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Chapter 1

Introduction

The formation of new molecular bonds and the cleavage of existing ones are
among the most elementary steps that any chemical reaction, however complex
the underlying mechanism may be, is comprised of [1]. In a very simplistic view,
the processes of “making” and “breaking” of molecular bonds can be considered
as first and second half of a (reactive or non–reactive) collision, respectively (see
Fig. 1.1 a). In association reaction, two reactants come together to form a (free
or quasi–bound) collision complex which corresponds to the transition state in
the statistical theory of chemical kinetics and dynamics [2,3,4,5] (see Fig. 1.1 b).
During the lifetime of the collision process energy transfer between the various
degrees of freedom may occur, and the atoms may rearrange. The subsequent
decay of this collision complex is equivalent to a dissociation process (see Fig.
1.1 c). This view of association and dissociation reactions as “half collision”
reveals the similarity of these reactions with scattering processes. Indeed, many
concepts of reactive scattering can be applied to the (theoretical) treatment of
these processes [6, 7, 8, 9, 10,11,12,13,14,15,16].

If the formation of the collision complex involves electromagnetic (perma-
nent or transition) moments, external fields can be used to manipulate the
transition state. In analogy to the above view of a reactive collision, one can
consider the processes of photoassociation and photodissociation as initial and
final phase of a light–assisted collision [12, 13, 17]. The development of spec-
troscopy of the transition state is tightly connected with the availability of
short light pulses [18]. In recent years the spectroscopy of the transition state
has made enormous progress and meanwhile the available pulse lengths have
reached the femtosecond regime [19, 20, 21, 22, 23, 24]. At the same time, mod-
ern femtochemistry has progressed from the mere observation of the chemical
dynamics to its active manipulation by novel control mechanisms based on ul-
trashort laser pulses [25,26].

This experimental progress has been closely interconnected with a revival
of the time–dependent formulation of quantum mechanics. In particular, the
concept of wavepacket dynamics [27, 28] has been introduced to the field of
molecular dynamics, and the implementation of new and powerful numerical
techniques [29, 30, 31, 32, 33, 34] has lead to a new standard tool in the theory
of chemical reaction dynamics and kinetics [35, 36, 15, 16, 37, 38, 39]. Currently,

7



8 CHAPTER 1. INTRODUCTION

a)

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������
������
������
������
������
������

������
������
������
������
������
������

free

time

(transition)
dipole

moment

(pulsed) light source

position
free(quasi-)

bound

b) c)

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

time

free
position

bound

(transition)
dipole

moment

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

time

position
bound free

(transition)
dipole

moment

Figure 1.1: a) General scheme of a light–assisted (reactive) collision. In the
position–space representation, two reactants collide with each other. In the
transition state, light–assisted rearrangements of the atoms may take place and
finally the products separate from each other. b) (Photo–)association as first
half of a collision process. c) (Photo–)dissociation as second half of a collision
process.

one of the main challenges lies in the development of (approximate) methods
for quantum molecular dynamics in large systems in order to support the de-
velopment of femtochemistry towards larger molecules, clusters, and ultimately
to molecules in condensed phases.

In the three main sections of the present thesis work, we want to apply the
concepts of modern femtochemistry to the following three types of elementary
reactions of making and breaking of chemical bonds:

• The association process requires (at least) a bimolecular collision. Upon
coming into close contact, the collision complex has to be stabilized in
order to yield permanent bond formation between the reactants (see Fig.
1.1 b). This can be achieved by either one of two processes. In a dilute
gas a bound←free transition can be achieved by radiative processes, i. e.
by absorption or emission of light [40], see chapter 2. So far, photoasso-
ciation process are much less well–understood than the reversed process
of photodissociation(see below). Only very recently there has been an
increasing interest in photoassociation reactions which was stimulated by
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new experiments involving collisions of laser–cooled atoms [41]. In par-
ticular, the observation and/or control of photoassociation dynamics by
short pulse techniques, as well as for any other type of binary reactions,
is still at its infancy and the extension of femtochemistry to binary re-
actions remains a challenge. One aim of the present work is to fill this
gap and to demonstrate how pulsed light sources can be used for efficient
bound←free population transfer while maintaining a high selectivity with
respect to the state of the molecular product. Another aim is to investi-
gate the real–time wavepacket dynamics of these processes and to simulate
modern pump–probe experiments.

• At higher particle densities, the photo–induced stabilization of collision
complexes competes with the solvent–induced stabilization mediated by
collisions with further particles in a solvent environment [42,43,44,45,46].
In chapter 3 of the present work, solvent effects on association reactions
shall be investigated ranging between the following too extremes: The no-
tion of the chaperon effect describes a situation where a collision complex
is stabilized by transfer of the excess energy to a third (solvent) particle
in a three–body collision. In contrast, the cage effect describes a situation
where the presence of too many solvent particles can shield the reactants
from each other thus leading to a reduced reactivity.

• Finally, chapter 4 of this thesis shall be devoted to the photo–induced
breaking of molecular bonds (see Fig. 1.1 c). This class of free←bound
transitions is fairly well characterized for simple molecules in the gas
phase [47,48]. In the present work we want to investigate solvent effects on
the (quantum) dynamics of photodissociation reactions which is at present
a very active field of research. One of the most paramount differences be-
tween these two extremes can be traced to the solvent cage effect in the
latter [49]. Conversely to the above–mentioned cage effect on associa-
tion reactions, the main effect of the solvent cage on (photo–)dissociation
reactions is to delay or to hinder the separation of the photofragments.

In the studies of solvent effects on the making and breaking of molecular
bonds in chapters 3 and 4 our special focus shall be on the transition from
gas phase to condensed phase dynamics. This is achieved by studying the
reaction dynamics of simple diatomics in the environment of rare gas clusters
and matrices. The investigation of “microsolvation” in weakly bound clusters
is particularly attractive because it allows to vary the size of the solvation
environment in a controlled way and to observe solvent effects as a function of
the cluster size, from the extreme of a “single atom solvent” up to a crystalline
environment [50,51, 52, 53, 54, 55, 56, 57]. Apart from the relatively well–known
interactions, the study of van der Waals systems as prototypical systems for
solvent effects offer the advantage that the geometry and orientation of reagents
are, to a certain extent, restricted. On the other hand, many clusters are very
floppy and undergo large amplitude zero–point vibrational motions which can
have an enormous effect on the reaction dynamics. Hence, the role of quantum
effects can be of great importance.
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2.1. MOTIVATION 13

2.1 Motivation

When a pair of colliding atoms or molecules comes in close contact they start to
interact and their electron clouds are deforming each other. Apart from the at-
tractive or repulsive forces which govern the collision dynamics [10] the changes
in the electronic configuration can also include the development of (permanent
or transition) multipole moments of the collision complex. This opens the way
to manipulation of the collision dynamics by radiative processes. Out of the va-
riety of possible light–assisted (reactive or non–reactive) scattering processes,
we want to study only photoassociative collisions in the present work i. e.
the process of stabilization of collision complexes to form a stable compound
molecule. For the case of an isolated collision complex, e. g. in a rarified gas,
this is the only possible stabilization mechanism. Hence, it is of considerable
interest for the chemistry of interstellar clouds [58]. This is in contrast to the
situation in compressed gases or in condensed phases where typically molecules
are formed by three–body collisions, see Sec. 3.

Apart from spontaneous emission of light which is usually much slower than
the typical timescale of collision processes [59], there are two different elemen-
tary mechanisms for the formation of a stable molecule from a collision pair
which is assumed to be initially in the electronic ground state [40].

1. Stimulated emission of one (or more) photons may induce bound←free
transitions yielding molecules in the electronic ground state

A+B + h̄ω → AB(v, J) + (n+ 1)h̄ω . (2.1)

where the excess energy defined as the energy difference between the col-
lision energy E0 and the energy of the bound state (Ev,J) is released by
emission of n photons, typically in the infrared (IR) regime. Although this
process is, at least in principle, fairly simple it has not been systematically
investigated prior to the present work. Note that the photoassociation by
stimulated emission competes with absorption leading to acceleration of
collision pairs in the ground state. This inelastic scattering event which
will be termed here as photoacceleration is also known in the literature
as translational spectroscopy or as collision induced absorption [60].

2. Absorption of one (or more) photons may electronically excite the (ground
state) collision complex. If a bound excited state is present this may lead
to stabilization of the collision complex populating ro–vibrational levels
of the excited state AB∗

A+B + nh̄ω → AB∗(v, J) . (2.2)

This is the dominant mechanism for visible (VIS) and ultraviolett (UV)
photoassociation. In contrast to the situation for the stimulated emission
process there is a number of studies of these reactions in the literature.
The choice is dictated by the (experimental) requirement that the ground
state potential energy curve has to be repulsive (or only weakly attractive)
while there must be a strongly bound excited state potential. One class
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are collision pairs of alkali atoms where the excited state exhibits a strong,
long–range attraction (∝ R−3) between a P and a S state atom [61, 62,
63, 64, 65, 66, 41, 67, 68, 69, 70, 71, 72]. The other group of systems for
which photoassociation has been thorougly studied are excimer forming
diatomics such as rare gas halides [73,74,75,76,77] and certain metals in
the second column of the periodic table [78,79,80,81].

In all the above–mentioned experimental studies continuous wave light
sources have been used. Only recently first pioneering steps to investigate the
process of photoassociation in real time have been made. To the best of our
knowledge there are only very few publications. One series concerns the fem-
tosecond pump–probe spectroscopy of the mercury dimer Hg2 [82,83,84,85], the
other deals with the observation of shape resonances by pulsed spectroscopy for
the rubidium dimer Rb2 [86,87,88] 1. On the theoretical side, a one–dimensional
wavepacket formalism for pump–probe photoassociative spectroscopy has been
developed and applied to the case of the excited state of Na2 [90]. In another
study, also the ground state photoassociation via the excited state has been
investigated for this system [91]. Another example is a time–dependent study
of femtosecond excimer formation for rare gas hydride systems [92]. Note that
a generalization to surface photochemistry has been suggested recently: Us-
ing IR laser pulses, molecules can be adsorbed to (or desorbed from) metal
surfaces [93].

The above–mentioned femtosecond photoassociation spectroscopy experi-
ments on the mercury dimer are among the first truly bimolecular pump–probe
experiments [82,83,84,85]. It is noted that these experiments bear some resem-
blance with “pseudo–bimolecular” experiments, where a molecule in a cluster is
photolyzed and a resulting photofragment reacts with another molecule inside
the same cluster [50, 94, 52]. This class of experiments has also been extended
from energy into time domain [95,96].

In the present work we want to deal with the quantum dynamics of pho-
toassociative collisions induced by pulsed lasers. Both the ground state process
by stimulated emission and the excited state process by absorption of light will
be taken into account. More specifically, we want to focus on two different
objectives.

1. First of all, we want to optimize the efficiency of the photoassociation
process by variation of the shape of the laser pulses used. Morover, we
want to reach a high selectivity with respect to the quantum state of
the molecular product. This enables us to prepare a molecule in a well–
defined electronic, vibrational, and rotational state. Typically this op-
timization of both efficiency and state–selectivity involves the control of
a large number of competing pathways. In the past few years, a vari-
ety of different strategies for the optimal population transfer in molecular
systems has been developed. One of them is the optimal control theory
where pulses of arbitrary shape are optimized [97, 98, 99, 100, 101]. An

1Apart from the studies og photoassociation in neutral states, the real time dynamics
photoassociative ionization processes has also been studied [89]
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alternative is the coherent control technique, where continuous wave light
sources with a specific phase relation are used [102, 103, 104, 105]. In the
present work this goal is achieved by one (or more) pulses of a simple
analytical shape whereby we are optimizing the parameters of simple an-
alytic pulse shapes such as length, amplitude, frequency, and polarization
of the laser pulses. This approach builds on earlier work on vibrational
excitation [106, 107, 108, 109, 110, 111], isomerization [112, 113, 114], and
ground state photodissociation [115,116,117,118,119] of molecules.

2. The complementary approach to the objective of populating a stationary
state with high (close to 100%) selectivity is the preparation of coherence
superposition states in modern pump–probe experiments. Typically a
first ultrashort laser pulse is used to excite the system. Subsequent to
the excitation process, the non–stationary states evolve in time and can
be monitored by a second pulse. In this way, the electronic, vibrational,
and/or rotational dynamics of a photochemical event can be traced in
real time. One specific feature of these experiments is the formation of
wavepackets: If the excitation is short enough, i. e. if the energetic band
width of the pulse is much larger than the typical spacing of the molecular
energy levels, a localized wavepacket can be formed whose center moves
like a classical point mass as long as it remains coherent [27,120,37].

2.2 Method

2.2.1 General Dynamical Equations

In general the quantum dynamics of molecular processes can be described by
the time–dependent Schrödinger’s equation

ih̄
∂

∂t
|Ψ(t)〉 = Ĥtot |Ψ(t)〉 (2.3)

where the state of the molecular system is described by the vector |Ψ(t)〉 which
has to be solved subject to some initial condition

|Ψ(t = 0)〉 = |Ψ0〉 . (2.4)

The dynamics is governed by the Hamiltonian operator of the system

Ĥtot = Ĥmol + Ŵ (t) (2.5)

where Ĥmol represents the time–independent Hamiltonian of the isolated
molecule and the time–dependent part Ŵ (t) describes the interaction of the
molecule through its electromagnetic moments or polarizabilities with external
fields.

The usual approach in quantum chemistry is to write the molecular state
vector as a sum of products of nuclear and electronic wave functions∣∣∣Ψmol(t)

〉
=
∑

i

|ψnuc
i (t)〉 ⊗

∣∣∣χele
i

〉
(2.6)
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where the time–dependence of the total state vector is incorporated in the nu-
clear vector |ψnuc

i (t)〉 only and where the summation extends over all electronic
states

∣∣∣χele
i

〉
. Inserting this approach into the Eq. (2.3) and left–multiplying by

an electronic state
∣∣∣χele

i′

〉
eliminates the electronic degrees of freedom and leads

to coupled equations for the time–dependent nuclear state vectors

ih̄
∂

∂t
|ψnuc

i (t)〉 =
[
T̂ nuc + V nuc

i

]
|ψnuc

i (t)〉+
∑
i′

Ŵ nuc
ii′ (t) |ψnuc

i′ (t)〉 . (2.7)

Here T̂ nuc represents the kinetic energy of the nuclear motion. We are using
an electronically adiabatic representation (V nuc

ii′ = 0 ∀ i 6= i′) where V nuc
i =

V nuc
ii is the potential energy of the nuclei. Note that in the framework of the

Born–Oppenheimer approximation kinetic energy couplings between different
electronic states have been neglected (T̂ nuc

ii′ ≈ 0) [121]. Hence, the only terms
coupling the nuclear dynamics in the different electronic states are the matrix
elements of the coupling to the external fields

Ŵ nuc
ii′ (t) =< ψele

i′

∣∣∣Ŵ (t)
∣∣∣ψele

i > . (2.8)

where the scalar product is over the electronic degrees of freedom. In summary
we have to solve dynamical equations (2.7) for the nuclei under the influence of
external fields. Because the dependence on the electronic coordinates has been
eliminated the upper index “nuc” will be dropped in the following. The poten-
tial energy functions Vi and the matrix elements of the interaction functions
Ŵii′(t) can be derived by solving the time–independent Schrödinger’s equation
for the electrons using quantum chemical techniques typically based on Hartree–
Fock calculations or density functional methods. In the present work, we use
both ab initio and experimental results for the potential and dipole functions
(vide infra).

2.2.2 Dynamical Equations for a Diatomic System

For a diatomic system the dynamical equations (2.7) can be further simplified.
Using a position space representation for the state vectors, and separating the
relative motion of the two nuclei from their center of mass motion, we arrive at

ih̄
∂

∂t
ψi(~r, t) =

[
− h̄2

2m
∆~r + Vi(~r)

]
ψi(~r, t)

+
∑
i′

Ŵ nuc
ii′ (~r, t)ψi′(~r, t) (2.9)

where the expression m = M1M2/(M1 + M2) for the reduced mass has been
used. Next we use the standard technique to reduce the three–dimensional
equation to a set of coupled one–dimensional equations. This is accomplished
by using spherical coordinates r,Θ,Φ and expanding the angular part of the
wavefunction in spherical harmonics

ψi(~r, t) =
∞∑

J=0

J∑
M=−J

φiJM (r, t)
r

YJM (Θ,Φ) (2.10)
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where the functions φiJM (r, t) are radial wavefunctions for the electronic state
e and for the angular momentum state specified by J and M .

Inserting representation (2.10) into the coupled equations (2.9) finally yields
the dynamical equations for the radial wavefunctions φiJM (r, t)

ih̄
∂

∂t
φiJM (r, t) =

[
T̂ + V eff

iJ (r)
]
φiJM (r, t)

+
∑
i′

∑
JM

WiJM,i′J ′M ′(r, t)φi′J ′M ′(r, t) (2.11)

where the kinetic energy of the radial motion is represented by T̂ = − h̄2

2m
∂2

∂r2

The following expressions for the matrix elements of the potential energy and
the interaction operator have been used∫

dΩY ∗JM (Θ,Φ)Wii′(r,Θ,Φ, t)YJ ′M ′(Θ,Φ) =: ŴiJM,i′J ′M ′(r, t)(2.12)∫
dΩY ∗JM (Θ,Φ)

[
Vi(r) +

Ĵ2

2mr2

]
YJ ′M ′(Θ,Φ) =: V eff

iJ (r)δJ,J ′δM,M ′(2.13)

where central forces and potentials Vi(r = |~r|) are assumed and where we have
defined effective potential curves as the sum of the interaction potential Vi(r)
and the kinetic energy associated with the angular motion (centrifugal energy)

V eff
iJ (r) = Vi(r) +

J(J + 1)h̄2

2mr2
(2.14)

Note that the effective potential matrix elements are diagonal in i and in J
and that there is no M dependence because of the spherical symmetry of the
potential function.

In the next subsection we will specify the interaction operator Ŵ (t) and
consider the specific nature of its matrix elements (2.12). The following three
subsections present different techniques to solve the coupled equations and give
details on the initial states.

2.2.3 Interaction Operator

The interaction between the molecule and an external electromagnetic wave is
treated here in the framework of the usual semiclassical dipole approximation
[122]

Ŵ dip
ii′ (~r, t) = −~E(t) · ~µii′(r)

= −E(t)µii′(r) cos(γii′) . (2.15)

Here E(t) stands for the time–dependent electric field component of the electro-
magnetic wave. The dependence of the dipole moment on the nuclear degrees
µii′(~r) of freedom is obtained by integration of the full dipole moment operator
over the electronic degrees of freedom, see Eq. (2.8). The diagonal terms (i = i′)
represent the permant dipole operator of a molecule while the off-diagonal el-
ements (i 6= i′) are the transition dipole operators between different electronic
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states. The angle γ represents the angle between dipole moment and electric
field.

The matrix elements in the spherical harmonic representation (2.12) are
given by

W dip
iJM,i′J ′M ′(r, t) = −E(t)µii′(r)SiJM,i′J ′M ′ (2.16)

where the matrix elements SiJMi′J ′M ′ of the direction cosine of the angle γii′ are
termed the Hönl–London factors of the respective transition and the dynamical
equations in their final form can be written as

ih̄
∂

∂t
φiJM (r, t) =

[
T̂ + V eff

iJ (r)
]
φiJM (r, t)

− E(t)
∑
i′

µii′(r)
∑
JM

SiJM,i′J ′M ′ φi′J ′M ′(r, t) . (2.17)

In the present work we always assume the electric field to be linearly po-
larized along the z–direction. Then the Hönl–London factors for a parallel
transition (µii′ ‖ E , γii′ = 0) reduce to an especially simple form [123]

SJM,J ′M ′ =
∫ π

0
sinΘdΘ

∫ 2π

0
dΦY ∗JM (Θ,Φ) cos ΘY ∗JM (Θ,Φ)

=

√
(J −M)(J +M)
(2J − 1)(2J + 1)

δJ,J ′+1δM,M ′

+

√
(J −M + 1)(J +M + 1)

(2J + 1)(2J + 3)
δJ,J ′−1δM,M ′ (2.18)

Hence, only two terms in the summation over J ′ in (2.17) have to be taken
into account (∆J = ±1) and the summation over M ′ is completely eliminated
(∆M = 0) which greatly reduces the computation effort.

For the time–dependence of the electric field E(t) we assume a modulated
oscillation of the form

E(t) = E0g(t)cos(ωt) (2.19)

where E0 and ω give the amplitude and the carrier frequency of the pulse,
respectively. For the envelope we assume sin2–shaped laser pulses of the form

g(t) = sin2
(
π(t− δt)

τ

)
, δt ≤ t ≤ τ + δt (2.20)

with a pulse duration τ = 2Tp and a time delay δt. This pulse shape is qualita-
tively very similar to a Gaussian pulse shape with an FWHM of Tp but offers
the advantage of a well–defined duration of the pulse [106].

2.2.4 Grid Representations

Perhaps the most intuitive description of quantum dynamics is achieved by
solution of the time–dependent Schrödinger’s equation in a coordinate space
representation [124,34,15]. Present standard techniques are based on an equidis-
tant grid representation of wavefunctions in coordinate space and rely on the
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use of fast Fourier transforms (FFT) for the evaluation of the kinetic energy
operation. In this way both the potential and kinetic energy operator can be
evaluated in a representation where they are diagonal. There is a rich literature
of applications of these class of methods on problems of vibrational wavepacket
dynamics, reactive scattering, and also photodissociation which is the subject
of Part II of he present work, see also [34,15,37]

In the context of the present work we have to solve the coupled time–
dependent Schrödinger’s equations (2.11) for the radial wavefunctions φiJM (r, t)
under the influence of a time–dependent Hamiltonian (2.5). This is achieved by
a time discretization with time steps ∆t which have to be chosen short enough
such that the time–dependence of the interaction operator can be neglected.
Then the time evolution (2.3) can be simply written as

|Φ(t+ ∆t)〉 = exp
[
−i(T̂ + V eff + Ŵ )∆t/h̄

]
|Φ(t)〉 (2.21)

where the vector Φ is composed of all the radial functions φiJM . and long time
propagation can be realized by repeatedly applying the short time propagator.
The evaluation of the exponentiation is carried out by splitting the exponent
into its individual components [29, 125]. Note that the method proposed in
Ref. [126] can be generalized to coupled equations without having to diagonalize
the matrix represention at every timestep [127].

Typically, in time–dependent quantum calculations of reactive scattering
events localized wavepacket are used as initial states [14]. Here we use a
Gaussian–type packet of the form

φiJM (r, t = 0) =
(

2
πa2

)1/4

exp

[
ik0r −

(
r − r0
a

)2
]

, (2.22)

The initial momentum < k >= k0 < 0 of the incident wavepacket corre-
sponds to a relative collision energy of

E0 =
h̄2

2m
(k2

0 + 1/a2) . (2.23)

Our choice of the width parameter a is determined by the following consider-
ations. On the one hand, the momentum (and energy) uncertainty 1/a should
be relatively small so that our results extrapolate well to the case of a free
scattering wave. On the other hand, the position uncertainty a/2 should be not
too large in order to permit efficient manipulation by very short laser pulses.
Here we typically use a value of a = 10a0. Accordingly, the initial position of
the wavepacket < r >= r0 has to be large enough so that at t = 0 the col-
lision partners do not yet interact with each other. Such a wavepacket can be
realized e. g. in photochemical experiments utilizing van der Waals precursor
complexes [50,94,52].

2.2.5 Eigenstate Representations

The more conventional alternative is to represent the radial wavefunctions in
an eigenstate basis of bound and free eigenfunctions |χinJM (r)〉 of the diagonal
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part of the effective Hamiltonian of Eq. (2.17) where n represents a (discrete)
vibrational quantum number v or a (continuous) wavenumber k, respectively[

− h̄2

2m
∂2

∂r2
+ V eff

iJ (r)

]
χinJM (r) = EinJM χinJM (r) (2.24)

where the energies EinJ are independent of the quantum number M because of
the spherical symmetry of the effective Hamiltonian.

Using this basis, the radial wavefunctions φiJM (r, t) can be written as

φiJM (r, t) =
∑∫

n
cinJM (t) exp [−iEinJ t/h̄] χinJM (r) (2.25)

where the summation extends over all vibrational states v and the integration
extends over all scattering states with wavenumber k. In our simulations bound
state wavefunctions are obtained using a Fourier grid Hamiltonian method [128,
129], while free scattering functions are obtained by integrating numerically
starting from the classically forbidden region (r → 0) outwards (r →∞) using
a Bulirsch–Stoer method [130].

Inserting representation (2.25) into the coupled Schrödinger’s equations
(2.17) and left–multiplying with an eigenstate yields a coupled system of
integro–differential equations (IDEs) for the time–dependent coefficients cinJM

in the representation in the basis introduced above

ih̄
∂

∂t
cinJM (t) =

∑
i′

∑∫
n′

∑
J ′M ′

WinJM,i′n′J ′M ′

× ci′n′J ′M ′(t) exp [i(EinJ − Ei′n′J ′)t/h̄] (2.26)

where the numbers WinJM,i′n′J ′M ′ are the matrix elements of the interaction
operator (2.12) in the radial basis

WinJMi′n′J ′M ′ =
∫
dr χinJM (r)WiJM,i′J ′M ′(r)χi′n′J ′M ′(r) . (2.27)

Finally, we substitute the special form of the semiclassical dipole operator (2.16)
and obtain in analogy to (2.17)

ih̄
∂

∂t
cinJM (t) = −E(t)

∑
i′

∑∫
n′

∑
J ′M ′

µinJM,i′n′J ′M ′ SiJM,i′J ′M ′

× ci′n′J ′M ′(t) exp [i(EinJ − Ei′n′J ′)t/h̄] (2.28)

where the matrix elements of the dipole operator have been used.

µinJM,i′n′J ′M ′ =
∫
dr χinJM (r)µin,i′n′(r)χi′n′J ′M ′(r) (2.29)

the squares of which are the Franck–Condon factors. The integro–differential
equations (2.28) offer a simple and interpretation of the dependence of the tan-
sition probability inJM → i′n′J ′M ′ on internal (molecular) and external (laser
pulse) parameters. The corresponding changes in the populations |cinJM (t)|2
of a state |inJM〉 are proportional to the following quantities:
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1. The Franck–Condon factor|µin,i′n′(r)|2 which is determined by the overlap
of the radial wave functions with each other and with the radial dipole
moment function,

2. The Hönl–London factors |SiJM,i′J ′M ′ |2 which, for a given light polariza-
tion, determine the transition rules for a JM → J ′M ′ rotational transition
for a simultaneous electronic transition i→ i′ (where simplifications may
apply, see e. g. Eq. (2.18) for a parallel transition), and

3. the laser intensity which is proportional to E2(t).

In contrast to the grid representation discussed in the previous subsection,
the initial state is not required to be limited in spatial extension. Instead it
is advantageous to assume the initial state to be a scattering state which is a
continuum solution of the time–independent Schrödinger’s equation (2.24) in
the absence of an external field. Furthermore, the choice of an eigenfunction
of the energy as an initial state provides a realistic description of the situation
in experiments with high quality atomic/molecular beams or with laser–cooled
atoms where the velocity spread can be extremely low.

Moreover, it is noted that due to the well–known problems with the nor-
malization of the continuum solutions of (2.24), absolute efficiencies for a pho-
toassociation process cannot be given. This is possible only for the wavepacket
picture of the previous section. Instead, we give cross sections which are defined
in analogy to the standard definitions in scattering theory [10,131].

These cross sections are defined as the quantum mechanical probability of
finding the collision partners, which were initially prepared in a scattering state
i, in a final state f . This probability per unit time and per volume in momentum
space is the product of the incoming probability current Ji = h̄k/µ and a time–
dependent partial inelastic cross section for the transition f ← i (for f 6= i).
Therefore we can define dσfi(t)/dΩ (with the dimension of an area),

dσfi(t)
dΩ

:=
1
|Ji|

d

dt
|cf (t)|2 . (2.30)

For experiments with pulsed light sources it is practical to define a time–
averaged cross section with respect to the duration of the laser pulse

dσp
fi

dΩ
=

1
2Tp

∫ 2Tp

0

dσfi(t)
dΩ

dt =
|cf (t = 2Tp)|2

2Tp|Ji|
. (2.31)

For more details, see A.4

2.2.6 Perturbation Theory

In the weak field limit the integro–differential equations (2.28) can be simplified
substantially if time–dependent first order perturbation theory is applied [90,
132]. Assuming the light–matter interaction to be very weak, the population
transfer is negligible and the coefficients cinJM (t) can be replaced by their initial
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values. Upon insertion of the pulse shape (2.20) one obtains (assuming δt = 0)

∂

∂t
cinJM (t) = − E0

2ih̄

∑
i′

∑∫
n′

∑
J ′M ′

µinJM,i′n′J ′M ′ SiJM,i′J ′M ′

× sin2

(
πt

2Tp

)
ci′n′J ′M ′(t = 0)

×
[
exp(iΩ+

inJ,i′n′J ′t) + exp(iΩ−inJ,i′n′J ′t)
]

(2.32)

where the angular frequencies Ω+ and Ω− denote the detuning of the carrier fre-
quency ω of the laser pulse with respect to the Bohr frequency of the transition
inJ → i′n′J ′ for stimulated emission ang for absorption, respectively.

Ω±inJ,i′n′J ′ = ±ω +
EinJ − Ei′n′J ′

h̄
. (2.33)

Now it is straight-forward to integrate the decoupled integro–differential equa-
tions (2.32) over the duration of the laser pulse [0, τ ], see Ref. [90]

cinJM (t = 2Tp) = −E0 Tp

2h̄

∑
i′

∑∫
n′

∑
J ′M ′

µinJM,i′n′J ′M ′ SiJM,i′J ′M ′

× ci′n′J ′M ′(t = 0)

×
[
G(Ω+

inJ,i′n′J ′ Tp) +G(Ω−inJ,i′n′J ′ Tp)
]

(2.34)

where the functions G are essentially identical to the Fourier transforms of the
sin2–shaped laser pulses

G(Ω± Tp) =
∫ 2Tp

t=0
dt sin2

(
πt

2Tp

)
exp(iΩ±t) =

i [exp(iX)− 1]
2Ω± [(X/2π)2 − 1]

(2.35)

for the argument X = Ω±inJ,i′n′J ′ Tp.
It is noted that the coefficients cinJM (t) are constant after the end of the

laser pulse and the further dynamics is simply determined by the natural time–
evolution of the the wavefunctions as given in Eq. (2.25).

As a next step we give equations for a specific initial state. First we assume
the reactants to be in an electronic state uniquely corresponding to the molec-
ular state i0. Then we follow the standard approach of scattering theory [10]
and assume the initial state to be a scattering state which asymptotically ap-
proaches an incoming plane wave and outgoing spherical waves. Assuming an
energy of E0 = h̄2k2

0/(2m) and the propagation of the plane wave to be along
z, we obtain the following initial values for the expansion coefficients

ci0k0JM (t = 0) =
1

(2π)3/2

1
k0
iJ
√

4π(2J + 1) exp(iδi0J) δM,0 . (2.36)

The scattering phases δiJ are obtained by numerically integrating the time–
independent Schrödinger’s equation (2.24) for the state i = i0 and fitting the
solution in the asymptotic region to the form sin(k0r−Jπ/2+δi0J). By virtue of
the resonance approximation of neglecting Ω− or Ω+ for stimulated emission or
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for absorption, respectively, we arrive at the final results: For photoassociative
bound←free transitions by stimulated emission (i ≤ i0 e. g. in the electronic
ground state), the coefficients for a bound state at the end of the laser pulse
are given by

civJM (2Tp) = −
√

4π
(2π)3

EpTp

2h̄
1
k0

×
∑
J ′

µivJM,i0k0J ′0 SiJM,i0J ′0

× iJ
′
eiδi0J′ G(Ω+

ivJ,i0kiJ ′Tp) (2.37)

For photoassociative transitions by absorption (i > i0, e. g. from free ground
state collision pairs to a bound level of the electronically excited state) Ω+

has to be replaced by Ω−. Similar expressions can also be derived for the
photoassociation process, see A.4.

Finally, the regime of validity of our perturbation based ansatz has to be dis-
cussed. In Fig. 5 of A.4 this is demonstrated for the case of the HCl photoassoci-
ation in the electronic ground state. Even for the case of a bound←quasibound
transition, for which the Franck–Condon factor is especially large (see Sec.
2.3.6), there is very good agreement between the numerically exact and the per-
turbative photoassociation probability up to a pulse intensity of 1013 W/cm2.
Beyond this limit, the simple two– or three state models are not sufficient, any-
way, and higher electronic excitations and ionization starts to play an important
role.

2.3 State–Selectivity

2.3.1 Model Systems

In the present work on state–selective photoassociation, we use two simple di-
atomic hydrides as model systems. Note that the choice of this class of molecules
is motivated by the following reason. Apart from their obvious simplicity, the
large values of both vibrational frequency and rotational constant result in a
relatively low density of states and hence in relatively strong quantum effects.

Hydroxyl Radical

The first model system we are using in our investigations (A.2, A.3) is the OH
radical which is often used as a model for the local OH bond e. g. in a water
molecule [133,134]. Furthermore, this choice is motivated by the existence of a
relatively low–lying bound excited state A2Σ+ (i = g) the well of which is below
the dissociation limit of the electronic ground state X2Π (i=e), see Fig. 2.1 (a).
Based on the model of Ref. [135], we rely on high quality ab initio data for the
potential energy curves. Here extended Rydberg functions [136] are fitted to the
data points of Ref. [137]. There are 17 and 11 bound vibrational levels for the
electronic ground and the excited state, respectively. For the permanent dipole
functions of ground (µg(r)) and excited (µe(r)) electronic state we use ab initio
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data from the literature [138, 139], see also Fig. 2.1 (b). Also the transition
dipole moment (µge(r)) coupling the dynamics in the ground and excited state
is adapted from first principles calculations [140, 137]. As we will show later it
is very important that µg(r) and µe(r) are parallel to the molecular axis while
µge(r) is perpendicular.
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Figure 2.1: (a) Potential energy curves Vg (X2Π) and Ve (A2Σ+) for the two
lowest electronic states of the hydroxyl (OH) molecule. The curves represent
extended Rydberg functions fitted to the ab initio data points of Ref. [137].
(b) Ab initio data for the permanent dipole functions of ground state µg (solid
circles [138]) and excited state µe (open circles [139]), and for the transition
dipole moment µge (solid squares [141] and open squares [137]). From A.3

Note that in our first studies of the ground state photoassociation of OH (A.1
and A.2) we used simple model functions for potential energy and permanent
dipole moment. For the former, we used a Morse potential

Vg(r) = D
[
e−β(r−r0) − 1

]2
−D (2.38)

with a dissociation energy D = 43763 cm−1, an equilibrium bond length r0 =
96.36 pm, and a range parameter β = 22.47 nm−1 determining the steepness of
the potential well [142]. The dipole moment function is represented by a Mecke
function [143]

µg(r) = q r e−r/r∗ (2.39)

with parameters q = 1.634|e| and r∗ = 60 pm representing OH bonds in the
water molecule.

These model functions allow the analytic calculations of dipole matrix ele-
ments for bound←bound and bound←free transitions at least for a rotationless
model, see our work on photodissociation in the electronic ground state [117].
This allows an analytic treatment of the integro–differential equations (IDE, see
Eq. 2.28) in the limit of negligible free←free transitions. However, in contrast
to photodissociation where free←free transitions are allowed only to second
order, this approximation is not justified here because photoassociation and
photoacceleration are directly competing with each other (vide infra).
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Hydrogen Chloride Molecule

In another study (A.4) we use the hydrogen chloride. As in the case of the
OH molecule, the HCl potential energy curve can be represented very well by
a Morse oscillator (2.38) but with a dissociation energy D = 37249.2 cm−1,
an equilibrium bond length r0 = 127.5 pm, and a steepness parameter β =
18.68 nm−1 [144] whereas the dipole moment function is adapted from ab initio
data published in the literature [145]. Although they are qualitatively very
similar to those for the OH radical there is a very important difference. Because
there is no other low–lying bound state, electronic transitions can be safely
neglected because they would require very high multi–photon transitions for
the IR radiation considered here.

2.3.2 Populations and Selectivity

Time–dependent populations of bound states are obtained in two different ways.
For the eigenstate representation of Sec. 2.2.5 they are simply defined by
PivJM (t) = |civJM (t)|2. For the grid representations proposed in Sec. 2.2.4
populations are obtained by projection of the non–stationary wavefunctions
φiJM (r, t) on the ni bound vibrational states of the respective potential

Pvi(t) =
∑
JM

∣∣∣∣∫ dr χivJM (r)φiJM (r, t)
∣∣∣∣2 , 0 ≤ vi ≤ (ni − 1) . (2.40)

Accordingly, the total population of all the bound states of the potential well
and the total population of continuum states are given by

Pwelli(t) =
ni−1∑
vi=0

Pvi(t)

Pconti(t) =
∑
JM

∫ ∞

0
|φiJM (r, t)|2 dr − Pwelli(t) (2.41)

for each electronic state i. The vibrational state selectivity

Svi(t) = Pvi(t)/Pwelli(t) (2.42)

is used to characterize the selectivity of preparation of molecules in a specific
vibrational state. In Sec. 2.3.6 we will also consider rotational state selectivity
which is be defined in analogy to (2.40) but omitting the sum over rotational
states.

2.3.3 Initial States

Collision Energy

As has been detailed in the Introduction, a photodissociation reaction is the
reversed process of a photoassociative collision. Therefore, it can be very in-
structive to consider the light–induced bond breaking before actually studying
the process of bond making. This is especially useful for the following two rea-
sons which are connected with the difficulties of using wavepackets as initial
state:
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1. The final state of a dissociation reaction initiated by a pulsed light source
can provide important information on the initial state of an association
reaction initiated by the same pulses.

2. The study of the dependence of a photodissociation event on the initial
state can be used to learn about the efficiency of a photoassociation re-
action as a function of the final (bound) state.
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Figure 2.2: Bound and continuum state population after excitation of OH with
an IR laser pulse (τ = 0.5 ps, E0 = 0.07Eh/(ea0)) for different initial states.
(a) vg = 12, electronic ground state. (b) ve = 10, top level of the excited
electronic state (note the reversed abscissa). Solid curves for synchronous x
and z polarization, dashed curves in part (a) for x polarization, dot–dashed
curves in part (b) for z polarization. From A.3

As a first example, let us consider the photodissociation of OH by an ultrashort
IR laser pulse of duration τ = 0.5 ps and amplitude E0 = 0.07Eh/(ea0). We use
the ab initio potential energy and (transition) dipole moment functions shown
in Fig. 2.1.

For the time being, we restrict ourselves to a rotationless model. We choose
the vg = 12 vibrational level of the electronic ground state. This choice of
a relatively high initial state already implies our experiences in ground state
vibrational excitation and photodissociation dynamics. On the one hand, the
Franck–Condon factors for photodissociation of lower vibrational states are very
low, on the other hand vibrational pre–excitation of the very highest vibrational
levels is not very state–selective any more [117].

Fig. 2.2 (a) shows our results for the photodissociation probability versus
frequency of the laser pulse. Beyond the dissociation threshold there is a sud-
den increase of continuum population at the end of the laser pulse (Pcont,g)
at ω ≈ 4050 cm−1. The dissociation yield remains roughly constant up to
ω ≈ 4800 cm−1. Beyond this frequency there are dips in this curve in the vicin-
ity of resonance frequencies of down–transitions. At the same time there is a
buildup of population in lower vibrational levels caused by stimulated emission
of one (vg = 9), two (vg = 7) or three (vg = 5) photons. The implications of the
presence of these bound←bound transitions with respect to the ground state
photoassociation dynamics are clear. The one–photon processes from a contin-
uum state down to the v = 12 target level have to compete with higher–order
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processes down to lower levels. This will be elucidated in detail in subsection
2.3.4 on vibrational state selectivity.

Our results for dissociation of electronically excited OH molecules are il-
lustrated in Fig. 2.2 (b) where we choose the top vibrational level ve = 10 as
initial state. Assuming a light polarization perpendicular to the molecular sym-
metry axis, electronic transitions can yield ground state atoms O(3P ) +H(2S)
by stimulated emission. The yield of this dissociation reaction shows two main
features. First, there is a narrow, sharp peak centered at ω ≈ 15, 835 cm−1.
Second, there is a much lower and very broad signal around ω ≈ 15, 200 cm−1.
The efficiency of these processes is much lower than for the electronic ground
state. The maximum yield for the first peak is only 14%, the yield for the
blurred peak is only in the range of 2%. This is caused by the weak transition
dipole moment function, in particular by the root of µge(r) at r = 2.64a0 (see
Fig. 2.1 (b). It is mentioned that for all lower vibrational states (ve < 10) this
yield is even much lower, hence we consider only the top level.

The corresponding photofragment energies can be determined from the ex-
cess energy beyond the respective dissociation threshold which are also marked
in Fig. 2.2. This helps us to predict the dependence of the photoassociation
yield on the energy of an incoming wavepacket. Except for the vicinity of
multi–photon process, the yield of the ground state reaction can be expected to
be a smooth function of the scattering energy, while the excited state process
will be reasonably effective only for 0 < E0 < 100 cm−1 (sharp peak) and for
400 < E0 < 1200 cm−1 (broad peak). Hence, we will consider two cases in
the following, i. e. very slow collision partners with k0 = −0.7a−1

0 (E0 = 31.1
cm−1) and moderately fast collision partners with k0 = −3.5a−1

0 (E0 = 777.7
cm−1). As will be discussed later, this strong sensitivity of the photoassociation
on the collision energy can be used to control the electronic branching ratio in
OH photoassociation reactions.

Relative Timing

Another important issue when dealing with time–dependent wavepacket and
time–dependent light sources is the relative timing of the collision event versus
the onset of the laser pulse. First of all, the parameters of the initial wavepacket
(Eq. 2.22) have to be specified. Once the parameters of the initial wavepacket
are fixed, the optimal timing can be estimated most naturally by studying the
reference case of elastic scattering of a wavepacket, i. e. without external fields.
As the collision partners are approaching each other, they start to interact with
each other through the potential energy function. After some time a part of
the wavepacket is still ingoing while another part has already been reflected
by the repulsive part of the potential and interferes with the former one (see
Fig. 1 of A.1). This situation leads to an interference pattern similar to a
standing wave which can be considered as a transition state for photoinduced
manipulation of a collision pair. The time from the buildup to the decay of this
interference suggests a natural timescale for the duration of laser pulses. In the
present work, we use τ = 1.5 ps and τ = 0.5 ps for the slow and fast collisions,
respectively.
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2.3.4 Vibrational State Selectivity

Frequency Dependence of Photoassociation

Fig. 2.3 (a) shows the Morse potential representing the electronic ground state
of the OH molecule together with a few high vibrational states. For the while
being, we will restrict ourselves to a 1–D (rotation–less) model. This restriction
will be lifted later, see Sec. 2.3.6. The most obvious parameter which can be
varied to control the dynamics of the photoinduced inelastic collision event
is the frequency ω of the laser pulse. For simplicity let us first assume all
other parameters to be fixed and let us restrict ourselves to consideration of
the ground electronic state only. We choose the higher of the two collision
energies (E0 = 777.7 cm−1, k0 = −3.5 a−1

0 ), a pulse length τ = 0.5 ps and
a fixed maximum field amplitude E0 = 25.71 GV/m. The diagram 2.3 (a)
shows possible transitions that can be induced by the interaction of the collision
pair with infrared laser pulses (2400 < ω < 3900 cm−1). We can see that
for this spectral range bound←free transitions by stimulated emission of one
(v = 16, 17), two (v = 13, 14), or three (v = 11) photon transitions are eligible.
At the same time, emission of one or more photons can lead to acceleration of
the (inelastically) scattered atoms.
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From A.2

For our model the ideal case of a vibrational state selectivity (S ≈ 100%) is
realized e. g. for a bound←free transition down to the vg = 15 vibrational level
(see A.1). The optimized laser frequency is far off any multi–photon transitions
and a vibrational state selectivity of S ≈ 100% is easily achieved (ω = 4701
cm−1, outside the range of Fig. 2.3 (b)). Note that there is a small detuning of
Ω = +35 cm−1 with respect to the exact energy difference between the initial
wavepacket and the vg = 15 state.

Fig. 2.3 (b) illustrates the interplay between one–photon and multi–photon
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transitions. For fixed values of k0, τ and E0 (see above) the plot shows the
total photoassociation probability in the electronic ground state versus carrier
frequency ω of the IR laser pulse. First of all, we see that the main peaks in
the spectrum correspond to the bound←free transitions down to the v = 17
and v = 16 state of the Morse oscillator. However, a closer inspection shows
the influence of higher–order processes. For the vg = 17 photoassociation the
vicinity of the two– (vg = 14) and three–photon (vg = 13) transitions is only
marginally felt. In contrast, there is a relatively large detuning Ω between the
resonance frequency and the optimal frequency for vg = 16 which is mainly
caused by two– (vg = 13) and three–photon (vg = 11) transition.

Population dynamics

The competition of one– and more photon processes is also reflected in the
population dynamics induced by the ultrashort laser pulses. This is shown in
Fig. 2.4 where the dynamics is illustrated for laser pulses which are optimized
for the bound←free transitions down to vg = 17 and vg = 16. The exact values
of the parameters are detailed in Ref. A.2.
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In the former case, about Pcont,g = 84% of the initial wavepacket can be
transferred into bound states of the potential well, see Fig. 2.4 (a). Out of
this well population an extremely high fraction of Svg=17 > 99.9% is found in
the vg = 17 at the end of the laser pulse (t ≥ 0.5 ps). Also at intermediate
times, this fraction never drops below 80 to 90%. As can be seen in Fig. 2.4 (b)
this situation is different for the photoassociation with the vg = 16 target level.
Although the overall efficiency is similar (Pcont,g ≈ 80%), we find a vibrational
state selectivity of only Svg=16 ≈ 90%. It is clear that this deterioration is
due to the nearby resonance frequencies for two– and three–photon transitions
mentioned above. Especially at intermediate times, we have an appreciable
fraction of the well population in the vg = 13 and vg = 11 state, the latter one
persisting also after the end of the pulse. These near–coincidences of one– and
multi(n)–photon processes leading to photoassociation products in the vone or
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vmulti state, respectively, are characterized by

E0 − Evone ≈ (E0 − Evmulti
)/n (2.43)

Of course, these coincidences depend also on the exact choice of the scattering
energy. As an example we refer to Fig. 4 of A.2 where a one (vg = 12) and
a two (vg = 7) photon transitions are shifted relatively to each other by slight
variation of k0 and where the state selectivity can be brought back to a value
very close to 100%.

Competition with Photoacceleration

The process of photoassociation induced by stimulated emission is competing
with the process of photoacceleration induced by absorption of one or more
photons. The latter process is defined as an inelastic collision where the collision
partners are accelerated by the energy absorbed from the electric field of the
laser pulse. It is also known as translational spectroscopy or as collision induced
absorption [60]. These free←free transitions are most likely when the frequency
is sufficiently far from any of the (first or higher order) bound←free transition
frequencies, e. g. in the vicinity of region C in Fig. 2.3 (b).
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Fig. 2.5 shows an example for free←free transitions. Apart from the buildup
of some minor population (< 1%) in the bound states vg = 16 and vg = 17 at
intermediate times, the result is a pure free←free transition at the end of the
pulse. For the specific laser pulse chosen here we see that about 55% have been
scattered elastically. The remaining population has undergone inelastic scatter-
ing, with the separation of the peaks in the energy spectrum corresponding to
the photon energy. Here up to three photons have been absorbed resulting in
accelerations up to ≈ 1 eV. It is noted that the structured spectrum of contin-
uum state exhibits some analogies with above–threshold ionization (ATI) [146]
or above–threshold dissociation (ATD) [147,117]
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As has been shown in A.2 the fraction of inelastic scattering can be enhanced
to approximately 60% by using higher fields. However, when trying to achieve
much higher accelerations there are two principle limitations.

1. In principle, the number of photons absorbed can be enhanced by in-
creasing the amplitude of the pulses. However, this also increases the
density of resonances for higher order stimulated emission processes with
bound←free transitions leading to photoacceleration.

2. When trying to circumvent this by choosing higher frequencies of the
pulses there is a limitation due to the rapidly decreasing matrix elements
of the dipole moment operator for free←free transitions which can be
qualitatively explained by the energy gap law.

2.3.5 Electronic State Selectivity

Single pulse strategy

As has been mentioned in Sec. 2.3.3 transitions between the continuum of the
ground state (X2Π) and bound vibrational levels of the excited electronic state
(A2Σ+) of the OH molecule are strongly affected by peculiarities of the tran-
sition dipole moment function, see Fig. 2.1 (b). In particular, for the collision
energies considered here the respective Franck–Condon factors are practically
zero for all but the highest level ve = 10 of the excited state. Hence, excited
state photoassociation is best achieved using visible laser pulses with carrier
frequencies between 15,000 cm−1 and 16,000 cm−1 .
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Figure 2.6: Excited state photoassociation of an OH collision pair for low scat-
tering energy (K0 = −0.7 a−1
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scattering energy (K0 = −3.5 a−1

0 , τ = 0.5 ps, E0 = 0.18Eh/(ea0)). Dot–dashed
curves: z–polarization only, solid curves: x and z polarization. From A.3

A typical result is shown in Fig. 2.6. For low collision energies, even a very
strong field of Ez = 0.16Eh/(ea0) yields a maximum photoassociation probabil-
ity of only ≈ 30%, for the higher collision energy the yield is much lower (< 1%)
even for slightly stronger fields. An additional parallel polarization of the laser
pulse causes only small frequency shifts in the former case while it causes appre-
ciable changes in the latter case. The decrease of excited state photoassociation
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yield for simultaneous x and z polarization might be an indication of free←free
or bound←free transitions within the electronically excited state.

Another interesting feature of the spectra of Fig. 2.6 results from the en-
ergetic proximity of the top vibrational level (ve = 10) to the dissociation
threshold of the A2Σ+ state. At frequencies slightly higher than the maximum
of Pve=10 there is another peak in the electronic excitation spectrum indicating
the onset of population in the continuum of the A2Σ+ state. This corresponds
to re–dissociation of the collision pair with the oxygen atom being electroni-
cally excited O(1D)+H(2S). Note that the two peaks are partly overlapping so
that a population transfer exclusively into the bound states of the electronically
excited state is impossible.

The coupling to the electronically excited state has also consequences for
the quantum dynamics of the ground state photoassociation process. This has
been shown in more detail in A.3 for the region between 4000 cm−1 and 5000
cm−1 for a simultaneous parallel and perpendicular polarization of the light.
Although there is no notable population transfer there are small but distinctive
frequency shifts of the peaks. These shifts can be easily explained in a “dressed
molecule” picture using light–induced effective potential curves in the presence
of a periodic field [148,149].

Two pulse strategy

The low efficiency of transitions between the continuum of the ground state
(X2Π) and bound vibrational levels of the excited electronic state (A2Σ+)
achieved with a single pulse can be easily remedied by a a two–pulse “dump–
pump” strategy. A first, infrared laser pulse (“dump”) can be used to accom-
plish ground state photoassociation as discussed in Sec. 2.3.4. Typically, an
efficiency of ≈ 70 . . . 80% and a very high state–selectivity close to 100% can be
achieved. Then a second, visible laser pulse (“pump”) is employed to induce
a bound←bound transition. The possibility of electronic excitation by use of
ultrashort laser pulses has been recently discussed for the same model of the
OH molecule [135]. Our results are illustrated in Fig. 2.7. The population
transfer to the electronically excited state is close to 100% efficient, however
there are losses in the order of 10% due to re–dissociation into the continuum
of the A2Σ+ state. Nevertheless, compared with the single–pulse result of Fig.
2.6 (b) the yield of electronically excited OH molecules from a slow OH collision
pair (k0 = −3.5a−1

0 ) has increased by two orders of magnitude.
The “dump–pump” strategy developed in the present work can be regarded

as a complementary approach to the work of Vardi et al. on the sodium dimer
[91]. In order to achieve photoassociation in the ground state for a homonuclear
diatomic with µg(r) = 0 these authors suggest a “pump–dump” strategy: First
a collision pair is pumped to bound levels of an excited electronic state which is
subsequently dumped to a ro–vibrational level of the ground state. The concept
of “counter–intuitive” order of the two pulses is not applied in the present work
because there is no substantial fluorescence from the intermediate state on the
timescales considered here.
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Figure 2.7: Two–pulse strategy for excited state photoassociation of a slow (a)
and a fast (b) OH collision pair. The first infrared pulse (“dump”) transfers
the O + H collision pair to the vg = 12 level, the second visible pulse (“pump”)
excites the OH molecule to the ve = 10 bound state. From A.3

Conclusions

Apart from the aspect of vibrational selectivity already discussed in Sec. 2.3.4
the results of this section shed light on the question of selectivity of the elec-
tronic state of a photoassociation product. This is of particular interest for
a molecule like the OH radical where due the presence of a low–lying bound
excited state ground and excited state photoassociation can in principle occur
in the same frequency range. The results obtained here suggest several ways of
controlling the electronic branching ratio of photoassociation reactions for the
O + H collision pair.

• Regardless of the laser pulses used, one way to control the electronic
branching ratio is given by its dependence on the initial state, i. e. the
strong sensitivity on the initial scattering energy. Because excited state
photoassociation is only effective for very slow collision energies, this pro-
cess can be practically excluded for collision pairs with higher initial mo-
menta. However, at low scattering energies both channels are in principle
possible.

• Another very simple control mechanism is feasible for experiments with
oriented molecules which is due to the different orientation of permanent
and transition dipole moments. In this case the electronic branching ratio
of the OH photoassociation reaction of oriented molecules can be very
easily controlled via the polarization of the light pulses.

• Finally, there is a slightly more sophisticated way to control the branching
via the wavelengths of the light pulses. The specific shape of the tran-
sition dipole moment function of OH restricts the excited state process
to the ve = 10 level and hence to a narrow range of carrier frequen-
cies around 15, 700 . . . 16, 100 cm−1. Since there are no resonances for
bound←free transitions in the ground state molecules can be formed only
in the excited electronic state. On the other hand, the photon energy
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in the low frequency regime eligible for ground state photoassociation
(ω = 4000 . . . 5000 cm−1 would suffice only for excited state photoassocia-
tion into low vibrational levels ve for which, however, the Franck–Condon
factors are practically zero.

2.3.6 Rotational State–Selectivity

Introduction

All the results on vibrationally and/or electronically state selective photoasso-
ciation presented so far have been obtained for a rotation-less model. In the
following we want to investigate how the efficiency and the state–selectivity are
changed by including rotational effects in our model. In particular, we want
to study the possibility of creating molecules in a specific ro–vibrational state
(photoassociation) or to prepare a collision pair at a specific energy and angular
momentum. Here the 1H35Cl molecule is chosen as a model system. Although
qualitatively very similar to the OH radical, this choice simplifies our work
because there are no other low–lying bound electronic states apart from the
ground state (X1Σ).

Quasi-bound States

For non–zero angular momenta J , there is also a qualitatively new feature, i. e.
a local maximum (centrifugal barrier) of the effective potential energy curves
(2.14) at relatively large distances which separates the attractive potential well
from the asymptotic region. This barrier may give rise to quasi-bound states of
the effective potential [150,10] which are also termed shape resonances or orbit-
ing resonances since they can be considered a quantum analogy of the classical
orbiting phenomenon. Although they are found at energies above the dissoci-
ation limit, shape resonance bear many resemblances with bound states. Typ-
ically, the probability amplitude |ψ(r)|2 corresponding to these quasi–bound
states exhibits a high probability amplitude in the region of the well of the
effective potential. Hence, the amplitude roughly coincides with the range of
permanent or transition dipole moments. As a consequence, these states should
be very suitable for manipulation by external fields and we expect their contri-
bution to largely exceed that of free states. Indeed, shape resonances [86, 87]
have been observed in photoassociative collisions of ultracold Rb atoms 2.

Due to the similarity with bound states, shape resonance states can be con-
sidered as a continuation of the vibrational progression of the bound states
towards higher energies in the continuum. Accordingly, the number of nodes
increases by one from the highest bound state to the lowest quasi-bound states
etc. This behaviour provides an easy means of computationally detecting shape
resonances. When scanning the scattering phase δJ(E0) versus scattering en-
ergy E0, one finds a sudden increase of the phase by an amount of π whenever
the number of nodes of the wavefunction increases by one [131]. In practice
we locate shape resonances in two different ways. First, we integrate the radial

2The same authors recently also reported the detection of Feshbach resonances [151,152]
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Schrödinger’s equation numerically using a Bulirsch–Stoer method [130]. Sec-
ond, we use a semiclassical Airy function method [153]. The results are found
to be in very good agreement with each other. The energetic widths can be
obtained from

Γ =
(
dδJ

dE0

)−1

(2.44)

where the derivative is to be taken at the centre of the resonance.
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Figure 2.8: (a) Bound and quasi-bound states (shape resonances) of the HCl
molecule. The lower and upper envelopes correspond to the minimum of the
well and to the maximum of the centrifugal barrier, respectively. (b) Enlarged
section (see rectangle in part (a)) together with the arrows indicating possible
photoassociation processes (see text). From A.4

Bound and quasi-bound states of the HCl molecule are illustrated in Fig.
2.8 (a). For increasing angular momentum J , the bound states are gradually
shifted upwards until they finally become unstable (E > 0). Here the number
of bound states decreases from 24 for the rotation-less Morse oscillator (J = 0)
down to a single bound state for J = 66 yielding a total of 984 bound states.
At the same time, 176 quasi-bound states appear with their energy between the
minimum and the local maximum of the effective potential for 9 ≤ J ≤ 77.

In contrast to bound states, shape resonance states exhibit some probability
amplitude outside the barrier, too. This is a consequence of the metastable
nature of the quasi–bound states. Their lifetime corresponding to tunnelling
through the centrifugal barrier in the effective potential is determined by the
height and the width of the centrifugal barrier as well as by the reduced mass
of the system. For the HCl molecule the resonance widths are typically Γ ≤ 1
cm−1 which corresponds to lifetimes h̄/Γ of the order of one picosecond or
more. However, in a few cases where there is a quasi-bound state just below
the centrifugal barrier there are shorter lived resonances. Here the extreme is
the (v = 10, J = 53) state with a lifetime of 150 fs.
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State Selectivity

As a first step on our way to achieve high efficiency and high state selectivity in
a photoassociation reaction, we have to choose an appropriate initial state. In
order to achieve realization in an experiment with limited energy resolution, it is
advisable to select the quasi-bound state which is energetically most separated
from the others. In our example this is the (v = 7, J = 59) state which is
separated by 120 cm−1 from its neighbours and which serves as a reference case
in the following.

Second, we have to choose a final state. Since it is well–known that the
efficiency of a bound←bound transition rapidly decreases with increasing dif-
ference ∆v in the number of nodes we define the highest bound states for each
allowed value of the angular momentum J as our target levels. With the se-
lection rule ∆J = ±1 for dipole transitions, there is a choice of two different
transitions, i. e. P and R branch. We choose the P branch transition because
for lower values of J the highest bound state may have more radial nodes. In-
deed, this is the case for our example where we prefer the (3,58) over the (2,60)
state because of the better overlap with the initial (7,59) state, see Fig. 2.8 (b).
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Figure 2.9: (a) Population dynamics during a HCl photoassociation reaction
induced by a laser pulse optimised for the (3, 58) ← (7, 59) transition (for the
parameters, see A.4). The initial state is assumed to consist of the J = 7 partial
wave only. (b) Final state population after the same photoassociative collision
using the same laser pulse but for a plane wave (superposition of all partial
waves) as initial state. The truncated peak value for (3,58) is 5670 pm2. From
A.4

Once initial and final states are chosen, we have to optimise the shape
of the laser pulse in order to achieve maximum population transfer for the
(3, 58)← (7, 59) transition considered here. For simplicity we assume here that
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the initial state consists of the J = 7 partial wave only. Similar to the work
presented in the last two subsections, the duration of the laser pulse is fixed.
Dictated by the requirement that the pulse has to be considerably shorter than
the lifetime of the quasi-bound state (here 5 ps), we choose a value of τ = 200fs.
For a not too high amplitude of 514 MV/m the optimal frequency is found to
be 4605.9 cm−1 representing a detuning of Ω = −6.6 cm−1 with respect to the
Bohr frequency for the bound←quasibound transition.

The resulting population dynamics is shown in Fig. 2.9 (a). We find a re-
markably high state selectivity with respect to both rotational and vibrational
states of the molecular product. The cross section for the P branch transition
(3,58) is more than three orders of magnitude larger than the R branch tran-
sition (2,60). Moreover, the transition to the highest vibrational level (3,58) is
four orders of magnitude more effective than transitions to the second highest
(2,58). Note that the latter result is compatible with results of our first study
of photoassociation using a rotation-less model of the OH collision pair (see
A.1). It is noted that these results also confirm the validity of the perturbative
ansatz presented in Sec. 2.2.6. The probability of the first–order processes is
considerably larger than that for any of the second–order processes.

Finally we want to lift the restriction of the initial state consisting of a
single partial wave. Instead we consider a plane wave with contributions of
all angular momentum states but with the collision energy exactly coinciding
with the (7,59) shape resonance, see Fig. 2.9 (b). As anticipated above the
contribution of the resonant J = 7 partial wave is by far the largest because
of the overlap of the probability density with the dipole moment function (see
Fig. 6 of A.4). The contributions of the other partial waves are at least 50
times smaller. The final states can be found along an isoenergetic curve in the
(v,J) plane. In total, the final population caused by all the non–resonant partial
waves is a factor of four smaller than the contribution of the resonant partial
wave.

Cross Sections

In a realistic experimental situation it is typically more difficult to control the
scattering energy of the collision pair than the frequency or intensity of the
laser pulses. In order to investigate the sensitivity of the photoassociation
and photoacceleration on the former, we want to consider in this section the
dependence of the collision cross sections for the two photo–induced inelastic
scattering processes versus scattering energy. For the definition of cross sections
for laser pulse induced process, see Chap. 2.2.5 and A.4. The parameters of
the laser pulse are kept fixed to the values optimised for the (3, 58) ← (7, 59)
transition.

Our results are displayed in Fig. 2.10. The photoassociation spectrum
(left) exhibits a few very sharp peaks corresponding to bound←quasibound
peaks. Because of the pulse optimisation the (3, 58)← (7, 59) transition is the
strongest one. Although the scattering energy covers almost all of the shape
resonance states shown in Fig. 2.8 there are only a few other pronounced
bound←quasibound transitions in the spectrum. This is because stabilisation
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Figure 2.10: Cross sections (in pm2) for photoinduced association (a) and ac-
celeration (b) of HCl collision pairs versus scattering energy. The main peaks in
the association spectrum are labelled by initial (i) and final (f) state, the stars
indicate the density of bound states where the energy is shifted by the photon
energy. The labels in the acceleration spectrum are labelled by the initial states
only.

of a shape resonance state is only effective if the photon energy matches the
Bohr frequency for a transition down to a bound state level within the width
of the effective line shape.

Apart from the sharp peaks there is also a broad background in the pho-
toassociation spectrum of Fig. 2.10 (a). It is caused by bound←free transitions
with non–resonant initial states. Because of the large number of non–resonant
partial waves, details of the Franck–Condon factors such as the undulations in
Fig. 2.9 (b) are averaged out and the contribution of free initial states to the
photoassociation signal is a smooth function of the scattering energy. It quali-
tatively follows the density of bound states accessible in one–photon transitions
which is continuously rising up to a sudden fall–off at the dissociation limit.

A photoacceleration spectrum is shown in Fig. 2.10 (b) for the same laser
pulse as for the photoassociation spectrum. It can be seen that the shape reso-
nances cause sharp peaks corresponding to free←quasibound in the spectrum.
As far as the energy is concerned, all shape resonances are eligible for pho-
toacceleration. Nevertheless, only a relatively small fraction of the quasi-bound
states give rise to a peak. In this case the crucial selection criterion is the
lifetime of the quasi-bound state. In particular, for a given spectroscopic reso-
lution ∆E long lived states with a lifetime � h̄/∆E cannot be detected. For
example, in the HCl spectrum in Fig. 2.10 (b) which has been calculated with
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∆E = 1 cm−1 there are only the fingerprints of 25 shape resonances.

2.3.7 Summary and Outlook

In the present section 2.3 photoassociative collisions of two colliding atoms are
treated. By stimulated emission of light, a collision pair can be stabilized to
form a ground state molecule. Alternatively, a collision pair can be stabilized
by absorption of light to form a molecule in an electronically excited state. The
special emphasis in the studies presented here is – apart from the efficiency –
on the selectivity with respect to the quantum state of the molecular product.

The work in A.1 and in A.2 represents the first studies of ground state
photoassociation by infrared picosecond light pulses. By simultaneous opti-
mization of the incoming wavepacket and of the laser pulse, photoassociation
can be achieved with a high efficiency of > 80% for a rotation–less model of an
O + H collision pair. At the same time, an extremely high vibrational state
selectivity close to 100% is achieved. The problem of near–coincidence with
higher–order transitions can be circumvented by careful tuning of the scatter-
ing energy versus the laser frequency.

The high efficiency and state–selectivity also persists if rotational degrees of
freedom are taken into account, see our work in A.4, where the effect of shape
resonances on photoassociation reactions is treated for the first time. The high
scattering cross section of shape resonance states can lead to considerably en-
hanced efficiency of photoassociation reactions. At the same time, preparation
of molecules in specific ro–vibrational states is possible because the condition
for a shape resonance is only met for one specific partial wave. It is also pre-
dicted in A.4 that these effects can be observed in high–quality molecular beam
experiments.

To drive our investigations of photoassociation dynamics one step further,
we have also addressed the question of electronic state–selectivity upon photoas-
sociation. This is especially interesting for molecules where low–lying bound
electronic states exist and where ground and excited state processes are eligible
in a similar frequency regime. It is demonstrated in A.3 for the example of the
OH radical that even in these cases various control mechanisms exist. Apart
from the different polarization of permanent and transition dipole moments,
effective control can be exerted through variation of the scattering energy of a
collision pair.

So far, we have considered photoassociation with molecular products in
relatively high ro–vibrational states. The possibilitiy to populate also lower
states in a direct one–photon process are limited because of the competition with
multi–photon processes which become abundant for higher fields. An elegant
alternative is the use of sequences of several laser pulses to descend the ladder
of ro–vibrational levels in analogy to our work on vibrational excitation [117].
This strategy is expected to finally render the production of ultracold–molecules
possible [91]. Also the problem of unfavourable Franck–Condon factors for
excited state photoassociation can be circumvented in this way (A.3).

In principle, the process of ground state photoassociation by stimulated
emission competes with photoacceleration induced by absorption of photons.
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In these inelastic free←free transitions, the collision pair is accelerated in the
field of the laser pulse. In analogy to the phenomena of above–threshold ioniza-
tion and above–threshold dissociation the increase of kinetic energy corresponds
to the energy of one or more photons and leads to sharp peaks in the energy
distribution of the scattered particles. In A.2 and A.4 this process is explored
for the first time. Despite of some limitations the process of photoacceleration
provides an efficient means of radiation–induced acceleration of neutral atoms.
Acceleration of molecules can also be achieved by rotational or vibrational ex-
citation and subsequent RT or VT energy transfer [154]. For atoms without
internal degrees of freedom this channel is not at our disposition and the pro-
cess of photoacceleration presents the only alternative for IR light if electronic
transitions are not eligible. Hence it represents a method to produce fast atoms
with narrow and well–defined energy–distributions.

2.4 Wavepacket Dynamics

2.4.1 Model System

As a model system for our work on the wavepacket dynamics of photoassocia-
tive collisions we choose the exciplex formation of molecular mercury Hg2. This
choice was motivated by the first femtosecond photoassociation spectroscopy
(FPAS) experiment by Marvet and Dantus [82, 83]. Utilising this novel exper-
imental technique the quantum dynamics of the formation of a chemical bond
in a photoassociative collision could be detected in real time by means of a
pump–probe technique.

A first (pump) laser pulse excites a collision pair of two ground state mer-
cury atoms (61S0) which are interacting through a potential with an extremely
shallow van der Waals well from a continuum level to a ro–vibrational bound
state of the first electronically exited state (D3Σ+

u ). The subsequent dynamics
of the newly formed molecule in the exciplex state can be monitored by excita-
tion of the Hg2 with a second (probe) pulse to an electronic state which results
from the avoided crossing of a 1Πg and a 3Σ+

g state [155] causing a depletion of
the fluorescence signal from the D3Σ+

u state.
The potential energy curves of the electronic ground state and of the two

excited states are illustrated in Fig. 2.11. For reasons of simplicity, these
states will be termed here as |0〉, |1〉, and |2〉. Our data are taken from ab
initio calculations [156, 157, 158, 159] and from analysis of experimental con-
tinuous wave photoassociation spectra in Refs. [155, 79, 80]. The transition
dipole moment for the |0〉 → |1〉 transition is adapted from the first principles
calculations [156] while for the |1〉 → |2〉 transition we have to resort to the
Condon–approximation of assuming a constant value (2.54 D) because reliable
data are not available.

2.4.2 Excitation probability

As has been demonstrated in Sec. 2.2.6 the dynamics of a molecular system
subsequent to excitation with an ultrashort laser pulse is completely determined
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Figure 2.11: a) Potential energy curves used for the wavepacket simulations of
the femtosecond photoassociation of Hg2. A pump pulse (312 nm) excites a con-
tinuum wavefunction of the electronic ground state |0〉 to bound ro–vibrational
level of the first electronically excited state |1〉. A probe pulse (624 nm) is used
to further excite the system to the state |2〉. b) Transition dipole moment for
the pump transition |0〉 → |1〉. From A.5.

by probabilities |cinJM (2Tp)|2 of exciting certain molecular eigenstates at the
end of the laser pulse. Apart from the Franck–Condon factors and the Hönl–
London factors in Eq. (2.34), the excitation probability is essentially determined
by the energtic band width of the laser pulseas specified in Eq. (2.35).

This dependence is illustrated in Fig. 2.12 for the photoassociative tran-
sition |0〉 → |1〉 of the mercury molecule. For the while being let us neglect
rotational effects and let us consider only |0E000〉 → |1v10〉 transitions (using
the |inJM〉 notation of section 2.2.5) where E0 specifies the (initial) scattering
energy and v specifies the (final) vibrational state.

1. For the pulse length of Tp = 65fs adapted from the experimental work of
Marvet and Dantus [82, 83], the width of the main peak of the effective
line shape function (2.35) encompasses several vibrational spacings of the
system (see below). Equivalently, the classical vibrational period of the
Hg2(D3Σ+

u ) equals several times the pulse length of the Hg2(D3Σ+
u ) state.

2. The Franck–Condon factors exhibit an oscillatory behaviour which is typ-
ical for bound←free transition which is more commonly known as the re-
flection principle for the reversed process, i. e. photodissociation [160,47].

3. The excitation probability is non–zero only within the frequency regime
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Figure 2.12: Excitation probabilities (arb. units) for photoassociative
bound←free transitions of the mercury collision pair by a pump laser pulse (312
nm, 65 fs, 8.85 MV/cm). The solid curves show the result for |0E000〉 → |1v10〉
excitation versus the detuning Ω0E000,1v10 for two different initial energies E0.
Dotted curve: Fourier transform of the laser pulse. Dashed curve: Franck–
Condon factors. From A.5.

of the line shape function and exhibits the undulatory behaviour of the
Franck–Condon factors. By variation of the scattering energy, these two
functions can be shifted with respect to each other. In principle, two
different cases can arise: (a) If the maximum of the former one is close
to a maximum of the latter one, the excitation probability has one peak.
(b) If, however, the maximum of the former one is close to a minimum of
the latter one, the excitation probability exhibits a bimodal feature.

2.4.3 Vibrational Coherence

As has been pointed out above, the ultrashort pulses excite a coherent super-
position of a few vibrational levels of the electronically excited state. For the
two representative scattering energies of 93 meV and 125 meV (see Fig. 2.12)
we find excitation of four adjacent levels or of two times three adjacent levels,
respectively. This means that these laser pulses are relatively close to the vi-
brationally abrupt limit. In agreement with the work of Machholm et al. [90]
the coherent excitation of three to four adjacent states is just wide enough
to create localised wavepackets in the excited state close to the Condon point
(V1(r)− V0(r) = h̄ω) of the respective transition. Hence, we obtain one or two
localised wavepackets for the two collision energies considered.

Subsequent to the excitation, these superposition states evolve in time. Ini-
tially, the wavepackets remain localised and their centres follow a classical tra-
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jectory. Only at the turning points of the oscillatory motions weak interferences
between ingoing and outgoing portions of the wavepackets occur. A first order
estimate of the vibrational period is given by the correspondence principle

Tvib(v) =
h

Ev+1 − Ev
(2.45)

which is in the order of 300 fs. Illustrations of the wavepacket dynamics can be
found in Fig. 3 of Appendix A.5.
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Figure 2.13: Simulated pump–probe spectra of the mercury photoassociation
dynamics for different collision energies. Pump pulse: see caption of Fig. 2.12.
Probe pulse: 624 nm, 65fs, 88.5 MV/cm. a) Population of second excited state
versus pump–probe delay time. b) Power spectrum. From A.5

The vibrational dynamics of the photoassociated Hg2 molecule in the first
electronically excited state can be probed by excitation to a second state which
does not contribute to the fluorescence thus depleting the spectroscopic signal.
Fig. 2.13 (a) shows the population of the highest state as a function of the delay
time between pump and probe pulse. First of all, we see periodic undulations
with a period of 292 and 296 fs corresponding to semiclassical vibrational period
for v = 12 and v = 14, respectively. There is also a fine structure leading
to a splitting of the peaks into three or four peaks. This structure of the
transient can be easily explained by considering the Condon points for one
photon (V2(r) − V1(r) = h̄ω) and two photon (V2(r) − V1(r) = 2h̄ω) processes
for a probe wavelength of 624 nm. Because the former one is far outside the
classically allowed region, we have only to take the second one into account.
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Then the fine structure of the pump–probe transients can be easily understood
by considering the passing of the wavepacket through the Condon region.

A deeper insight into the wavepacket dynamics is provided through a power
spectrum of the transient. In the energy/frequency domain there is a clear
signature of the excitation process by the pump pulse. The example of Fig. 2.13
(b) exhibits a series of peaks corresponding to the energy differences between
those vibrational states that were initially excited. These are the well–known
quantum beats typically arising for expectation values of superposition states
(see e. g. Eq. (2.25) in Sec. 2.2.5.

At longer times, however, the anharmonicity of the potential starts to play
a role. Because the vibrational period (2.45) depends on the vibrational state v,
the different vibrational states comprising the wavepacket oscillate with slightly
different periods which leads to a smearing of the wavepacket in space until it
becomes completely delocalised. However, this behaviour is not irreversible
and after some time we expect the different states to be in phase again and the
wavepacket to regain its original (localised) shape. A reasonable approximation
for the time of such a “revival” of a wavepacket is given by [161]

Trev =
2Tvib

|∂Ev/∂E|
(2.46)

Inserting the first order difference

∂Ev,J/∂E ≈
Ev+1 − Ev

Ev,J
(2.47)

yields a revival time of 67.24 ps for the mercury system.
Also at shorter times there can be a re-phasing of some part of the vibra-

tional states, see our results for Hg2 in Fig. 4 of A.5. At integer fraction of Trev

this leads to characteristic splittings of the wavepackets and, correspondingly,
to frequency doubling, tripling, etc., of pump–probe signals. This phenomenon
of “fractional revivals” [161, 162, 163, 164] was detected for the first time for
Rydberg atoms. Meanwhile their universality in time–dependent spectroscopy
is well established, see e. g. the work on diatomic molecules [165, 120] and on
triatomic molecules [166].

2.4.4 Rotational Coherence

Up to now, we have only considered purely vibrational coherence phenomena,
i. e. we have assumed that the initial state is a single partial wave with well–
defined angular momentum J . According to the quantum–classical correspon-
dence principle, this is equivalent to a collision with a given impact parameter.
However, in order to simulate a realistic experimental situation, we have to take
contributions from all partial waves comprising a plane wave into account.

In principle, rotational coherence effects can be treated in the same way
as vibrational coherence effects. The pump laser pulse excites a manifold of
different rotational states of the mercury molecule in the first electronically ex-
cited state all of which have a different time evolution according to Eq. (2.25).
Assuming the rotational selection rule ∆J = ±1 to be valid, the pump–probe
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signal from each partial wave should exhibit quantum beats due to the inter-
ference of P and R branch. In analogy to the equation for the vibrational
timescale (2.45) this leads to

Trot(J) =
h

EJ+1 − EJ−1
=

h

B(4J + 2)
(2.48)

For a rotational constant of B = 3.3µeV for 202Hg, this leads to timescales
between a few hundred picoseconds (J = 1) and a few picoseconds (J = 100).
We see that there is a strong quantitative difference to the vibrational result
because here we have a superposition of a very large number of states with
greatly varying frequencies. As a consequence, on the timescale considered here
the effect of vibrational coherence leads to a monotonically decreasing signal
similar to a Gaussian curve [167, 168, 169]. The decay time is found to be in
good agreement with the experimental result (see below).

2.4.5 Thermal averaging

Up to this point we have only considered bound←free transitions originating
from an initial scattering state with well–defined collision energy E0. In the
following, we want to simulate the situation in a thermal experiment in order
to compare our results with the experimental ones of Refs. [82, 83] which were
obtained for a temperature of T = 433 K.

• First of all, it is not a priori clear that the experimental signal is
only caused by bound←free transition. However, it turns out that
bound←bound transitions from van der Waals precursor complexes can
be excluded for two reasons. First, the ratio of dimers versus monomers
is only 3.5 × 10−5 [82, 170]. Moreover, the spectral signal arising from
bound←bound transitions is much smaller than that from bound←free
transitions because of the limited range of the transition dipole moment
function which is already very small for the typical bond length of a vdW
Hg2 molecule in the electronic ground state, see Fig. 2.11 (b). Hence,
the dimer contribution can be safely neglected we and conclude that the
experiments are of truly bimolecular nature [171].

• Second, a Maxwell–Boltzmann averaging over the free initial states has
to be performed. Before considering the averaged spectra it is very in-
structive to investigate the excitation probabilities for a photoassociative
transition |0〉 → |1〉 versus angular momentum J and collision energy E0.
As can be seen from Fig. 2.14 (a), this probability is only large in a very
limited range of the two independent variables. Basically these limitations
can be explained by the shape of the effective potential energy curves 2.14
and by the reflection principle [172,47] governing the Franck–Condon fac-
tors for bound←free transitions, see Ref. [84] and App. A.5. We can
conclude that, together with the Boltzmann weighting factor, photoasso-
ciative excitations are only possible for a relatively narrow region of the
E0, J plane.
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Figure 2.14: Averaged pump–probe photoassociation spectra of mercury. (a)
Probability of a photoassociative transition versus collision energy and angular
momentum. (b) Averaged pump–probe transients for T = 433 K. Solid curve:
Simulated spectrum. Dashed curve: Experiments [82]. The smooth curves are
fitted Gaussians. From A.5.

Our result for an averaged pump–probe spectrum is presented in Fig. 2.14
(b). Despite of the averaging over the collision energy E0 and the summation
over all partial waves J , there is still a pronounced vibrational structure in the
simulated transient. However, the structure is more irregular than that of the
transients in Fig. 2.13. Note that the vibrational structure of the simulated
transient cannot be quantitatively compared with the experimental transient
because of the insufficient time resolution of the latter, but the qualitative
picture, i. e. the Gaussian–like decay due to the rotational dephasing is nicely
reproduced. Note that we could not compare the Fourier transforms of the
transients either because the length of the experimental transients (6 ps) limits
the resolution to 0.7 meV.

2.4.6 Summary and Outlook

In the present work (A.3) a fully three–dimensional model for the theoretical
description of pump–probe experiments on photoassociation reactions is devel-
oped. Based on the approach of Machholm et al. [90] our ansatz additionally
includes the role of rotations which proves crucial for the explanation of the
rotational coherence phenomena. It is shown that for the experimental condi-
tions considered here a perturbational approach and use of the rotating–wave
approximation are fully justified and lead to considerable simplifications of the
equations to be solved.

In agreement with our earlier results [171], we find that the photoassocia-
tion events observed in the experiments by Marvet and Dantus on the process of
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exciplex formation of Hg2 [82, 83] are indeed due to bound←free transitions, i.
e. originate from free collision pairs (Hg+Hg), while the role of bound←bound
transitions from preformed complexes (Hg2) can be neglected. Thus we have
shown that the femtosecond photoassociation spectroscopy is a truly bimolecu-
lar process not involving van–der–Waals precursors. Another remarkable find-
ing is that even for a model including hundreds of partial waves and accounting
for the thermal averaging in a cell experiment at relatively high temperature,
a pronounced vibrational structure persists. A comparison of measured and
simulated pump–probe signals shows satisfactory quantitative agreement with
the experiment.

Another interesting aspect is the sensitivity of femtosecond photoassocia-
tion spectroscopy on the potential functions and dipole moment functions. It
has been demonstrated that both the probability for photoassociation and the
subsequent vibrational dynamics sensitively depend on the Franck–Condon fac-
tors for bound←free transitions and hence on the shape of the transition dipole
moment. Moreover, Fourier transforms of the transients reveal the underlying
quantum beats of the ro–vibrational states comprising the wave packet created
in the pump process. These beats are a direct measure for the level structure of
Hg2 in the D3Σ+

u state. In summary, photoassociation can serve to refine both
potential energy functions and transition dipole moment functions for excimer
systems.

So far, the only severe limitation of our model is the restriction to only three
electronic states. In order to reach a quantitative agreement between measured
and simulated transients, we would have to account for fluorescence depletion
by other electronic states which are accessible by probing from the |1〉 state.
Moreover, also non–adiabatic coupling between these states has to be taken into
account. As has been demonstrated in Ref. [84], this could explain the lower
modulation depth of the experimental pump–probe spectra.

As has been shown in Fig. 2.14 (a), the excitation probability depends
crucially on energy and impact parameter of the collision pairs. Equivalently,
there is a strong correlation of the wavelength of the pump pulse and the impact
parameter. This allows a limited control the impact parameter in photoasso-
ciative collisions by variation of the wavelength [84, 85]. Another interesting
control mechanism arises when studying the total photoassociation yield versus
pulse length of the pump pulse. Decreasing the pulse length leads to wider
line shape functions and the association yield increases until all ro–vibrational
states are accessible at around 10 fs. For even shorter pulses, the yield decreases
again [173].
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3.1 Motivation

In this section we want to treat the stabilisation of collision complexes by inter-
action with a solvent. In order to form a stable molecule from an intermediate
collision complex in the absence of radiative processes, the excess energy has
to be removed by the solvent particles. In principle there are two different dy-
namical mechanisms, through which an association reaction can be affected by
the presence of a solvent.

1. The interaction with the solvent can serve as a dissipative mechanism
that removes energy from the collision complex in order to bring it below
its dissociation limit and further down to lower states in a series of cas-
cading steps. Clearly, the efficiency of such electronic, vibrational and/or
rotational relaxation processes depends on the energy transfer from the
solute to the solvent which acts as a local heat bath. Hence both kinematic
aspects and the interaction potential determine the reaction dynamics.

While this process is ubiquitous in liquids [46] it represents a relatively
rare event in gases since it requires (at least) a ternary collision [2,44,45].
If a third particle removes enough energy from the collision complex to
prevent re-dissociation on a timescale faster than the decay time of the
complex, it can lead to permanent association. This is the well known
“third body” or “chaperon” effect which shall be investigated here for the
extreme case of only a single solvent atom in a van der Waals dimer.

2. The other prominent solvent effect which shall be studied in the present
work is the cage effect where solvent particles may shield the reactants
from each other thus preventing the formation of a collision complex. Note
that the cage effect in the context of a truly bimolecular collision event has
rarely been studied (see below). However, the underlying mechanism of
caging is in close analogy to the cage effect observed for photodissociation
in condensed matter which is well characterised both in experiment and
in theory.

Obviously it is very advantageous to study these solvent effects on association
reactions in the framework of clusters [174,55]. The simple framework of a van
der Waals (vdW) cluster makes the theoretical treatment very promising. In
particular, it allows us to vary the size of the “micro-solvation” step by step
from the one extreme of a “single atom solvent” via one (or more) complete
solvation shells to the other extreme of molecules embedded in a rare gas liquid
or matrix. Apart from being able to control the solvent size we also benefit
from the restricted geometries provided by the vdW cluster.

There are only relatively few studies of bimolecular “cluster–catalyzed” re-
actions in the literature. In the following we list a few examples of reactions
where one of the reagents is solvated in a vdW cluster. Reactions of O atoms
with clusters of NO [175], CO [176], and with hydrocarbon–argon clusters [177]
have been investigated in crossed beam experiments. On the theoretical side,
there are classical trajectory simulations of CH3 + HArn [178] as well as of I
+ IArn (n = 12, 54) where the chaperon effect, caging and trapping of reagents
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have been explored [179,180,181,182]. Another stimulating example is provided
in the trajectory study of association reaction between non–stoichiometric NaCl
cluster cations complexed with Ar and Cl anions [183].

A closely related field are associative cluster–cluster collisions where two
clusters unite to form a compound cluster. Due to the large number of internal
degrees of freedom, redistribution of the energy can temporarily stabilise the
reaction products. Even in the absence of a solvent compound clusters may
survive a relatively long time before they finally stabilise themselves by loosing
particles. This mechanism of evaporative cooling [184, 185] of cluster–cluster
collision complexes can also be regarded as solvent induced stabilisation in
which the internal degrees of freedom of the product are acting as its own
solvent. Examples are fusion reactions of sodium clusters [186] or studies of
fullerene fusion [187,188,189,190,191,192].

Another mainly unexplored aspect is that apart from using the vdW envi-
ronment to modify the reaction dynamics, studies of reactions in clusters can
also be used as a tool to probe structure and dynamics of the vdW host cluster.
Thus they can represent a complimentary approach to the spectroscopy of guest
molecules embedded in vdW clusters. In particular, the issue of isomerisations
and melting-like transitions of finite size clusters has been much debated in
the last few years [193, 194, 195, 196, 197, 198, 199, 200, 201]. Here we intend to
investigate the question of structural transitions of a van der Waals cluster on
the reactivity in collisions with atoms.

In the present work we study the solvent induced stabilisation of collision
pairs for two different classes of model systems:

1. In our work on atom–cluster–collision (B.2, B.1) we investigate di-
atomic association reactions where one of the reagents is bound to a het-
erogeneous van der Waals clusters. For the model system

H + Cl . . . Arn → HCl . . . Arn−m, m ≤ n (3.1)

we simulate solvation processes on association reactions in the environ-
ment of a vdW cluster. In our studies we consider two cases. First, the
“chaperon” effect shall be investigated for the extreme of the “single atom
solvent” (n = 1) . Second, the cage effect shall be studied for the case of
the first complete solvation shell (n = 12). In particular, we are interested
in the effect of structural (“melting-like”) transitions of the shell on the
cage effect and the reactivity.

2. In our work on cluster–cluster–collision (B.3) we choose homogeneous
potassium chloride clusters as a model for the cluster growth from the
gas phase. Here our special interest is in the stabilisation of the com-
pound clusters by redistribution of energy in the many internal degrees
of freedom, and finally the evaporation of particles.
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3.2 Computational Details

3.2.1 Introductory Remarks

In general, the dynamics of a molecular scattering process has to be described
by the time–independent or time–dependent Schrödinger’s equation, see the
previous section on photoassociation. For larger bimolecular systems, however,
this is not possible with today’s computational means. At the present time,
the largest systems for which a full quantum description of reactive collision
events is feasible are limited to three or four atoms, see recent publications in
Ref. [39].

Hence, in the present work we restrict ourselves to a classical description of
the atom–cluster and cluster–cluster collisions under investigation. This is, at
least partly, justified for not too low collision energies and/or for not too low
temperatures. Furthermore, many quantum effects such as the occurrence of
resonances tend to get smeared out in systems with many degrees of freedom.
Moreover, we are interested in global observables such as total reactive cross
sections (vide infra) which are highly averaged quantities. Nevertheless quan-
tum effects do play a role in the field of reaction dynamics, see e. g. the review
by G. C. Schatz [202]. We have to be aware that due to the presence of the light
hydrogen reagent, the HCl association reaction might be affected by quantum
effects which we are neglecting here. However, we refer to Part II of this thesis
where quantum effects on photodissociation are treated in detail.

3.2.2 Cross Sections

The standard techniques for calculating cross sections and rate constants for
bimolecular reactions shall be only briefly reviewed here, for a detailed descrip-
tion see Ref. [203]. The most important ingredient of a classical investigation
of reaction dynamics is the averaging over a large number of trajectories. The
probability PΛ for a given reactive event Λ is simply given by the number NΛ

of trajectories leading to the desired products divided by the total number N

PΛ =
NΛ

N
(3.2)

This probability is a function of all the variables describing the initial conditions
of the collision event, i. e.

• the relative energy Erel = µv2
rel of the collision, where µ is the reduced

mass of the collision pair

• the impact parameter b of the collision,

• the orientation of the collision partners, and

• the vibrational v1,v2 and rotational degrees J1,J2 of freedom of each of
the molecular collision partners
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The parameters describing the initial conditions are also illustrated in Fig. 3.1.
Hence the reaction probability can be written as

PΛ = PΛ(Erel, b; Φ1,Θ1,Ψ1; Φ2,Θ2,Ψ2;v1,J1;v2,J2) (3.3)

φ ,θ ,ψ
2 2 2

B

ρ
b

A rel

φ ,θ ,ψ
1 1 1

v

.

Figure 3.1: Initial conditions of a molecular collision

Based on this definition of the reaction probability, it is straight–forward to
obtain cross sections of a reactive event for a given scattering energy Erel by
statistically averaging the reaction probability

σΛ(Erel) =
∫ ∞

0
2π b db

×
∫ 2π

0

1
2π
dφ1

∫ π

0

1
2

sin θ1dθ1
∫ 2π

0

1
2π
dψ1

×
∫ 2π

0

1
2π
dφ2

∫ π

0

1
2

sin θ2dθ2
∫ 2π

0

1
2π
dψ2

×
∫
dv1

∫
dJ1F1(v1,J1)

∫
dv2

∫
dJ2F2(v2,J2)

× PΛ(Erel, b; Φ1,Θ1,Ψ1; Φ2,Θ2,Ψ2;v1,J1;v2,J2) . (3.4)

The first line of the equation stands for the integration over a ficticious plane
perpendicular to the direction of approach of the collision partners. Note that
the integral converges because any reaction probability approaches zero for in-
creasing impact parameter (PΛ → 0 for b → ∞). The following two lines
indicate the averaging over the relative orientation of the collision partners.
Normally, these orientations are given in terms of the three Euler angles of ro-
tation Φ,Θ,Ψ commonly used in rigid body dynamics [204]. Finally, the fourth
line of Eq. (3.4) is the integration over a distribution function in the vibrational
(v) and rotational (J) degrees of freedom. Note that a few simplifying assump-
tions are made in the following sections: In all cases the rotational degrees of
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freedom are frozen because their typical timescale is much slower than the typ-
ical timescale of a collision event. For the case of the H + ClArn system, the
integration over the internal degrees of freedom of the relatively floppy ClArn

cluster is carried out by sampling from a molecular dynamics (MD) simulation.
In contrast, for the KCln + KClm system the relatively stiff internal degrees
of freedom are considered rigid, which reduces Eq. (3.4) to a 7–dimensional
integral.

The numerical evaluation of the multidimensional integral (3.4) presents
a formidable challenge. For any but the smallest systems these integrals are
typically carried out by means of Monte–Carlo (MC) techniques [205]. In this
approach, a large number of individual sets of trajectories is propagated start-
ing from initial conditions sampled randomly from the respective distribution
functions. This method has the advantage of being independent of the number
of degrees of freedom. Although the numerical error

∆MC σΛ ∼ N−1/2 (3.5)

converges relatively slowly, this method presents the only viable approach to
truly high–dimensional integrals.

The calculation of (reactive) cross sections σΛ versus (relative) collision en-
ergy Erel is tailored to the description of atomic or molecular beam experiments
which indeed have contributed considerably to the understanding of chemical
reaction dynamics [12]. Once having obtained cross sections σΛ(Erel), it is
straight–forward to convert these data to (thermal) rate constants by simply
averaging over a thermal energy distribution

kΛ(T ) =
∫
dErelE

3/2
rel σΛ(Erel) exp

[
− Erel

2kbT

]
(3.6)

where T is the temperature and kB is Boltzmann’s constant.

3.2.3 Classical Trajectories

Initial Conditions

All simulations are carried using a frame of reference fixed at the centre–of–mass
of the colliding particles. The initial separation of the collision partners has to
be chosen large enough so that their interaction becomes negligible. For the H
+ ClArn systems we choose 1 . . . 1.5 nm, for the alkali halide systems with their
long range multipole interactions the distance is increased to 5 nm. The impact
parameter b is the component of the separation perpendicular to the direction
of the relative velocity. The integration is extended up to a maximum value
bmax of 1 . . . 2 nm. The random orientation of the molecular collision partner(s)
is achieved by randomly picking numbers Φ1,2, Ψ1,2 from the interval [0, 2π[
and by selecting cos Θ1,2 from [−1, 1[.

Integration of the Equations of Motion

For each of the randomly chosen initial conditions one set of trajectories for the
participating atoms has to be propagated in time. To solve Newton’s equations
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of motion numerically, we choose a six–point predictor–corrector scheme devel-
oped by Gear [206]. It is noted that the accuracy required for simulations of
molecular collisions is higher than for thermal molecular dynamics (MD) calcu-
lations where typically a Verlet or a “leap frog” algorithm is sufficient [207,208].

Another feature typical of the numerical simulation of collision processes is
the drastic change of the forces. Both before and after the collision event, the
collision partners experience relatively weak interactions, while the intermolecu-
lar forces are strong during the short phase of the close encounter of the reagents
and the rearrangement of the atoms to form the products. Consequently, the
use of a time-step adapted is highly advantageous. Here the time-step is scaled
according to the maximum components of the forces. Typically, in the course
of a reactive trajectory, the time increment is reduced from 10 fs down to 0.1
fs and back to 10 fs again.

Final Conditions

The propagation of trajectories is continued until either one of the following
two conditions is fulfilled: (1) The propagation is truncated if the reagents did
not rearrange and their final separation exceeds the initial separation. In this
case, the respective trajectory is considered non–reactive. (2) If a product is
formed (HCl or (KCl)n+m in the atom–cluster or in the cluster–cluster collisions,
respectively), the trajectory is continued until either the rare gas solvent atoms
have all evaporated from the HCl product (typically a few ps) or until the
(KCl)n+m has survived for the duration of a few rotational periods.

In the case of the HCl formation we are also interested in the efficiency of
the evaporative cooling. As a measure, we calculate also partial cross sections
for association reactions for individual ro–vibrational states of the product HCl
molecule. A box quantisation is used to assign approximate quantum numbers
v and J using the equations

Evib(v) = h̄ω0(v +
1
2
)− h̄ω0χ(v +

1
2
)2 (3.7)

Erot(J) = BJ(J + 1)−D[J(J + 1)]2 (3.8)

where the effect of vibration–translation coupling has been neglected. The
harmonic frequency ω0 = 3002 cm−1, the anharmonicity constant ω0χ = 60
cm−1 are calculated from the Morse parameters for the electronic ground state
given on page 25. The rotational constant is B = 10.7 cm−1 and the centrifugal
distortion is D = 0.00054 cm−1.

3.2.4 Potential Energy Surfaces

The total potential energy function is constructed as a sum of pairwise interac-
tions between the atoms which is a reasonable approach at least for the closed
shell atoms and ions considered here.
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Van der Waals (vdW) interactions

The Ar–Ar interaction is one of the most thoroughly studied atom–atom in-
teractions, and the evolution of the respective potential function is intimately
connected with the history of molecular dynamics simulations [209, 207]. Here
we choose the HFD–B2 potential obtained by Aziz and Slaman from a multi-
property–fit. It exhibits a minimum of ε = 1.19 kJ/mol at an internuclear
separation of rm = 376 pm [210]. The Ar–Cl interaction is slightly stronger
but very similar in range. Neglecting the weak anisotropy of the open shell
system (2P state of the Cl atom), we make use of the V3/2,1/2 potential curve of
Ref. [211] with ε = 1.44 kJ/mol and rm = 378 pm. This potential as well as the
model for the Ar–H interaction is determined from (integral and differential)
crossed atomic beam scattering experiments. The latter one has an extremely
shallow well (ε = 0.45 kJ/mol at rm = 354 pm) which is irrelevant for the
collision energies considered in the context of the present work.

Note that it would be desirable to include three–body effects, in particular
to use a true atom–molecule potential for the Ar–HCl interaction. Indeed,
there exists a highly sophisticated atom–molecule potential in the work of J.
M. Hutson [212] based on infrared and microwave spectroscopy [213], see Sec.
4.2.1. However, this potential energy surface does not explicitly depend on the
H–Cl distance but is given in a vibrationally adiabatic formulation, i. e. as a
function of the HCl vibrational quantum number v. Furthermore, it has been
fitted to spectroscopic data for v = 0 and v = 1 only. As will be shown in
Appendix C.1 this potential function already shows considerable deficiencies
for v = 3.

Ionic interactions

The interaction of alkali halogenides can be approximated relatively well as a
sum of pairwise interionic potential functions which are independent of cluster
size and shape. To describe the interaction between a pair of ions i and j at
distance rij , we use a simple Born–Mayer potential of the form

Vij(rij) =
1

4πε0
qiqj
rij

+Aij exp
(
−rij
ρ

)
(3.9)

where the first term gives the Coulomb interaction assuming |q+| = |q−| = e
and where the second term stands for the repulsion caused by the overlap of
the electron clouds. In each case, the range parameter is the same (ρ = 33.7
pm). The parameters Aij giving the steepness of the repulsion were determined
by Tosi and Fumi [214]. The values are A++ = 1555.21 eV, A−− = 1924.80 eV,
and A+− = 1786.91 eV.

Note that the neutral K–Cl potential is not taken into account here because
the collision energies considered are clearly below the energy of the neutral KCl
pair potential. Furthermore, polarisation effects are neglected.
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3.3 Atom–Cluster Reactions

3.3.1 One Atom Acting as a Solvent

Introduction

As a first step in our investigation of solvent–induced stabilization of collision
pairs, we want to focus our attention on the simplest possibility, i. e. the case
of an association reaction in a three body collision. In particular, we want to
study the HCl formation in the presence of a single Ar atom which is assumed
to be attached to the Cl atom before the collision event takes place

H + Cl · · ·Ar → HCl(v, J) +Ar (3.10)

Based on this simple model, we mainly want to study the “third body” or
“chaperon” effect. Apart from general aspects of the reaction dynamics of this
exotic exchange reaction, we are interested in the following questions.

1. How efficient is the “evaporation” of the Ar atom in stabilizing the nascent
HCl molecule, and what is the partitioning of the energy release between
the three degrees of freedom, i. e. vibration and rotation of the HCl and
translation of the Ar?

2. What are the reaction mechanisms, and how are they reflected in the
internal or external degrees of freedom of the reaction products?

3. Finally, are there any long–lived HCl· · ·Ar complexes, and what role do
they play?

In passing we note that our model system (3.10) has many analogies to the
H + F2 reaction which has been the “drosophila” of chemical reaction dynamics
over the last few decades, see the book by Levine and Bernstein [13] as well as
a recent review [215]. While the reduced masses are very similar, the disparity
of the reagent vs. product bond strength and hence the excess energy is even
more extreme for the system considered here.

Cross Sections

Total reactive cross section for the HCl formation are shown in Fig.3.2 (a) for
a range of different collision energies Erel. It can be seen that the results for
σass(Erel) strongly decrease with increasing collision energy Erel. While for the
slowest collisions (Erel = 1 kJ/mol) we observe very large cross sections of
17.5× 10−20, the reactivity declines down to 2× 10−20 m2 at a collision energy
of Erel = 50 kJ/mol. This monotonic decrease of σass(Erel) is typical for the
reaction dynamics on a potential energy surface exhibiting no barrier between
product and reagent region. Hence, this type of reaction is mainly governed by
dynamical considerations. More specificially, the centrifugal barrier rules the
capture of the H atoms by the attractive HCl potential. In the framework of a
Langevin model it can be shown that the cross section decreases like

σass(Erel) ∼ E
−2/s
rel (3.11)
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if a power law V (r) ∝ r−s is assumed for the long range attraction [13]. In
the present case, our cross sections cannot be fitted exactly to such a model
function which points to the more complicated details of the reaction dynamics
considered here, in particular to the role of the “microsolvation”.
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Figure 3.2: Total and partial cross sections for the HCl formation in the
H + Cl · · ·Ar → HCl(v, J) + Ar reaction. Panel (a) shows the total cross
section versus collision energy. Panels (b) and (c) show partial cross sections
vs. vibrational (v) or rotational (J) state, respectively, for a fixed collision
energy of 10 kJ/mol. The error bars indicate the Monte Carlo error, see Eq.
(3.5). From B.1

Although the cross sections are large enough to be detected in typical beam
experiments, they are nevertheless relatively small compared with the range of
the attractive HCl forces. This behaviour is caused by the following two reasons.
First, the potential energy coupling between the H–Cl and the Ar–Cl motion
is very weak. Second, there are also kinematic restrictions for the H + Cl. . .Ar
system. In a light–heavy–heavy system the energy transfer from a light–heavy
mode to a heavy–heavy mode is typically not very effective [216]. In principle,
this energy transfer can be enhanced by replacing the light collision partner,
e. g. we found that replacing H by D increases the reactive cross sections by
about 20%. Consequently, the reactivity can be expected to be much higher for
the association of dihalogenides.

The energy transfer to the Ar solvent atom can be characterized in a more
quantitative way by considering partial cross sections for the HCl(v, J) forma-
tion with respect to a specicific vibrational or rotational state of the product
molecule, see Fig. 3.2 (b,c). For a fixed collision energy (Erel = 10 kJ/mol)
the vibrational distribution is highly inverted with a maximum at v = 16. The
corresponding vibrational energy of 395.5 kJ/mol represents 87% of the dissoci-
ation energy of the HCl molecule. Another intriguing feature of Fig. 3.2 (b) is
that the distribution of product vibrational states is very broad reaching from
the third highest state (v = 22) down to the second lowest state (v = 1). The
distribution of product rotational state is shown in Fig. 3.2 (c) for the same
collision energy. It shows a steep rise up to J ≈ 20 and a long tail reaching
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up to J ≈ 70 · · · 80. The rotational energy of 53.6 kJ/mol corresponding to
the maximum at J = 20 is equivalent to 12% of the dissociation energy. With
a few exceptions the data points can be fitted very well by a Boltzmann–type
distribution. This leads to a fictitious temperature of more than 13 000 K.

We can conclude that on average the cooling by evaporation of a single
weakly bound solvent atom is not very efficient. However, there is a small
probability that the HCl molecule is cooled also to very low quantum states.
As a rule of thumb we can state that in the order of 90% and 10% of the excess
energy is found in vibration and rotation, respectively. Only about 1% can be
expected for the translation of HCl and Ar relative to each other.

Reaction mechanisms

Although the portion of excess energy that is found in product translational
energy is very low, it can be one of the most powerful tools in determining
the underlying reaction mechanism [12, 13]. A first interesting hint is found
in Fig. 3.3 (a). The distribution of final velocities in the center of system
shows a bimodal behaviour, with two maxima at approximately 0.2 km/s and
0.7 km/s. Also the angular distribution of the HCl molecular product exhibits
a bimodal behaviour with a main peak for backward scattering and small sec-
ondary maximum representing forward scattered molecules. The correlation
between velocity and angular distribution is revealed in a two–dimensional ve-
locity map (not shown). It turns out that the forward–scattered HCl moieties
are faster than the backward–scattered ones.

0 1 1 2
final velocity [km/s]

0 45 90 135 180
scattering angle [deg]

0 1 1 2 2
collision time [ps]

(a) (b) (c)

Figure 3.3: Panels (a) and (b) show the velocity and angular distribution of HCl
molecules formed in H + Cl · · ·Ar → HCl(v, J) + Ar reactions at a collision
energy of 10 kJ/mol. Panel (c) shows the distribution of collision times. From
B.1

A further inspection of a large number of individual trajectories (Erel = 10
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kJ/mol) reveals the following details on the reaction mechanism (see Fig. 4 of
B.1). First of all, the H atom is attracted in the well of the HCl ground state
interaction and is forced onto a rosette–like orbit with the Cl atom at its center.
This corresponds to extremely highly excited or metastable HCl. In the coarse
of this spiraling motion the H atom collides one or more times with the Ar
atom. These collisions can be direct (“hard”) collisions, but grazing (“soft”)
collisions are observed more often. Note that the temporal order of capture and
cooling represents a key issue for the process. In order to understand this we
have to consider the maximum energy transfer in a hard collision

∆Emax

E
= 4

m

M
(3.12)

where m and M are the masses of the light and heavy collision partner, respec-
tively. For a mass rations of 1:35 or 1:40 the relative energy transfer is limited
to ≈ 10%. Hence, the larger energy transfers of a few ten up to a few hundred
kJ/mol resulting in HCl molecules in low (v, J) states can be traced back to
situations where a considerably accelerated H atom collides with the Ar atom.

Second, the scattering direction of the HCl molecules is mainly dictated
by the initial orientation of the Cl· · ·Ar aggregate. This is not too surprising
when one compares the mass of hydrogen with that of chlorine or argon. Also
the timescale of the Cl· · ·Ar rotation is much slower than that of the H atom
collision.

≈4 ps

H-Ar

Cl-Ar

H-Cl

Figure 3.4: Formation of a long–lived complex in a H + ClAr collision for
Erel = 10kJ/mol

An interesting situation arises when the initial orientation of the Cl· · ·Ar
cluster is perpendicular to the direction of the incident H atom and when the
collision energy is such that it nearly coincides with the height of the centrifugal
barrier. Under these favourable circumstances metastable rotating HCl· · ·Ar
complexes can be formed with the HCl bond rotating in a plane perpendicular
to the Cl· · ·Ar axis, see Fig. 3.4. In this geometry, the coupling between the
HCl vibration/rotation and the Cl· · ·Ar degrees of freedom is minimized thus
resulting in relatively long lifetimes. Results from our MC averaging over a
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large number of trajectories are shown in the right part of Fig. 3.3. While
the majority of the collision events is over after ≈ 0.5 ps, there are quite a
few long–lived events up to 1.7 ps. Even collision times of 10 ps and more
have been observed for individual cases. However, due to the complicated steric
restrictions, resonance–like states are much less important here than for the case
of the diatomic photoassociation, see Sec. 2.3.6 on the role of shape resonances.

3.3.2 The First Solvation Shell

Introduction

After having considered the extreme case of a single atom acting as a solvent
we nowproceed to investigate the case of a first complete solvation shell. It can
be rationalized by closest packing arguments, that twelve Ar atoms are needed
to form the first complete solvation shell around the Cl atom at the central
position. In order to form a HCl molecular product, the H atom will have to
penetrate the cage formed by the first solvation shell where one or more Ar
atoms may evaporate

H + Cl · · ·Ar12 → HCl(v, J)Ar12−m +Arm, m ≤ 12 . (3.13)

Hence, our main questions will be the following:

1. How efficient are the twelve Ar atoms in shielding the Cl atom from the
H atom colliding with the cluster, or how important is the cage effect on
the HCl association reaction?

2. How does the efficiency of caging depend on the cluster temperature and
on the cluster structure?

3. Finally, how effective is the cooling induced by a complete solvation shell
compared with the case of a single solvent atom, and how many of the
solvent particles are kicked out of the cluster?

Reaction Mechanisms

In the following we want to discuss two different events in collisions of hydrogen
atoms with the ClAr12 cluster occuring at totally different collision energies.
First let us restrict ourselves to the situation at T = 0, and let us postpone the
question of temperature effects to the following subsections.

At very low impact energies physisorption of the H atom on the surface of
the cluster is the dominating process, see Fig. 3.5 (a). An incoming H atom
is attracted by the cluster through the vdW forces. For a collision energy of
Erel = 0.1 kJ/mol the cross section for this process can be very large (3×10−18

m2) which is twice as large as the geometrical cross section of the cluster.
Upon trapping on the surface, the H starts to move almost freely on the

cluster surface but avoiding the corners of the icosahedron (C5 axes). In the
course of this motion the H is slowly loosing energy. When its energy is not
sufficient any more to overcome the small barriers (≈ 0.5 kJ/mol) at the edges
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Figure 3.5: Typical reactive trajectories for the H + ClAr12 collision pair for
two drastically different collision energies. (a) Adsorption of H atoms on the
surface of the cluster at extremely low collision energies (Erel = 0.01 kJ/mol).
(b) Penetration of the Ar cage at much higher collision energies (Erel = 100
kJ/mol). The HCl collision pair is stabilized by evaporation of the complete
solvation shell.

of the icosahedron (C2 axes), it becomes trapped at a site at the center of one
of the faces (C3 axes). This physisorbed state is quite stable, and evaporation
of the hydrogen occurs on a timescale of 100 ps to 1 ns. During this lifetime
of the complex, there is no diffusion of the hydrogen atom to the interior of
the cluster. Hence, hydrogen chloride cannot be formed. It remains to be seen,
whether quantum–mechanical tunneling could play a role to yield reactivity on
a timescale faster than the decay of the complex.

It is clear that the above process of physisorption is limited to relatively low
collision energies. In our simulations we have shown that the collision energies
must be less than the strength of the vdW attraction between H and ClAr12
which is of the order of 1 kJ/mol. For a detailed investigation of the atom–
cluster potential, see Fig. 6 of B.1.

At higher energies the cluster becomes partly “transparent” for the incident
H atoms, see Fig. 3.5 (b). The lowest threshold value for cage penetration is
found for an approach of the H projectile along the C3 axes. For a collision
energy of 100 kJ/mol, there are windows of about 10−20 m2 at each of the 20
faces of the icosahedron. An incoming H atom can penetrate the cage upon
an almost central collision (b ≈ 0). Inside the cage formed by the Ar atoms,
the H atom is strongly attracted by the chemical forces. The nascent HCl
diatomic molecule is in a highly excited ro–vibrational state. In the course of
its large–amplitude motion the H atom pushes the Ar atoms away with fragment
energies between 0.2 and 20 kJ/mol. After a typical timescale of 2 ps all the
solvent particles have evaporated where sometimes Ar dimers or trimers may be
formed. It is not too surprising that the stabilization of HCl collision complexes
by evaporation of twelve Ar atoms is more effective than by evaporation of a
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single Ar atom as discussed above.
It has to be emphasized, however, that this type of reactive event is limited

to almost central collisions and to favourable orientation of the cluster. It can
be seen from the weighting factor b in equation 3.4 on page 54 that central
collisions are negligible. Hence this type of reaction does not play a role in the
averaging procedure to obtain reactive cross sections. We will, however, come
back to the question of cage penetration for finite temperatures (T > 0) after
having discussed the thermal properties of the ClAr12 cluster in the following
subsection.

It is interesting to compare our findings with other work on reactive atom–
cluster collisions: In their work on I2 formation in I + IAr12 collisions Hu and
Martens find no cage effect [178, 180, 182]. Similar findings were also made in
more recent work by Jungwirth on Cl2 formation from reactive Cl + ClAr12
collisions [217]. This apparent contrast can be resolved by simple kinematic
considerations. The incident halogen atom is much heavier than the H pro-
jectile. Hence, it can push solvent atoms aside such as to undergo geminate
recombination. Another difference stems from the atom–cluster potentials in-
volved. Iodine atoms are attracted by the Ar solvent much stronger than H
atoms [181]. Hence, the solvent actually increases the rate of capture [180] and
leads to large cross sections, e. g. 36.6×10−20 m2 for a collision energy of 104.6
kJ/mol.

Thermal and Structural Properties of the ClAr12 Cluster

In analogy to the case of pure Ar clusters, where icosahedral packing is well
established both in experiment [218,219] and theory [220,221], we find an icosa-
hedral minimum energy structure for the ClAr12 aggregate where 12 Ar atoms
form an icosahedral shell around the central Cl atom (Ih). Based on the pair
potentials introduced above, the binding energy corresponding to the global
minimum energy of this aggregate (–53.9 kJ/mol) is slightly lower than that
of the pure Ar13 cluster. It is noted that the potential energy surface for the
heterogeneous system has a local minimum (–52.7 kJ/mol) corresponding to a
configuration with the Cl atom located at one of the corners of the icosahedron
(D5h).

In order to characterize the thermal behaviour of the ClAr12 we perform
standard molecular dynamics (MD) simulations for various temperatures pro-
ceeding in the following steps [207]. (1) As initial configuration for the MD runs
we choose the Ih global minimum energy structure and slowly heat (or cool)
the system by performing MD simulations while scaling the velocities. This is
done until the kinetic energy Ekin corresponds to the desired temperature

T =
2

3N − 6
Ekin

kB
(3.14)

where N = 13 is the total number of atoms and kB stands for Boltzmann’s
constant. (2) To allow the system to equilibrate after this heating or cooling,
we continue to propagate the trajectories for another 50 ps. (3) Subsequently,
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statistical averaging can be performed. We run the trajectories over a long pe-
riod of 10 ns (or 1 ns for the highest temperatures) and sample various thermal
or structural properties of interest at regular intervals. Assuming ergodicity,
these time averages should be equivalent to microcanonical ensemble averages.
Again Eq. (3.14) is used to assign temperatures which, however, do not deviate
considerably from those adjusted before the equilibration.
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Figure 3.6: Thermal and structural properties of the ClAr12 cluster obtained
from MD simulations. (a) Caloric curve, see Eq. (3.14). (b) Relative rms
fluctuations of all pair distances, see Eq. (3.15). From B.1

As a first means to characterize the thermal behaviour of the cluster we
want to consider the caloric equation of state. It is obtained as the tempera-
ture (3.14) vs. the total cluster energy. It can be seen in Fig. 3.15 (a) that this
function rises linearly up to a temperature of 36 K. This indicates a constant
heat capacity which can be obtained as the inverse of the slope c = ∂Etot/∂T .
At higher temperatures, the slope appears to decrease and the statistical fluc-
tuations increase suddenly. For T > 46 K evaporation of single atoms from the
cluster becomes dominant.

In order to characterize the transition occuring at T ≈ 36 K more in detail,
we consider a structural quantity, i. e. the root–mean–square (rms) fluctuation
of pair distances of the N atoms in the cluster

δ =
2

N(N − 1)

∑
i6=j

√
< r2ij > − < rij >2

< rij >
(3.15)

where < rij > and < r2ij > stand for the time average of a pair distance rij or its
square, respectively, and where the summation extends over all pairs of atoms i
and j. This (dimensionless) number is often used as a measure for the mobility
of particles. In particular, for bulk matter there exists an empirical criterion
claiming that solid and liquid state can be distinguished by δ < 0.1 or δ > 0.1,
respectively [222]. Fig. 3.15 (b) shows our MD results for the ClAr12 cluster.
We see a slow rise of δ proportional to the temperature reaching δ = 0.06
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at T = 36 K reflecting the thermal expansion of the system. Beyond this
temperature, there is a sudden rise of this quantity finally reaching δ = 0.32 at
T = 46 K.

This dramatic rise of the flexibility of the cluster can be regarded as an ana-
logue to the melting transition of condensed matter which is further confirmed
by inspection of a number of snapshots of cluster configurations in the course of
the MD simulations (see Fig. 8 of B.1) as well as radial distribution functions
(see Fig. 2 of B.2). It turns out that for a temperature of 40 K (δ = 0.23)
the Ar atoms have already gained some mobility and undergo large–amplitude
vibrational motion around their equilibrium positions but the icosahedral struc-
ture basically remains intact. For T = 45K (δ = 0.31) this picture completely
changes. Now there are sometimes atoms ejected from the first solvation shell
which then occupy a position in the second shell. For this reason, the remaining
eleven atoms in the first shell can almost freely rearrange. In particular, we also
observe configurations with the Cl atom at the outside of the cluster similar to
the local minimum of D5h symmetry mentioned above.

We conclude that there is a structural transition from a solid–like phase
to a liquid–like phase between T = 40 K and T = 45 K of ClAr12. Similar
observations of a melting–like transition have also been made for the analo-
gous homogeneous Ar13 cluster where a transition temperature of 34 K was
found [223, 224]. The lower transition temperature is caused by the use of a
different interaction potential with a lower well depth. The question of a phase
coexistence of solid and liquid behaviour which has been proposed for Ar7 [225]
and for Ar13 [196] has not been addressed here due to less extensive data.

Temperature Effects on the Reactivity

Once having characterized the thermal and structural properties of the ClAr12
cluster, we now want to discuss the reactivity in collisions with H atoms as
a function of the cluster temperature. This is achieved by using a sample of
configurations from our MD simulations as input for the MC integration

∫
dv

to obtain reactive cross sections, see Eq. (3.4). Our results for the temperature
dependence of the total reactive cross section for HCl formation is shown in Fig.
3.7. Let us first consider the case of Erel = 10 kJ/mol represented in the left
part of the figure. This energy is well below the threshold for cage penetration
at T = 0. Consequently, we detect no reactivity for T = 0 . . . 20 K. The data
points for T = 30 . . . 40 K indicate finite but extremely low reactivity with cross
sections below 10−20 m2 which is due to the thermal motion of the Ar atoms
around their equilibrium possibilities. This situations completely changes for
temperatures above the melting–like transition of the ClAr12 aggregate. At
these temperatures the large cross section of 11.4 × 10−10 m2 indicates the
breakdown of the cage effect. This is caused by the free mobility of the Ar
atoms in the liquid–like cluster. It is clear that configurations with holes in the
first solvation shell and, in particular, configurations where the Cl atom resides
on the outside of the cluster contribute to the high reactivity.

This sudden onset of the reactivity at the transition temperature has to be
contrasted with the situation for higher impact energies. A typical result for
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Figure 3.7: Temperature dependence of the total reactive cross section for the
H + ClAr12 → HCl + 12Ar association reaction for two different collision
energies of the reactants. (a) Erel = 10 kJ/mol. (b) Erel = 100 kJ/mol. Note
the different scales of the ordinates. From B.2.

Erel = 100 kJ/mol is shown in Fig. 3.7 (b). It has been mentioned previously
that this collision energy is well above the threshold for cage penetration for the
rigid cluster, but the negligible statistical weight of central collisions results in a
vanishing reactive cross section. Heating of the cluster results in a steady rise of
reactivity up to 1.5 . . . 2×10−20 m2. However, within the uncertainty associated
with the Monte Carlo error there is no further increase of the reactivity beyond
the transition temperature. This can be explained by a steric effect. On the one
hand, the exposure of the Cl atom on the outside of the cluster is expected to
lead to enhanced reactivity for H atoms approaching from favourable directions.
On the other hand, there is increased shielding for H atoms colliding from the
opposite side. The trade–off of these two effects leads to approximately equal
reactivities for temperatures just below and above the transition.

3.3.3 Summary and Outlook

In the present subsection, the (radiation–less) stabilization of collision pairs
in the presence of a solvent has been studied. Our emphasis has been on
the effect of a “microsolvation” which was modelled by attaching a rare gas
“microsolvation” to one of the reagents, see B.1. For the example of the H +
Cl· · ·Ar system the existence and the extent of the third–body or “chaperon”
effect is demonstrated. Already a single solvent atom can stabilize a collision
pair by removing some energy from it such as to keep it from redissociating.
The corresponding cross sections for associative collisions are certainly large
enough to be detected in experiments. In view of the strong attraction on
a barrier–less potential energy surface, however, they are moderate which is
due to kinematic constraints for the energy transfer from the H–Cl mode to
the Cl–Ar mode. Consequently, we find ro–vibrationally very hot products
while only a very small fraction of the available energy is found in product
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translation. Among the most interesting predictions is the discovery of very
long–lived orbiting resonances with lifetimes in the order of picoseconds.

To explore the transition from gas to condensed phase dynamics, the cage
effect on association reactions was studied in B.2 for the H + Cl· · ·Ar12 system
where a first complete solvation shell shields the Cl reactant. First of all,
structural and dynamical properties of this aggregate were investigated as a
function of temperature. We found a pronounced structural transition between
T = 40 K and T = 45 K in MD simulations of ClAr12. The reactivity to form
HCl molecules in collisions with a H atom can be extremely sensitive to the
melting–like transition. Provided the collision energy is not too high, there is
a dramatic break–down of the cage effect upon the strucural transition of the
solvent cluster. This novel approach can serve to elucidate more on the much
debated question of “phase transitions” in finite systems. In this way, reactive
collisions could provide an alternative to the spectroscopy of chromophores
embedded in solvent clusters.

Future work could be directed along the following directions

1. How does the cage effect and its dependence on the cluster temperature
depend on the size of the microsolvation? Investigation of H + ClArn

collisions with n = 2 . . . 11 could shed light on the onset of the cage effect.
Furthermore when approaching the reaction dynamics in bulk matter, one
might be interested in the case of more than one solvation shell. Another
closely connected question is what would happen if both reactants were
“solvated” in a cluster.

2. Another extremely important question is the issue of quantum effects in
the nuclear dynamics. For the systems considered her one might wish to
know whether tunneling reduces the cage effect. Also the energy transfer
from the nascent HCl molecule to the “microsolvation” during the process
of vibrational and rotational energy might be affected by quantum effects,
especially for the lowest states.

This type of question could be treated most conveniently using a
quantum–classical molecular dynamics (QCMD) approach where the H
atom is treated by wavepacket mechanics and the much heavier remaining
atoms are treated as classical particles, see our treatment of photodisso-
ciation dynamics in Part II of the present thesis.

3. Furthermore, the electronic dynamics of the open–shell 2P state of the
Cl atom has been neglected here. However, in recent work, methods to
treat the 2P state dynamics of halogen atoms in rare gases have been
devised [226,227,228,229,230].

3.4 Cluster–Cluster Reactions

3.4.1 Introduction

This section deals with associative collisions of molecules with clusters and
of clusters with clusters to investigate the process of cluster growth from the
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gas phase. As a model we choose alkali halides which have also been used in a
fairly large number of other studies due to the simplicity of their interaction. In
particular, the questions of existence of different isomers, structural transitions,
and the transition from clusters to crystals have been studied extensively for this
class of systems [231,232,233,234,235,236,237]. Because of the approximately
equal size of anion and kation constituents, we choose potassium halide here
and we want to focus our attention on two different growth mechanisms. The
first one will be the cluster growth by addition of a single KCl molecule to an
existing small KCl cluster

KCl + (KCl)n → (KCl)n+1 , n = 1 . . . 4 . (3.16)

which will be termed n + 1. The second class of association reactions involves
reactive collisions of small clusters of equal size

(KCl)n + (KCl)n → (KCl)2n , n = 1 . . . 4 . (3.17)

which will be referred to as n + n associations. Note that the mechanisms of
monomer addition (n+ 1) and cluster fusion (symmetric growth n+ n) are the
reversed processes of fragmentation and fission common both in nuclear physics
and in the chemical physics of clusters [192, 188, 190, 238]. Again we will use
the classical trajectory methods to simulate reactive collisions. The statistical
averaging procedure (3.4) to obtain reactive cross sections will be employed. In
order to facilitate a comparison of the results for different cluster sizes, binding
energies as well as collision energies will be given as energies per ion. The latter
one will be varied up to a limit of 0.5 eV/ion to guarantee that processes on
the neutral potential energy surfaces can be neglected.

3.4.2 Cluster Structures

This subsection discusses the structures of small (KCl)n (n = 2 . . . 4) clusters
serving as initial conditions for our study of associative cluster collisions. The
structures were obtained from randomly chosen initial configuration by sim-
ulated annealing. In this procedure, the cooling and finally the freezing of a
liquid is simulated by a standard MD computer simulation where the tempera-
ture is reduced by periodically scaling down the velocities of the particles until
the cluster becomes trapped in the “catchment area” [232] of one of the minima
of the potential energy hypersurface.

As a consequencce of the long–range interaction between the ions, the struc-
tures of alkali halide clusters differ considerably from those of rare gas clusters
which are mostly dictated by closest packing arguments. In particular, the
smaller clusters tend to favour less compact structures in order to minimize
the repulsion of second nearest neighbours. The most stable KCl dimer is a
(near square) rhombic arrangement (–2.8809 eV/ion) , while the most stable
trimer is a regular hexagonal ring–like structure (–3.0189 eV/ion). An oc-
tagonal tetramer structure is also possible (–3.0655 eV/ion), but a cube–like
structure is found to be slightly more stable (–3.1208 eV/ion) which is in agree-
ment with earlier predictions [233, 239]. Moreover, there is also a rectangular
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structure of the tetramer which is a little less stable (–3.0614 eV/ion). Hence
the tetramer is the critical cluster size where the advantages of compactness
becomes more important than the minimization of repulsion. Below this cross–
over even chain–like structures are only a few percent less stable than the ring–
like arrangements [232]. However, for finite temperatures also for the tetramer
less compact structures can become more abundant than more compact ones
which was indeed found for (NaCl)4 [232,240] as well as for (KCl)4 [241] where
the transition occurs between 600 and 700 K.

3.4.3 Lifetimes of Collision Complexes

In order to assess which collision complexes can be regarded associated into a
relatively stable aggregate we first consider the lifetimes of the compound states.
Our results for the n+1 and n+n cluster collisions are shown in Fig. 3.8 (a) and
(b), respectively. In each case, the reagent clusters are assumed to be initially
in their most stable configuration. After the first three or four picoseconds the
distribution of lifetimes falls off roughly linearly in the semilogarithmic plots
indicating an exponential decay law. Furthermore we see that the result for the
1+1 reaction falls off much faster than the other n+1 reactions. Qualitatively,
this is in accord with the RRK or RRKM theory [3,5,1]. Based on considerations
of statistical deviations from the equipartition of the excess energy among the
degrees of freedom, these theories predict the probability that a certain amount
of energy is accumulated in a “critical” mode which then leads to decay of the
complex. According to these arguments, longer lifetimes should be expected for
larger complexes. This trend, however, does not apply to the larger clusters,
since the lifetimes of the 2 + 1, 3 + 1, and 4 + 1 collision complexes appear
to equal within the statistical errors. This points to the limited predictive
power of statistical theories for these relatively small cluster systems. For the
symmetrical cluster growth the trends observed in Fig. 3.8 (b) seems even
reversed. The lifetime for the 2 + 2 complex is by far the longest while the
other ones are practically indistinguishable. In this case, the unusual stability
of the (KCl)4 complex can be traced back to formation of the especially stable
cube–like tetramer.

Another interesting aspect is the dependence of the lifetime of the collision
complexes on energy and angular momentum (impact parameter) of the collision
event. For this purpose, we define (somewhat arbitrarily) short– and long–
lived complexes by having a lifetime of less than or more than 17 ps, which is
equivalent to the first few rotational periods. For a detailed analysis we chose
the example of the (2 + 1) collision, see Figs. 2 and 3 of B.3. It is shown
that long–lived complexes are formed preferentially for low energy and small
impact parameters. where the borderline exceeds further towards higher impact
parameters for the lowest collision energies. This indicates that the main decay
mechanism is centrifugal distortion. Upon forming an initially compact collision
complex, the compound cluster is stretched into a chain–like configuration until
finally one of the bonds breaks apart.
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Figure 3.8: Product survival probabilities and associative cross sections for var-
ious KCln + KClm cluster–cluster collisions. The left panel shows distributions
of lifetimes of collision complexes for n + 1 (a) and n + n (b) additions for
Erel = 0.3 eV/ion. The right panel shows the energy dependence of the reactive
cross sections for the same collision pairs. From B.3

3.4.4 Association Cross Sections

In this subsection we restrict ourselves to the formation of long lived complexes
(> 17 ps) which can be considered as models for permanent associations if an
additional cooling mechanism were present. Again, we assume that the clusters
are initially prepared in their energetically lowest configuration. Reactive cross
sections versus collision energy are shown in Fig. 3.8 (c,d). The cross sections
are very large for the lowest energies. For E ≈ 0.01 eV/ion, they adopt values
of 10 ×−18 . . . 10×−17 m2. For larger energies, the cross sections are rapidly
falling off. This feature is similar to the behaviour of the H + ClAr reaction
studied previously where the reactivity is only limited by the centrigugal barrier
[13]. Hence we can conclude that although the reagents are electrically neutral,
association takes place where the orientation of the collision partners is such
that interaction of the higher electrostatic moments (dipole, quadrupole, . . .) is
attractive. When analyzing the cross sections for the n+ 1 and n+n reactions
in more detail, we find that they are controlled by two opposing trends.

1. For low collision energies (E < 0.1 eV/ion) we find huge cross sections for
small collision partners and decreasing cross sections for increasing size of
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the reagents. This can be intuitively understood by considering the nature
of the interaction between the reagents. In particular, the cross section for
the initial capture of the collision partners to form a complex is determined
by the lowest non–vanishing electrostatic multipole moment. For example,
consider the smallest collision system 1 + 1. For not too small cluster–
cluster distances and for favourable orientations, the attrative dipole–
dipole interaction scales as −r−3. This has to be compared with the
largest collision pairs in the n+1 and n+n class considered here. Assuming
the cube–like configuration of the tetramer, the dipole–octupole attraction
for the 4 + 1 system and the octupole–octupole attraction for the 4 + 4
system decrease as −r−5 or −r−7, respectively. When considering the
rectangular tetramer instead of the cube–like one, we obtain larger cross
sections for the 4 + 1 due to the dipole–quadrupole interaction (−r−4),
see Fig. 5 in B.3.

2. For high collision energies (E > 0.1 eV/ion) this trend is reversed. Here
the influence of the capture cross section is less important than the sta-
bility of the collision complex with respect to decay during the period
of 17 ps. For the smallest system (1 + 1) the cross section practically
vanishes for E > 0.2 eV/ion. The larger systems show much larger cross
sections because they have more internal degrees of freedom among which
the excess energy can be redistributed. However, the validity of this type
of statistical arguments is again limited. Considering the n+ 1 and n+n
systems for n = 2 . . . 4, we find that the ordering of the cross sections does
not exactly correspond to the size of the collision partner.

3.4.5 Summary and Outlook

Associative collisions of alkali halide molecules and clusters are studied in B.3
as a model of cluster growth from the gas phase. In contrast to the atom–
cluster systems investigated previously the collision complexes treated here are
large enough to redistribute the excess energy among their abundant internal
degrees of freedom for a much longer time before they finally are stabilized by
evaporation. The cluster sizes considered here (up to the tetramer) are on the
border of the validity of statistical RRKM models. While general trends can be
explained in terms of these models, a detailed microscopic study is necessary
to understand the quantitative effects. In particular, the nature of the mutual
attraction of the reactants plays an important role.

The present study represents a first attempt to characterize the process of
cluster growth and cannot be very exhaustive, by any means. In particular, the
following points should deserve attention in future work.

1. The Born–Mayer potentials used here are a relatively crude model for the
interaction in an ionic cluster. In particular, polarization effects have been
neglected. However, on the basis of previous studies [241] we expect the
changes by including this mechanism to be very small and not to change
the overall picture of the reaction dynamics.
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2. An interesting question is that of other mechanisms of stabilization. Apart
from the particle loss which was considered here, collision complexes could
also be cooled in third–body collisions, see our work on atom–cluster–
collisions in the previous subsection. Another possible stabilization mech-
anism could be spontaneous emission of electromagnetic radiation. Al-
though this process is usually considered to be very slow, see the work on
H+

3 complexes [59], spontaneous emission could be more important for the
alkali halide clusters with their relatively strong electrostatic moments.

3. Finally, in this list of questions it is intriguing to find out for which size
of the system is a statististical RRKM treatment valid?

To further illustrate the dynamics of cluster–cluster collisions investigated
here we produced computer animations which can be viewed as MPEG movies
in the World Wide Web on the authors homepage (http://userpage.chemie.fu-
berlin.de/∼bschmidt).
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4.1 Motivation

After having investigated the photo–induced “making of molecular bonds” (pho-
toassociation reactions) in Chap. 2, we now want to study the reversed process,
i. e. the light–induced “breaking of molecular bonds”. In analogy to the stud-
ies of solvent–induced “making of molecular bonds” in chapter 3 of this thesis,
we want to study the reaction dynamics of photodissociations at the transition
from gas phase to condensed phase. In particular, our model systems shall be
guest–host systems, where a (small) solute molecule is embedded in a cluster
or a matrix of solvent particles. In analogy to the cage effect on association
reaction, where the reactants may be shielded from each other by the presence
of the solvent, there is also a cage effect on photodissociation reactions whereby
the separation of photofragments is delayed or even hindered. The notion of
this cage effect dates back to the 1930s [49]

The description of permanent bond breaking is, for the most part, controlled
by the cage exit dynamics of the photofragments. Here and in the following we
want to use the following classification of cage exit processes:

1. A direct cage exit is defined as an elastic process where photofragments
escape from a solvent cage without notably deforming it. Depending on
the orientation of the molecule to be photolyzed, the cage exit can be
either immediate or delayed. In the latter case, the photofragments
undergo “rattling” oscillations within the cage before finding the exit.

2. If there is considerable energy transfer during these “rattling” vibrations
we define this event as an indirect cage exit where the cage deformations
lead to enlargement of “windows” through which the fragments eventually
escape.

In the following we want to focus our attention on a prototypical class of
systems for which the photodissociation dynamics has been thoroughly studied
over the past few years, namely hydrogen halide molecules in a rare gas envi-
ronment. For further reading, we refer to review articles on photodissociation
in rare gas clusters [174, 55, 242] and in rare gas matrices [243, 244, 245]. The
motivation for the choice of these systems mainly stems from two reasons.

1. Owing to the simple electronic structure of the guest molecules as well as
to the transparency of the host rare gas systems in the eligible frequency
regime, the spectroscopy of these systems is very well understood and
most of the theoretical studies so far rely on model systems constructed
from relatively few and well–known electronic states1. As a matter of
fact, the availability of precise pair potentials is one of the most important
criteria for choosing rare gas–hydrogen halide systems as model systems
in a large number of studies of solvent effects on molecular spectroscopy
and dynamics.

1Note that we do not consider He or Ne because we want to restrict the investigation of
quantum effects to the solute molecule only.
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2. Due to the presence of the light hydrogen photofragment, quantum ef-
fects can be expected to play an important role in the nuclear dynam-
ics which is the main focus of our interest. Because of the smallness
of the hydrogen photofragment, these systems represent possible candi-
dates for the effect of direct cage exit (immediate or delayed) on a rela-
tively short time scale, so that models not accounting for electronic relax-
ation and recombination can be used, at least within certain limitations.
Hence, this class of systems is complementary to another protypical sys-
tem commonly used for the study of solvent effects on photochemistry,
i. e. molecular iodine in rare gas environments. For the latter, quan-
tum effects on the nuclear dynamics are much less pronounced, and the
photodissociation dynamics is dominated by indirect cage exit mediated
by inelastic collisions of photofragments with the solvent. On the other
hand, non–adiabatic transitions between a substantial number of elec-
tronic states involved determine the dynamics of these system to a large
extent [246,247,248,249,250,251,252,253,254,255,256,257,258].

Even the smallest system with only a single rare gas atom has received con-
siderable attention in recent years in the context of the effect of a “single atom
solvent” [259,260,261,262,263,264,265,266,267,268,269,270]. Furthermore, the
attractiveness of these systems stems from a methodological aspect: The pho-
todissociation dynamics of hydrogen halides in rare gas clusters has also become
a reference system for the development of various exact or approximate models
of quantum molecular dynamics (QMD) that allow also simulations of larger
systems, i. e. with a larger number of rare gas atoms up to the limit of a rare
gas matrix. These include classical [271], quasi–classical [272, 273], quantum–
classical (QCMD) [274,259,261,262], quantum–semiclassical (QSMD) [263] and
density matrix [275] studies. In other work, a full quantum treatment with
separability assumption (TDSCF) [266] has been used. Yet another approach
is the use of statistical theories to describe the cage exit [276]. Finally, we
also mention the non–adiabatic molecular dynamics models based on classical
trajectories with “surface hopping” allowing the treatment of non–adiabatic
transitions induced by the effect of spin–orbit coupling [226,230,277,278].

All of the studies quoted above assume the guest molecules to be in their
ro–vibrational ground state prior to the excitation into the disscociative state.
With very few exeptions, the photodissociation dynamics of rare gas hosts with
ro–vibrationally excited guest molecules represents a virtually unexplored field.
The emphasis of the present chapter will be on the dependence of the photodis-
sociation dynamics on the initial ro–vibrational quantum state of the guest
molecule and on possible control mechanisms resulting from it.

The work presented here is related to the concept of vibrationally medi-
ated chemistry where specific branching ratios of competing reaction chan-
nels are controlled by vibrational pre–excitation of certain modes of the reac-
tant(s) [279,280,281,282,283,284,285]. An especially promising approach which
shall be followed here is the generalization of this concept to the large amplitude
librational/rotational motion of the guest molecules with respect to the rare gas
solvent. It is known from infrared spectroscopy that – in contrast to most larger
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molecules 2 – matrix isolated hydrogen halide molecules are only very weakly
hindered in their rotational degrees of freedom [287, 288, 289, 290]. For the
smallest clusters of a hydrogen halide molecule with one or two rare gas atoms
there are large amplitude librational (bending) motions of the guest molecule.
It is intuitively clear, that by preferential orientation of guest molecules towards
“walls” or “windows” of the surrounding solvent cage, the quantum yield of pho-
todissociation should be controllable. So far, there is only indirect evidence from
matrix experiments: The anomalous temperature effects which were observed
for Cl2 in Xe [291], F2 in Kr [292], and for O3 in Ar [293] have been interpreted
in terms of orientational locking of the guest molecules at low temperatures
which is overcome by librational/rotational excitation at higher temperatures.

The material presented in the subsequent sections is organized in the fol-
lowing way. After presenting our models and methods (Sec. 3.1), we make an
excursion into the field of vibrational (Sec. 3.2) and rotational (Sec. 3.3) spec-
troscopy of molecules in clusters and matrices. Based on this knowledge of the
initial state, we then proceed to the quantum dynamics of photodissociation
reactions (Sec. 3.4).

4.2 Model and Interactions

4.2.1 Ground State

The interaction of a hydrogen halide molecule (HX, X = F, Cl) and the n rare
gas atoms (Rg) in our model systems is relatively weak and is known to be
dominated by pairwise interactions of the (closed shell) constituents. Hence, it
can be approximated as a sum of pairwise solvent–solute and solvent–solvent
interactions. This greatly facilitates the construction of the total potential
energy surface (PES) for the electronic ground state which is represented by

Vg(v) = VHX(v) +
n∑

i=1

VRgiHX(v) +
∑
i<j

VRgiRgj . (4.1)

It is noted that there are a few recent reports pioneering also the effect
of three–body interactions beyond the pairwise approach. These include the
Axilrod–Teller–Muto term for the Ar–Ar–Ar interaction [294] as well as further
contributions to the induction of Ar2HX [295, 296, 297]. In any case, the effect
of these interactions on the vibrational frequency shifts investigated in Sec. 4.4
are relatively small. Furthermore, they seem to decrease for increasing cluster
size [294].

To model the solvent–solvent interaction VRgiRgj , a reliable Ar–Ar poten-
tial is required. There has been a long history of determining this particular
potential function, during which the Ar–Ar interacton has become the most
widely studied prototypical system. In particular, the goal was to find a sin-
gle (and unique) function which is able to reproduce all available experimental
microscopic (i. e. spectroscopy, total and differential scattering cross sections)

2Note that there is a transition regime between quasi–freely rotating and non–rotating
molecules in matrices, where molecules induce pseudo–rotations of the cage [286].
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and macroscopic (i. e. thermodynamic, virial coefficients, transport proper-
ties) data at the same time, for an overview see Ref. [209, 207]. In the present
work, we use the HFD–B2 model for the Ar–Ar pair potential function from
the literature which is based on very sophisticated multi–property fits [210].

Moreover, we can benefit from the fact that the solute–solvent interactions
RgiHX(v) for the systems Ar–HF and Ar–HCl are among the most accurately
known atom–molecule potentials. Here we use the anisotropic H6 (4,3,2) Ar–HF
potential [298] and the H6 (4,3,0) Ar–HCl potential [212]. These functions have
been determined by fixing the long–range part (dispersion and induction) using
known dispersion coefficients and polarizabilities. The short and medium range
(minimum energy contour) have been determined by fitting a highly flexible
model function to a plethora of infrared and far–infrared spectroscopic data of
the Ar–HX complexes [213]. In particular, 22 parameters have been used to
fit the H6 (4,3,2) function to the data for HF (v = 0, 1, 2) and DF (v = 0, 1).
The 19 parameters of the H6 (4,3,0) function are fitted to the data for HCl
(v = 0, 1)and DCl (v = 0, 1). Both these potential energy surfaces are given
as a function of the distance |~R| between the atom and the center of mass of
the molecule and the orientational angle θ between the molecular axis and the
vector ~R. Note that these potentials are formulated adiabatically with respect
to the HX vibrational coordinate. They parametrically depend on the quantum
number v of the vibrational state of the HX molecule, see also our comment
in Sec. 3.2.4. Finally, the solute energy VHX(v) is calculated as a vibrational
bound state energy of the HCl ground state Morse oscillator with parameters
specified in Sec. 2.3.1.

The atom–molecule potentials for Ar–HF and Ar–HCl are illustrated in Fig.
4.1. For the linear Ar–HX arrangement (θ = 0) we find the global potential
energy minimum of 220 cm−1 or 176 cm−1 at an atom molecule separation
of R = 343.4 pm or 400.4 pm, respectively, for the vibrational ground state
(v = 0). In addition, there are secondary local minima for the linear Ar–XH
geometry (θ = π) with a well depth of 107.5 cm−1 or 148.3 cm−1 at very similar
(HF) or at shorter (HCl) separations. Between the two minima there is a saddle
with a barrier height of 139.4 cm−1 or 71.0 cm−1. We conclude that the angular
anisotropy of the interaction with the argon atom is much stronger for HF than
for HCl. This tendency further increases when going to higher vibrational
states where especially the global Ar–HF minimum is becoming deeper while
the secondary minimum remains roughly unchanged. For example, the global
minimum of the Ar–HF system for v = 2 is found at 259.5 cm−1while the Ar–
HCl minimum energy for v = 2 is lowered by less than 10 cm−1 in comparison
with the v = 0 state.

4.2.2 Excited State

Due to the absence of sophisticated atom–molecule potential functions, the
potential energy surface for the first electronically excited state is constructed
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Figure 4.1: Atom–molecule ground state potentials potentials for Ar–HF (left,
from Ref. [298]) and Ar–HCl (right, from Ref. [212]). The contour diagrams
show the potential energy versus distance R and angle θ for a progression of
vibrational states of the HX molecule (top: v = 0, bottom: v = 1). The contour
spacing corresponds to 10 cm−1.

as a sum of pairwise additive atom–atom potentials (see Fig. 4.2)

Ve = VHX +
n∑

i=1

VRgiH +
n∑

i=1

VRgiX +
∑
i<j

VRgiRgj (4.2)

where ab initio data for the repulsive 1Π state of the HF [299] or the HCl [300]
guest molecule are adapted from the literature.

The most crucial ingredient when treating the direct cage exit dynamics,
however, is the Ar–H interaction. Previous work (see citations in Sec. 4.1) relied
either on a potential determined from total scattering cross sections [303] or on
a semi–empirical potential [304]. Because these two potentials do not agree
very well with each other in the repulsive regime we obtained a new potential
energy curve from quantum chemical MP2 calculations the details of which will
be published soon [301].

The rare gas–halide interaction potential is derived from differential scat-
tering experiments with magnetically state–selected halide atoms which allow
determination of potentials for each J,MJ state and the spin–orbit coupling
between them [305]. In the present work we restrict ourselves to the ground
state potential (V3/2,1/2) of Ar–X thus neglecting the anisotropy of the effective
adiabatic potentials and the orbital dynamics of the 2P state. For Ar–F, the
potential curve exhibits a minimum with ε = 0.84 kJ/mol and 331 pm [302].
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Figure 4.2: Atom–atom excited state potentials for the Ar–HF and the Ar–HCl
system. a) Repulsive 1Π states of the hydrogen halides together with our MP2
potential for the Ar–H interaction [301]. b) V3/2,1/2 potential curves for Ar–
F [302] and Ar–Cl [211] and the HFD-B2 model of the Ar–Ar interaction [210]

For Ar–Cl, the V3/2,1/2 potential curve of Ref. [211] with ε = 1.44 kJ/mol and
rm = 378 pm is used, see also Sec. 3.2.4.

This simple ansatz of pairwise additive atom–atom potentials can be im-
proved in the framework of the diatomics–in–molecule (DIM) approximation
which allows the systematic construction of many–body interactions from po-
tentials for the diatomic fragments. In particular, for the photodissociation
of HCl in Ar clusters and matrices, such an approach has already been pur-
sued for the basis of the three p–orbitals of the Cl atom. The potential energy
surface was constructed from the 1Σ, 1Π, 3Σ, and 3Π potentials of the HCl
and from the V0 and V2 components of a Legendre expansion of the Cl–Ar
interaction. Inclusion of the spin–orbit interaction of the Cl atom and diago-
nalization finally yields twelve adiabatic surfaces and their respective coupling
elements [230, 277, 278]. However, in these studies, the nuclear dynamics was
treated semi–classically using a surface–hopping approach [306,307]. Quantum
dynamical investigations of the HX photodissociation in a rare gas environment
based on DIM potentials are currently under work in our laboratory [301].

Note that DIM potentials have recently also been used to determine the
structure of HF monomers and dimers in Ar clusters in the electronic ground
state. Although the details of the atom–molecule interaction do not precisely
coincide with the H6 potentials [298, 212] or with the high quality MP4 ab
initio data [308], they nevertheless allow a quantitative calculation of vibrational
frequency shifts if also ionic states are included [309,310].

4.2.3 Model Systems

In our studies put forward in the following subsections we want to study the
gradual transition from gas phase to condensed phase spectroscopy and/or dy-
namics. Hence, we simulate the shell–wise cluster growth from a first complete
solvation shell surrounding the guest molecule up to ten complete shells of
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guest atoms. It is well–known from both experiments [218,219] and theoretical
considerations of closest packing [220, 221] that pure (homogeneous) rare gas
clusters of a few hundreds of constituents nucleate in an icosahedral symmetry3

(Ih, see Fig. 4.3(a)). Only after reaching a critical aggregation size which is
currently estimated to be in the range of a few thousand particles, bulk effects
gain influence over surface effects. A transition to octahedral (Oh) packing
occurs and finally the rare gas crystal belongs to the face–centered cubic (fcc)
group, see Fig. 4.3(b).

a) cluster b) matrix

D3

Oh

H

Cl

Figure 4.3: Guest–host model systems: HX (X = F, Cl) molecule at a mono–
substitutional site of an icosahedral rare gas cluster (a) or an fcc matrix (locally
octahedral).

For the systems under investigation here, the comparable van der Waals
radii of HF, HCl, and Ar suggest that the guest molecules occupy a single
substitutional site in an Ar cluster or matrix. Hence, in our simulations of
the shell–wise growth of clusters, we assume a single molecule in the center
of a perfectly symmetric icosahedral or octahedral cluster. However, the HF
molecule may also occupy a distorted interstitial site which is not considered
here [311]. As has already been mentioned in Sec. 3.3.2 for the related ClAr12
aggregate, there is a preference for the guest particle to be located at the center
of a finite aggregate if (1) guest and host are of similar size, and (2) the guest–
host attraction is stronger than the host–host interaction. Based on the atom–
molecule potentials mentioned above, this is clearly the case for the Ar–HF
system. For the Ar–HCl system, however, the (spherically averaged) attraction
is slightly weaker while at the same time the minimum energy contour is found
at slightly larger atom–molecule distances than for the Ar–HF system. In total
this leads to a slight preference of finding HCl on the outside of an Ar cluster
(−4550 cm−1) over the inner site (−4400 cm−1) [312]. However, in the present
work, we focus on the latter geometry because (1) the energetic difference of
the two structures is relatively small and because (2) we want to be consistent
with the Ar–HF system. Furthermore, in modern beam experiments guest–host

3Note that ten complete icosahedral shells correspond to approx. 2000 rare gas atoms.
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systems can be selectively produced, e. g. using pick–up techniques [313, 314].
Another possibility of forming preferentially the cluster with a guest molecule
at its center could be the re–neutralization of a rare gas cluster formed around
a negatively charged molecular ion which interacts more strongly with the rare
gas atoms due to its higher polarizability [277].

4.3 Method

4.3.1 General Approximations

A full quantum–mechanical treatment of the systems considered here is far
beyond the capacity of today’s computational means. Even the smallest system
to be investigated here, i. e. a hydrogen halide molecule with the first complete
solvation shell comprising of 12 atoms, has 39 nuclear degrees of freedom which
cannot be treated exactly. Hence, for our treatment of the stationary ground
state wavefunctions and the excited state quantum dynamics (see the following
two subsections) we have to rely on two basic assumptions.

1. In most of the work presented here, the rare gas atoms in the cluster or the
matrix are assumed to be frozen, i. e. we neglect the dynamics of the Ar
cluster vibrations or the Ar matrix phonons, respectively. This is essen-
tially equivalent to treating the system like a dimer consisting of a frozen
Ar subunit on the one hand and a diatomic molecule with its six degrees
of freedom on the other hand [315]. The validity of this approximation de-
pends strongly on the details of the system under investigation as well as
on the observables considered. For a discussion, see our remarks in 4.6.4
where we also present results of calculations for a flexible cage using the
quantum–classical molecular dynamics (QCMD) approximation proposed
in Sec. 4.3.4. An outlook towards a fully quantum–mechanical treatment
based on the CSP approximation of the photodissociation dynamics is
given in Sec. 4.6.6.

2. The position of the center of mass of the diatomic guest molecule is fixed at
a substitutional site of the rare gas cluster or matrix, i. e. we neglect any
effects of rotation–translation coupling (RTC) [316, 317]. Of course this
approximation is limited to the case of relatively small diatomic hydride
molecules which fit well into a mono–substitutional site and are close to
the limit of a free rotor. A discussion of the validity of this approximation
can be found in Sec. 4.4.3.

4.3.2 Ground State Wavefunctions

Within the framework of the two approximations given above, the problem of
finding ground state energies and wavefunctions reduces to solving a three–
dimensional time–independent Schrödinger’s equation for the relative motion
of the diatomic molecule in the field of the surrounding rare gas atoms. In a
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position space representation using spherical coordinates r,Θ,Φ we obtain[
− h̄2

2m
∂2

∂r2
+
Ĵ2(Θ,Φ)

2mr2
+ Vg(r,Θ,Φ)

]
ψg(r,Θ,Φ) = Egψg(r,Θ,Φ) (4.3)

where the first two terms represent the radial and angular part of the kinetic
energy of the H–atom, respectively, with m standing for the reduced mass of the
diatomic and Vg describes the potential energy surface for the ground electronic
state. This equation is the time–independent analogue to Eq. (2.9) on page 16
but for vanishing external field. Note that here the potential depends on all
three degrees of freedom. As a further approximation let us assume that the
vibrational coordinate r can be separated from the angular degrees of freedom
and that the eigenvalues Eg,v,i represent the i–th rotational eigenenergy for a
given vibrational state v of the molecule in the ground electronic state. This
is justified by the large discrepancy of vibrational and rotational time/energy
scales for this class of molecules. Finally, the angular dependence of the wave-
functions ψg is expressed in a basis of spherical harmonics

ψg,v,i(r,Θ,Φ) =
φg,v(r)
r

∞∑
J=0

J∑
M=−J

cg,v,i,JM YJM (Θ,Φ) (4.4)

where the coefficients cg,v,i,JM are eigenvectors corresponding to the eigenvalues
Eg,v,i of the secular equation∣∣Hg,v,JMJ ′M ′ − Eg,v,i

∣∣ = 0 . (4.5)

The matrix elements of the rotational Hamiltonian are given by

Hg,v,JM,J ′M ′ = B J (J + 1) δJJ ′ δMM ′

+
∫
dΩY ∗JM (Θ,Φ) V̄g,v(Θ,Φ)YJM (Θ,Φ) (4.6)

with B = h̄2/(2mr2v) being the rotational constant for the vibrationally av-
eraged bond length rv. The vibrationally adiabatic potential energy function
is defined as an average over a vibrational wavefunction φg,v(r) of the ground
state HX molecule

V̄g,v(Θ,Φ) =
∫
dr|φg,v(r)|2Vg(r,Θ,Φ) . (4.7)

Note that these integrals do not have to be evaluated explicitly and that Eq.
(4.1) can be directly inserted for V̄ into Eq. (4.6) because the atom–molecule
potentials of Refs. [298, 212] are already defined in a vibrationally adiabatic
formulation.

4.3.3 Excited State Dynamics

The photodissociation dynamics is assumed to be initialized by instantaneous
excitation of the hydrogen halide from its 1Σ ground electronic state to the
repulsive 1Π state, i. e. by an ultrashort light pulse which is close to the limit
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of a δ pulse. In order to describe the wavepacket evolution on the corresponding
potential energy surface, we have to solve a three–dimensional time–dependent
Schrödinger’s equation for the relative motion of the hydrogen and the halide
atom

i h̄
∂

∂t
ψe(r,Θ,Φ; t) =

[
− h̄2

2m
∂2

∂r2
+
Ĵ2(Θ,Φ)

2mr2
+ Ve(r,Θ,Φ)

]
ψe(r,Θ,Φ; t) .

(4.8)
Here Ve stands for the excited state potential energy surface of Eq. (4.2). Again
it is noted that this equation is analogous to Eq. (2.9) for the photoassociation-
dynamics but without coupling to a time–dependent external field. The above
equation has to be solved subject to an initial condition (t = 0) of the form
(4.4). In particular, this allows to investigate the dependence of the photodis-
sociation dynamics on the initial ro–vibrational state of the diatomic molecule,
see Sec.4.6.

In analogy to the “close–coupled wavepacket” (CCWP) method commonly
used in diatom–surface scattering theory [318,319], the angular part of the 3–D
wavefunction is expanded in terms of spherical harmonics using the ansatz

ψe(r,Θ,Φ; t) =
∞∑

J=0

J∑
M=−J

φeJM (r, t)
r

YJM (Θ,Φ) (4.9)

where the time–dependence of the wavefunction is cast into the radial functions
φe,JM (r, t), see also Eq. (2.10) in the chapter on photoassociation. Inserting
Eq. (4.9) into the time–dependent Schrödinger’s equation (4.8) and projection
on one of the angular functions yields the following set of coupled equations for
the radial wavefunctions

i h̄
∂

∂t
φeJM (r, t) =

[
− h̄2

2m
∂2

∂r2
+
J(J + 1)h̄2

2mr2

]
φeJM (r, t)

+
∑

J ′M ′

Ve,JMJ ′M ′(r)φeJ ′M ′(r, t) (4.10)

where the matrix elements of the potential energy are defined as the integrals
over the surface of the unit sphere

Ve,JMJ ′M ′(r) =
∫
dΩZJM (Θ,Φ)Ve(r,Θ,Φ)ZJ ′M ′(Θ,Φ) (4.11)

These effective potentials are most practically calculated by first expanding Ve

for each value of the radial coordinate in spherical harmonics and then em-
ploying the spherical harmonics addition theorem in order to calculate inte-
grals over products of three spherical harmonics from Clebsch–Gordon coef-
ficients [320, 321, 322] 4. The expansion coefficients of the potential function
in spherical harmonics are obtained by a direct product scheme using Gauss–
Legendre integration in cos Θ and Φ. Typically, 100 × 200 integration points
are employed for J ≤ 25.

4Note that the numerical advantage stems from the fact that the Clebsch–Gordon coeffi-
cients have to be calculated only once and can be tabulated for later use.
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The coupled equations (4.10) are solved numerically using a Fourier collo-
cation scheme for discretization of the radial coordinate r [31, 34]. The grid
consists of 1024 equidistant points in the range 0 to 4 nm. To avoid unphysical
reflection from the edge of the grid, a negative imaginary potential is used in
the range beyond 3 nm [323]. It is noted that the relatively small distance of
the grid points is caused by the high excitation energy of the 1Π state in the
order of a few hundred kJ/mol.

In contrast to our numerical solution of the coupled equations for the pho-
toassociation induced by time–dependent fields in Sec. 2.2.4 using a split–
operator scheme, the dynamics is governed here by a time–independent Hamil-
tonian. Hence we can make use of a global propagation scheme permitting long
time steps. In the present work, the exponential in the time evolution operator
is approximated by expansion in a series of (complex) Chebychev polynomials.
Apart from the uniform distribution of the error, this expansion offers the ad-
vantage of an exponential fall–off of the expansion coefficients beyond a certain
expansion order [324, 31, 32, 34, 325]. For the problem investigated here we are
typically using 100 polynomials permitting a time step of 5 fs.

4.3.4 Quantum–Classical Molecular Dynamics (QCMD)

After having outlined a three–dimensional fully quantum–mechanical treatment
of the relativ motion of the diatomic molecule (which is essentially identical
to the motion of the hydrogen atom) in a frozen rare gas environment, we
want to come back to the question of the full dynamics of the system. Owing
to the separation of the mass scales, we want to introduce here a quantum–
classical molecular dynamics (QCMD) model. Such an approach has been first
introduced into the field of chemical physics in the early 1980s [326,327]. Since
then this technique has been applied to numerous problems such as proton
transfer [328, 329, 330, 331, 332], absorption spectroscopy of particles trapped
in zeolites [333], and reaction dynamics [334, 335]. In the last few years years,
there are also a few articles dealing with the rigorous mathematical justification
and the approximation properties of the QCMD model [336,337,338,339,340].

The basic idea is to divide the complete system into one sub–system with
(typically few) degrees of freedom ~r which are treated quantum–mechanically
while treating the remaining sub–systems with its (typically many) degrees of
freedom ~R classically. Here the separation of the mass scales naturally sug-
gests a quantum mechanical treatment of the hydrogen atom dynamics using
the CCWP formalism in the basis of spherical harmonics introduced above,
and a classical treatment of the halide and the rare gas atoms. The quantum–
mechanical and the classical sub–system are coupled self–consistently through
effective time–dependent potentials. The time–dependence of the potential gov-
erning the H atom dynamics is obtained by inserting the trajectories of the
heavy atoms into the full potential function V (~r, ~R). The forces acting on the
heavy atoms are taken as the derivatives of an effective potential which is the
expectation value of the total potential energy function V (~r, ~R) with respect to
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the wavefunction of the light particle

Fclass(~R, t) = − < ψ(~r, t)
∣∣∣∣ d
d~R

V (~r, ~R)
∣∣∣∣ψ(~r, t) >

= −
∫
d~r

∣∣∣∣∣∑
JM

φeJM (r, t)YJM (Θ,Φ)

∣∣∣∣∣
2
d

d~R
V (r,Θ,Φ; ~R) .

A variety of practical algorithms to solve the coupled quantum–mechanical
and classical equations of motion has been developed recently. Based on the
canonical structure of the QCMD model, a sympletictic integrator called PICK-
ABACK has been developed which basically consists of a suitable indention of a
classical “leap frog” and a quantum–mechanical “split operator” scheme [341].
In model calculations for the photodissociation of a colinear Ar· · ·HCl cluster,
we have demonstrated the accuracy and stability of this discretization scheme.
This algorithm has also been used for the simulations presented in Sec. 4.6.4.
In more recent work other schemes permitting the use of different time steps for
the integration of the quantum–mechanical and the classical parts have been
developed [342,341,343].

4.3.5 Symmetry Adapted Spherical Harmonics (SASHs)

When performing the calulations of ground state wavefunctions or excited state
wavepacket dynamics as explained in the previous two subsections, the effort
to solve the coupled time–independent equations (4.5) or the time–dependent
equations (4.10), depends crucially on the number of rotational basis functions
involved. It is obvious that both the computational effort and the memory
requirement depend quadratically on the number of rotational basis functions
in our ansatz. In this section we will demonstrate how the high symmetry
of the problem under consideration can be exploitet to substantially reduce
this number by using linear combinations of spherical harmonics which are
symmetry adapted. Note that these symmetry adapted spherical harmonics
(SASHs) are also known as surface harmonics or lattice harmonics [344].

The technique of forming symmetry adapted linear combinations of any kind
of basis functions by use of projectors is well–known [345, 346]. When dealing
with spherical harmonics, however, the evaluation of the projectors becomes
more difficult because it requires a complete map of the basis functions under
the influence of each of the symmetry operations comprising the point group.
While this is normally straight–forward for vibrational or electronic basis func-
tions in molecular physics, this is not obvious for spherical harmonics of all but
the very lowest order. The mapping of spherical harmonics under a symmetry
operation is described by Wigner’s law [320, 321]. The direct numerical imple-
mentation, however, poses severe numerical problems. A recursive formula to
circumvent these problems is given in Ref. [344]. That work also contains tables
of SASHs of the Oh point group but only up to J ≤ 12. The icosahedral point
group Ih, however, has been long neglected due to its irrelevance for crystallog-
raphy. Early exceptions are the works by Cohan [347] and by McLellan [348].
Stimulated by a renewed interest in this symmetry in the 1990s, SASHs have
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been calculated in a number of more recent publications [349, 350, 351, 352].
However, the results of all of these studies are either restriced to relatively low
values of J ≤ 12, or they are restriced to the totally symmetric irreducible
representation Ag only. For the present work SASHs had to be calculated for
many irreducible representations of both the Oh and the Ih point group, see
the Appendix of C.2.

4.4 Vibrational Energy Shifts

4.4.1 Solvent Structure

It is well known that the vibrational frequency shifts of molecules in a solvent
environment depend sensitively on the exact geometry of the solvent, see for
example the study of the isomer dependence of HFArn (n = 1− 14) [353]. The
icosahedral and octahedral clusters with closed solvation shells are much more
rigid due to the close packing than the smallest clusters with a few solvent atoms
which undergo large–amplitude–motions [55]. Anticipating one of the results
of Sec. 4.5, i. e. that the rotational ground state wavefunction is very close
to an isotropic distribution, the only solvent degree of freedom governing the
vibrational frequency shift here is the size of solvation cage. In other words,
in the optimizations we are employing a spherically averaged atom–molecule
potential. Hence we are minimizing the potential energy of the complete system
as defined in Eq. (4.1) with respect to the distance between the guest molecule
and its nearest, second–nearest, etc. neighbour rare gas atoms while conserving
the Ih or Oh symmetry.

The qualitative result of such a minimization can already be guessed from
the contour plots of Fig. 4.1. Depending on whether the minimum energy
contour is found at smaller (HF) or at larger (HCl) distances than the nearest
neighbour distance of a pure Ar crystal of 376 pm [354], the atom–molecule
interactions have the tendency to shrink or to expand the cage, respectively.
In competition with the Ar–Ar interactions, this leads to small (< 0.5%) but
significant changes of the cage radii (for details, see C.1). Despite of the identical
number of twelve nearest neighbour atoms, these changes are different for the
icosahedral and the octahedral symmetry because of the different number and
distances of Ar–Ar pair interactions.

4.4.2 Results

Once the cluster geometry has been determined, the time–independent Schrö-
dinger’s equation (4.5) has to be solved assuming the guest molecule with its
center of mass at a substitutional site in a frozen rare gas environment. Then it
is straightforward to calculate vibrational frequency shifts from the differences
of ro–vibrational energy levels

∆v→v+1 = Eg,v+1,0 − Eg,v,0 (4.12)

where the difference is taken between different vibrational states but for identi-
cal rotational states (here: ground state, i = 0). Our results for the fundamental
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transition v = 0→ 1 are depicted in Fig. 4.4. Our findings are summarized as
follows:
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Figure 4.4: Vibrational frequency shift for the fundamental excitation of HX (X
= F, Cl) in an argon environment versus number of solvation shells. Squares:
Octahedral solvation. Triangles: Icosahedral solvation. The horizontal lines
indicate the experimental shift in an fcc matrix. From C.1

1. In general the lowering of the excitation frequency (“red shift”) is much
larger for HF than for HCl. This is because of the stronger polarity and
polarizability of the HF molecule which increases much more strongly
with v than for HCl.

2. The frequency shifts for icosahedral and octahedral environment are dis-
tinctly different. This difference is correlated with the radius of the solva-
tion shell formed by the nearest neighbours. For example, the very small
red shift (or even blue shift) of HCl in Ar(Ih) compared with Ar(Oh) is
caused by the insufficient cage expansion for the former case. In any case
it is important to note that the exact solvent geometry is crucial for the
frequency shifts and that simulations for an unrelaxed solvent can lead to
completely different results. For more details, see C.1.

3. The most exciting aspect of our results, however, is the dependence of
the frequency shift on the number of solvation shells. Unlike stated in
the literature [355], the frequency shift is by no means converged after
the completion of the first solvation shell. This is because the decreasing
contribution of particles in the outer shell atoms is partly compensated
by the larger number of atoms. Due to the different radii of the shells
and due the different number of rare gas atoms per shell, a different
number of solvation shells is needed to obtain converged results. For the
icosahedral cluster, it takes about three shells to reach convergence within
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1 cm−1 while for the octahedral cluster growth five shells are needed. In
principle, the latter values should be expected to converge towards the
experimental matrix shift. In agreement with earlier work [311], we reach
very good agreement with the measurements of Refs. [356, 357, 358, 311]
for HF. Note that also the frequency shift for the icosahedral HFAr12 is
close to the matrix value which we regard, in contrast to the assessment
of Refs. [359, 360, 361, 315] as a mere fortuitousness. For HCl, where
matrix shifts have been calculated for the first time, the values of Refs.
[362,363,364,365] could only be reproduced qualitatively. Here the exact
value of the cage expansion has proved crucial in calculating the frequency
shift. Hence, it might be very promising to explore the effect of three–
body forces on this shift.

4.4.3 Discussion

Finally, we want to comment on the importance of quantum effects. In the
work presented above, vibrational frequency shifts have been determined for
an isotropic rotational ground state wavefunction while freezing both the cen-
ter of mass motion of the diatomic molecule and the motion of the rare gas
atoms completely. It is interesting to compare our results with those of Refs.
[359, 360, 361, 315, 353] on HFArn (n = 1 . . . 14) where also the three degrees
of freedom of molecular translation have been incorporated in 5–dimensional
quantum calculations. For the icosahedral HFAr12 our result is exactly identical
with their finding of −42.46 cm−1. This indicates that our simplified model is
justified for close solvation shells. This is, however not the case for smaller clus-
ters where large–amplitude motions govern the dynamics. For the cluster sizes
n = 1 . . . 4 classical calculations (i. e. completely neglecting quantum effects)
overestimate the redshift by a factor of two, see e. g. the comparison in Fig. 3
of Ref. [312]. It has recently been shown that this discrepency is reduced in the
picture of the above 2–D quantum calculations using Eq. (4.5) [366]. Hence,
the remaining discrepancy is essentially traced back to the translational motion
of the molecule.

An even more rigorous approach is to calculate the wavefunctions of the sys-
tem in full dimensionality. At present, there are two classes of computational
methods to perform such calculations. Using Monte Carlo techniques, energies
and wavefunctions could be obtained for HFArn (n = 1 . . . 4) clusters [294,367].
Although the contribution of the solvent degrees of freedom to the HF vibra-
tional frequency shift is marginal, these calculations provide full wavefunctions.
Also vibrational self–consistent–field techniques [368, 369] have been used for
cluster bound state calculations, see e. g. the recent work on Ar13 [370]. Al-
ternatively, also path integral techniques can be applied, see e. g. Ref. [371] on
icosahedral rare gas aggregates.
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4.5 Rotational Energy Shifts and Wavefunctions

4.5.1 Introduction

In order to motivate the studies of rotational wavefunctions of hydrogen halide
molecules in rare gas clusters and matrices, we want to give emphasis to their
role as initial states for a photodissociation events, see the following Sec. 4.6.
To get a first impression, let us consider purely classical simulations of the
photodissociation of HCl in an Ar (fcc) matrix [372]. The photodissociation
is modeled here by simply switching the interactions from the ground elec-
tronic state (4.1) to the electronically excited state (4.2) and, subsequently,
integrating the resulting equations of motion for all participating atoms us-
ing Gear’s predictor–corrector scheme [206] and assuming periodic boundary
conditions [207].

a) b) c)

 

Figure 4.5: Classical trajectories for HCl photodissociation in an argon matrix.
a) Immediate cage exit, b) delayed cage exit, and c) trapping of the photodis-
sociated hydrogen photofragment. Note that only the trajectory of the H atom
is represented because the vibrational amplitudes of the heavy atoms are very
small. From [372].

The trajectories in Fig. 4.5 illustrate the strong dependence of the reaction
dynamics on the initial orientation of the molecule: In case of a favorable
orientation close to the < 111 > direction we observe a immediate cage exit
during which the hydrogen atom can penetrate two of the closest packed (111)
planes, see part (a) of the figure. However, if the initial orientation is less
favorable, the hydrogen atom rattles forth and back inside a cage formed by
the adjacent (111) planes. In the course of this oscillatory motion, it gradually
looses some of its excess energy during the collisions with the heavier atoms
and either one of two events can occur: As long as the energy is still sufficient
to overcome one of the barriers along the < 111 > axes, the hydrogen atom
still has some chance for a delayed cage exit process, see part (b) of the figure.
Once the energy has dropped below a certain threshold, this channel is closed
and the H atom becomes trapped and will eventually recombine with the Cl
atom.

These exemplary trajectory studies are intended to elucidate the influence
of the initial orientation of the guest molecule on the photodissociation dynam-
ics. According to the quantum–classical correspondence principle, the distribu-



4.5. ROTATIONAL SHIFTS AND WAVEFUNCTIONS 93

tion of orientations corresponds to the square of the rotational wavefunctions.
Hence, it is important to calculate exact rotational wavefunctions as initial
states for simulations of the photodissociation dynamics 5.

4.5.2 Potential Energy Surfaces

In this section, we want to present the potential functions for molecular rotation
inside a cluster or a matrix and discuss the rotational energies and wavefunc-
tions obtained. Let us first consider the case of a molecule located at the center
of an icosahedral (Ih) HXAr12 cluster.The potential functions for rotation of
the hydrogen halide molecule in the cluster is illustrated in Fig. 4.6 (a,b). For
HF we find an almost flat potential energy surface with undulations of less than
3 cm−1. Apparently the strong anisotropy of the individual atom–molecule po-
tentials of more than 100 cm−1 averages out almost completely. In contrast,
the potential for HCl exhibits sharp peaks corresponding to the orientations
of the surrounding Ar atoms which are caused by the repulsive part of the H6
potential for an optimized atom–molecule distance of 376.6 pm.

A different situation is found for the rare gas matrix with locally octahedral
symmetry (Oh), see Fig. 4.6 (c,d). For both HF and HCl, there are eight minima
at the crystallografic < 111 > directions indicating the energetically preferred
orientations of the molecule in the solid. Note that this is in agreement with the
C3v structure of HXAr3 clusters. Interestingly, the main repulsive orientations
are qualitatively different. For HF we find six maxima corresponding to the
< 100 > orientations whereas in the case of HCl, twelve maxima can be found
at the < 110 > directions pointing towards the nearest neighbour atoms. While
the energy maximum for HF is simply caused by less attractive interactions for
this particular orientation, the maxima in the potential for HCl in Ar can
be rationalized as mentioned above, i. e. the confinement in the cage leads to
repulsion by the nearest neighbour atoms. The difference between the potential
minima and maxima for either of the systems is around 30 cm−1. It is noted that
this anisotropy is much smaller than that of the atom–molecule pair potentials
of Fig. 4.1, see also our remarks below (Sec. 4.5.5). Furthermore, it is found
that more than 90% of the anisotropy of the matrix potential is caused by the
interaction with the nearest neighbour atoms only.

A simple way to classify the qualitative difference of the two rotational
potential energy surfaces is to expand them in symmetry adapted linear com-
binations of spherical harmonics (SASHs) [373]. For the point group Oh, the
lowest functions which transform according to the totally symmetric represen-
tation A1g (except for a constant term J = 0) are those for J = 4 and for
J = 6 [344]. It turns out that the potential function for rotation of HF in Ar
is dominated by the J = 4 term while that for HCl most closely resembles that
for a J = 6 function. Thus the Devonshire model as early as in the 1930s [374]
which allows predictions of splittings of rotational lines for the case of a pure
J = 4 potential can reproduce the HF case very well while it has to fail for

5Note that also the debate in the literature on the existence of resonances in the photodis-
sociation spectrum of HClAr is most likely to be caused by different initial bending states of
the H atom [265,266,268,269,270]
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a) HF (Ih) b) HCl (Ih)
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Figure 4.6: Potential energy surface for rotation of an HF (a) or HCl (b)
molecule in an icosahedral HXAr12 cluster and for rotation of HF(c) or HCl(d)
at a substitutional site of an Ar (fcc) matrix. The plot shows the electronic
ground state interaction energy between the guest molecule and the Ar solvent
as a function of the spherical coordinates Θ,Φ defined with respect to one of
the C5 (Ih) or C4 (Oh) axes.

HCl. However, for this case predicted splittings and rotational spectra can be
found in the work of Beyeler who developed an extended model including both
J = 4 and J = 6 terms and smooth transitions between the two cases [373].

4.5.3 Energy Levels

Our results for the rotational energy levels are summarized in Tab. 4.1 up to
J = 3. At a first glance, the energy levels are relatively close to those of a free
molecule, i. e. EJ = BJ(J + 1) with a rotational constant of 20.2 cm−1 or
10.3 cm−1 for HF or HCl, respectively, which is a consequence of the relatively
weak perturbation of the rotor states by the rare gas environment. A closer
look, however, reveals the influence of the surrounding cluster or matrix. In
particular, we find that the (J + 1)–fold degeneracy of the rotational energy
levels is partially lifted. Using group theoretical arguments analogously to those
common in crystal field theory [345,346], it can be shown that these splittings
occur only for J ≥ 3(Ih) or J ≥ 2(Oh).

For the icosahedral clusters the splitting of the J = 3 level of HF is extremely
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J Ih Oh

Symm. HF HCl Symm. HF HCl
0 Ag 0.0 0.0 A1g 0.0 0.0
1 T1u 40.3 20.6 T1u 40.3 20.6
2 Hg 120.9 61.6 Eg 126.2 59.6

T2g 117.5 63.1
3 T2u 242.1 128.6 A2u 235.0 122.2

Gu 241.6 119.7 T1u 245.3 120.6
T2u 241.0 126.8

Table 4.1: Rotational energy levels (in cm−1) of HF (v = 0) and HCl (v = 0)
in icosahedral clusters with 12 Ar atoms (Ih) and in fcc Ar matrices (Oh).

small because of the near–isotropic potential energy surface. In contrast, for
HCl there is a large splitting of about one rotational constant between the
T2u and the Gu state. Similarly, splittings in the order of one half of a rota-
tional constant are found for the Eg/T2g splitting of the J = 2 levels and the
A2u/T1u/T2u splitting of the J = 3 levels of HF and HCl in Ar (fcc) matri-
ces. Hence, in an experiment these states should be distinguishable without
extremely high effort.

Unlike the situation for the smallest clusters with one or two Ar atoms,
experimental data on rotational spectroscopy is not available for the icosahedral
clusters. Also for matrix isolated species data for J > 1 is extremely sparse.
To the best of our knowledge, the only observation of the Eg/T2g splitting is in
Ref. [375] for DCl in Ar which is in reasonable agreement with our calculations
(2.6 cm−1 vs. 3.3 cm−1)6.

4.5.4 Wave Functions

In this part we discuss the nature of the rotational eigenstates. First of all, one
notices that the eigenvectors of the Hamiltonian matrix 4.6 defined on page 85
are very close to unit vectors, i. e. the eigenfunctions are very close to single
symmetry adapted spherical harmonic (SASH) basis functions. 7 Typically
the admixture of further SASHs is well below 1% which is consistent with our
results on the energetic levels also suggesting only a minor perturbation of the
free rotor states. Hence, the main influence of the rare gas environment is that
it forces its symmetry upon the rotational eigenfunctions.

Now let us consider the rotational ground states of cluster or matrix isolated
HF or HCl. In each of the cases considered here, the contribution of the isotropic
J = 0 (Ag or A1g) to the ground state is � 99%. This result seems to be in
contradiction with the rotational potential energy surfaces of Fig. 4.6 exhibiting
barriers of 1.5 (HF) or even (HCl) three times the rotational constant. However,

6Note that it would be very desirable to check our predicition of the reversed energetic
order of the Eg and T2g energy levels for HF.

7Note that this enables us to label the rotational states with a quantum number J and an
irreducible representation of the respective point group.
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T1u (J = 1) Hg (J = 2)

T2u (J = 3) Gu (J = 3)

Figure 4.7: Rotationally excited states of HF/HCl in an icosahedral HFAr12
cluster. The polar diagrams show the wavefunction superimposed on a sphere.
An increase or a decrease of the radius corresponds to a positive or a negative
value of the wavefunction. The neighbouring Ar atoms are located at the corners
of the circumscribed icosahedra. From C.2

a rotational state with maxima of the probability amplitude located at the
minima of the potential energy surface would have to be comprised of higher
SASHs of the totally symmetric irreducible representation. For example, for
HF or HCl in an Ar matrix, the second (J = 4) or even the third (J = 6) basis
function would be required to fit the minima of the PES. The corresponding
high kinetic energy BJ(J + 1) keeps the contribution of these functions to the
rotational ground state extremely low.

Graphical representations of the first few rotationally excited eigenstates
can be found in the polar representations of Fig. 4.7 for the case of icosahedral
symmetry. The first two excited states T1u (J = 1) and Hg (J = 2) are
preferentially oriented along a C3 axis through the centers of an opposing pair
of triangles. The same is true for one of the two J = 3 states (Gu) while the
other one (T2u) is oriented along a C5 axis pointing towards the corners of the
icosahedron.

The situation for the octahdral symmetry is depicted Fig. 4.8. The first
rotationally excited state T1u (J = 1) as well as one of the J = 2 states (Eg)
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T1u (J = 1) Eg (J = 2) T2g (J = 2)

A2u (J = 3) T1u (J = 3) T2u (J = 3)

Figure 4.8: Rotationally excited states of HF/HCl in an octahedral Ar matrix.
The polar diagrams show the wavefunction superimposed on a sphere. The
neighbouring Ar atoms are located at the centers of the edges of the circum-
scribed octahedra. From C.3

are oriented along the crystallographic < 100 > axes thus pointing towards the
second–nearest neighbours. In contrast, the T2g (J = 2) and the T2u (J = 3)
states exhibit preferential orientation towards the nearest neighbour positions
which are along the < 110 > axes in an fcc lattice. A special case is the A2u

(J = 3) state with its < 111 > orientation corresponding to the preferred cage
exit pathway [226] of the classical simulations presented in Sec. 4.5.1 above.

4.5.5 Discussion

In the follwing we want to compare our results with the rotational spectroscopy
of smaller HXArn (n = 1, 2, . . .) aggregates. In the paragraphs above, we have
stressed the fact that both HF and HCl are essentially behaving like free rotors
in a closed shell Ar cluster or in an Ar matrix. The only effects of the rare gas
surrounding the guest molecule are (1) the small (but detectable) splittings of
the rotational energy levels and (2) the mixing of different M sublevels resulting
in rotational wavefunctions which are adapted to the symmetry of the solvent.
The situation for smaller aggregates with an incompletely filled solvation shell,
however, is qualitatively different. As can be guessed from the PESs for the
systems with a single Ar atom, the lowest eigenfunctions do not permit free
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rotation but are rather characterized by large amplitude hydrogenic bending
motions and terms like hindered rotation or libration are often used in this
context. For example, neglecting the Ar stretching modes, the two lowest libra-
tional states of the n = 1 aggregate correspond to an HF–Ar (ground state) or
on Ar–HF (Σ bend) structure. Despite considerable delocalization of the hy-
drogen atom, the rotation is still hindered. The next state (Π bend) , however,
allows rotation of the HF molecule with respect to the Ar atom. When going
to slightly larger systems (n = 2 . . . 4) the number of bound states which are
quasi–free rotors increases [366]. In summary, the transition from librational
motion to quasi–free rotations can be seen as the limit (1) of higher internal
excitation and/or (2) of closing the first solvation shell.

4.6 Photodissociation Dynamics

4.6.1 Hydrogen Wavepacket Dynamics

Rotational Ground State In this paragraph we consider the photodisso-
ciation for the example of HCl molecules in an Ar(fcc) matrix. The initial
rovibrational state of the molecule is assumed to be a direct product of a Morse
oscillator ground state function and a rotational ground state J = 0 (A1g) func-
tion. Upon excitation of the HCl molecule from the bound 1Σ to the purely
repulsive 1Σ state (Condon approximation), the hydrogen photofragment re-
coils from the much heavier chlorine and starts to interact with the rare gas
matrix. The quantum dynamics of this process is illustrated in Fig. 4.9. We
are recalling that three–dimensional wavefunctions are represented in the “close
coupled wavepacket” (CCWP) approach of Sec. 4.3.3 as a product of symme-
try adapted spherical harmonics (SASHs) transforming according to a given
irreducible representation of the Oh point group and time–dependent radial
wavefunctions. In this and in the following figures, corresponding angular and
radial wavefunctions are arranged column–wise.

Initially all the probability amplitude is in the J = 0 state at an inter-
nuclear distance of r = 0.127 nm. The corresponding (radial) wavepacket is
moving away from the Cl atom and reaches the repulsive regime of the nearest
neighbour atoms. A bifurcation takes place in which a part of the wavepacket
is reflected inwards while another part of the wavepacket penetrates the cage
formed by the nearest neighbour. The former part oscillates within the cage
loosing some amplitude due to cage exit each time it reaches the outer turn-
ing point. The vibrational period of about 15 fs corresponds to a vibrational
quantum of approx. 2000 cm−1. Further bifurcations are found at a distance
corresponding to the second nearest neighbours of the lattice. Moreover, in-
terferences of ingoing and outgoing wavepackets can be recognized, e. g. at
t ≈ 20 . . . 22 fs.

Due to the off–diagonal elements of the representation of the potential en-
ergy in the basis of SASHs (see Eq. 4.11), higher SASH states of the same irre-
ducible representation are populated within a timescale of a few femtoseconds.
The correlation between the angular wavefunction and the radial wavepacket
dynamics is nicely illustrated in the second and third column of Fig. 4.9. For
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Figure 4.9: Hydrogen atom wavepacket dynamics of HCl photodissociation in
Ar(fcc) for the initial state J = 0 (A1g). The upper part shows the SASHs
used as basis functions, the lower part shows the square of the time–dependent
radial wavefunctions (Abscissa: r in nm, ordinate: t in fs). From C.3.

J = 4 the strong angular focussing along the crystallographic < 100 > leads to
neglibible reflection from the nearst neighbours (< 110 >) but to strong caging
by the second coordination shell. Vice versa, the wavepacket dynamics in the
J = 6 state is characterized by very strong caging inside the first shell leading
to (almost) coherent vibrations.

Rotationally Excited States As examples for the photodissociation dy-
namics of rotationally excited molecules in a matrix, let us consider two sub-
levels of the J = 3 state, namely the A2u and the T2u state which are separated
by 6 cm−1 in the electronic ground state, see Tab. 4.1. As could be expected,
the left column of Fig. 4.10 shows that the J = 3 (A2u) permits almost unhin-
dered cage exit due to its preferrential orientation along the < 111 > axes of
the fcc lattice. However, the coupling to higher rotational states of the A2u rep-
resentation reduces the total cage exit probability. While the J = 7 and J = 11
states also prefer orientations with a strong tendency for cage exit, the J = 9
state (as well as some of the higher states not shown in the figure) reduce the
total exit probability because the corresponding wavepacket dynamics exhibits
oscillatory motions within the cage formed by the nearest neighbour atoms.

A different picture is obtained for the T2u sublevel of the J = 3 state, see
Fig. 4.11. For this irreducible representation, three out of the first four SASHs
exhibit maxima along the crystallograhic < 110 > directions. Accordingly,
the wavepacket dynamics in these rotational states is dominated by (almost)
coherent vibrations within the inner solvent cage with very minor probabilties
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Figure 4.10: Same as Fig. 4.9 but for initial state J = 3 (A2u).

of finding the H atom at larger distances from the Cl atom. Again, coupling to
even higher rotational states leads to corrections of this picture. For example,
there is a relatively high cage exit probability for the J = 9 state.

4.6.2 Cage Exit Probabilties

Our findings are summarized in this subsection where we want to consider
the cage exit probability versus the initial ro–vibrational state of the guest
molecule in the rare gas matrix. In analogy to the wavepacket approch to
reactive (bimolecular) scattering [14], we define a projection operator which
equals unity if the hydrogen atom is found outside the first coordination shell
and which is zero inside this shell. Then the cage exit probability is simply
obtained as the expectation value of this operator

P (t) =
∑
JM

∫ ∞

r=rNN

|φJM (r, t)|2 (4.13)

where rNN stands for the nearest neighbour distance of the Ar (fcc) lattice8.
Here we calculate this quantity for two different times. The cage exit after
one vibrational period (15 fs) is regarded as immediate cage exit. The further
increase of P(t) up to 10 vibrational periods (150 fs) is termed delayed cage
exit. Although our model does not account for non–adiabatic transitions and
recombination in the electronic ground state, we know from the literature [230,
277, 278] that recombination can be expected to play an important role for
longer timescale which cannot be considered here.

8Note that it is straightforward to calculate the range of migration of photodissociated H
atoms in an Ar matrix by varying the lower boundary of the radial integration in Eq. (4.13).
This quantity could indeed be measured in experiments with layered rare gas crystals [376]
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Figure 4.11: Same as Fig. 4.9 but for initial state J = 3 (T2u).

First, let us consider the dependence of immediate cage exit probability
P (t = 15fs) as a function of the initial rotational state of the HCl molecule
as displayed in Fig. 4.12 (a). We assume the molecule to be initially in its
vibrational ground state. The upper left part of the graphics shows different
values of P for the different rotational states varying from 24% to 56%. For
J = 0 (A1g) and J = 1 (T1u) the probabilities are similar. However, the two
sublevels of the J = 2 state (Eg, T2g) exhibit a different influence of the cage
effect. Clearly, there is much stronger caging for the T2g state because of its
< 110 > orientation. These differences are even stronger for the sublevels of
the J = 3 state. As has been illustrated above, the cage effect is strongest for
the T2u state. In contrast, the A2u and T1u state allow a more facile cage exit
than the isotropic J = 0 (A1g) state.

This sensitivity of the cage effect is diminished at longer times. After 10
vibrational periods (t = 150 fs) the probability for delayed cage exit depends
only weakly on the initial rotational state of the HCl molecule. Moreover, in
some case, also the order of the probabilities is reversed. This is a consequence
of the coupling to more (and higher) rotational states.

Another interesting aspect is the dependence of the dynamics of the cage
exit on the initial vibrational state of the molecule. Our results are shown in
Fig. 4.12 (b). It can be seen that the immediate cage exit probability strongly
decreases for increasing vibrational quantum number v. This can be explained
in the framework of the Condon approximation. Upon vertical transition of
a vibrationally excited wavefunction from the electronic ground state to the
excited state, the outer lobes gain much less energy on the steep, repulsive
potential curve of the 1Π state (see Fig. 4.2). This is also indicated on the
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Figure 4.12: Cage exit probability upon photodissociation of HCl in Ar(fcc).
a) Dependence of immediate (t = 15 fs) and delayed (t = 150 fs) cage exit
probability on initial rotational state (for v = 0). b) Dependence of immediate
(t = 15 fs) cage exit probability on initial vibrational state (for J = 0, A1g).

abscissa denoting the potential energy of the wavepacket upon excitation. Note
that especially the low energies for high values of v suggest that vibrational
excitation may serve to determine the energetic threshold for cage exit more
exactly. In this way, investigations of the photodissociaton dynamics of matrix
in molecules may be used to calibrate interaction potentials, in particular the
H–Ar repulsion.

4.6.3 Absorption Spectra

Apart from measuring the cage exit probability in experiments with multi–
layered rare gas crystals [376] the main observable in a measurement of
photodissociation of matrix–isolated molecules is the absorption spectrum.
The standard way to obtain a stationary absorption spectrum from a time–
dependent wavepacket formalism is the following [377]: The initial state
is assumed to be instantaneously excited (Condon–Approximation) and the
wavepacket created in the excited state is propagated in time. Then the (com-
plex) autocorrelation is calculated as the overlap between the wavepacket at
time t > 0 and the initial one (t = 0)

S(t) = 〈ψ(t)|ψ(0)〉 =
∑
JM

∫ ∞

0
dr φ∗JM (r, t)φJM (r, 0) . (4.14)
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An absorption spectrum is then obtained as the Fourier transform of the auto-
correlation function9. It is noted that this is equivalent to the conventional, i. e.
time–independent way to obtain spectra using the Condon approximation [377].
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Figure 4.13: a) Autocorrelation function and (b) absorption spectrum of HCl
in an icosahedral Ar12 cluster.

Our results for the example of HCl photodissociation in an icosahedral Ar12
cluster are displayed in Fig. 4.13. The initial state is assumed to be the ro–
vibrational ground state. Assuming a frozen rare gas environment or, equiva-
lently, infinitely heavy rare gas atoms, the autocorrelation function of the cluster
is obtained from propagating the H atom wavepacket only10. After a steep fall–
off of the autocorrelation function within the first three femtoseconds, there are
partial recurrences at later times. These recurrences are related to rotational
states that display a mainly vibrational wavepacket dynamics within the cage,
see e. g. the J = 6 state in Fig. 4.9. For increasing time, the further rephasing
and mixing of more and higher rotational states results in a structure–less au-
tocorrelation function for longer times. The corresponding spectrum is shown
in part (b) of the figure. It exhibits a broad envelope around 8.5 eV which
corresponds to the energetic difference of the v = 0 wavepacket in the ground
and excited state. The width of approx. 2 eV is inversely proportional to the
duration of the initial fall–off of the autocorrelation function. Note that the
envelope alone would correspond to the spectrum of the isolated molecule (no
recurrences!). The quasi–periodic structure superimposed onto the broad peak
is a remnant of the vibrations inside the cage. Indeed, the distance of about
0.27 eV between the main spectral peaks corresponds to a vibrational period of
approx. 15 fs for the H atom rattling between the Cl atom and the surrounding

9Alternatively, spectral line positions, intensities, and widths can be obtained from a har-
monic inversion via a filter diagonalization of the autocorrelation function [378,379,380]. The
advantage is that considerably shorter propagation times are needed to achieve the same
spectral resolution [381]

10For remarks on a more realistic spectrum, see section 4.6.6.
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Ar atoms. However it has to be kept in mind that this spectrum is obtained
only from the H atom wavepacket dynamics assuming a frozen cage. A realistic
spectrum is most likely to be structureless, see our remarks below in Sec. 4.6.6.

4.6.4 Cage Dynamics

All the investigations of the photodissociation of matrix–isolated molecules pre-
sented above have been relying on the assumption of negligible energy dissipa-
tion into the rare gas matrix, i. e. the matrix was assumed to be frozen. This
is a reasonable approximation for the following two reasons: (1) According to
Eq. (3.12), the maximum energy transfer in a hard collision between H and
Ar atoms (mass ratio 1:40) is limited to only 10%. (2) Even if a considerable
amount of energy were transferred to the rare gas environment, this would not
open any new reactive channels because the rare gas atoms are closely packed
and cannot freely rearrange. However, the sudden and punctual release of en-
ergy [382] can give rise to excitation of phonons [383], and possibly to shock
waves [384] or to local melting [385] which we intend to investigate in future
work.

In a small cluster, however, an energy transfer to the rare gas solvation can
in principle lead to (partial or total) fragmentation of the cluster by evapora-
tion of rare gas atoms 11. For the smallest cluster systems with only a single
rare gas atom, this fragmentation process can be simulated quantum mechan-
ically in all three degrees of freedom [268, 269, 270, 267]. For larger systems,
a quantum classical molecular dynamics (QCMD) approach presents a viable
alternative (see Sec. 4.3.4). Examples from the literature span the range from
the systems with a single solvent atom [262] up to matrix studies [274]. Also
the photodissociation dynamics of HCl adsorbed on insulator surfaces has been
treated using a QCMD approach [386,387].

In the following, we want to apply the QCMD approach presented in Sec.
4.3.4 to the case of a first complete solvent shell, i. e. the icosahedral HClAr12
cluster. We assume the HCl molecule to be initially in its ro–vibrational
ground state (J = 0, v = 0), and we propagate the three–dimensional H atom
wavepacket and the trajectories of the 13 classical particles self–consistently
using the PICKABACK algorithm [388]. For the hydrogenated system, we see
that within a timespan of 200 fs (or more than 12 vibrational periods) the hy-
drogen atom looses about 10% of its initial energy, see left part of Fig. 4.14
12. The (very weak) undulations of the curve are connected with the temporal
structure of the oscillatory motion of the radial wavepackets for some of the
SASHs as illustrated in Fig. 4.9. However, for longer times, the wavepackets
dephase completely and the curve becomes smooth. The decreasing slope of the
curve indicates that after 200 fs most of the probability amplitude connected
with the H atom wavepacket has already escaped from the cage so that there is

11The fragmentation upon photodissociation bears many similarities with the fragmentation
upon association reactions in a cluster, see our findings on solvent–induced stabilization in
Chap. 3 of this thesis.

12Note that an energy transfer of only 10% within 12 vibrational periods is considerable less
than the upper boundary estimated for the case of a “hard” collision (see above).
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Figure 4.14: QCMD simulation of HCl/DCl photodissociation in icosahedral
HClAr12 clusters. Parts (a) and (b) of the figure show the energy of the
quantum–mechanical and of the classical subsystem, respectively. Solid curve:
HCl, dashed curve: DCl.

not much more energy transfer on a longer timescale. It is interesting to com-
pare this result with the deuterated system. Despite of the slower vibrational
motion, the D atom looses almost twice as much energy which is due to the
larger mass.

Within the restriction to the totally symmetric irreducible representation
Ag of the icosahedral point group (Ih), energy can be only dissipated into the
(totally symmetric) breathing mode of the icosahedral solvation shell, see the
right part of Fig. 4.14. In the case of the H atom, the transferred energy
gives rise to a breathing vibration with a vibrational period on a picosecond
timescale. In contrast, the larger energy transfer from a D atom brings the total
energy of the heavy atoms into the regime of positive total energies. Hence, as
a consequence of the collisions with the photodissociated D atom, the cluster
fragments completely into Cl + 12 Ar.

In summary, we note that the excess energy of 3.9 eV gained by excitation
of the HCl molecule into the 1Π state is enough to evaporate even a much
larger cluster of several complete solvation shells. Hence, the outcome of the
photochemical event is determined by the competition between two different
processes, i. e. the escape from the cage and the energy transfer while rattling
inside the cage. If the former process is faster, the cluster stays intact and will
only be vibrationally excited; if the latter process is more efficient, evaporation
of solvent particles will dominate.

One word of caution has to be added: The present calculations have been
carried out within the totally symmetric irreducible representation assuming the
classical particles to be initially in perfect icosahedral symmetry, i. e. for T → 0.
This implies that there are only two possible outcomes of the reaction: either
none or all twelve solvent particles are evaporated. The presence of thermal
motions for T > 0 results in a loss of symmetry. However, for not too large
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deviations from the icosahedral symmetry, we expect very large amplitudes of
rotational or librational wavefunctions for the H atom resulting in a relatively
large number of Ar atoms to be ejected from the cluster. This speculation is in
contrast to the results of a classical trajectory study of HFAr12 where the most
likely event is the evaporation of a single Ar atom [272]. A final judgement of
this discrepancy would be numerically extremely expensive because of the large
number of spherical harmonics needed in a CCWP ansatz without symmetry
restrictions.

4.6.5 Summary

In the work presented in C.2 and C.3 it has been demonstrated that the quan-
tum yield of a photodissociation reaction of matrix–isolated hydrogen halide
molecules can be controlled, to some extent, via the initial ro–vibrational state
of the guest molecule. In an experiment, this can be realized by an infrared
(IR) pre–excitation of the molecule into the respective ro–vibrational state, and
by subsequent photodissociation initiated by ultrashort ultraviolett (UV) light
pulses13. At present, these experiments are in preparation in the labs of the
FU Berlin [?].

The idea of performing photochemistry with vibrationally pre–excited
molecules has lead to the concept of vibrationally mediated chemistry. Since
its very beginnings in the 1970s [279,280,281] it has been applied to gas phase
molecules, in particular to control the branching ratio of competing bond cleav-
ages [282,283,284,285]. In the present work (C.3) we have been extending the
idea of vibrationally mediated chemistry towards two directions. On the one
hand, this investigation presents a first step towards an application of this con-
cept in the field of condensed phases. On the other hand, rotational effects have
been included for the first time. Hence, this work opens the way to a rota-
tionally mediated photochemistry of matrix isolated molecules. However,
we do not want to conceal the limitations of this concept. First, our results
seem to indicate that there is a limitation towards short timescales. Second,
the mechanism seems to be limited to weakly bound systems where nearly free
rotations or other large–amplitude motions are possible.

A promising further extension of the concept of ro–vibrationally mediated
photochemistry is to utilize the properties of the photodissociated hydrogen
atoms in a further (pseudo–)bimolecular reaction. This possibility has been
demonstrated in recent work, where the Cl2 formation upon HCl photolysis in
HCl· · ·Ar12Cl [217] as well as in HCl· · ·Cl [389] was studied. In theses clusters,
the rotational motions of the HCl molecule are more strongly hindered by the
anisotropy of the potential energy surface and the dynamics is characterized
by librational motions, see also our discussion in Sec. 4.5.5. Hence, the novel
mechanism to control the reaction yield is termed librationally mediated
photochemistry.

13The IR pre–excitation and the UV photodissociation do not have to be in immediate
succession because of the extremely slow ro–vibrational relaxation of these systems on a mi-
crosecond to millisecond timescale, see e. g. Ref. [365] or many contributions in [243].
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4.6.6 Outlook

The QCMD calculations presented above offer the advantage of being computa-
tionally not too expensive and providing reasonable results for quantities that
do not depend on the quantum mechanical phase of the heavy atom wavefunc-
tion. Examples of such phase–independent quantities are expectation values
such as the cage exit probability or the cluster fragmentation discussed pre-
viously. However, spectroscopic quantities such as the absorption or Raman
spectrum are calculated – in the time–dependent picture – from correlation
functions of wavefunctions characterizing the full system [35]. Then the phase
information of the wavefunctions can become extremely important. Typically,
the inclusion of more modes leads to a strong damping or, eventually, to a dis-
appearing of the recurrence structure of the autocorrelation function leading to
a structure–less spectrum. This is confirmed in a preliminary 4–D calculation
of the photodissociation of HClAr12 (Ih) including the symmetrical breathing
mode of the solvent cage. Also in the experimental spectrum for HCl in Ar(fcc)
there is no visible vibrational structure within the experimental resolution [376].

One of the simplest ways to extend the QCMD model in order to approx-
imate the quantum mechanical phase of the full system under investigation
is to replace the classical dynamics by Gaussian wavepacket dynamics [390].
This leads to the quantum–semiclassical molecular dynamics (QSMD) model
which has also been applied to the photodissociation dynamics of ArHCl [263].
Another example is the work of Ref. [391, 392] where a QSMD model is used
to simulate spectra of particles adsorbed in a zeolite. If details of the solvent
dynamics are not of interest, the reduced density matrix approach can be an
alternative. In recent work on HCl in Ar(fcc), the dissipative wavepacket dy-
namics of the hydrogen atom under the stochastic influence of the rare gas
atoms has been calculated and absorption spectra have been simulated [275].

An alternative to the QCMD or QSMD models discussed above is the “clas-
sicle separable potential” (CSP) model which has been developed during the
past few years. It is based on a time–dependent self–consistent field approach
(TDSCF) 14 [393, 394, 326, 395]. The computational bottleneck of the TDSCF
which lies in the integrations to obtain the effective, time–dependent potentials
is circumvented in the CSP model in the following way. First, a set of clas-
sical trajectories is propagated to generate effective, one–dimensional poten-
tials. Based on these potentials, a quantum–mechanical TDSCF propagation
is carried out. This technique provides a new tool to calculate the quantum
dynamics for moderately quantal systems with a few hundred degrees of free-
dom [396,397,398,399]. Currently, CSP simulations of HCl in icosahedral Ar12
are in preparation [301].

The next step of sophistication would be to go beyond the restrictions of a
separable ansatz. In analogy to the multi–configuration extensions of TDSCF
into MC–TDSCF methods [400, 401, 402, 403, 404, 405], also the CSP method
has recently been developed further to incorporate also non–separability in a
configuration interaction (CI–CSP) approach [406,407,408,381].

Finally, we have to mention that we have been restricting ourselves to adi-
14Sometimes the TDSCF is also referred to as time–dependent Hartee (TDH) method.
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abatic dynamics on a single potential energy surface. This was justified by the
fact that (1) we considered the photodissociation dynamics only on a very short
time scale where non–adiabatic transition back to the ground states do not play
a role, and (2) the three excited state potential energy curves of the 1Π, 3Π, and
3Σ states are not too different from each other [300]. So far, the non–adiabatic
dynamics of the class of systems considered here has been only treated using
a surface hopping approach. Results for HCl in Ar matrices [226,409,230] and
clusters [277] show that on the timescale of a few hundred femtoseconds the
spin–orbit coupling plays a major role in the non–adiabatic dynamics.
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The present thesis is concerned with the dynamics of elementary chemical
reactions. In particular, the processes of bond formation (association) and of
bond cleavage (dissociation) are studied. Both photo–induced and solvent–
induced reaction mechanisms are elucidated. By embedding simple diatomic
model systems in rare gas clusters and matrices, the transition of the dynamics
of making and breaking of chemical bonds from the gas phase to the condensed
phase is systematically investigated.

Methodology. The methodologies employed here depend on the size of the
systems as well as on the quantities of interest. They range from purely classical
trajectory simulations or quantum–classical hybrid techniques for larger systems
up to quantum mechanical (exact and perturbative) wavepacket propagations
for the smallest (diatomic) systems. In the latter case also the interaction with
external, time–dependent electromagnetic fields of pulsed lasers is accounted
for. Fully three–dimensional quantal treatments of continuum wavefunctions
and wavepackets have been adapted from scattering theory and further devel-
oped. In particular, in the present work rotational effects on photoassociation
processes such as shape resonances and rotational coherence have been consid-
ered for the first time. For photodissociation dynamics in clusters and matrices,
a highly efficient technique for symmetry adaption of wavepackets has been de-
veloped.

Photo–induced stabilization of collision pairs. In chapter 2 photoasso-
ciative collisions of two colliding atoms are treated. By stimulated emission of
light, a collision pair can be stabilized to form a ground state molecule. The
work in A.1 and in A.2 represents the first studies of ground state photoasso-
ciation by infrared picosecond light pulses. It is shown that by simultaneous
optimization of the incoming wavepacket and of the laser pulse, photoassocia-
tion can be achieved with a high efficiency of > 80% for a rotation–less model
of an O + H collision pair. At the same time, an extremely high vibrational
state selectivity close to 100% can be achieved if there is no coincidence with
higher–order transitions to lower vibrational states.

An extension of these models to include rotational degrees of freedom is
presented in A.4. Taking advantage of the high scattering cross section of
shape resonance states we have shown that the efficiency of photoassociation
reactions can be considerably enhanced. At the same time, preparation of
molecules in specific ro–vibrational states is possible because the condition for
a shape resonance is only met for one specific partial wave.

In principle, the process of ground state photoassociation by stimulated
emission competes with photoacceleration induced by absorption of photons. In
these inelastic free←free transitions, the collision pair is accelerated in the field
of the laser pulse. In analogy to the phenomena of above–threshold ionization
and above–threshold dissociation, the increase of kinetic energy corresponds
to the energy of one or more photons and leads to sharp peaks in the energy
distribution of the scattered particles. In A.2 and A.4 this process is investigated
and the ranges of suitable laser parameters are explored.
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Also the question of electronic state–selectivity has been addressed in the
present work. This is especially interesting for molecules where low–lying bound
electronic states exist and where ground and excited state photoassociation
are eligible in a similar frequency regime. It is demonstrated in A.3 for the
example of the OH radical that even in these cases various control mechanisms
exist. Apart from the different polarization of permanent and transition dipole
moments, effective control can be exerted through variation of the scattering
energy of a collision pair.

When going to even shorter pulses in the femtosecond regime, coherent su-
perpositions of ro–vibrational states can be excited. In modern pump–probe
experiments the time evolution of wavepackets be oberserved in real time. This
has been illustrated in A.5 for the example of the exciplex formation of the
mercury dimer. On the borderline of classical and quantum mechanics, (frac-
tional) revivals in the wavepacket dynamics are predicted. The fast and the
slow timescales of the pump–probe experiments of Marvet and Dantus are in-
terpreted in terms of quantum beats of different vibrational and rotational
states, respectively, which have been coherently excited in the photoassocia-
tion process. Note that these spectral features persist even for relatively high
temperatures. Moreover, by excluding the possibility that the observed signals
originate from van der Waals precursors, our results provide evidence for the
bimolecular nature of this experiment thus rendering it one of the first of its
kind.

Solvent–induced stabilization of collision pairs. In chapter 3 the
(radiation–less) stabilization of collision pairs in the presence of a solvent is
studied. In particular, we investigated solvent effects on hydrogen halide asso-
ciation reactions by attaching a rare gas “microsolvation” to the halide reagent,
see B.1. The follwing two cases serve as models: For the H + Cl· · ·Ar system
the existence and the extent of the third–body or “chaperon” effect is explored.
Already a single solvent atom can stabilize a collision pair by removing some
energy from it such as to keep it from redissociating. Due to kinematic con-
straints for the energy transfer from the H–Cl mode to the Cl–Ar mode, we find
ro–vibrationally hot products while only a very small fraction of the available
energy is found in product translation. Among the most interesting predictions
is the discovery of very long–lived orbiting resonances with lifetimes in the order
of picoseconds.

To explore the transition from gas to condensed phase dynamics, the cage
effect on association reactions was studied in B.2 for the H + Cl· · ·Ar12 system
where a first complete solvation shell shields the Cl reactant. We found a
pronounced structural transition between T = 40 K and T = 45 K in MD
simulations of ClAr12. The reactivity to form HCl molecules in collisions with
a H atom can be extremely sensitive to the melting–like transition. Our novel
approach can serve to elucidate more on the much debated question of “phase
transitions” in finite systems. In this way, reactive collisions could provide an
alternative to the spectroscopy of chromophores embedded in solvent clusters.

Finally, the studies of association reactions are extended towards larger sys-
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tems in order to model nucleation from the gas phase towards the formation of
bulk matter. In particular, associative collisions of alkali halide molecules and
clusters are studied in B.3 as a model for cluster growth from the gas phase.
The collision complexes investigated here are large enough to redistribute the
excess energy among their abundant internal degrees of freedom for a relatively
long time before they finally are stabilized by evaporation. The cluster sizes
considered here (up to the tetramer) are on the border of the validity of statis-
tical RRKM models. While general trends can be explained in terms of these
models, a detailed microscopic study is necessary to understand the quantitative
effects.

Photodissociation of molecules in clusters and matrices. The process
of light–induced bond breaking is investigated in chapter 4. Here our special
emphasis is on the cage effect delaying or hindering the photofragments from
separation and on possible cage exit mechanisms. In analogy to our treatment
of solvent–induced association reactions, hydrogen halide molecules in the en-
vironment of rare gas clusters and matrices are chosen as model systems. As
a presupposition for the understanding of the photodissociation dynamics, the
vibrational and rotational spectroscopy of these guest–host systems is investi-
gated first.

Vibrational frequency shifts of the guest molecule serve to characterize the
structure and size of the rare gas host systems. Using vibrationally adiabatic
atom–molecule potentials the following two effects are found in C.1: (1) Icosa-
hedral and octahedral symmetry give rise to distinctly different frequency shifts
and (2) between three and five complete solvation shells are required in order
to reach convergence of the shift towards the value for bulk matter.

The rotational spectroscopy is characterized by nearly free rotations of the
hydrogen halide molecules with respect to the rare gas cluster (C.2) or matrix
(C.3) because the anisotropy of the atom–molecule interaction cancels to a
large extent for systems with closed solvation shells. Apart from small but
characteristic splittings of degenerate energy levels, the main influence of the
solvation is that it imposes its symmetry on the rotational wavefunctions.

Based on this knowlegde of the initial state, the excited state dynamics is
investigated. The hydrogen atom wavepacket motion shows distinctly quantal
features such as bifurcations and interferences. The initial rotational wave-
functions have important implications on this dynamics i. e. the cage exit
probability sensitively depends on its initial rotational state. Furthermore, the
quantum yield of a photodissociation reaction also depends on the vibrational
state of the guest molecule.

As a consequence, we suggest a novel extension from vibrationally to rota-
tionally, or ro–vibrationally mediated chemistry for isolated molecules in clus-
ters (C.2) or matrices (C.3) which proceeds via (far–)infrared pre–excitation of
the molecules to be photolyzed. A further development of this idea is the re-
cently proposed librational control of the reactivity of photofragments in small
hydrogen containing clusters [389].

Finally, first steps towards a full treatment of the photodissociation dy-
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namics of molecules in clusters and matrices have been made. Here quantum–
classical or other approximate quantum mechanical methods have to be applied.
For clusters with one complete solvation shell the different energy transfer of
H versus D atoms leads to vibrational excitation or complete decomposition of
the solvent cage, respectively. Another consequence of the cage dynamics is the
quenching of resonance structures in the absorption spectrum.



Chapter 6

Ausführliche
Zusammenfassung

Die vorliegende Habilitationsschrift behandelt die Dynamik elementarer chemis-
cher Reaktionsschritte. Insbesondere der Prozeß der Bindungsknüpfung (As-
soziation) und des Bindungsbruches (Dissoziation) werden studiert. Sowohl
lichtinduzierte als auch stoßinduzierte Reaktionsmechanismen sind Gegenstand
der Untersuchungen. Anhand der Einbettung einfacher zweiatomiger Modell-
systeme in Cluster und Matrizen aus Edelgasatomen wird der Übergang der
Dynamik des Knüpfens und Brechens chemischer Bindungen von der Gasphase
zur kondensierten Phase systematisch untersucht.

Methodik. Die zur Anwendung kommenden Methoden hängen sowohl von
der Größe der Systeme als auch von den interessierenden Größen ab. Sie re-
ichen von rein klassischen Trajektoriensimulationen oder quanten-klassischen
Hybridverfahren für größere Systeme bishin zu quantenmechanischen (ex-
akten oder störungstheoretischen) Wellenpaket-Propagationen für die kle-
insten (zweiatomigen) Systeme. Bei letzteren wird auch die Wechsel-
wirkung mit äußeren, zeitabhängigen elektromagnetischen Feldern gepulster
Laser mit eingeschlossen. Vollständig dreidimensionale quantenmechanische
Behandlungsweisen von Kontinuums-Wellenfunktionen und Wellenpaketen wer-
den aus der Streutheorie übernommen und weiterentwickelt. Dabei wird der Ef-
fekt der molekularen Rotation auf Photoassoziations-Prozesse, insbesondere das
Auftreten von quasi-gebundenen Zuständen und Rotations-Kohärenzen, zum
ersten Mal berücksichtigt. Zur Beschreibung der Dynamik der Photodissozia-
tion kleiner Moleküle in Clustern und Matrizen ist eine effiziente Technik zur
Symmetrieadaptierung von Wellenpaketen entwickelt worden.

Photoinduzierte Stabilisierung von Stoßpaaren. In Kapitel 2 werden
photoassoziative Stöße zweier Atome betrachtet. Durch stimulierte Emission
von Licht kann ein Stoßpaar stabilisiert werden, um ein Molekül im elektroni-
schen Grundzustand zu bilden. Die Arbeiten in A.1 und in A.2 stellen die ersten
Studien der Grundzustands-Photoassoziation mittels infraroter Pikosekunden-
Lichtpulse dar. Durch gleichzeitige Optimierung des einfallenden Wellenpaketes
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und des Laserpulses kann Photoassoziation mit einer Effizienz von mehr als
80% für ein rotationsloses Modell eines O + H-Stoßpaares erreicht werden.
Gleichzeitig kann eine extrem hohe Selektivität bezüglich des Schwingungs-
zustandes des Produktmoleküls nah bei 100% realisiert werden, wenn keine
Koinzidenz mit Übergängen höherer Ordnung vorliegt.

Eine Erweiterung dieses Modells, die auch Rotationsfreiheitsgerade mit ein-
schließt, wird in A.4 vorgestellt. Unter Ausnutzung der hohen Streuquer-
schnitte quasi-gebundener Zustände haben wir gezeigt, daß die Effizienz von
Photoassoziations-Reaktionen wesentlich gesteigert werden kann. Dabei ist die
Präparation von Molekülen in spezifischen Schwingungs-Rotations-Zuständen
möglich, weil die Bedingung für das Auftreten eines quasi-gebundenen Zus-
tandes nur für eine spezielle Partialwelle vorliegt.

Im Prinzip steht der Prozeß der Grundzustands-Photoassoziation mittels
stimulierter Emission in Konkurenz zur lichtinduzierten Beschleunigung durch
Absorption. Bei dieser Klasse von inelastischen Stößen werden die Partner im
Feld eines Laserpulses beschleunigt. In Analogie zu den Phänomenen der Ioni-
sierung beziehungsweise Dissoziation im Kontinuum entspricht die Zunahme der
kinetischen Energie der Energie eines oder meherer Photonen. Dieser Prozeß
wird in A.2 and A.4 untersucht und die Bereiche geeigneter Laserparameter
werden erkundet.

Auch die Frage der elektronischen Zustands-Selektivität ist in der vorliegen-
den Schrift behandelt worden. Dies ist besonders für Moleküle interessant, bei
denen tiefliegende gebundene elektronische Zustände vorliegen und wo Photoas-
soziation im Grund- und angeregten Zustand bei vergleichbaren Frequenzen
auftreten kann. In A.3 wird für das Beispiel des OH-Radikals gezeigt, daß auch
in diesen Fällen verschiedene Kontrollmechanismen existieren. Abgesehen von
der verschiedenen Polarisierungsrichtung der permanenten und der Übergangs-
Dipolmomente kann effektive Kontrolle auch durch Variation der Streuenergie
ausgeübt werden.

Bei Benutzung noch kürzerer Pulse im Bereich von Femtosekunden können
kohärente Überlagerungen von Schwingungs-Rotations-Zuständen angeregt
werden. Die Zeitentwicklung der so entstehenden Wellenpakete kann in
modernen Pump-Probe-Experimenten direkt beobachtet werden. Dies ist
in A.5 für das Beispiel der Excimer-Bildung von Quecksilber gezeigt wor-
den. Im Grenzbereich der klassischen und der Quantenmechanik werden
(nicht–ganzzahlige) Wiederkehren der Wellenpaketdynamik vorhergesagt. Die
schnellen und die langsamen Strukturen in den experimentellen Spektren
von Marvet und Dantus können mittels Quantenschwebungen verschiedener
Schwingungs- bzw. Rotations-Zustände interpretiert werden. Es ist beachtlich,
daß diese spektralen Strukturen sogar für relativ hohe Temperaturen bestehen
bleiben. Außerdem konnte durch das Ausschließen des Vorliegens von van der
Waals-Vorläufer-Komplexen die bimolekulare Natur des Experiments eindeutig
gezeigt werden.

Lösungsmittel-induzierte Stabilisierung von Stoßpaaren. In Kapitel 3
wird die strahlungslose Stabilisierung unter Anwesenheit eines Lösungsmittels
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studiert. Im Speziellen haben wir Lösungsmittel-Effekte bei der Assoziation
von Wasserstoff-Halogeniden durch Anhängen einer “Mikro-Solvatation” aus
Edelgasatomen an den Halogenid-Reaktanden modelliert. Die folgenden beiden
Fälle dienen dabei als Prototypen. Anhand des H + Cl-Ar Stoßpaares wird in
B.1 die Existenz des Dreikörper- oder “Chaperon”-Effekts erforscht. Dabei hat
sich gezeigt, daß schon die Existenz eines einzigen Lösungsmittel-Teilchens ein
Stoßpaar stabilisieren kann, indem es einen Teil der Überschußenergie aufnimmt
und dadurch das Molekül vom erneuten Dissoziieren abhält. Aufgrund kine-
matischer Beschränkungen für den Energietransfer von der H-Cl-Mode zur Cl-
Ar-Mode liegen die Produkte in sehr hohen Schwingungs-Rotations-Zuständen
vor, und nur ein kleiner Bruchteil der verfügbaren Energie geht in Translation
der Produkte über. Zu den interessantesten Voraussagen gehört die Entdeck-
ung sehr langlebiger “Orbiting”-Resonanzen mit Lebensdauern im Bereich von
Pikosekunden.

Um den Übergang von der Gasphase zur kondensierten Phase zu simulieren
und insbesondere den Käfigeffekt bei Assoziations-Reaktionen zu erkunden,
wurde in B.2 das System H + Cl· · ·Ar12 als Beispiel gewählt, bei dem der
Cl-Reaktand von einer ersten vollständigen Solvatationshülle umgeben ist. Wir
haben einen deutlichen strukturellen Übergang zwischen T = 40 K und T = 45
K in MD-Simulationen von ClAr12 gefunden. Die Reaktivität bezüglich der Bil-
dung von HCl-Molekülen in Stößen mit einem H-Atom kann äußerst empfindlich
von diesem “Schmelzübergang” abhängen. Somit kann dieser neuartige Ansatz
dazu dienen, zur vieldebattierten Frage von Phasenübergängen in endlichen
Systemen beizutragen und könnte so eine Alternative zur Spektroskopie von
Chromophoren in Lösungsmittel-Clustern bieten.

Schließlich sind die Studien von Assoziations-Reaktionen hin zu größeren
Systemen ausgeweitet worden, um die Nukleation von kondensierter Materie
aus der Gasphase zu simulieren. Dazu werden in B.3 assoziative Stöße von
Alkalihalogenid-Molekülen und -Clustern untersucht. Die hier untersuchten
Stoßkomplexe sind groß genug, um die überschüssige Energie unter ihren vie-
len Freiheitsgraden für relativ lange Zeit umzuverteilen, bevor sie schließlich
durch Abdampfen von Teilchen abkühlen. Die hier betrachteten Clustergrößen
bis zum Tetramer liegen an der Grenze der Gültigkeit statistischer RRKM-
Theorien. Während allgemeine Trends noch von diesen Modellen erklärt wer-
den können, ist eine detaillierte mikroskopische Studie nötig, um die Effekte
auch quantitativ zu verstehen.

Photodissoziation von Molekülen in Clustern und Matrizen. Der
Prozess des lichtinduzierten Bindungsbruchs wird in Kapitel 4 behandelt. Hi-
erbei ist der Themenschwerpunkt auf den Käfigeffekt, der die Trennung der
Photofragmente verzögert oder verhindert, und auf mögliche Käfigaustritts-
Mechanismen zentriert. Analog zu unserer Behandlung von Lösungsmittel-
induzierten Assoziationsreaktionen dienen auch hier Wasserstoff-Halogenid-
Mokleküle in der Umgebung von Edelgasclustern und -matrizen als Modellsys-
teme. Als Voraussetzung für das Verständnis der Photodissoziations-Dynamik
wird zunächst die Schwingungs- und Rotations-Spektroskopie dieser Wirts-
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Gast-Systeme betrachtet.
Schwingungsfrequenz-Verschiebungen der Gastmoleküle dienen zur Charak-

terisierung von Struktur und Größe der Edelgas-Wirts-Systeme. Basierend auf
schwingungs-adiabatischen Atom-Molekül-Potentialen sind in unseren Unter-
suchungen in C.1 folgende zwei Effekte gefunden worden. (1) Die ikosaedrische
und oktaedrische Symmetrie von Clustern bzw. Matrizen spiegelt sich in deut-
lich verschiedenen Frequenzverschiebungen wieder, und (2) zwischen drei und
fünf vollständige Solvatationshüllen sind erforderlich, um Konvergenz der Ver-
schiebungen gegen den Wert für unendlich ausgedehnte Materie zu erreichen.

Die Rotationspektroskopie ist gekennzeichnet durch annähernd freie
Rotation der Gast-Moleküle, weil die Anisotropie der Atom-Molekül-
Wechselwirkung sich für Systeme mit geschlossenen Lösungsmittelhüllen weit-
gehend aufhebt. Abgesehen von kleinen aber charakteristischen Aufspaltungen
der entarteten Energieniveaus besteht der wesentliche Einfluß der Umgebung
darin, daß sie den Rotations-Wellenfunktionen ihre Symmetrie aufzwingen.

Aufbauend auf dieser Kenntnis der Anfangszustände, wurde die Dynamik
im angeregten Zustand untersucht. Die Wellenpaket-Bewegung des H-Atoms
weist quantenmechanische Merkmale, wie z.B. Bifurkationen und Interferen-
zen auf. Der anfängliche Rotationszustand hat wichtige Implikationen für
die Photodissoziations-Dynamik, insbesondere hängt die Wahrscheinlichkeit
für einen Käfigaustritt empfindlich von ihm ab. Außerdem hängt die Quan-
tenausbeute der hier untersuchten Photodissoziations-Reaktionen auch vom
Schwingungszustand der Gastmoleküle ab.

Schlußfolgernd schlagen wir eine neuartige Erweiterung des Konzepts
der schwingungsgesteuerten hin zu einer rotationsgesteuerten Photochemie
isolierter Moleküle in Clustern (C.2) oder Matrizen (C.3) vor, die mittels einer
Infrarot-Anregung der zu photolysierenden Moleküle kontrolliert wird. Eine
Weiterentwicklung dieses Konzeptes besteht in der kürzlich vorgeschlagenen
Librations-Kontrolle der Reaktivität von Photofragmenten in wasserstoffhalti-
gen kleinen Clustern [389].

Schließlich sind auch erste Schritte in Richtung auf eine vollständige Be-
handlung der Photodissoziations-Dynamik von Molekülen in Clustern und
Matrizen unternommen worden. Hierbei müssen quanten-klassische oder
andere Näherungsverfahren angewendet werden. Für Cluster mit einer
vollständigen Solvatationshülle führt der unterschiedliche Energietransfer von
H und D-Atomen zu Schwingungsanregung bzw. vollständiger Fragmentierung
des Käfigs. Eine weitere Konsequenz der Käfigdynamik besteht in einer
Auslöschung der Resonanzstruktur des Absorptionsspektrums.
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die hier vorgestellten Arbeiten während der letzten Jahre entstanden sind.
Vor allem möchte ich Peter Backhaus, Mikhail Korolkov, Britta Meißner,
Boris Proppe sowie Peter Saalfrank für die anregende und interessante wis-
senschaftliche Zusammenarbeit danken. Außerdem waren Holger Busse und
Markus Oppel mit ihren zahlreichen Hilfestellungen im Zusammenhang mit den
auftretenden Computerfragen sowie Markus Miertschink mit der Erstellung von
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(Berlin), Preprint SC-96-47 , available through http://www.zib.de/bib.

[326] R. B. Gerber, V. Buch, and M. A. Ratner, J. Chem. Phys. 77, 3022
(1982).

[327] R. B. Gerber, M. A. Ratner, and V. Buch, Chem. Phys. Lett. 91, 173
(1982).

[328] J. Mavri, H. J. C. Berendsen, and W. F. van Gunsteren, J. Phys. Chem.
97, 13469 (1993).

[329] P. Bala, B. Lesyng, and J. A. McCammon, Chem. Phys. Lett. 219, 259
(1994).

[330] P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon, J. Phys. Chem.
100, 2535 (1996).

[331] S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101, 4657 (1994).

[332] S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 105, 2236 (1996).

[333] N. P. Blake and H. Metiu, J. Chem. Phys. 101, 223 (1994).

[334] N. Balakrishnan and G. D. Billing, J. Chem. Phys. 104, 4005 (1996).

[335] G. D. Billing, J. Chem. Soc. Faraday Trans. 93, 833 (1997).

[336] F. A. Bornemann, P. Nettesheim, and C. Schütte, J. Chem. Phys. 105,
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