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ABSTRACT 

A method for calculating the shifts of vibrational excitation frequencies in molecular 

clusters is presented. It is based on second order non--degenerate perturbation theory and 

refers to early pubhcations of Buckingham. The resulting formula involves off-diagonal 

cubic force constants thus accounting for coupling of the individual molecular normal modes. 

It is applied to the C---O stretching mode in methanol dimers and to all three modes in water 

dimers. The results are in good agreement with experimental values with exception of the 

v3-mode of the donor molecule in the water dimer where the perturbation approach was 

found to be not adequate. 

INTRODUCTION 

The study of vibrational frequency shifts in molecular spectra has been one of the 

most important tools in understanding the intermolecular forces in hquids. This is especially 

true for hydrogen-bonded molecules with O-H groups which play an important role in 

solvation problems [1]. The difficulty, however, is that the experimental data is often not 

sufficient to unravel details of the very complex processes occurring in liquids. To obtain 

more specific information the frequency shift of a special intramolecular motion of such a 

molecule is measured in various polar and non-polar solvents and solutions of proton donor 

and acceptor molecules [2-5]. In this way results were obtained demonstrating the 

cooperative effect of hydrogen bonding in alcoholic solutions [5] and the spectral line shift 

upon H-bonding by proton donor and acceptor molecules [3]. This procedure then allows one 
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to derive at least qualitative conclusions about the behavior of these molecules and the 

nature of the forces [4]. 

Recently spectroscopic information on special vibrational modes of small water and 

methanol clusters became available from which direct information on the intermolecular 

forces can be obtained. Here we would like to refer to measurements of the O-H stretching 

vibrations of water by infrared [6--8] and CARS spectroscopy [9]. Similar results have been 

obtained for the C--O stretching vibration of methanol which has been measured as a 

function of cluster size both for vibrationaUy cold [10] and warm [11,12] species by 

combining the IR predissociation technique with the generation of size selected neutral 

dusters in a scattering process [13,14]. Here we mainly focus on the calculation of the shift of 

this intramolecular frequency in methanol dimers, for which the experiments show an 

interesting splitting into two lines which are red-  and blue-shifted compared to the gas 

phase monomer frequency. The understanding of these frequency shifts in terms of the 

intermolecular interaction will then enable us to compare the result with those obtained in 

liquids [3] and to improve the simulation of liquids. 

There is a number of publications concerned with the calculation of vibrational line 

shifts in dusters. One possibility is to calculate an ab initio potential surface and to 

determine directly the cluster geometries and vibrational frequencies [15,16]. This is a very 

time consuming task, especially if the calculations are carried out beyond SCF level. Another 

method is to start from a well established empirical potential model and then combining 

variational methods to obtain the instantaneous intramoleculaz frequencies with a classical 

simulation to model the thermal averaging [17] or carrying out a quantum simulation serving 

both purposes at a time [18]. Our much simpler approach is in the spirit of ideas going back 

to Buckingham [19,20] who calculated line shifts of molecular vibrations in the presence of 

solvent molecules using second order perturbation theory. His method is easily applicable to 

molecular clusters and can be used to compare calculated with experimental spectra which 

appear in increasing number in the literature. In the next section we present the formula and 

discuss the necessary input information, the intramolecular force field and the empirical 

model potentials. The results for methanol and water dimers are given in the following 

sections and will be discussed in the last section. 

A METHOD FOR CALCULATING VIBRATIONAL LINE SHIFTS 

The Intramolecular Force Field 

The most fundamental prerequisite for the numerical treatment of vibrational line 

shifts occurring upon duster formation is the knowledge of the intramolecular force field 

governing the vibrational-rotational spectra of the isolated molecule. We follow the 
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treatment of PapouSek and Aliev [21] which in contrast to the classical work of Wilson, 

Decius, and Cross [22] also gives an exhaustive description of the effects of anharmonicity 

which plays an important role for the examples discussed below. 

Definition of Internal Coordinates 

The procedure for the quantitative description of vibrations of a molecule consisting 

of N atoms starts with the definition of internal coordinates. A favorable choice is the use of 

valence coordinates such as bond lengths and different kinds of valence angles. The 3N-6 

coordinates (3N-5 for a linear molecule) can be written as a Taylor series in terms of the 

3N cartesian components dap of the vectors of displacement from the equilibrium geometry 

Rk - - Z B k , a p  dap-1-½ Z Z Bk,ap,bq dap dbq + ' ' ' '  (I) 
a,p a,p b,q 

where the indices a and b denote the different atoms, while the indices p and q stand for 

x,y,z. The tensor elements Bkap and Bkapbq can be evaluated by taking the 1 st and 2 nd 

derivatives of the (generally curvilinear) internal coordinates with respect to the dap. In 

harmonic force field calculations it is sufficient to cut off the expansion after the first term 

on the right-hand side of Eq. (1). The coefficients Bkap are identical to the first 3N-6 rows 

of the B-matrix encountered in the standard definition of (rectilinear) internal coordinates 

[22]. In this case the B-matrix is augmented by six rows giving the coefficients of the Eckart 

conditions [23]. 
For anharmonic problems where finite amplitudes are considered it is necessary to 

include also higher terms of Eq. (1) to account for the fact that the atoms are moving on 

curved paths during angular vibrations. Aside from yielding a simpler form for the potential 

energy (smaller off-diagonal terms), these coordinates are solely geometrically defined and 

do not depend on the atomic masses or on isotopic substitution. They can be related to the 

normal coordinates Qr by a nonlinear transformation 

r s 

The coefficients Lkr are identical to the L-matrix obtained when solving the harmonic 

problem, which also yields the rectilinear normal coordinates Qk. The second order tensor 

elements Lkrs can be obtained from 

Lk,rs = ~ ~_~ Bk,ap,bq ma -'1/2 mb-l l2  lap,r gbq,s ' (3) 
a,p b,q 
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where m is the atomic mass and t is defined by the matrix product 

l = M -1 /2  B T (L- l )  T (4) 

Although this method of calculating the L-tensor dements involves multiple summations 

and requires more storage, it is much easier to implement as a computer code than the more 

sophisticated method proposed by Hoy et al. [24], who give special formulae for certain kinds 

of internal coordinates. Although their formulae are quicker to evaluate, we decided not to 

use them, since, unlike in a fitting procedure, we had to calculate the tensor elements only 

once for each molecule. 

The Potential Energy Function 

The intramolecular potential energy V can be expanded in terms of the internal 

coordinates introduced above 

V = ½Z fij Ri Rj ÷ ~Z fijk Ri Rj R k ÷ .. . ,  
i j  i jk  

(s) 

where the force constants fij, fijk are defined in the usual manner as derivatives of V with 

respect to the internal coordinates R taken at the equilibrium geometry. This representation 

is often found in publications of ab initio force fields. For spectroscopic applications, 

however, it is conventional to express the force field in terms of normal coordinates 

V = ½ Z  A i Q i 2 ÷ ~ Z  ~ i j k Q i Q j Q k ÷ " "  ' 
i ijk 

(s) 

or more conveniently in units of wavenumbers (cm -1) 

V/(hc) = ½ Z  wiqi2 + ~ Z  ¢ijk qi qj qk + " " '  
i i jk  

(~) 

in which qi stands for dimensionless normal coordinates [21] 

qi := (2rcwi/k)l/2 Qi ' (8) 
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and where the harmonic frequencies wi and the cubic force constants ¢ijk are given in 

wavenumbers. This convention will be followed through the rest of the present paper. 

Now it is desirable to find a transformation from the internal coordinate force 

constants fij, fijk to the normal mode coordinate force constants hi and ¢ijk. This can be 

attained by substituting Eq. (2) into Eq. (5): 

~r = .~ .  fij Li,r Lj,r (9) 
1j 

and 

*rst = ~  ~jkLi,rLj,sLk,t ÷ .~. ~j (Li,rsLj,t ÷ Li,rtLj,s ÷ Li,stLj,r) 
i jk  Ij  

(10) 

One interesting property of this non-linear transformation has to be mentioned: The cubic 

constants ¢ijk used in the lineshift formula put forward in the next chapter depend on both 

quadratic and cubic constants fij and fijk. Consequently, to obtain the normal coordinate 

force field up to 3 rd order, L-  and B-tensor elements up to 2 nd order have to be evaluated. 

The Buckingham Formula 

Long before cluster spectroscopy became available, shifts of spectral lines due to the 

vibrational excitations of molecules soluted in liquids were observed. The first quantitative 

studies were pubhshed by Buckingham [19,20], who explained line shifts as well as changes 

of intensities and line shapes in terms of the interaction potential of solute and solvent 

molecules. He proposed to treat the interaction of a solute molecule with its environment as 

a perturbation acting on isolated molecules. As a reference Hamiltonian for the description 

of vibrations of the solute molecule the harmonic oscillator approximation is chosen 

H0/(hc ) = ~  w i(pi 2 + q i  2) , (11) 
i 

where the summation extends over all 3N---6 normal modes of an N-atomic molecule and 

where qi and Pi stand for the dimensionless normal coordinates defined in Eq. (8) and their 

conjugate moments, respectively. The perturbation Ha arising from the anharmonic terms of 
the intramolecular force fields (omitting higher than cubic terms) is taken from the second 

term on the right-hand side of Eq. (7). Similarly, the intermolecular potential AE is 

expanded in terms of intramolecular normal coordinates of the solute molecule 
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0(AE~ AE = AEo + L  ~qi +½Z ~'~"~" qi qj + . . . .  aq i aqj 
(12) 

Note that the derivatives of AE which is a function of both all intermolecular and all 

intramolecular coordinates, have to be calculated with keeping the intermolecular 

coordinates which describe the cluster configuration constant. In the following we denote 

them by primes: AEi'  and AEij". 

To evaluate them one needs a parameterization of the intermolecular potential energy 

surface that also depends on the (intramoleenlar) normal coordinates. The conventional 

method for achieving that is the use of site--site--potentials. In this approach the total 

interaction of two molecules is taken as a sum of the interaction energies of all pairs of 

potential sites located on either molecule. By assigning potential sites to nuclei and/or 

binding electrons the anisotropy of a pair potential can be modeled without using 

complicated terms for the orientational dependence and, therefore, also large (biochemical) 

molecules can be modeled [25]. Another advantage is that the potential parameters for 

certain sites may be identical for different molecules thus allowing for the transferability of 

these parameters. An example for this is the methanol pair potential [26] used in the 

following section. The dependence of the pair interaction energy on the normal coordinates is 

then easily calculated by translating the potential sites. The cartesian components of these 

displacements can be obtained by inverting the linear parts of Eq. (1) and (2) adhering to 

the Eckart conditions [23] to keep the center of mass and the orientation of the molecule 

constant. 

Then vibrational energy levels can be calculated using standard second order 

non-degenerate perturbation theory [27]: For the solute molecule we take Ha+AE--AE0 as 

perturbation operator, for the isolated molecule we take Ha only. This is done for the ground 

state and the state in which only the i - th  mode is excited to ni -- 1. Taking the appropriate 

differences, yields for the shift Awl (in wavenumbers) of the corresponding spectral line 

3N--6 , 

, , -V z wf ] / (hc). (13) 

Note that here the spectral line shift is given in terms of dimensionless normal coordinates as 

suggested by Westlund et al. [9.8]. The first term on the right-hand side represents the 

change of the force constant of the vi-mode arising from the intermolecular forces. The 

negative of the first derivatives ABj' occurring in the second term can be interpreted as 

generalized forces corresponding to the intramolecular normal coordinates which are induced 

by the intermolecular forces. The sign and the size of their contribution to the line shift is 

proportional to the cubic anharmonic force constant ¢iij. If the ¢iij is negative (as is usually 

the case for diagonal stretching force constants  ~iii) a positive force (AEj'  < 0) causes a red 

shift because in this case the curvature of the ul-potential decreases with increasing value of 
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the vj-normal coordinate. The summation over j indicates that the lineshift of the i - th  

mode is coupled through the ~iij to all other symmetry allowed normal modes. This coupling 

makes the interpretation more complex than for the case of diatomic molecules [19]. 

THE METHANOL DIMER 

As a first test the Buckingham formula is applied to methanol dimers. Recently 

published spectra of mass-selected clusters (dimer to hexamer) in the region of the vs---band 

(1033.5 cm-l, A'--symmetry) exhibit interesting structures for these hydrogen-bonded 

complexes [11]. The dimer spectra measured most precisely for cold clusters [10] are splitted 

into two lines, one shifted by 18.1 cm-1 to the blue, the other shifted by 7.0 cm-1 to the red 

with respect to the monomer absorption frequency. It is subject of this chapter to assign 

these two lines to the (hydrogen-)donor and acceptor and to compare them with the values 

calculated using two different intermolecular potential energy surfaces. 

The intramolecular force field is taken from a publication of Schlegel et al. [29], who 

calculated a force field from ab initio SCF data using a standard 4--31G basis set. It  includes 

the cubic force constants fiij and some of the quartic force constants fliii. Although 

deviations to experimental frequencies are relatively large (48.5 cm -1 for the O - H  stretching 

frequency, 12.5 cm -I for the C-O stretch), it gives many anharmonic force constants which 

are not available from fits to experimental spectra. Furthermore, the absolute frequencies 

are not of big importance for the calculations of line shifts. The quadratic and cubic force 

terms of the force field were transformed non-linearly according to Eq. (9) and (10) to 

obtain normal coordinate force constants. To check the transformation, anharmonicity 

constants Xil are calculated [30] and compared to those published together with the force 

fidd [20]. 
Two different models of the intermolecular pair potential will be discussed: These are 

the OPLS-potential  of Jorgensen [26] and the PHH-potential of P~link~s et al. [31]. Both 

represent the potential energy surface by three sites on each molecule, one for the methyl 

group CH3, one for the oxygen, and one for the hydroxyl hydrogen atom. Note that two 

other potentials, the empirical EPEN/2-model [25] and the quantum mechanical 

QPEN-model  [3~.], are not considered because both involve potential sites for binding and 

lone pair electrons thus making it more difficult to describe the pair potential as a function 

of the intramolecular normal coordinates. The PHH-potential is constructed from a 

modified version [33] of the water potential of Stillinger and Rahman [34] and the methyl 

group potential of Jorgensen [35]. The OPLS--potential is fitted to experimental liquid data, 

describing the interaction of the molecules A and B by a Coulomb term for all pairs of sites 

plus a Lennard--Jones potential for the heavier sites 
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" + - -  2 

ieAjell  47re0 ri j  r i j  ij 
(14) 

where rij stands for the distance between the sites i and j and where the standard 

combination rules Aij = (AiiAjj) 1/2 and Cij = (CiiCjj) 1/2 are used. The parameters A and 

C are related by Aii = 4eiai 12 and C i i  = 4eiai 6 to the Lennard-Jones parameters e and a 

given in Table 1. The gas phase bond lengths and angle used here are 94.5 pm and 143.0 pm 

for the O-H  and C-O bond length, respectively, and 108.50 for the COH angle. 

TABLE 1: Parameters of the OPLS-potential for methanol 

site qi/e ai/pm ei/kJ, mol-I 

CH~ +0.265 384 0.799 

O --0.7 307 0.711 

II +0.435 - - 

Dimer configurations are calculated by minimizing the binding energy using a 

downhill---simplex algorithm [36] while keeping the monomer units rigid in their equilibrium 

geometry. The structures obtained for the two potential models are very similar: The 

hydrogen bond O - I I - - . O  is linear with an O---O distance of 274 pm for the OPLS-model 

and 285 pm for the PHH-model. The typical dimer configuration is shown in Fig. 1. The 

binding energies AE0, however, differ by about 20%: The well depths are -28.53 kJ/mol for 

OPLS and -23.44 kJ/mol for PHH. The difference is mainly caused by the different 

H) 

FIGURE 1: The mctanol dimcr 
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electrical charges assigned to the potential sites resulting in a different value for the (static) 

monomer dipole moment (7.41.10-30 Cm vs. 6.44.10 -30 Cm ). 

The shifts of the vs--excitation line calculated for these dimer configurations are 

shown in Table 2. The values obtained for both potentials differ only very little and are in 

good agreement with the experimental values. It is evident that the red shifted line 

corresponds to the acceptor, the blue shifted to the donor. In addition, the calculations are 

able to qualitatively reproduce the size of the shift: While the predicted red---shift of 4 cm -1 is 

3 cm-t smaller than the experimental one, the prediction for the blue shift is even better: 

The difference is 28% for the OPLS-potential and only 6% for the PHH-potential. Both 

results are surprisingly good if one takes into account how many different terms contribute 

to Buckingham's formula. 

TABLE 2: Calculated binding energies a and line shiftsb of the ~,8-mode using two different 

intermolecular potentials for the methanol dimer 

PHH OPLS experimentc 

AE0/kJ. mol'l -23.44 -28.53 - 

donor +17.1 +23.1 +18.1 

acceptor --4.0 --4.1 -7.0 

a The binding energies are calculated keeping the monomer units at their equilibrium 

geometry. 

b line shifts are given in cm-1 

c Ref. [10] 

In what follows we want to examine these contributions more in detail. For this 

analysis we chose the OPLS-potential because of its considerably simpler analytical form. 

Aside from the first term on the right-hand side of Eq. (13), proportional ~lE", we have to 

consider those summands in the second term with large values of ~iij. For the shift of the 

C--O stretching frequency (i=8) these are the cubic force constants Cssl, ¢sss, ¢ssn and Csss 

amounting +253, +79, +130, and -279 cm-Z, respectively. They represent the anharmouic 

coupling of the C--O stretch to the O-H stretch (¢ssl), the O-H bend (¢ss6), and the 

CH3-rock (¢887), and the diagonal cubic force constant (~bsss) of the C-O stretch, itself. The 

individual contributions to the shift of the donor and the acceptor molecule are listed in 

Table 3. They are also split up into contributions from the three different potential terms in 

Eq. (14), that is the Coulomb term and the repulsive and attractive part of the 

Lennard-Jones potential. 
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The most striking fact when comparing the different columns of Table 3 is that the 

electrostatic forces dominate the line shift. The exchange and dispersion forces represented 

by the Lennard-Jones potential in Eq. (14) only play a role for the terms involving AEs' 

and AEs", while for the other terms they are almost negligible. On the one hand, this 

accounts for the preponderantly electrostatic character of the hydrogen-bond and, on the 

other hand, they might be due to the simple potential model omitting a Leunard-Jones 

potential for the O-H and the H-H interaction. 

TABLE 3: Analysis of the main contributionsa to the line shift of the us-mode in the 

methanol dimer using the OPLS--potential 

donor acceptor 

contribution Coul. Rep. Attr. Coul. Rep. Attr. 

+1/2. AE88" +8.2 +2.5 -0.5 +2.7 +3.5 -0.5 
-1/2 .  ~888" AEs'/oJ8 --17.8 +4.2 +0.I --24.8 +i0.0 --2.0 

--1/2. ¢)s81" AEI'/Wl +18.0 +0.8 -0.2 +3.7 -0.5 +0.2 

--1/2- ~888" AE6'/we +2.0 +0.8 -0.1 +2.8 --I.i +0.3 

--1/2- ~ssT- AET'/~7 +4.3 +0.7 -0.1 +0.8 +0.9 +0.2 

Sum +14.9 +9.I -0.9 -14.8 +12.4 -1.8 

a all numbers are given in cm-1 

When comparing the rows of Table 3 corresponding to the different terms of Eq. (13) 

one finds that the contribution from the coupling of the vr-mode (C--O stretch) to the 

vl-mode (O-H stretch) is as important as the first two terms describing the dependence of 

the pair potential on the vs--coordinate itself while coupling to the vs-  and vr--mode is found 

to be of less influence on the resulting line shifts. 
Now the individual terms summed up in Eq. (13) will be discussed in more detail 

under special consideration of what causes the pronounced difference in the line shifts of the 

donor and the acceptor molecule. The first two contributions to the line shifts arising from 

the uFpotentiai itself can be explained most easily by regarding the methanol molecule to 

be like a diatomic consisting of the methyl group (CH3) and the hydroxyl group (OH) with 

the ur-coordinate being the distance between them. The mutual attraction of the hydroxyl 

groups stretches both C--O oscillators which results in a red shift, because, for a negative 

cubic force constant ~888, the local curvature of the C--O potential decreases with increasing 
C--O distance. These red shifts are similar for donor and acceptor yielding -13.5 cm-1 and 
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-16.8 cm -t, respectively. It is interesting to investigate the contributions from different pairs 

of sites to these numbers. The repulsive 0---0 potential is overcome by the approximately 

twice as large attraction of the O-H potential which in the OPLS-potential is described by 

an electrostatic potential only. 

Aside from changing the C-O bond lengths, the binding of the hydroxyl groups also 

makes the C--O potential steeper (AEs") and thus causes a blue shift of 10.2 cm-1 for the 

donor and 5.7 cm-X for the acceptor. To understand this discrepancy one has to visualize the 

vr--mode more closely. The C-O stretch is coupled to the COH bend with a relatively large 

amplitude. Accordingly, the vr--vibration of the donor is hindered more strictly than that of 

the acceptor molecule in which the hydrogen atom does not participate in the binding. 

The third major contribution to the dimer line shifts is due to the coupling to the 

O-H stretching mode. We find that both in the donor and acceptor AEI' is negative which 

leads to an increase of the O-H distance. Naturally, this effect is considerably more 

pronounced for the donor, where for the PHH-potential model the O-H bond length was 

found to be 2 % larger than in the gas phase monomer [31]. The remarkbly large value for 

the donor (AEI' = -565 cm-t) is mostly caused by the strong H. .O attraction (AEI' = -964 

cm -1) which is only partly compensated by the repulsion of the donor hydrogen by the 

methyl group and the hydrogen atom of the acceptor. The large positive force constant ~bSSl 

= 253 cm-1 indicates that this elongation of the O-H bond makes the C-O osciUator more 

rigid thus resulting in blue shift of 18.6 cm-1 for the donor and 3.4 cm-t for the acceptor. 

Hence it follows that mostly this coupling to the O-H stretch is reponsible for the total blue 

shift of the donor line. 

When examining the contributions of the individual site-site potentials one 

disadvantage of the OPLS potential model is evident: The OH-interaction does not have a 

Lennard---Jones potential and, therefore, is purely electrostatic and strongly attractive. A 

further disadvantage is the omission of an induction term. This part of the potential is 

known to be the major contribution of the three-body interactions which has already been 

included in simulations of liquid water [37] and of SFr--dimers [38]. 

THE WATER DIMER 

As a further test the Buckingham formula is applied to the water dimer. This system 

has been subject to many experimental and theoretical studies. We use the semiempirical 

RWK2 model for the intermolecular pair potential by Reimers et al. [39], which has been 

fitted to a wide range of gas, liquid, and solid state properties. The potential energy surface 

is modeled by three sites located on the atoms of each molecule. An additional dummy 

charge is located on the bisector of the HOH angle in order to reproduce the electrostatic 

dipole and quadrupole moment of the water molecule. Aside from Coulomb terms for all 

pairs of sites there is a repulsive exponential term for the H-H interaction and a Morse 
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potential for the O - H  interaction. The O-O repulsion is described by an exponential term, 

the attraction by individually damped dispersion terms proportional to R-8, R-S, and R -10. 

The dimer structure (Cs---symmetry) is very similar to that of the methanol dimer, the 

hydrogene bond is almost linear with an O-O distance of 277 pm. 

We chose the intramolecular force field of Hoy et al. [24]. It is fitted to harmonic 

frequencies, anharmonicity constants and vibration-rotation interaction constants and 

reproduces the experimental gas phase frequencies to within 0.5 %. The force constants (up 

to quartic) are already given in normal coordinates , so there was no need to carry out the 

non-linear transformation. 

From these input data we calculate frequency shifts in the dimer for all three 

fundamentals. The results are presented in Table 4 where we compare them with results 

from infrared absorption spectra [7] and infrared predissociation spectra [8] in the region of 

the Ul- and u3-mode (3500-3800 cm-t) and to matrix isolation spectra of dimers trapped in 

A t -  and Nr--hosts [40] in the region of the ur--mode (~1600 cm-l). With the exception of the 

u3-1ine of the donor molecule the trends of the experimental line shifts are qualitatively 

reproduced, but the agreement is less impressive than in the case of the methanol dimer. 

Note that except for the u3 donor mode the agreement with the experimental values is not so 

much different than for the considerably more sophisticated quantum simulation of Coker 

and Watts  [18], who employed the same intermolecular potential model. 

TABLE 4: Results for the water dimera 

Mol Mode this work Qu-MC Experiment 

Don Vx sym. str. -143 -122 -125c,-112 d 

Don v2 bend +33 +15 +16,+24e 

Don v3 asym. str. -143 -35 -26 cd 

Acc ul sym. str. -27 -47 --57cd 

Acc us bend - 2  ---5 -2,+6e 

Acc u3 asym. str. -24 -42 -34c,-26 d 

a Line shifts are given in em -1, taken with respect to monomer frequencies of 3657, 1595, 

3756 cm -1 

b Quantum-Monte Carlo simulation, Ref. [18] 

c Re~ [8] 

d Ret  [71 

o r t ~  [01 
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Although the Buckingham formula given by Eq. (13) was originally developed for the 

simulation of solvent effects [19,20], it may be generally applied to shifts of vibrational lines 

of molecules weakly interacting with their environments. In the present paper we make use 

of this method for molecular dusters as has already been done for methyl cyanide tetramers 

[41]. Moreover, calculated lineshifts of small clusters are expected to be more sensitive to 

details of the potential energy surface than liquid spectra where both spatial and thermal 

averaging has to be accounted for. It has to be noted that the Buckingham formula is based 

on non--degenerate perturbation theory and hence is only formally correct for treating 

non-degenerate vibrational modes of a molecule embedded in an environment of different 

isotopes or molecules, while for homogeneous dusters or for (symmetric) molecules with 

degenerate normal modes degenerate perturbation theory should be applied. Examples for 

the use of degenerate perturbation theory can be found in several publications about the 

vibrational line shift of the triply degenerate ~,3-mode of sulfur hexafluoride. Eichenauer et 

al. [42] simulated the shift in SFr(Ar)n  clusters, while van der Bladel and van der Avoird 

[38] calculated the shift in SF6--dimers. In the latter case the spectra are dominated by the 

resonant dipole---dipole interaction which is not accounted for in the framework of of 

non---degenerate perturbation theory. We estimated the contribution of this effect for the 

methanol dimer. Using the experimental value for the v8-transition dipole moment of 

0.807.10 -30 Cm [43] which is well reproduced by the OPLS potential we obtain a line shift of 

-2.1 cm -t. This value is smaller than most of the other contributions to the line shift. 

Therefore, we conclude that the Buckingham formula is still a good approximation for the 

methanol dimer. 

Furthermore, the methanol results are in remarkable agreement with the conclusions 

of Kabisch and Pollmer [3]. They measured the line shift of the CO-stretching mode of 

liquid methanol in various non-polar organic solvents ranging from CHIC12 to (CH3)~CO 

and concluded that the frequency decreases upon H-bonding by the lone pairs, while it 

increases upon bonding by the hydroxyl proton. They also found that the latter shift is 

larger (13 cm-1) than the former one (4 cm-1). The present study of methanol dimers 

confirms these results and demonstrates that it is the direct interaction with the hydrogen 

bonded neighbours which causes the observed frequency shifts. 

Limitations of the method can be deduced from the results for the water dimer where 

we are concerned with OH stretching frequencies. There the shifts are about one order of 

magnitude larger than those of the CO stretch in the methanol dimer. While in the acceptor 

molecule of the water dimer the structure of the normal modes is essentially left unchanged, 

it is known that in the dimer the coupling of the OH oscillators which for the free water 

molecule leads to the asymmetric and symmetric stretching modes breaks down because of 

the strong asymmetry of the hydrogen bond [15,17]. In that case the molecule is desribed 

more adequately in terms of a "free" and a "bridge" oscillator. In an at) initio study the 
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frequency of the first one was found to be almost unchanged for cluster sizes ranging from 

n=2 to 4, and resembling the monomer u3-frequency of the monomer, while the latter one 

shows a large red shift increasing with the cluster size [15]. This behaviour cannot be 

correctly reproduced by an approach based on perturbation theory because the 

intermolecular potential affects large changes of the overall forces acting on the H atom. 

This is the reason for the large discrepancy between our calculated u3 donor frequency and 

the experimental one. This failure is regarded to be typical for stretching frequencies of X-H 

bonds inside a hydrogen bond but for all other cases the assumption of the intermolecular 

forces being much smaller than the intramolecular ones is still valid and the Buckingham 

formula is claimed to be a useful tool for the calculation of vibrational frequency shifts in 

molecular clusters. 
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