which allows to sample Q while 
containing onl and not the flow itself 

5.4.2 Hybid onteCa (HMC 

So-called "hybrid" MC variants have to the author's nowledge first been intro­
duced in the late 80's (cf. [8]) and have in MD mostly been used for condensed 
matter and polymer-like systems (cf. [76, 53, 40, 4], for example). The tech­
nique imitates the general Metropolis MC strategy of proposal and acceptanc 
via a specification of the proposal step for separable Hamiltonians of form 

6 5For example IP' may be the well-known Verlet scheme [110, 1]. 
6 6 There i no discretization which is symplectic and reversible and s t a n e o u s l y preserves 

energy exactly [42]. We may reduce the energy error, p r o d c e d by g, to an a rb r t r a r small 
v a l e by i n c r e a s g m, but this w o l d lead o a all n e f e n comput t ion s c e m e 
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by means of a reversible and symplectic discretization (cf. [69]). We merely 
suggest the application of HMC herein, because it seems to be particularly ap­
propriate for linking the subproblems of sampling the canonical densit and 
approximating the transition probabilities by approximate trajectories. 

For explaining HMC, let again the function g from above denote the re­
versible and symplectic discretization. In difference to general MC techniques, 
HMC generates a sequence S = {qj} C 0 in position space. Starting with qj, 
the first part of the proposal step is to choose momenta pj randomly from V, 
gaining the state Xj = (qj,Pj). As the second part, compute the proposal state 
Xj via a short approximate subtrajectory of the underlying Hamiltonian system, 
ie. , choose ij = g(xj). Then, repeat the MC acceptance procedure with Xj and 
Xj, let the accepted state be £j+i, and finally set = n i . In other 
words HM realizes an iteration of the Markov chain 

t \ -...v. / \ {%) i f r < a ( x ) , • 
MQjWj) with a(x,r) = j ^ o t h e r w i s 6 ) (86) 

setting a(x) min{,exp(—ßAE(x))}, 

with AE(x) H((x)) - H(x) 

with pj independentl chosen randomly from V and Tj randomly from the 
equidistribution in [0,1]. In this form, HMC has to be understood as a pure 
position samplng of the spatial canonical distribution Q such that the resulting 
Markov chain {qj} allows to approximate the expectation values of appropriate 
spatial observables A : Q —• I in the sense that67 

M r 

J im U E - 4 ^ E^A) = / A)Q()d (87) 

Heuristically, we thus are able to construct a scheme like (83) for the evaluation 
of the desired transition probabilities via HMC: First, rewrite the transition 
probabilities as spatial expectation values, yielding 

{BBUT) / f {EQ(Xh°XB1^i^-T(p))}V(p)dp. 

Then, use (87) to gain the approximation 

f 
(BBlT)K— £ W / X B T i * " T P ) ) P ( p ) d p - (88) 

V ^ N A — , 

EXBQj) ~1 

i = i 

Hence, in addition, we need to approximate the integral in (88) for any of the 
position from the HMC chain } . Consequently, this will again be done via 

6 7For d e l s see paragraph "Approxmation Properties" below 



a momenta sampling } of ielding 

B , T I * TP))'P(p)dp R 7 V B , ) r i * T P ) ) (8 

Hence, one obvious advantage of HMC in this context is that it is already 
based on approximations of $j,pr) which we need for the evaluation of the 
transition probabilities. We may indeed use the approximations (xj) already 
evaluated in the proposal step (with the exception of such proposals (x), which 
could not be accepted). 

Consequently, the transition matrix is allocated by executing (88) for any 
pair (I, k) of box numbers after or during an HM iteration of "sufficient" 
length.68 

Theoretically, the transition matrix Tn is reversible. In order to reproduc 
this property for its approximation, we ma simply count each transition from 
Bk to Bi as a simultaneous transition B\ thus exploiting the reversibilit 
of the discretization g) 

REMARK 5.10 Whenever we generate the sampling data via some Metropolis 
MC method yielding a sequence {x\,... ,XM} C I\ we may replace equations 
(88) and (89) b the direct mean value, ie. , we ma approximate the transition 
probabilities b 

\ 
(BBr) « ^ X B I X J ) ^2xBixj)xB{T{xj)) 

In comparison to the combination of (88) and (89) this option may lead to supe 
rior convergence properties. This possibility has not been analyzed yet (mainly 
because HM has other conceptual advantages as we will see in Sec. 5.4.3 be 
low) 

5.4.3 A p p o x i m t i o n P t i e 

In order to understand the necessity of the acceptance step for the convergence 
of an HMC chain to Q, we may consider the Foias operator P : Mf —• Mf 
associated with the HM stochastic dnamical s s t e m (86) Due to the ec. 3.6, 
it is given b 

/ 
ß(B) XB(a(p,r))V(p)drdp ß(d) 

for all Borel subsets B c Vt. We first have to show that the canonical measure 
Q, given b the density Q, is a stationary measure of P, ie. , that PßQ ßQ. 
6 8I t should again be emphasized that there is no restrction to spatial boxes. (88) allows to 

compute Tn for every box cover of the essential confguration space of an a r b r a r set of 
essential variables $ 



We now will see that this is the case onl because the a c p t a n c e step allows t 
replace the perturbed invariance fcaD(g(x)) ^ f^„(x) b a new one, the HMC 
nvariance We find that the reversibilit of implies 

a(l(x))f1R(x))a(x)f(x) for ever I\ 0) 

This can be seen as follows: Per assumption on g we have g = g_1R, with 
the momentum reversion p) = , —p). Thus, with z(x) = exp(—ßAE(x)), 
one easily evaluates / „ ö ^ ) ) = fmRg{x)) = f^g(x)) = fm{x)z(x) 
Moreover, the symmetr H{Rx) = H(x) yields after some computation that 
a{gRx) = a(x)/z(x). Put together, these identities give the invariance (90) 

In order to show that ( 0 ) in fact induces Pß , rewrite P as follows 

(x)dx PßQ(B) l (x))dr + (x)dr\ f 
| 

a(x)(x)) + ( a(x))x(x)} f(x)dx 

a(B) + a(x) { x ( x ) ) - (x) (x) dx  

v  

Finally, using the transformation y (x) for the first term in (/) and the 
mplecticness of , we end up with 

(I) { a { 1 R x ) f 1 x ) - a(x) f(x)) dx, 

which, as a consequence of the HMC invariance (90), indeed implies (I) = 0 for 
all subsets B. Hence, ßQ is a stationar measure of the HM Foias operator 
p 69 

Let THMC denote the density operator corresponding to the Foias operator 
P. Then, its adjoint operator is given b 

(a(p,r))V(p)dp  

r ( ) + a(p)p))V(p)dp, 91 

where r(q) = f(l — a(p))V(p)dp. Together with the HMC invariance (90) and 
6 9 The whole procedure works in close a a l o g y to the better-known strategy of Langevin 

d y n a m s simulatons f r sampling the caon ica l density: In Langevin s imula t ins the di 
et izaton similarly destroy the convergence to the original s t a t n a r y density, a p r o l e m 

which is al solved by a p p l i n g appropriate acceptance procedures after each step (cf. [45] 
Sec 65) . I [75 HMC is i fact interpreted a simulat method f s p e c c class of 
L a g e v i d y a m 



reversibilit and s p l e c t i c n e s s of g, is plies for v L2 

T*mcv) rv) a{x)v{-K1(x))-K1x) {x) 

V) a ( 1 x ) V(TT\X) ir\lRx)* f 1 x ) 

dx 

dx 

Timcv) 

so that THMO is self-adjoint0 if restricted to L2(Q) and the Markov operator 
THMC = ^HMCUH^ *S g i v e n by (91)- Following the same strategy as in the proof 
of Lemma 3.9 we again see at T M C is a bounded operator in L2Q) wit 
| |7HMC||I < 1-

Under certain conditions, THMC inherits not only self-adjointness on L(Q) 
but also all other crucial properties of t e spatial transition operator T. To see 
his, let us introduce 

. Momentum invertibility of g: We call g momentum-invertible if it satisfies 
e same conditions as a moentuminvert ible flow, only that this ti 
e sets Mq) for w i c h "fq p is invertible have to satisf 

inf p d p = 7] > 0 . 
n ss 

Accordingly, g is called momentum-invertible with unifo bound ( i t 
respect to t e sets M(q)) if t e Jacobian of the inverse of is unifor 
bounded on the M(q). 

assumpton for g: For eve G fl and ever o p n set O 0 
is an n G N and a sequence of enta p . ,pni G IRd suc at 

0, if = ^ i , P , k . , n . 

For smoot potentials we have the same situation as for t e spatial transition 
operator T: If g is momentum-invertible and satisfies the mixing a s sup t ion 

e HMC transition operator THMC as t e following properties 

The associated HM Markov chain is irreducible aperiodic and Har 
ris recurrent. Thus, he Markov operator THMC : L1(fi —> i1(f i) is 
asymptotically stable (cf Sec and the convergence 87 is guar 
anteed a l o s t surely ( c f ) . 

g his self-adjontn 
s p d i arkov chain [6 ] 



If g additionall is omentuminvertible wit uniform bound and 
Q is bounded, then THMC : L2(Q) —>• L2(Q as a decoposition 
TMc = ^HMC + d c m t o a strict contraction (TgM C | |2 < 1) and a 
compact operator T2

mc. Thus, A = 1 is simple and dominant and 
isolated fro the remaining part of the spectrum. Consequently, due 
to Thm A , a central limit theorem is valid, that is, the rate of con­
vergence in (87) is at least of order M / 2 not explicitl depending 
on he dimension of $1). 

Obviously, the properties of e discrete flow g result from the properties of 
the discretization \&* defining it. Consider \t to be the Verlet discretization and 
a s s u e that the potential satisfies the periodicity assumption 4.43 of Sec. 4.7 
Then, it is eas to check that g is omentuminvertible with uniform bound 
and satisfies the mixing assumption if onl internal stepsize r/m of t 
discretization is s a l l enoug 

REMARK 5.11 In order to see that is mentuinver t ib le let be the 
spatial c o p o n e n of a single Verlet step p ^ A t p wit stepsize 
At r/m at is, 

Qo - y Pi wit pi AtDV lq0 —p0 

is plie 

DpQl = A t - ^ - v ( ^ -

Let d denote the maximal Jacobian of DV, i. set d = maxjj det(£>2V)|. Since 
d < oo for periodic potentials, we may use At 1/d and assume (without loss of 
generality) that At < 1 This i p l i e s \det Dpqx - At < At2/4 < /4. Hence  

single Verlet step with At < 1/d is invertible wit respect to for every 
entum This i p l i e s entu invertibilit of 

REMARK 5.12 In order to understand that g satisfies t e mixing assumption 
choose arbitrar \ £ Q It is sufficient to s o w that for every single Verlet 
step we find so momentum ielding \ TTi^At,p). To see that this is 
true, denote p + ö wit q)At and observe t a t 5 as to 
satisf 

^.Dv( ^ + 5p)) = h 

Then, denote Ck = axn \D
kV\, k = ,2, and B = {öp : \öp < Atd2} 

so t a t t e function aps t e ball B onto itself It is easy to see t a t if 



At2 < 4/C2 we ave \Dsph\ < 1 so hat h is contractive on B. Thus he 
fixed point theore guarantees t a t t e r e indeed is so such at 

= h ) . 

As indicated above, it is also possible to analyze HMC in close analog to 
the general Metropolis Monte-Carlo algorithm. In the last years the problem of 
convergence results for Metropolis MC in continuous state space has attracted 
muc attention, in particular concerning criteria for the geoe t r i c ergodicity of 
he c a i n and corresponding central limit t h e o r e s . 7 1 

We will not longer focus on analyzing H M , because for applications to 
realistic molecular systems we cannot use HMC itself but have to introduce a 
generalized HMC variant in order to avoid s o e "trapping p r o b l e s " cf nex 
paragraph). 

5.4.4 HMC wit d a t i v e Temperature 

As is widely known, MC simulations for ensemble averages may suffer from pos 
sible "critical slowing down" [69]. This phenomenon occurs when he iteration 
Xk —> Xk+ gets trapped near a local potential minimum due to high energ 
barriers so that a proper sampling of t e phase space within reasonable com­
puting times is prevented. Typicall this also happens to HMC applications 
[99]. Terefore, a novel approac combining HMC with the reweighting tech 
nique [ 3 , ] has been developed (see FISCHER, CORDES, AND SCHÜTTE [35]). 
This HMC variant generates t e distribution of a mixed-canonical ensemble 
composed of two canonical ensembles at low and high temperature. Its analysis 

ows an efficient sampling of the canonical distribution at the low temperature 
whereas the igh temperature component facilitates crossing of the crucial en­
ergy barriers. We will therefore call this variant "adaptive temperature HMC 
ATHMC) in the following. The update steps using high temperature momenta 

have to be reweighted in order to guarantee overall convergence to t e canonical 
distribution to the low temperature. Apart from this reweighting, the approxi 
mation of the transition probabilities due to 88 and r e a i n s uncanged 
In other words: 

The necessity of introducing generalizations of HMC is caused by the exis­
tence of almost invariant sets: If t e r e are almost invariant sets, B and C wit 
very small transition probability W(B,C,T), hen both the Markov chain (85) 
associated with the transition operator and the original HMC Markov chains 
need a huge number of iterations in order to produce sufficiently many transi 
tions between B and C 7 2 is proble is circumvented by introducing Markov 

7 the analysis of the rate of convergence of MC Markov chains compare 
e.g [107, 77] or, for recent r e u l s chec the MCMC prepri rve der ULR 
h t tp : / /www.s ta t s .b r iac .uk /MCMC/ . 

7 2Compare Thm. A.31: If the variance a2(A) therein gets too large, the desired conver­
gence of the mean values is "slowed down" by a large constant. Due to the formula (106) 
in Thm. A.31, J2 {A) can be large especiall f TH Mo has n eigenvalue very c l e to on 
i e . if the HMC chain has an almo invari et ( c h hoeful l approximate almo 
invari et of the r i i a l f l o ) 

http://www.stats.briac.uk/MCMC/


chains that facilitate such tansitions but which then have to b rewig in 
order to yield s ap l ings of t e original canonical distribution. 

For details of the ATHMC construction, the reader is referred to our arti 
cle [35]. In this article a convergence result for HMC is presented in close 
analogy to (and on the same non-rigorous level as) the already mentioned HMC 
convergence result from [76] Moreover, the convergence has successfully been 
checked in cases where analytical expressions for some expectation values are 
available (cf. [33]). Sec. 6 presents t e perforance of HM in copar i son 
to t e original HMC variant. 

ATHMC is not the only possibility to enforce barrier crossing. For example 
. FISCHER recently developed a n o t e r technique based on reweighted HMC 

the so-called Scaled Potential Hybrid Monte-Carlo (SPHMC variant [34] ich 
seems to be more flexible and efficien The reader might also notice, hat 
other recent developments based on the original Monte-Carlo Markov chain 
construction also produced certain "barrier-crossing" variants.73 It should again 
be emphasized at we ay also appl ever of these M variants in order to 
evaluate T 

5.5 Algorithmic Considerations 

We sou ld not close t i s section w i t o u t s o e final comments 

Consequence of HMC Erro In Sees. 5.1 to 5.3 we assumed hat t 
exact transition matrix Tn for s o e given box covering is available. But wit 
the tecniques introduced in Sec. 4 we are only able to approx ia t e its entries 
for example in the sense that deno ina to r and n u e r a t o r of Tnji tß/pj bot 
are c o p u t e d with s o e accurac at is 

T™ic = ijißj, wit \iß -tß and ßj - Ö. 

s a consequence, we ay rewrite T™ c as 

™ c Tn + wit Eji tß/Pj. 

Hence, the evaluation of Tn via HM introduces an error matrix. Fortunately 
this perturbation can be included in e perturbation analysis of Sec 3 as an 
additional contribution with 

H D ^ U 5. 92 

Hence, under the assumptions of Sec. 5.3, the identification of the conforma­
tional subsets will not be draa t ica l ly perturbed by t e HMC errors E: In 

7 3There are many e a m p l s which support barrier ossing lke , e g the multicanonical 
algorithm [51], 1/fc s a m i n g [55, simulated tempering 74 , J-walking 1 , the fluctuating 
potential methods [71] o other p o t e n a l smoothing techniques [85, 9]. ince we are herei 
interested in methods sampling the canonical ensemble one needs to check carefully whether 
these techniques in fact produce arkov chains w c h after r e g h t i , efficiently s a m l 
the c a n i c a l d i r i b u t 
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Sec. 5.3, we discussed the coupling-induced" er turbt io of the e i g n v e o r 
used to identify the conformational subsets. Whenever (92) is satisfied, we may 
see t e perturbations via HM as additional coupling-induced perturbations 

Sensitivity to Perturbations In reallife applications, it is a tremendous 
task to control the accuracy of the HMC sampling. Whenever the invariant 
density is very small in some of t e discretization boxes, the HMC perturbations 
of the corresponding entries of Tn are in danger of being relatively large. W 
thus have to ask hether the identification of a l o s t invariant sets will depend 
sensitively on such perturbations? 

In the process of th derivation of the identification algorit we already 
distinguished between the cores" of the conformational subsets, which are par 
ticularly stable with respect to the perturbation of the eigenvectors, and all 
other states hich have to be assigned to these cores without explicit consid­
eration of the perhaps heavily perturbed) entries of the eigenvectors at these 
states. As long as (92) is satisfied, the identification of t e s e conformational 
cores" is relatively insensitive to t e perturbations ile the assignment of the 
remaining states and thus the decomposition proble (that is, the full decompo­
sition of the configurational state space into conforational subsets obviousl 
is sensitive. 

The situation is comparable with the problem of separating domains of posi 
tive and negative entries of some function by finding its zeroes: if the evaluation 
of the function is significantly perturbed, the exact decomposition of the domain 
of interest may depend extremely sensitive on such perturbations (particularly 
if the function itself is small in the neighborhood of its zeroes while we are still 
able to identif e "cores" of positive/negative domains. 

Fortunately, he invariant density will in general be large only in the confor 
mational cores w i c h implies t a t e remaining states are statistically insignif 
icant and we are content wit the identification of the conformational cores 
Nevertheless, the question remains whether the transition probabilities i g t 
depend sensitively on th details of the assignment of the r e a i n i n g states. This 
may happen whenever t e r e is a conformational subset with significantly s a l l 
probability to be wi t in . However in all realistic cases analyzed up to now, th 
probability W(B,B,T) to stay within s o e conforational subset B as been 
significantly insensitive to perturbations 

Cluster Analysis and Graph Partitioning We ave to distinguish be 
ween our dynamical definition of conformations via almost invariant sets and 

e static definition via clusters of geometrically similar configurations. Most 
chemical approaces to the identification of conforations use this static def 
inition and determine the conformational subsets by means of cluster analysis 
of some time series produced by long-term MD simulations ( .g . via the associ 
ated covariance matrix as in [4]) or b means of spectral graph theory via some 
geoe t r i c s i i l a r i ty measure and decomposition of the associated Laplacian ma­
tri cf [3 4, ). i t i n suc approaces e d n a i c a l inforat ion is 
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neglected However, the determined clusters include crucial information abou 
significant geometrical differences between certain subsets of configurations and 
can thus be used as indicators for the choice of the essential variables and for 
optional additional refinements of the box discretization. 

We can in fact apply cluster analysis in e context of our identification 
algorithm via certain eigenvectors v1... ,v of the transition matrix: con­
sider again the vector bj = (v... vj) of t e entries of the eigenvectors for 
discretization box BJ; define some similarity measure for these vectors; and de 
termine the clusters of boxes Bj with similar vectors bj via standard techniques 
The resulting conformational subsets are nearl identical wit ose evaluated 
via t e approach presented in Sec cf ] 
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Numerical Experiments 

6.1 onformations of n-Pentane 

In t i s section, t perforance of t e above derived algorithm in application 
to the n-pentane molecule CHCH2)3CH3 is presented. It is illustrated that 

e algorithmically identified almost invarian sets are in perfect a g r e e e n wit 
e c i c a l l y observed conforations cf. Fig ). 

i gu re 15: Differet c o n f o r m i o n of l f t 
ansgauche gauche-gauche o r i n t a t n s 

For modelling the n-pentane molecule we use the united atom model (cf 
Fig. 3 in Sec. 2.1.2 above) with the typical bound length and bond angle poten­
tials and a Lennard-Jones potential odelling the interaction between th first 
and the last of t e united atoms". T e dihedral angle potentials are chosen 
according to [89] cf. Fig. 3 in Sec. 1.2 above. The for of the dihedral angle 
potential shows three different inima corresponding to the trans and gauche 
orientations of the angles. The brational frequencies induced by these po­
tentials are considerably maller than t o s e induced by the bond interactions 
Consequently, t e conformations of the n-pentane molecule are described in 
t e r s of these dihedral angles, i.e., t h y are the essential variables of n-pentane 

Figures 6 to 20 below illustrate the execution of the algorithm for t 
temperature = 300K. The discretization boxes are constructed via uniform 
decomposition of th possible values [0, ] X [0 of the two dihedral angles 
LO\ and in n = 20 x 20 = 400 boxes. The HMC sampling has been realized 
using Verlet time discretization with a subtrajectory length of r = 160fs 
Fig. 1 ows t resulting sequences of HMC steps in t e r s of t d iedra l 
angles. 

We observe frequent transitions between th different trans" and "gauche" 
orientations of both angles. This observation nicely illustrates that it is not 
sufficient to know the probability to be within a particular orientation of th 
angles but that the essential dynamical information is given by t e probability 
to stay within it until a transition into a n o t e r orientation occurs. 

From such an HM sampling with M = 200000 steps we computed 
transiion atrix T procedure explained in Sec 4. i t i n t i s sa 
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i g u r e 1 : MC s imla t ion o p e n a n f r 0K. From t p o bottom The wo 
hedral angles in r a d n t ) vers the ste num the c o n v e g e c e of the o t e a l 

gy e x p e c t a t n (V) 

pling length, the HMC method produced a more than sufficient sampling of t 
canonical density (see the equilibration diagra on bottom of Fig 16) 
question of whether M could be smaller for HM will be discussed below 

When repeating such a simulation for some smaller temperature ( e . . , T < 
250K), we observe th trapping problem mentioned in Sec. 5.4. : transitions 
between the distinct minima of t dihedral angle potential become rare events 
and e HM simulation length M has to be increased further and further 
Then, ATHMC indeed elps to avoid drastic increases of M it yields c o p a ­
rably reliable result wit much maller values of M than HMC (cf. [33]). 

Fro Sec 5.1, Prop 2 we know that the discrete invariant density (pt), 
. . . n is given by the left eigenvector of Tn for t e largest eigenvalue 

Ai = 1 The result produced herein is given in ig 17. As expected, the 
invariant density hows distinct local axi at t i n i a of t e d iedral 
angle potentials 

i g u r e 17 i c re te c o n c a l distribution p f e vers i i 
e t z a t n b of the two d h e d a l a g l s u 300K. 



6.1.1 io 

Following Sec. 5.3.2, the chemica conformations ar yzed via the right eign­
vectors corresponding to an eigenvalue cluster near A = 1. For t i s purpose 
10 eigenvalues of T wit largest absolute value are arranged 

Af 99 90 

The first nine o are positive. m the 10th one n negative eignvalue 
appear frequentl As can be seen, a first spectral gap arises between A5 and 
\e, and an even more significant one between A and As- We decide to base t 
identification process on the first 7 eigenvectors e results for t e case k 
are copa rab le and can be found in 4]). 

positive part negative part 

5 10 15 20 5 10 15 20 

Fi g u e 18: Positive and negative parts of he firs s e n right e igenve tos (r igh) s a l e d 
with espect to the maximum norm as d e r i b e d i ec 5.3.2 above. The zero entries i the 
first eigenvector (assocated with the egenvalue A = 1) cor rspond to d i s c r e t z a t n b 
w c h w e e not visited by the hybrid M o t e rlo process i c a t i g that the p r a b i 
to withi the may eglected 300K. 



These f s t seven eigenv re i l l u s t t e d in Fig 18. Of course, he first 
eigenvector associated wit Ai = 1, is just a flat plateau (ignoring zeroes for cut 
off states; hat is, the state space of the associated Markov c a i n is represented 
only by the discretization boxes belonging to th plateau). The other six right 
eigenvectors contain more information. We can distinguish between different 
plateau ^ = 1 x2 = 0.98593 i 3 = 0.98404 j . = 0.98205 l t e s *-n 
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Fi g u r e 19: S c h i c lot of e r g h e i c t o c o r r e p o n d i g to the e n larg 
genvalues A i , . . . , A7 of Tn versus the i c e ( , . . . , 0) x ( 1 , . . . , 20) of the d i r e t z a t i o n 

es of the two dihedral gles OJI nd si ive entri of the eigenvectors ar indcated 
lack b s negatve e r i s by g a y t s i c a t e a l m o t zero e r i 
300K. 

From this picture one already can guess that the identification of conforma­
tional subsets via sign structures leads to the subsets shown in Fig. 20. As can 
be observed t e automatic procedure in fact supplies the chemically expected 
information. After identifying the conformations, t e corresponding probabili 
ties to stay within each conformational subset Cj composed of t discretization 
boxes B wit indices k £ I can be c o p u t e d due to 

Tn 3) 

The resulting values pj = W(CJCJ,T) are also given in Fig 20. We ob­
serve hat the trans/trans conformation is slightly more stable than t e dif 
feren trans/gauche and gauche/trans conformations expected wo 
gauche/gauche conformations are clearly less stable. 

As already ephas ized above, the probabilities to stay within should not be 
confused wit probability to be within a conforation ic is already given 



p = 0.97634 p = 0.98031 p = 0.98226 p = 0.97909 p = 0.97675 
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p = 0.9234 p = 0.91771 
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F i g u 20 Almo invariant sets for T 00K The n u m b e s p on top o eac figur are 
the p r a b i l i t i e to tay within the c o r r e s p d i n g s b s e t s d u i n g the time span r From the 
left han side o top to the right hand side elow we see the gauche/trans, trans/+gauche 
-gauche/-gauche, t r a n s / t a n s a n s g a u c h e +gauche / t ans d +gauche/+gauche c o f r 
m a t n s (cf Fig 15) 

by the invariant density (cf. Fig. 1 ) . In th table below, these two different 
probabilities are enlisted for each of the conformational subsets s o w n in ig 20 
(±g and t denote th i g a u c e and trans orientations) 

n f i o g +g /-g /- +g +g+g 
prob to be within 
prob to stay w i t i n 

20 
76 

01 
91 

11 013 
65 

The probability to be w i t i n the +gauche/-auche or -gauche/+gauche orien­
tations is less than 0.0005, sowing that the are irrelevant in this context. 

Indeed, the probabilities W(CJ,CJ,T) to stay within each conformational 
subset Cj are nothing but t diagonal entries of t e coupling matrix W s» Id 
obtained in this procedure. Correspondingly, he associated error indicator 
matrix from Sec 3.2 contains only small entries (all entries smaller than 10 
for details see 4]) indicating t a t the identification process is reliable 

6.1.2 Parameter ent iv i ty 

The presented results surely depend on number of crucial parameters, some 
of them being of physical nature (e he t e p e r a t u r e T), o t e r s being in­
troduced by t algorithm (e.g., the number n of discretization boxes or the 
length M of the HMC sampling). We want to ephas i ze that the algorithm as 
it stands now is far from being perfectly tuned We thus can only present so 
experiences from numerical exper ien ts for t e n-pentane olecule and so 
o t e r comparably small systems. 

A first, let us consider the dependence of t e conformations on the temper 
ature T Varying t e t e p e r a t u r e between 200K and 00K we do not 



observe an inflence on he idntified conformations But, as to be expected, th 
probabilities to stay within these conformations are decreasing with increasing 

: Fig. 21 shows the corresponding decrease of the nine largest eigenvalues of 
the transition matrices Tn = Tn(T). It also illustrates that in all cases tested 
so far there exists s o e distinct svectral aav between t e seven largest eigenval 
ues used to iden 1 1 dning part of t 
spectru 
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i g u r e 21 T e m a t e d e n d e c e of the n i e l r g e t egenvalue of the t a n s i matri 

The present version of the algorithmic realization does not include any au­
tomatic mechanism for controlling the length M of the HMC sampling. If, for 
fixed t e p e r a t u r e and spatial discretization, the number of steps is decreased 
from M = 200.000 down to M = .000, we observe that the approximation 
quality of the im ponds to a slowl 
increasing distor 1 
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Fi g u r e 22 e n s i v i t y of the eigenvalues of Tn with largest modulu f f f e n t unifor 
discretzations of [ 0 , 2 - 2 with n = x 3 = 9 boxes (dashed line) n = 9 x 9 = 81 (dashed 
dotted) and n = 20 x 20 = 400 oxe (dense l i e ) Note that the seven l a rge t egenvalues -
only these ar used f the d e c a t of the c o f r m a t n s - remai a l m o t u n p t r b e d 
f the grid get coars 
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6.1.3 e o io 

Finall let us illustrate an extremely o a n t property of the presented algo­
rithm, t e stability of the results even when significantly coarser discretizations 
are used. For the n-pentane olecule we indeed can reduce the decomposition of 
th discretization domain from n = 20 x 20 boxes to n = 3 x 3 boxes but the algo­
rithm still identifies approximately the same conformations and nearly the sam 
probabilities (both to stay and to be wi t in ) . T e reason for this is illustrated 
in Fig. 22: since the HM procedure samples the phase space independent of 
the spatial discretization he seven largest eigenvalues of the transition matrix 
Tn are only insignificantl perturbed en t e number of discretization boxes 
is reduced 

6.2 Conformations of a Trinucleotide 

The proposed approac to identify conformations was applied to t e triribonu-
cleotide adenylyl(35 'cyt idylyl '5 ' )cyt idin (ACC)) model system in vacuu 
see Fig. 4 on page 11 and Fig. 23 below). physical representation of t 

molecule V = ato as been based on e G R O M O 6 extended ato 
force field 109 

F i g u r e 23 : C a t of t r i l o t d e from . 4. eft ll l l - s t se 
tation. Right: S e d p r n t a t s i g ellps f r r p r i ea ri ou 
of the molecule 

It is beyond t e scope of this section to discuss this application in detail 
or to judge the chemical relevance of t e results. For suc additional aspects 
the reader is referred to the article [5 On the contrary e following con­
siderations should be understood as demonstration of, first, the superiority of 
ATHMC over HMC, second e process of choosing essential variables in some 
realistic e x a p l e and ir e illustration of typical results of the a l g o r i t i c 
procedure 

ampling of t Canonical Densit The simulation data were generated  
eans of an HM s a p l i n g of t e canonical density at T 300K 



subtrajectories of length 80 f e m o s o n d s were computed by ans of the Verlet 
discretization with a stepsize of 2fs. For these p a r a e t e r s HM simulations typ­
ically require tousands of iterations only to leave the neighborhood of the initial 
configuration Application of THMC with adaptive temperatures between 

00K and 400K) circumvents problem one observes frequent transitions in 
the crucial dihedral angles of the molecule (for details see [35]). he simulation 
was divided into 4 Markov hains, each starting with different state chosen 
from a high temperature run at 500K, whic allowed t molecule to move into 
different conformations. The sampling took about 12h on a workstation with 
MIPS RI .000 processor It was terminated by a convergence indicator [43] 
associated with th potential energy and all 7 d iedral angles after 320.000 
steps, resulting in the sampling sequence q^\ ... ,q^s\ S = 32.000 considering 
only every 10th step). Since the temperature can change during e ATHMC 
run, each configuration is connected wit reweighting factor wit respect to 

e canonical ensemble at 300K 

60 •. 
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transformed torsion angles t o r s i o n a n g l e s 

F i g u r e 24: Top: circul deviation of the ransformed dhedral angl rdered by magnitude 
(left) and circul deva t of the o r i i a l hedral a g l ight) 

Essential D i h d r a l Angles ince essenial degrees of freedo uld only 
reflect internal uctuations of t molecule, we only consider the 37 dihedral 
angles of the r(ACC) molecule. The simulation data contains strong statistical 
correlations between the dihedral angles caused by the ighly correlated motion 
of the molecule. In order to identify some minimal set of "independent" essential 
variables, we first ave to remove the correlations e., we have to introduce a 
set of uncorrelated "transformed diedral angles". T i s is done via t e following 
procedure going back to AMADEI E AL. [4]: 

The correlations between a t o i c otions within the simulation data are ex­
pressed by the covariance matri 74 Since is symmetric, it can always be 

7 4To analyze the simulatio data in terms of the dihedral a n g l s we have to apply stat istcal 
method f ircul data 36 ] ee 8] f r r u l i n g defini of the c o v a r i c e matri 
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diagonalized, i.e., there is an orthonormal matrix U such that C UTAU wit 
being the diagonal matrix whose entries are t e eigenvalues of C. The matrix 

U defines the transformation of t e original d iedra l angles into t e uncorre 
c ted t ransfored dihedral angles. T e matrix A is connected to the systems 
constraints in the following way [4]: Transfored dihedral angles correspond­
ing to zero or nearly zero eigenvalues behave effectively as constraints; they 
have narrow Gaussian distributions with zero mean and do not contribute sig­
nificantly to the fluctuations. In contrast to hat, t ransfored dihedral angles 
corresponding to large eigenvalues ave large deviations from their mean posi­
tion, i hey belong to important fluctuations. Often, only a few coordinates 
see such important fluctuations; these are called essential degrees of freedom 
In practice one as to specify a set of largest eigenvalues of hic often 
can only be done heuristically. 

The t ransforat ion process for the diedral angles based on e simulation 
data for r(ACC) is exemplified in Fig. 24 and Fig 25. Figure 24 shows th 
circular deviations of the original and transformed dihedral angles in decreasing 
order of magnitude. Only the first four transformed dihedral angles ave rel 
evant circular deviation and are far from being Gaussian shaped (see ig ), 

ile t e r e a i n i n g transformed dihedral angles are Gaussian li 

Fi g r e 25 Distrbution of the four sentia d i e d r l angles. Th d i s t r i b u i o s he top 
allow to d e f y t h e e maxima each, w l e t h e e are two maxima f each d i r i u t at the 

ottom. 

11 



Single Configurations R e r e s e n t i n g C o m a i o n s In rder to identify 
representative configurations, we determine the maxima for each distribution of 
th essential dihedral angles. These maxima have been grouped to 3x3x2x2 = 36 
combinations, from which we have selected four representative configurations to 
visualize characteristic differences (see ig ). 

P ? 
F i g u r e 6 iffeent c o n f i g u a t n s r e p r n t i g the fou d o m i n t c o f r m a t n s of the 
rinucleotde i the s i e d p r t a t rom Fig 3 

Transition Matrix e dynamical fluctuations within the canonical ensem 
ble were approxia ted by integrating four s o r t trajectories of length r = 80fs 
starting fro each s a p l i n g poin ^\ . . . q \ To facilitate transitions, anal 
ogous to the ATHM s a p l i n g , the momenta were chosen according to t 
momenta distribution V(j> for 4 different temperatures between 300ÜT 00K 
and reweighted afterwards This resulted in a total of 4 x 32000 = 128000 
transitions. This calculation took less than 25 % of the total computing time. 

The configurational space was discretized into boxes B\,... ,Bd b eans 
of all four essential degrees of freedom (see ig. 2 resulting in d = 36 dis 
cretization boxes. Then the 3 6 3 6 transition matrix P was computed based on 
the 128.000 transitions taking the different weighting factors into account Since 
every box had been hit y sufficientl any transitions e statistical s a p l i n g 
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was acepted to be reliable. The c o m p u t i o n of the eigenvalu f T near 
yielded a cluster of eight eigenvalues wit a significant gap to r e a i n i n g 
part of the spectru 

Af 000 999 33 90 

3c 

F g u r e 2 : Schemaica i u a a t i o n of the t r a n s i t n p r o i l i t i e WJM(T) between th 
conformaton -Dfom (row) Dt column) The colors re chos accoding to the logarithm 
of the c o r r s p i g e r i lac kir) f 1, w t e : JMT) « 0 

Identification of Conformations Finally, the conformational subsets were 
computed based on the corresponding eight eigenvectors of T via t e identifica­
tion algorithm presented above yielding eight conformations. 

The conformational subsets identified turned out to be rather insensitive 
to further refinements of the discretization. he weighting factors within the 
canonical ensemble and the meta-stability of t e eight identified conforations 
are given in e following table 

n f a t i o n s 
eighting fact 
eta-stability 

011 11 028 
888 

320 
991 

09 
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Th ansitio pobabilities b e t e e n t e d i f f n t conformations a e visual 
ized scmat ica l ly in Fig. 27 above (page 112). he matri allows to define a 

ierarchy between the conformations, whic is inerent to algorithm. On 
the top level, t e r e are two conformations &D and D3&D4 corresponding 
to the two 4 x 4 blocks on the diagonal of T. On the next level eac of t e s e 
conformations split up into two subconformations yielding D . . . ,D4. On th 
bottom level, each conformation is further divided into a core ( and a transition 

) part. The evaluation of the transition atrix together with t e execution of 
the identification algorithm t o k less t a n of t e c o p u t i n g t i e required 
for evaluation of the simulation data 

We use a multidiensional scaling plot (Fig. 28 below) to visualize the con­
fora t ions [10]. The 2d-plot shows a d least squares approximation of the 
3N = 210 dimensional position space in the sense that neighboring points cor 
respond in general to structurally similar configurations ile distan points 
r e e c t in general structural differences 
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i g e 2 : 2d plo f the four confrmation D l , . . . ,D4 ( s q u a s Th d is t ic t ion etwee  
nd flled s q u a s i d i c a t a f r t h e r s p t t i n g into eght c o f m a t n s r u l i rom 
n into a co d a nsi c o f r m a t 
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ist of Symbols 
ha space o p a t n s 

flow of Hamltonian s t e m  
p r o j e c t n n(q  
projection n2(qp) 
momentum inversion R(q, p — (q, —p)  
ssental variables $ : r —>• 0 cf ec. 3 
eriodcity map cf. page 24 

(q o t e a l f c t cf 1) 

et 

ha space r c M2d  

p s i t i o n space O c l < cf. Sec 2.1.1 
(ö e m e d d e d s m a n i f o l d i d u c e by e s s e t a l v a r i l s cf ec 3 
(A pha space er {x — (qp) £ T A} 

essenial phase space cf. Sec. 3.5 
<r(T) spectrum of linear rator T, f d e f i n i n see p p x B 
XB chaacteristic functon of a et B 
M(q et f momentum i n v e t cf Def 

ators 

T spatial t n s i o n ator cf 20) 
T$ ansit o p a t o r .r.t e s s a l variables, cf. 
R riction and p r o l n g a t n operators s Def. 3 

i rts of the d e c o m s i o n of the s a t a l t r a n s i n operator, cf. (37 d Lemma 
(q,y ansition kernel of a r a l transiti o p a t o r X2, cf. (38 

Ti^,T2, rts of the d e c o m s i o n of the t n s i o n opea to r 1$, cf Lemma 
(8, 4) a n s i n k r n e l of al t a n s i ator T^ cf 57 

i r i u t n s 

/can canonical density in phase space, cf. (11) 
rmalized c a n i c a l density in p o s i t i n space, cf (11) an 12 

normalized cann ica l density in momentum space cf 11) 12 
educed density in p o s i o n space cf. (19) 
educed densit i s s a l ha space cf ec 3 

ace 

LV F-weghted f u n c t n space ove osi ion space O p — 2 see ec. 3 
LP( space L^,(fl) with weight F — fo canonical density 
LP

F ^ e i g h t e d funct ion space ove ssent ia l p h a s e space 0 2 see ec. 3 
)p w g h t e d calar product in F() see Sec. 3.1 
}F FVwighted s c a l r product in Lp ) see ec. 3.5 
) cal product {-) with weight F = f c a n i c a l densit 

F F - w g h t e d in L F ) see Sec. 3.1 
F0 F , j e i g h t e d i L 0 ) see ec. 3.5 

Q-weighted n o m s | || i for c a n i c a l densit 
et of all d e n s i s i {u e u > 

the 

W{,CT) t ans i t ion probabilit between sets B d C wrt. t m e sp 
dag inrinsic volume form of manifold T(ö), see Sec 3 5 
pj p r t y t o wi th i of a d i j i n t d e c o m s i ,... , 
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Dp d i a n a l weightin matrix Dp d ^ / j 
temperature of c a n i c a l e n s e m l 

ß inverse t e m p e r a t e ß — 1/k 
MM o u d f r num of disjoi et of the et (q) see Def 
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Append A: M r k o v Oper and xing 
In the subsequent we always consider a subset ft C M.d such that the set B of 
Borel sets is a u-algebra on ft. Moreover, we consider an absolutely continuous 

easure on!] and e associated spaces 

Lp = ft - [ l<<o 

with corresponding norm |w | p = n \u(q)\ßdq))^p. e space L consists 
of all bounded, almost everywhere measurable functions ft — i . Since L 
is th dual space of L we use t duality to write 

v) / for all v 

For v G L2 this defines the usual scalar product in L2(Q). 
always a s s u e t a t ß is a probability measure, so t a t ß = and 

Xo Lp 1 < p < for e caracteristic function of f en ave 
cf rop 3. of [66]) 

R O P O S I I O N l L 1 < 00. Then 

\\U\P 2> fo oM 

Thus every ement of L belongs to L1. 

DEFINITION A.2 nonnegative function75 u e L1 with ||M||I — is called a 
densi fuction in ; t e set of all density functions is denoted V 

E F I N I I O N 3 Every linear operator satisfying 

for G V, and (94) 

f o r G D 95) 

is called Markov operatr. 

A.l Adjoint Operator nd Induced Markov Chain 

Let —>• L1 be Markov operator satisfying Pn = Xn and let P 
denote the adjoint operator with respect to the product (-, •). hus 

u,g) — (uPg) for all u G L and g G L°°. P* allows the definition of a 
rkov chain associated wit To see t i s we ave to introduce 

DEFINITION A.4 The function t: ft x B is called ransition fuction if it 
satisfies t e following two conditions 

7 5 The p h r a e " n n e g a t v e d the otat u > 0 a alway ed i the "almost eve 
h e " s n s e 
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. F r ever G B e functio ,B) is egativ and m s u r a b l e 

. For every G Q ap • is a probability easure on B ) . 

t(-, •) is called a substochsti transition function if it satisfies condition 1, but 
condition 2 onl insofar t a t (q • is a easure but not a probability easure 

at is Q) 1 for so ) . 

LEMMA A 5 ([39] ap. 1) Le * b the adjoint of a Markov operator 
satiying P x Then, P(q,B) * ( defines a transition fution 

e transition function defines a t ime-mogeneous Markov chain {Xk, k = 
0,1 ,2 , . . .} on he state space Q, insofar at the conditional probability of 
finding Xk B after having been in Xk is given by 

k = ,B P*XB 

Hence t conditional probability of finding Xk after aving started in 
X0 is 

P*XB 

Consequently, the conditional ransition p i l i to ove fro subsets A G B 
to B G B in k steps is 

GA fA,B)v 

A , ( X B ) XB) 

One says that a probability measure v is an invariant p i l i disttion 
for s o e Markov c a i n wit transition function •), if 

[ A for all A G B 

Thus, in our case e c a i n as t e invariant probability distribution since 
we supposed P = 

Due to [39], Chap. V, transition functions and associated Markov operators 
exhibit the following nice decoposit ion into absolutely continuous and singular 
parts 

THEOREM A.6 Let P e a Markov operato satiing PXQI) fo allq £ Ü 
so that the associated transition fution ( , •) s defined everywhe Then, 
there exists a decompositio into o linea operato nd 
R* such that 

1. that is almst everywhere in Q fo all psitive 

11 



K ha ransition el k - 7 suc that y d y 
fo all 

K* is maximal in the sense that K < K fo every othe operat 
having a tnsition k l and satiing K 

K defines a (substochastic) tnsition function R,A = 
RXA such that •) is a singula easu th respect to fo alst 
every ft 

.2 A s y p t o t i c roperties f Markov Operators 

D E F I N I I O N 7 Markov operator P : —¥ L is called constrictive if there 
exists > 0, 7 < and a measurable set c V suc at for every density  

e V ere is an n so t a t 

Pn forn 
)UE 

for all measurable subsets Ecu with ß(E) < 5 If we can choose n 
for all densities e V e operator is called directl consttive 

R E M A R K 8 In order to prove direct constrictiveness it is sufficient to s o w 
( ) for n onl since wit € T it is v € T for all 

REMARK A 9 In cecking t e condition (97), it is not necessary to verify it for 
all densities € V If a set X> C V is dense in V it is sufficient to ec (9 
for all £V cf [66], C a p 3). 

Constrictiveness is deeply connected wit wea precopactness. To see t i s 
let us first introduce 

DEFINITION A 10 Let A" be a reflexive Banach space. A set T C X is called 
(strongly) precompact, if every sequence {u C T contains a subsequence that 
converges strongly to an w* e l . The set T C X is called weakly p recopac t 
if every sequence contains a subsequence that converges w e a y to an 

In our Banac space L we ave t following criterion for wea preco 
pactness cf [66 ap or ]) 

LEMMA A 11 A set of functions f c l ea recompact if and nl 
oth of the following conditions are satisfed 

1. The s a C 0 suc that C fo all € T. 
7 6 That is, a onnegatve f c t n t IRQ ch i j i n t l y m e a l w i t h s p e c t 

t o w o v a r i l 
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very e the uc that f all m ts 

t V 6 J 
E 

Spectra Decomposition We are interested in the constrictiveness property 
because t e following strong specral decomposition theorem olds cf. T 3. 
and Pro 54. in [66]) 

THEOREM A. 12 Let P : L constrictive wth P Then the 
exists a € N partition , k . . . r f Vt, 

( J and k n = 9 fo k / / 
fc 

a sequence o functions K g L°°(i j . . . r, and an operator Q : —• L 
suc that fo every € L e have 

I B ) + < 98 

= / ) ß nd lB —T^TX 

The operator Q nd the sets Bj have the following properti 

1. Fo every e L e have fo n —> oo. 

For every j e { 1 . . r ifte exists a unique a such that P , = 
1BQ(J.) Furthermore, a ^ fo j ^ I and t the operato just 
permues the fuctions 1B 

DEFINITION A. 13 A Markov operator P L -»• L1 is called asymptoticall 
stae if t e r e exists a unique density e P such that P and 

li Pn e X 
n— 

D E F I N I I O N A. 1 Markov operator P : L1 -> L wit stationary density 
.e Px = Xn> is called mixing if for all densities € D sequence 
, T 6 N} is weakly convergent77 to x 

e connection to the asymptotic properties of P are given by t e following 
77 A sequece {u} C L1 i called weakly convegent t u £ 1 , if fk{q){q) 

(q){q) with n —> o f all L° 
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T H E O M A 1 5 ([66], T . 5.5.2 and 5.5.3) If the Markov operato : L 
L wit stationary densi constictive, the following wo statents 
eqvalen 

1. s mixing 

P is asymptoticall stab, w equalent to r in the specral 
decomposition (98 in Thm. A 1 

Thus, for constrictive Markov operators P wit weak and 
strong convergence in Def A. are equivalent 

A.3 Probenius—erron and Koopma Operators 

In the following g : Q —> Q is always assumed to be an invertible nonsingular 
transformation which, in particular, is measure-preserving with respect to 
i e n{B) jj,{g~B)) for all € B. hen, the operator —>• L given 

Pf f ° g \ V / e l 99 

is called Frobenius-Peron operator to g and is a Markov operator he associ 
ated operator P* L° —> L°° defined via 

P f°g v / e r oo 

is called Koopman operator. Koopman's lemma states, that P* can also be 
considered as an operator on L2 (cf [86] Chap. I I5 or [112]) and that then the 
measure preserving property of g implies that I? —̂  L2 is unitar 

LEMMA 16 (Koopman is a unitar map of L2 nto L2 

A.4 ixing System 

Let g Q — 0, be as above 

D E F I N I I O N A. 17 The dynamical system g is called mixing if for all B, C £ B 

lim ß { C ) ) (t(B)p(C) 01 
n—>oo 

It is called wea ixing if for all B,C e B 

l 
n— 

- 5 > ( c ) ) ß(B)KC) 02 

The question of the connections between these concepts and the proper 
ties of the above defined operators is answered by the following theorem which 
summarizes the statements of Thm. VII from [86 and Thm. from [66 
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E O M A 1. f g is weakly mixing, the aiated Kopman operato 
P L2 —> L2 has no eigenvalue othe than A 1 nd A s a simpl 
eigenalue 

. If g is mixing, is also wea ixing 

3. g is mixing if and only if the Frenius-Perron operato ssociated to 
g considered as a Markov operator is mixing. 

The same notion can be defined for the Markov chain {X}.} associated with 
some Markov operator P. 

DEFINITION A 19 The Markov chain {Xk} is called mixing if for all B, C G B 

lim G C\ B) n(B)p(C) 
oo 

where PX] C\X0 B) denotes the conditional transition probability given 
by (96) 

Definition A.14 and equation ( 6 ) immediately show that 

PROPOSITION A.20 The Markov operato L1 ->• L1 ixing if and onl 
the ssociated Markov chain is mixing 

A 5 Some Aspect of Markov Chain Theory 

This paragraph summarizes some aspects of general state space Markov chain 
theory as described in NUMMELIN [83] and MEYN AND TWEEDIE [79]. In order 
to remain concentrated on the necessary basics, the presentation follows the line 
of TIERNEY [107, 106]. 

In the following, let {Xf.} be some Markov chain with transition function 
P(-, •). Whenever we assume that {Xk} is associated with some Markov operator 
P satisfying Pxn = Xn •> w e a r e m the nice situation that we already know that  

is an invariant distribution of the chain. 
We now use the same notation as in Sec. A.l and start with some definitions 

First of all the first return time of the chain to a set A is denoted 

inf{fc G N Xk € A}, 

with the convention that o if the chain never returns to A. 

DEFINITION A.2 A Markov chain is (^-irreducible for a probability distribution  
on 0, if tA) > for a set A G B implies 

TA < ) > for all q £ Ü. 

In this case, if is called an irreducibility distribution for the chain. The chain is 
called irreducile if there is some irreducibility distribution. 



If the chain is irreducible it may have many different ireduibil i ty distibu­
tions. But one can show that every irreducible chain has a maximal irreducibility 
distribution tp such that all other irreducibility distributions are absolutely con­
tinuous with respect to 'ip. Different maximal irreducibility distributions are 
equivalent in the sense that they have the same null sets 

The number of hits of a set A e B is denoted by 

{fceN Xk& \ 

where \M\ denotes the cardinal number of some set M with \ o for an M 
containing infinitely many elements. 

DEFINITION A. 22 An irreducible Markov chain with maximal irreducibility dis 
tribution 'ip is called recurrent if for every set A € B with tA) > the following 
two conditions are satisfied 

(Rl) P = o ) > for all q £ Ü. 

( R ) PUA = o | 0 = = 1 for ^-almost all d. 

If the "almost everywhere" in the condition ( R ) can be replaced by an "every 
where" i e if the following stronger condition 

HR (A = o X 0 = ) = 1 for all € 0 

is satisfied, then the chain is called Harris recurrent. An irreducible and recur­
rent chain is called positive recurrent if it has an invariant probability distribu­
tion. 

Recurrence is guaranteed for irreducible chains with an invariant probability 
distribution 

THEOREM A 2 3 ([107], Thm. 4-1 and Sec. 4) Assume that {Xk} irreducible 
and has an inariant distribution IT. Then, i is a maximal irreduciility distri 
bution and the unique invariant distribution. n addition, the chain is positive 
recurrent It, moreover, is Harris recurrent, if there s an n N such that the 
transition function P(-, ) has a component that has a density with respect to IT 
that s, there i a decomposition such that has a repreentation 

Pr,B) ,y)idq for all G Q,B € B. 

Irreducibility and the existence of an invariant density suffices to guarantee 
convergence of expectation values: function A : Vt —> R is called an TT 
observable if its expectation value EJA) = J ) n ) with respect to the 
the probability density 7r exists 



T E O R E M A 24 ([107], Thm. 4 ssume that {Xk} i irreducle and ha 
an invariant distribution n. Let A be a ir-observable satisfying E-„\A\) < oo 
Then, its mean value converges to its expectation value A) in the sense that 
for 

k 

Xo q for nalmost all ft. 

If the chin ditionall is Harrisrecurrent the result hld for ll 

For even stronger results we need that the chain is aperiodi 

DEFINITION A 2 5 For an irreducible Markov chain, an m-cycle is a sequence 
of disjoint sets E i , . , Em such that (q, Et) = for all q G Ej with I = j + 
mod m. The period is the largest m for which an m-cycle exists. The chain 
is aperiodic if M = 

For the next convergence result, we have to introduce a kind of distance 
of probability distributions. The total variation distance of two probability 
distributions V and v is defined by 

/! - \\D sup B) B)\ 3) 
BEB 

THEOREM A.26 ([107], Thm. 4-3) Assume that {Xk is irreducible and aperi 
dic and has an invariant distributin IT. Then, 

P n ) ~ A\D r ^almst all € ft. 04 

If the chain additinally is Harrisrecurrent the resul lds fr all € ft. 

simple consequence is 

COROLLARY A.27 Wheever the Markov chain, associated with a Markov op 
erator P satisfying P > *s irreducible and aperidi, the operatr P is 
asymptotically stable 

Proof: Consider arbitrary u e V and e > 0. We have to show that there is 
an JV0 € N such that P XQ < e for all n > no- To this end, choose a 
step-function g = Y^k=i akXAk € V with sets Ak £ B and positive ak such that  

e / onsequently 

H « - Xfi i < P(ug) + \ \ g - xnlli < e/ Pn 

so that it is sufficient to show that there is an A^ € N such that \Png  
e / for all Q. But this is an immediate consequence of (104) an 

24 



ß{ 

E a * \XAk A*(4fe)l ß{ 

p 

£ / P " 1 * ( \ \ D ß() 
fc 

and the last term converges to zero by dominated convergence D 

ne is often interested in the rate of convergence in 04 

DEFINITION A.28 An irreducible, aperiodic, and positive Harris recurrent Mar 
kov chain is called ergodic. An ergodic Markov chain with invariant distribution 
7T is called eometrically ergodic, if there is an function M Q — with 
Ej and an r G ) such that 

•) M\D )r for all € Ü and € N. 05 

If the function may be chosen constant, the chain is called unirm rgodic 

REMARK A.29 The problem of identifying the constant r in (105) or even of 
getting reasonable bounds on r has received much attention in recent years. It 
has been mainly discussed in terms of regeneration and return times see [88]. 

These versions of ergodicity are of particular interest, because they imply a 
central limit theorem for the convergence of the mean value to the expectation 
value in Thm. A.24. The following result can be found in [ 7 ] 

THEOREM A.30 Let the chain {X/~} be gemetrically ergodic, and suppse that 
the IT-observable A satisfies A € L2+e for some e > 0. Moreover, let dente 
the mean value ^=o ^/ Then, f every initial distributin, 

V~ A ^A) 

onverges weakly to a random variable which is normally distributed with mean  
and finite variance a(A)2. If the chain is unirmly ergdic, the same cnver 

e is valid fr all A& L2 

For the discussion of in Sec. 4, another version is useful, which can be found 
in the contribution of CHANG and GEYE in the discussion part of [06] therein 
based on the results of [46 

T H E O E M A 3 1 Let the chain {X/~}, associated with the Marko operatr P 
with Pxn = X(i, be ergdic. Dene by L\ the subspace of L2 rthnal t the 

nstants, ie, se 

{uGL: (u, 



and suppse that — P is invertible on $. ver, cside a wbservable 
A € LQ Then, f every initial distributin, 

V~ AT *(Aj) 

nverges weakly t a rand variable which is nrmally distributed with mean  
and variance 

A) A, ^A,P 06 

In the last formula the terms 

A,P )Ay)dy)v( 

are the feth auto-covariances of the observable A. The theorem may be applied 
to every A e L2 by using En A) G L\ instead of A. 



Appendix B: The Spectrum of Linear Operators 
In this part of the appendix we shortly summarize some aspects of the spectral 
theory of linear operators which are important for the arguments in the body of 
the manuscript. Many of the results stated herein can be generalized compare 
e g , [60, 86, 56]). 

Let X be a Banach space with norm | • and A a closed linear operator on 
X with domain D(A) c . The kernel ker^4) and the range ajA) of this 
operator are defined by 

kerA) {x&D(A) Ax = 0}, 

anA) {y £ X, Ax y for some x G D(A) 

A is called invertible if there is a bunded operator, which is called A , such 
that A'1 : ->• DA) with AA being the identity on and the 
identity on DA) 

DEFINITION B.32 The spectrum of A, denoted A), is the set of all points 
A G C for which A A is not invertible 

REMARK .33 There are basically three reasons why AA fails to be invertible 

. A G a (A) such that ker A) ^ i e there i s a « g DA) u such 
that Au \u. 

. kei(A A) = {0}, and Ran(A - A) is dense in X. Then, A G A) states 
that A A has a densely defined inverse which is unbounded. 

3. ker(A - A) , and Ran(A - A) is not dense in X. Then, A A) 
states that A — A has an inverse which ma be bounded on an A) 
but is not densely defined. 

As a first step towards a characterization of the spectrum one defines the 
following notions 

DEFINITION B 3 4 Consider A G cA). Then 

. If keiA — A) ^ {0}, A is called an eigenvalue of A and every 0 ^ u G 
kerA —A) is an associated eigenvectr. Moreover, dimker(A — A) is called 
the (geometric) multiplicity of A and kerA — A) itself the corresponding 
eigenspace. The set of all eigenvalues of A is called the int spectrum of 
A and denoted by crp(A) 

. The set of all A cr(A) such that A is not an eigenvalue an an A) 
is nt dense in X is called the residual spectrum of A. 



3 The set of all eigenvalues A G v(A), which are isolated78 and have fi­
nite (algebraic)79 multiplicity is called the discrete spectrum of A, and is 
denoted as crdBcrA) 

. The essetial spectrum aes6 A) of A is given by the complement of <7dBcr A) 
in a (A) 

For bounded operators, the spectrum is contained in a circle around 0 with 
a radius given by the operator norm of the operator cf. [60] hap. I I 

E O E M B 3 5 Let A e bunded. Then: 

sup A| lim 1 / that is sup A| 
Xea-(A) " - s - 0 \e<r(A 

A class of operators with "discrete" spectrum is the class of compact oper 
ators: 

DEFINITION B 3 6 A linear operator A : X -> is called compact, if A takes 
bounded sets in X into (strongly) precompact sets in X. W denote the set 
of all compact operators on % by BCX). 

REMARK .37 Another characterization of compact operators is the following: 
A : X —> X is compact if and only if the image {Au of any bounded sequence 
{un} C X contains a Cauchy subsequence 

REMARK B.38 For an operator A g BC(X), any nonzero A € {A) is an isolated 
eigenvalue of finite multiplicity (due to the wellknown ieszSchauder theory 
cf. [60] Chap. III.6). Thus, we have a (A) adB„(A) U {0}. 

As an example for compact operators on Lspaces , one may consider certain 
integral operators cf. [60], Example and 4. in hap. Ill): 

THEOREM B.39 Let (Q,A,(A) be a probability space with Vt being a compact se 
and let L^fl) be the assciated Lspace. Mrever, assume k : Q x £} — 
be a cntinuus funti The 

Au / ,y)uy)ß(dy) 
Jn 

defines a cmpact operatr A : L f i ) —• Lil) which is defined n the whle 

Before going into more details of the structure of the spectrum we restrict 
ourselves to the cases we are interested in: 

7 8 That is, for some e > 0, there is no « G c(^4), / t ^ A , such that |K — A| < e 
79See [60], Chap. III.5 for a definition. In general, the algebraic multiplicity is larger or 

equal to the geometric multiplicity. 
8 0 The usual operator norm ||A|| denotes the smallest constant C > 0 such that \\Au\\ < C\\u\ 

for all u £ X, u ^ 0. 
8 1 Compare Def. A. 10 in Appendix A. 



.l Operator in Hilbert Spac 
For the remaining part of Appendix A.5, H denotes a separable Hilbert pace 
with scalar product {, } and associated norm || • ||2. 

For selfadjoint operators, one has the following wellknown properties of the 
spectrum: 

THEOREM B.40 ([86], Thms. VI and VI t A : DA) c be 
self-adjint linear operatr Then: 

. A has no residual spectrum, ie, case 3 of Rmk. B.33 des nt appear 

. a (A) is a subset o/E. 

3. Eigenvecrs correspnding t distinct eigenvalues are rthonal. 

4- If A is bounded with operat rm , its spectrum is bunded due t 
sup A| 

We are mainly interested in a characterization of the spectrum which singles 
out its discrete" part in contrast to a remaining "continuous" part of the spec 
trum. One possible decomposition in "discrete" and "continuous" parts of the 
spectrum of our self-adjoint operator A is the following cf. [60], Chap. X): Since 
A has no residual spectrum, we may define the continuous spectrum uc{A) as 
consisting of all A £ &(A) for which case 2 of Rmk. B.33 is valid. Thus, a {A) can 
be decomposed in ac(A) and the point spectrum ap(A) (case 1 of Rmk. B.33) 
But op(A) may contain eigenvalues with infinite multiplicity and may even be 
dense in some interval / C R. 

Thus, the disjoint decomposition of the spectrum into its discrete and es­
sential part cf. Def. B.34) is of more interest herein. Obviously, the essential 
spectrum may contain eigenvalues of A, e.g., such with infinite multiplicity 
More precisely, for self-adjoint A (cf. T h m V I I l l in [ ] ) : A aess^4) if an 
only if one or more of the following holds: 

L A G acA). 

. A is a limit point of p(A) 

3. A is an eigenvalue of infinite multiplicity 

As was already stated above, for compact operators we simply have aces(A) c 
{0}, i.e., compact operators have (nearly) purely discrete spectrum. On the 
contrary, an example for a class of operators without discrete spectrum are 
certain multiplication operators (cf. [ ] Chap VII): 

HEOREM B.41 et Q,A,ß) be a measure space with a smooth measure ß and 
K = L2

ß(£}).82 Moreover, let F : V —• E be a smooth bounded functi 
Q,A,fi) and Ap be the multiplicati operat on % defined by 

AFux) x)ux) 
8 2Compare Appendix A, page 117 
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Then, the spectru AF is given by the clsur of the rang of F, that is 

aSBB anF) {F x g 

For self-adjoint operators, the essential spectrum can be characterized by 
the wellknown Weylcriteri ] Thm. 7 ) : 

THEOREM B.42 Let A : D(A) H be selfadjint Then, A e a (A) i 
and only if there is a sequence {u D(A) with \\u\\2 = r all € N, suc 
that u nvees weakly to 0 but X)u —> strngly 

In our Hilbert space, compact operators map any weakly convergent se 
quence into a strongly convergent sequence (cf. [86], Thm. VI.11). Thus, we 
expect the Weylcriterion to imply that a compact perturbation of a selfadjoint 
operator A will not have any influence on the essential spectrum. This is true 
even for non-selfadjoint operators, as the following theorem states: 

HEOREM B.43 Let A : V. -¥ and B : H be bunded operatrs and le 
ver be cmpact Then, a^BA + B) aCBB(A) 

REMARK B.4 This theorem is a corollary to the general theory in Chap. IV of 
[60] (cf. Thm. 5.35) for simplicity restricted to bounded operators. Therein we 
find, that the statement is valid even on a Banach space X, if only A is bounded 
and defined on the entire space X) and is compact 

.2 ilbert-Schmidt Operator 

Consider a bounded linear operator A : "K —\ K together with an arbitrary 
complete orthonormal family {u in "H, and define 

\\S TAu 

If the series converge, i.e. \\s we call ||s the Schmidt norm of A.83 

FINITION B.45 The set of all bounded linear operator A : H » % with 
< is called the class of Hilbert-Schmidt operators and is denoted by 

Thus, by the definition, for every orthonormal sequence {un} C K the se 
quence {mw converges to zero. Together with Rmk. B.37, this yields: 

PROPOSITION B.46 Every A e B{U) is ompact, i.e, Bs{TC) C BC(H)84 

8 3I t is easy to check, that the Schmidt norm then i independent of the choice of the 
orthonormal family {un} employed in the definition. 

MBs(H) is a complete vector space. Another notation is quite usual: The class of compact 
operators is denoted Bo(H), the Hilbert-Schmidt operators B2CH), and the trace class oper 
ators Bi('K), yielding a sequence of subspaces BCH) C Bi('K) C B{T-L). Then, the chmidt 
norm of A £ BCH) usually is denoted ||A| 



Interestingly, on L 2 - p a c e , any Hi lber tchmid t operator can be expressed  
an integral operator: 

HEOREM B.47 ([86] Thru. VI23) Let (ü,A,ß) be a measure space andU = 
L{£l) the associated L-space. Then, A € Bs(H), i.e., A is a Hilbert-Schmidt 
operatr, if and nly if there is a measurable funtin K : 0 x Q with 

\\2 = [ f K(x,y)\ß(dx)ß(dy) < 
J 

suc that fr every u G'H: 

Au(x) = / K(x,y)u(y)ß(dy) 
J 

rever 

B.3 Approximation of Io la ted Eigenvalue 

In this section, it is the question whether isolated eigenvalues A € adiBcr(A) 
of a bounded selfadjoint operator in a Hilbert space can be approximated by 
projection of the eigenproblem into appropriate finitedimensional ubspaces 
We herein present some apects of the application of the wellknown Rayleigh-
Ritz min-max principle [16] to this question. The reader should be aware that 
these aspect are chosen particularly for the needs of the analysis presented in 
Sec. 52; for more details about the usefulness and long history of the min-max 
principle the reader should consult the associated literature, e.g., [ 0 5 ], or 
for the non-self-adjoint case [108] 

For our purpose, we consider ome separable Hilbert space % with scalar 
product (• and norm associated || ||, and a self-adjoint, bounded linear oper 
ator A : H . Assume that there are contants 7 C uch that 

u,Au , VUGU 7) 

Let the mallet / eigenvalue of A be 

Ai < 

(including repetitions in case of multiplicities) and let the Xj belong to the 
discrete spectrum of A. Let Uj € ~H, j G { 1 . . ,1}, be associated normalized 
eigenvectors, chosen pairwise orthogonal in case of multiplicities 

Property (17) of A implies that A defines the scalar product {, A) and the 
associated norm || \\A which, becaue of (107) is norm-equivalent to the original 
norm || ||. The min-max principle tate that for every j G { / , the jth 
eigenvalue of A given via 

min max R(v) 



with the Rayleigh quotient R(v) (v,Av,v) for v ^ 0 and the minim 
being taken over all linear subspaces Sj C H of dimension j . 

We denote our sequence of ansatz spaces by Vi C V2 C . . . C Vn C V 
H, and assume this sequence to be dense in H.85 Moreover, assume An 

^4I to denote the Galerkin rojection of A onto the ana t z spaces V, an 

A" A™ K 

to be the malle eigenvalue of A with ssociated eigenvector , j 
. . . , / } . 
With respect to the calar roduct (- A we define an orthogonal rojection 
:U^ via 

nu, Av 0, V»€ V 

It i easy to show, that for every a e H w e have u — P for n — 8 6 

T h u , the normequivalence ( 7 ) uffices to how that 

0 for n - Vu G U 8) 

Under these assumption we have the following convergence r e l t for the 
approximated eigenvalue 

LEMMA B. et dente the subs-pace spanned by the eigenvecrs m . ,U 
and define 

max -^—u,u u,u ) . 09 

Then, fr every j € { . , / and n large enugh, the fllowing estimate hlds: 

~ 

ith ß3
n 4 r n — 

—-^ n 

Proof: A justification of the estimate (110) can be found in [105, Lemma 6.1 
in form of a direct conequence of the min-max princile. The asserted conver 
gence ?£ 4 f° r n then follow from 08) D 

8 5 That is, for e y u £ 71 a d e e r y e > 0, h e e is a and a v £ uch tha 
| | « — V\\ < f: 

8 6 With a t i e V i t f w e find for all n > M that 

\\u — Pnu\\ = {u — P„u,Au) = {u — P„uA(u — v)) < \\u — F n « | U ' II" _ "IU-

Thus, ||« — PJIK| |A < ||« — V \ \ A - But since the Vn are dense in Tt, Eq. (107) shows that , for 
M large enough, for every e > 0 there is a v G V M uch that ||u — V\\ < e- This implies the 
tated convergence 



In order to etablish a corresponding convergence reul t for the eigenvector 
we have to introduce a separatin constant for the considered cluster of isolate 
eigenvalues. The convergence A —> Xj guarantees that for every j € { I 
for n large enough, there i contant Sj uch that 

——^-—- Sj, for all ft e { . , 1 with Â  Xj. 
I 

With the aration c o n t a n t , we have 

EMMA B.49 For n large enough and after an appropriate chice of eignvec­
rs f repeated eignvalues, the flling is true fr all j G { 1 

K Uj 2( + s j 11 

which, becaus 8), imples the strng cnvergence u —> Uj fr n 

Proof: The asserted estimate follows in erfect analogy to equation ) an 
the econ equation in the roof of Thm. 2 in [05] D 

REMAR B.50 The convergence et imate (110) and (111) illustrate that the 
rate of convergence with n crucially depends on the rate of the convergence (108 
for the projection n. Let the discretization domain Q be bounde with smooth 
boundary an consider % = L2(Q,). If we se finite element ana t z spaces in the 
discretization process associated with gri with maximal " g r i w i t h " 0(n) 
one can rove r e l t of the form 

C(n) with C(n) ~ n~ 

and p d e n i n g on the o r e r of the element 
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