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fü r Informationstechnik Berlin 

Takustraße 7 
D-14195 Berlin-Dahlem 

Germany 

CHRISTOF SCHU¨TTE ALEXANDER FISCHER 

WILHELM HUISINGA PETER DEUFLHARD 

A Direct Approach to Conformational 
Dynamics based on Hybrid 

Monte Carlo 

Preprint SC 98-45 (December 1998) 



Direct Approach to Conformational 
Dynamics based on Hybrid Monte Carlo 

Ch. Schütte1 '2 , A. Fischer1 , W. H i s i n g a 1 , and P. D e u f l h a 1 ' 

1 Konrad Zuse Zentrum Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany 
2 Freie Universität Berlin, Fachbereich Mathematik und Informatik, 

nimallee 2-6, 14195 Berlin, Germany 

Abs t r ac t . Recently, a novel concept for the computation of essential features of 
the dynamics of Hamiltonian systems (such as molecular dynamics) has been pro­
posed [9]. The realization of this concept had been based on subdivision techniques 
applied to the Frobenius-Perron operator for the dynamical system. The present 
paper suggests an alternative but related concept that merges the conceptual ad­
vantages of the dynamical systems approach with the appropriate statistical physics 
framework. This approach allows to define the phrase "conformation" in terms of 
the dynamical behavior of the molecular system and to characterize the dynamical 
stability of conformations. In a first step, the frequency of conformational changes 
is characterized in statistical terms leading to the definition of some Markov opera­
tor T that describes the corresponding transition probabilities within the canonical 
ensemble. In a second step, a discretization of T via specific hybrid Monte Carlo 
techniques is shown to lead to a stochastic matrix P. With these theoretical prepa­
rations, an identification algorithm for conformations (to be presented in [11]) i 
applicable. It is demonstrated that the discretization of T can be restricted to few 
essential degrees of freedom so that the combinatorial explosion of discretization 
boxes is prevented and biomolecular systems can be attacked. Numerical results 
for the n-pentane molecule and the tiribonucleotide adenylyl^ 'Ä^cyt idylyl^ ' 
5'^cytidin are given and interpreted. 

K e y words , c o n o r m i o n , c o n r m a t i o n a dynamics, hybrid Monte Carlo 
reweighing, essential rees of freedom, t r a n s i i o n p o b a b i Markov 
o p e r r , t r a n s i i o n oper 

M a t h e m a t i c s subjec t classif ication. 4 7 7 5 47B38 5 8 F 0 , 60J20, 60J35 
C0, 65U 

Introduct ion 

classical micoscopic d s c r i p i o n of m o l e u l p o c s s s leads o a m a h ­
ematical model in terms of Hamiltonian d i f f e r e i a l e q u i o n s . In principle, 
h discret izaion of such systems p e r m t s a simulation of the d y n a i c s . How 

ever, dire s imula ion is en today restricted to relatively short t m e spans 
and o c o p a i v e l y s a l l discret izaion steps. Fortunately, most q u e i o n s 
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of emical relevance j u t requre t c o m p u t i o n f averages f physica 
observable f stable conformations, o f conformational changes. In a con­
ormation, t e large scale geometric structure of the molecule is understood 
o b consered, whereas on smaller scales the system may well roa te , oscil 

late r flutuate he c o m u t i o n a l characterization o a conformion via 
dire s imu l ion s ofte requres inaccssib ong me spans. 

Therefore, mos appoache to th identification of c o n r m t i o n s n l e  
d y n a i c a l a s p t : they are interested ony in finding cluters of m l e u 

lar configurations with significantly diferent l r g e scale ometric s t ru ture 
and realie this by a straightforwd s i s i c a anaysis o some appopriate 
set of s a p i n g d a , c o p a r e [22,27]. nlike the a p p o a c h s , we erei 
advocate to directly attack the determination of c o n r m a i o n s together w 
th c o p u t i o n of th tabiity ime spans and e rate f transitions b 
tween hem herefore, t is suggested o define th phase "conrmation" 
in terms o aistical mechanics and not in terms of molecula metry: 
conformatio is ndersood as some almost invariant subset in posiion 
space a noion hich means that the fraction of systems in the m l e u 
ar ensemle, that leave this s b s e t during some fixed observaion time, is 
small". Th algori tm to be presented a l l s to dcomposed he posiion 

space into such dynamically defined conormational ubsets and to comute  
corresponding transiion probabities. This appoach distinctly differ 

from other approach the chaacterizaion o conformional transiions 

g. via artificia acceler ion of m l e u l o c s s s (c 43]) 

e key idea of t g o m i c realizaion of t ew approach go 
back t the work f M. DELLNITZ and c o r k e r s on th a p p r o x i t i o n 
almos invaiant ets in dynamical systems [8]. Therein it had been s g ­
geted o compute almos invaiants sbse t s in phas space via t discretized 
igenvalue oblem for the obeniuPer ron opertor , an o p e r a r which 

describes he propagation of pobabilit hin h system. This "dyna 
ica systems" appoach has bee realized f r mlecular dynamics [ ] , but,  

h o g h he numerical result were intriguing, this approach s f e r s b o h 
fr a (yet) nclear theoretical justification and f r m t so-calle " u r 
dimension" of t oposd sbdivision ago 

Herein, we wll propose an alternative trategy hat merge th c o n c t u a 
advantages of t d y n a i c a systems approach w h the appropriate is 
ica physics framework e key step o s derivation is he repacement o 

th o b n i P e r r o n operato by th istically corre spaial transiion 
operator e conceptul backgound of this replacemen and its algorih­
mic consquences are f t o u t l i d in S e i o n 2 and sbsequently discss 
in re detail in Ses . 3 and single teps of t e resulting ago 
are illutrated by numerical results f r the rather simple n-pentane m l e u l e 
(Sc . 5). I s appicabiliy o biologically relevan systems —in particular th 
c i u m i o n of t ur dimension— is x e m i f d a a s a l l ribon 
l e i d 
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ut e M e h o d 

Before we go i t o e technical etails of this paper, we want to gi some 
b i d ' view" of th ew appoach as a hole 

heoretical Framework i leular dynamics, we assume tha 
we are aling h an ensemle f moleular system ha is dscribed by 
some ( s t a t i o n a ) density /o in phase space r of the m o l e u l r system 

nder considerion. Moreover, we ppose that t e dynamical bhavio  
single m o l e u l r system tarting at time t = 0 in state xo € can be 
scibed by he formal solution x( — ^Xo of certain Hamiltonian e q u i o n s 

of moion ( c o p a r e c. 3 fo d e t a i . T he transition probability betwee 
two s b s e t Si, 52 C is g i n by 

,T . . d I X$Txfo()d 

i 

enoing characterisic funcion of the et S c -T, i . , X )  
x S and Xs 0 oherwis We are interested in almost invariant 

bset , i . , in sets C r w i h lar obabil to s a y within, which, for 
he time b i n g can be expressd as S S,T) RJ 1. In [9, chemical conforma­

tions had been u n d e r o o d as s c h almost invariant subsets in phase space r 
However, they are usually n d e r o o d o b o b j e s in position space There 
fore, we herein chaac te r ie conformational subsets as spatial subsets B o 
posiions q £ B. If we a l lw for arbitrary momenta p, we are naturally le 

e phase space fiber 

(B = {(q qe B} 

associate w i h B. Consquently, th spatial s b s e t is said to be a conor 
iona ubsets h v e r t phas spac fiber r(B is almos invaian i  

nse that w((Br(B,T) « 1 
e crucial te wards the a l g o h m i c idenificaion of s c h conforma­

tional subsets is the erivation o some Markov opera t r T in Sec. 3 3 , which 
escribes e probability of position fluctuations wihin he canonical ensem 

ble. Consquently, the Markov chain {qk}k=oi,... enerate by T allow 
simulate the spaial transiions i he ensemble T e chain takes values in t 
position space f and has the f o l l i n g basic poperties: First, ts sationa 
probabiity o be within a spa ia s b s e t B C J?, denoted by ir[B) is giv 
via e ensemble density / , i , (B) = frrB\ f() dx, and, second s on 
te transition pobabilities P(q± £ C\ £ B) etween sbse t s B, 

are given by the transiion pobabiliti within he ensemle betwee 
corresponding spaia fiber 

f ( 9 e S f e J = Mm{c,r) 3) 
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his illustrate, that t e r r T of t e chain is isically correct 
spatial transition operator of the ensemble. Follwing [ 8 , , ur g o t h m i c 
trategy is to identify c o n f r m i o n a bsets via i g m o d s of t d o i n a n 
ignvalues o (see c. 3) 

lgorithmic Realization In o e r to compute t e s e eigenmods (and t 
e conrmations) , we wll have to discretize the corresponding igenvalue 

problem We reaize this by means o a Galerkin p r o c u r e (Sec. .1) based on 
a box covering £ i , Bn c fi f the posiion spac . This discretization ste 
results in a reversible ochastic transiion atri hose entres are just the 
transiion p o b a b i e s w((Bk)(Bi),T etwee discretizaion boxes. 

ue t 3), we may compute these e n t r s of t e transition matrix via 
simulation of th Markov chain associated with T The approximaion o 
this chain naturall leads to standard hybid Monte Carlo (HMC) s a p i n g 
techniques (Sec. 4 .2 . By constrution, t e transition probabi l i ts of the re 
ulting HMC chain are similar t tha of the oigina chain whos pobabili 

to leave some conrmat ional bset is extremely small. Consequently, t 
same trapping problem occurs f r the HMC chain, which leads to e r h e r 
unsatisfactory convergnce operties o HMC n applied o b i o l e c u l e 
as reported in the literature [34]. In o e r to cicumvent this poblem, a novel 
approach combining HMC with e reweighting technique 13,5] has been pre 
sented in 14]. his HMC vaiant, called adapive temera ture hybid Monte 
Carl ATHMC, facilitate e transitions by repatedly s c h i n g o an in­
creasd temperature in o e r to coss crucial e e rgy barrer llowed by a 
corretion of this o m e n a y o v e r i n g via reweighing to he ensemle  

original temperature (cf. Sec. . ppicaion of this technique all  
o c o p u t e t e entr ( B ( B of t e transiion a t r i , e 

r lager m l e u l e s . 
However, e f we can compute a r b i t r y transiion pobabi any 

discretizaion of t e transition o p e r r T wll suffer f r m t e " u r e of di 
mension" whenver it were b a s d on th composition of all of the hndreds 
or thosands of degrees of freedo i a ypica b i o l e u l a r system. Fo 
tunatel chemica observaions r e a l t h a e n for l rger b i o o l e u l e 
onl relaivel few conformational or essential degrees of freedom are eede 
to d s c i b e the conormational transitions [ ] . Different techniques are avai 
able for idntfying t e e s s i a l degrees of freedo b a s d on reliable simu 

ion data (see Sec. 4.3). W erein suggest to apply t h s e techniques to an 
ATHMC sampling. Having comleted his idenificaion p o c s s , we can avoid 
discretizaion o by far t e mos degrees of freedo of the moleular system 
under investigaion; only he lowdimensional essenia configurion spac 
has to b discretied hich leads to a t remendos r e i o n of dimension. 

Once t e e n t r s of t e corresponding transition matrix hav ee co 
ute b a s d on ATHMC samping data, we have to determie the eign­

s o s d o i n a n t eignvalues. ha is on an a p p o x i i o n of t 
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dominant e i g e l e m e n s of t e transiion matrix is require, not it full diag-
onalizaion. T h s , actual evaluation of t e require ignvectors is fficintl 
possible using sbspace o n t e d iterative techniques, e n if the number 
discretization box ay be about 100.000 or l rge r ( d e n d i n g on the spec 
tr operties of the matri ee c. 3) The fina tep, t determination 

f the conformional subsets fr h e e eigenv is r e i d by means 
f a spcific idntificaion algo preented in ]. 

The whole agorithmic scheme of t dire c o n r m i o n a d y n a i c s ap­
oach is illutrated in Fig. 

Reweighted 
ATHMC 

Conformational subsets 
& transition probabilities 

Identification of 
essential variables 

Evaluation of 
transition matrix 

Identification 
of conformations 

Subspace oriented 
eigenvalue solver 

Fig. 1. Basc scheme of the algorhm. Gray boxes are p r e n t d in [11 

rmations as Almost Invariant S t s 

In cassica MD (c t e b o o ]) leule is odele by a H a l t o n i a n 
funcion 

(q \pTM-p + V(q 4) 

ere q and p are t corresponding positions and m o m e a of the ms, M 
e diagonal mass atrix, and V a d i fe re iab le potential. The Hamiltonian  
is defind on th phas space F IR6iV. corresponding canonica 

e q u i o n s of m i o n 

— — a d F 5) 

scribe t e dynamics of the moleule The f rmal solution o (5) w i h initia 
ate x ( g ( ) ) is g i n by (i ( q ( ) ) = #*X, w e r e $* note 
e flo 

On he smallest time scales (say 1 femtosecond) th dynamics described 
by he fow #* consiss of fast oscillaions a r o n d q u i b i u m positions (bond 
length or bond angle vibations In contrast t t h e e fast fluctuations 
phase " c o n r m i o n s " d s c i b meta-sable oba configurions of t 
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molecule. Conformational changes are terefore rare events, which will ho 
up only in long term simulations of the dynamics (eg. on a nano- or mil 
liscond me scale. F r m a mthematical point f view, conrmat ions are 
special "almos invarian" sbse t s in position space: Invariant sets correspond 
o infinite d u r i o n s o ay (or relaxation times). If the conformations were 

invariant sets of t e flo f the Hamiltonian system, then transitions betwee 
different c o n r m t i o n s ould be impossible. Sinc such transiions xist but 
are rare, we m u t undersand very c o n r m i o n o b an almost invariant 

bset of th Hai l ton ian 

I Dynamical Systems Approach 

In hat f o l l , the concpt of almos invaian ets and r agorithmic 
idenificaion, which has been studied f r r e r er ut l d i m e n s i o n a 
d y n a i c a system, wll shortly be reviewed: 

Some bset S is calle invariant under t e f #* f, f all t > 

and, t 

We now aim a precise matematical understanding of "almos invariance 
f a subset S erefore, we have to introd measure f scibing 
e fraction S fl # ( 5 ) hat remains in nder the action of t e f w # 
he degree of invaiance of S with respect to a certain p o b a b i t y measure  
is g i n by corresponding condiional obabi 

,T ^ n ^ 5 ymeasurable 
ß(S 

In particular, f S is invariant, t ,T indepndent of t choic 
of ß e are intereted in s b s e t w h 5 ) sufficintly close t = 1 
to be denoted as almost invariant ubsets. so-dfined notion o almos 
invaiance obviosly depends on the choice f t e time span . Howeer, we 

II see in Sec. 3, that (at least fo systems of chemical intere e influenc  
on identificaion of almost invaiant sbse t s can b neglected. 

Upon fixing a s i tab le t m e span , we have re c o n i s dy­
n a i c a l system 5) o a discrete d y n a i c a system 

k+ = $ , k 7) 

he long term behavio f this system is descib by so-calle invariant 
measures: a probabi measure ß is invariant, if ß($(S)) = ßS) for all 
measurable bset T. T h s , ß may be interpreted as the obab i ty 

f finding he mlecular system in S an a r b i t r y instant t = k, £ Z.  
invariant measures are the natural p o b a b i y measures to be used in 

(6) r quanifying almos invaiance. Consquently, u n i q u e s s of the invari 
ant measure is a d s i a b l e operty sinc antee ha almos invaianc 
is we l ld f ind . 
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The numerica c o p u t a i o n o invariant measures is quivalent to 
solution of an eigenvalue problem f r th so-called Frobenius-Perron operator  

Invaiant measures correspond e i g o d e s of U for its largest eigenvalue 
. I has been discovered in 8], that f r many discrete d y n a i c a system 

almost invariant sets re relate i g e m o d s of th r obn i . 
Perron operator for eignvalue insie t e uni c i l e ( | | < ' 

One strategy for i d i f i c a t i o n almost invaiant ets is t discretie t 
F r o b e n i P e r r o n o p e r o in oder to a p p o x i a t e these eignvalues A a 
In a sequence of articles (cf. [78]), M. DELLNITZ and coorkers eabl ished 
numerical techniques r e i z ing this strategy for different non-Hal ton ian 
systems. Th F o b e n i u s e r r o n operator is d i s c r e t i d via a multlevel sub­
division p o c s s , which generates a box covering of t system' relative globa 
at tracor. ecently, this appoach has bee xtend o H a l t o n i a n system 

h intriguing numerical result [9]. 
his dynamical systems approach", however, has two crucia difficults. 

F i r t , this appoach turns out to be ueful ony f all moleul system 
since i suffer from combinatorial explosion f t necessary number f dis 
cretizaion boxes already for moderate size m l e u l e s . Scond, the appoach 
has some deep-ying c o n c t u oblem that are relate th p o p e r t s o 

e o b n i u P e r r o n ope ra t r f Hamiltonian system ndersand hes 
poblem on has to discss h physical meaning of t o b n i P e r r o n 
operato U in t e con te t o isical mechanics. This ll hel us to dra 

e appropiate consquencs r t e moleular ensemble to be considere 
erein and, finally, t transform the key ideas of t d y n a i c a systems ap­

proach i n o an a g o r m i c conc b i n g appicable t i d i f i c a i o n o 
b i o l e u l c o n r m i o n s . 

.2 Reformulation i Terms of Statistical Mechanics 

In o e r t nderstand t physical meaning of t F r o b e n i P e r r o n opera­
or f Hamiltonian systems, we recall th basic equations of motion in statis 

tical mechanics. The evolution of statistical ensemble o identically prepared 
systems is d s c i b d by a time ndent probability density / f(x, i 
phase spac he opagation of the o b a b i y d n s i y is d e s c i b d by 

ioville e q u i o n r t H a l t o n i a n 

= iC f} / ( i = / 0 

where { •} d n o t e the well-kno Poisson bracket and C — i } th 
associated Liouville opera (c 3 ] ) . he nsi /o descibes h initia 
probabi ly distribution in t a i s i ca l ensemble, i.e. fo(x is interpreted 
as he r e l i v e frequency i e ensemble of systems in s a t e x at t m e t — 0. 

herefre, the nsiy m u t efied in accodance w e initial experi 
mental reparation f the ensemle 
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On on hand, t solution o is g i n by e f as 

f( /o ( 

on o t e r hand it can b note sing e m i g p g e r a t e d by 
on Hibert space L2 

f ( e X p ( f 0 

Frobenius Perron Operator i Statistical Mechanics For t e Ham 
tonian system 7), the o b n i P e r r o n operator of t dynamica system 
appoach is i d t i c a l w isica o p a g a r in ( , tha is 

exp( yielding / o 

acting on L2 / fr f(x) < oo}, f etais see [ . Sinc 
is selfadoint 9] is u n i r y in L2(r). T h , the spct rum in L2 

on the unit cir le and ere s i m y are no igenvalue A 1 a l l i n g 
idntificaion o lmos invaian ets. ( same is true in L1 ee 
, Prop. ; o 41]). 
Moreover, all ationary solutions of t Liouville e q u i o n s are invai 

an n s i s of i.e, eigenvector r the eignvalue A = 1. In partic 
ar, f r arbitrary mooh funcions F : 1R — , the associated densit 
f() = F(H(x)) are staionary solutions of th iouville equation. Cons 
quently, there are infinitel any invaiant d n s i (and associated invaian 
measures) fo 

As a consequence of our considerations one has repace th obnius 
Perron oper by an alternai ochasic oper tor that represent he re 
triction to e s i o n a y nsemle densi under consideration and —sinc 

conformation are purely spatial o b j e s describs spatial flutuion 
hi his ensemle After introducing appropriate notaion in he sub­

que p a a g a p h , we will ee in S c . hat this can i fac e r e i d . 

S a t i a l Fluctuations i the Canonical Ensemble Most experme 
on molecular systems are performed under the condiions of constant tem 

erature and volume corresponding s i o n a y d n s i y is e canonical 
density associated H a l t o n i a n 

f0( — exp(-ß exp ( - ß ) ) d 
Z 

here ß = 1/kT, w being system temperature T and fc lt 
ann's constan. Sinc was assume o b paable, / is a p o d 

/o( ±- xp ( ^ V Y xp(-ßV(q)) 
v v  

=V =Q 
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ere we norm and Q s ha 

Q{q 

the folloing we always consider this canonical ensemble, ll always 
g i n by (12) 
We are intereted in particul almos invarian ubsets of the canonica 

nsemle /o- T h , the robabilit measure in t basic definition ( 
almos invaiance is now g i e n by h d n s i /o- en, t efiniion 
f the tatisical transiion p o b a b i t i s all rewrte t gree ,T) 
f invariance o some bset S as ( S ) , S is 

almost invariant if w(S, S, r ) s 1. 
s already discuss above, c o n r m t i o n s are related t subsets of th 

position space O c K ( t e spaial compon of th phas space r = Q x 
I R 3 J : conformationa ubsets are subsets B C uch that t corresponding 
phas spac fiber r(B is almos invaiant, i ch ha 

( B ( B ) w 

ere, as a consequenc and 

(B(C,T * I ^{q))V)dpXQ{q)d 

h £i noing e rojection ont the position componnt, i.e., £i (q,p) q. 
om no on, we are intereted ony in sbse t s of this rm and d n o t e t 
obabi o be w h i n ß b y 

( B Q{q)d J f0()d 3) 

Defnit ion f the atia Transition erator 

A ll turn out ubsequently, an appropriate choice f r a sochas ic oper 
is e spatial transition operator f ind via mentum weighing due t 

Tu(q ( ^ ( q ) ) V) d 4) 

here u = u(q is a funcion : Q C and (£l(q,)) means (q 
if (</iPi) (q,) ue to he efiniion i. In copar i son 11 
one may interpret T as the restriction of th F o b e n i u e r r o n o p e r r t 
the posiion coordinates via an a p p o p i a t e averaging h respct t h 
canonical mmentum distribution. 
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We consider as an oper on e weighted spac 

= {u : D (qQ(q)d 00} 

Obvio L' is a H u e r t space w h sca od 

,v) u*(q(qQ(q)d 

and indued norm |« | |g { Q . Wit respet t s p a c , t po 
an o p e r t s of T are t e f l l i n g (c ]) 

1. is a Markov oper on L Q ( 
2. T i s b o n d e : | T u | Q |u||Q. 

. In L2(Q, T is self adjoint, since is reversible. Hnce , t s p t r u m 
aT) of T is r e v a l u e d and b o n d T) C [ 

. Fo bsets ß ß w e find 

/ fa()d 5) 

) 

showing hat T r e p r e s e s e transition p o b a b i l i s o ur interest. 
T is a s y o i c a l l y sable i i 1 i.e., t e eignvalue A 1 is d o i n a n 
and s i l e i and 2(0 his hods all systems o chemica 
intere 

The last roperty shows hat T has a nique invarian nsity so hat "almos 
invarianc" is w e l l d f i n d via ) , T has all n e c s s a y poper t to 
r e a c e t F r o b n i P e r r o n operator ch that, in anaogy (8), we may 
i d f c o n r m i o n a bsets via e e i g m o d s of T r eignvalue 

ar = 1. 
In contrast t he propertis 1 hich generally hold for Hamiltonian 

systems, the las poperty is only vaid systems saisfying a certai mix­
ing condition: for every posiion q £ 17, the map yp) \^{qp) mu hav 
ufficiently strong mixing propertis ( .g . must not map all possible mo­

m e a p o a single posiion g' 6 12). This mixing condition is saisfied, eg., 
for all molecula system with periodic boundary condition [41]. It, however, 
excluds certain erate" systems s c h as strictly harmonic system i h 

eriod r ( e r e q (p) q for every mentum p). 
Moreover, fo systems satisfying h abov condition f r every r 0 
dominant eignmodes of Tand, thus, the almos invariant ets are 

rather insensitive to changes in [4] In contrast t his insensiivity, t 
transiion p o b a b i l i t s do crucially depend on r T e t m e span appear 
o b a t e m e r a t u r e i k e paameter (increases in r effect kind of melting 

ocess of t flutuion-indd ixing in posiion space, c o p a r e [41 
etai 
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For t systems of interest, t lu te r f eignvalues nea = 1 is sep­
aa t ed from the remaining part f the s p t r u m a(T) by some significan 
spectral gap (cf 41 c. 3 r(T can b decomposd in his so-calle 
Perron cluter { i 2, } o isoate igenvalue A < 
and he remainder <JRT) —K some value 0 < K & uch ha 
(in most ca s s of interes th gap g = X — K is significantl ger than t 
distancs betwee he eignvalue hi erron cluter r e x a l e s see 

c. 5) 

sition Probabi t ies and Associate arkov 

Since t e transiion operator T is a Markov oper in L}(Q) saisfying 
Txn = Xn, t g e r a t e s a Markov chai qk}k=oi,... h values i posi 
ion space f via he transiion funcion 

P(q E B P(q - T{q all measurable 

his chain can be r e i d via h discrete stochastic dynamical system 

(q 

with pk being andomly chosn from e momentum distribution in ach 
step. Fo systems of chemica interet, the chain has bee shown to be 
redcible and aperiodic wi unique ionay nsity [4] . Moreover, 
any simulaion of t e chai via (16 ould all to compute the desired 
transition p o b a b i l i s in e ensemle, since t finiion of i transiion 
funcion i 

P{qk E C\q0 EB 7) 

hich in particular yields 3) r the o n s t e p transition p o b a b i s . 
Thus, the r e a c e m e n of the FrobeniusPerron o p e r o r U by t spatia 

transiion opera t r T induces an associated chang i he dynamica scip­
tion: t discrete deterministic d y n a i c a l system 7) associate with U is 
r e a c by h ochasically per turbd d y n a i c a system (16) associated  

T. In er words, the re t r ic ion o spatial flutuations via averaging 
wit respect to he canonical momentum distribution may b interreted as 
a specific coarse graining of th dynamica esciption. 

In o e r to c o u t e t conrmat iona ubsets via he eigenvalue poblem 
or T, we will now pocee th (spaial) discretization of T. We will see 
hat this finally also leads a certai discretizaion of t Markov chai 
qk}k=oi,... erated by 
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ati Discretization 

If we restric ur attenion t the weighted Hubert space L2Q(Q), we can (as 
in [89]) naturally deri a spcial Galerkin pocedure to discretize the eign­
value poblem Tu — Xu. et ±, B a covering of fi so ha Bk 
Bi = 0 for k T̂  I and \J^1Bk = fi. Then, the sets P{Bk, k .,n are a 
covering of r. Our finite dimensional ansaz space V s p a n . ,Xn} is 
spannd by associated chaacterisic functions Xk — Galerkin 

j e i o n B L' Vn o L" is d f i n d by 

1 

e resulting discreti transiion o p e r o B n n i n d e s approxi 
mate eigenvalue poblem n n \ in Vn- et one of t cor 
responding eigenvalues and let t e related e i g n v c t = Y^iki ak-

, t d i s c r e t i d ignvalue oblem has e f r m 

(Bk ,n 

After division by (B no o b p o s i i , we end convni 
f r m 

where in fact the e n t r s of th n x atri P are gi by spa ia 
transiion pobabili fr Bk o Bf 

x k ^ Q = w ( B ( B , T ) s) 
{Bk 

This reul t finally confirms tha 4) was corre choic transiion 
operator i the statistica conte 

Since T is a Markov operator, Galerkin discretizaion P is a 
ochastic atrix, i.e, y > 0 and Y^i=i^ki all fc — ,n (f 
etais about sochas ic matr ics see [4]). Hnce , all it igenvalue A saisf 
A| . Moreover, we have t e f l l w i n g ur mportan opert is (c ]) 

The ro ctor it = ( i . , i r(Bk denote he discreti 
invaiant d n s i y . Simple calulu revea ha is a left e i g n v r t 
t e eigenvalue i.e., that irP = IT. 

2. P is irreducible and aperiodic, which i i e s , that t e eignvalue = 1 is 
simple. Hence, the d i sc re t id invaian nsi 7r is he unique iona 
distribution of P. 

. P is reversible, sinc T is s e l f a d o i . In o e r w d s full l con­
diion of etaile balance: 

kP niPi ,n 

erefre, all eignvalues o are r e v a l u e (P 
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Wheever the discretization is fine enough, th d o i n a n t eigenvalues o 
P are good approximions of the dominant eignvalues of T. In his case,  

so has a Perron cluter f eignvalues near A = 1 which is sepaated 
f r m he remainder of t s p t r u m by a significan gap (cf. S c . , las 
p a a g a p h ) 

his means that, f a r b i t r y coverings B\ ,Bn fi, t discretization 
atrices P are inher ing the most important operties of the operator T. 

s any sochas ic matri ur discretization atrix P lso defins a dis­
crete Markov chain, i , the stochasic andom) walk of a single system 
through phas spac The associated s i s i c a l i n t e r r e t t i o n is as llows 
at insance j 6 system is in B, t p o b a b i y o finding system 
in Bi a instance j is P = w(r(B (B,r) Wit j system 
visits all subset B p r o b a b i , t value g i n by iona 
distribution of P. 

ccording o our definition almos inva r i anc , we are intereste i 
ch unions B — Uk^iBk o our discretization boxs" Bk, f r which h 
obabi ty w{{B),r(B),r o stay within is sufficintly cose t S = . In 
er words, we are looking or a nontrivia index set / C { 1 , . . , n} so tha 

the discrete system almos ertain ays within B Uk£iBk ithin on 
single s t e p > j 1 s derived i [11], ch i n d x sets (almost invaian 
aggregates" can b idenified via the right eigenvecrs of f r eignvalue 
close t A Onc a c o n r m i o n a l subset B has been identifid, t prob­
ability {B,T — wr(B(B,r stay within B can asiy b c o u t e 
by virtue f t e r e l i o n 

(B -=!— J2^Pk 

2 Realization via Hybrid Monte Carlo (HMC) 

Up o now, the remaining q u e i o n is ho to compute the matrix P for gi 
boxs Bk- According o ( 8 ) we have to determine the transiion probabi 

etwee Bk- his task inclu two s b p o b l e m 

S a m i n g of t canonica nsiy" Tha is, we have to geera te a s 
quenc of state S = {xu, k 1 r ha is a p p o x i a t e l 
distributed accoding o /o-

2. A p p r o x i i o n of t e transiion p o b a b i : We wll ee elow tha 
his r e c e s to couning all ch Xj £ S f r which Xj € r(Bu) and 

Xj (Bi. For c h k i n g e last condition fficiet a p p r o x i i o n s  
all M s t r a j e i s sart ing fr are e e d . 

The typical approach o sampling e canonical nsiy is via Monte Carl 
(MC) techniques. The literature on his topic is xtremely ich and varied 
[6, e reader migh noice that we eed no gi particular mer o any 
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cial MC v a a n nce every converging MC method would allow t realiz 
th bpoblem 1 f r m above In addiion, one may also apply MD-bas tech­
niques, e.g., consant temerature sampling of t canonica nsity [38,3] 

Despite this, we s u g g t to appy a certain hybrid Monte Carlo (HMC 
technique, merely b c a s e it eem o be particularly appropriate for linking 
h above mentioned ubpoblem and 2. In der t expai his advan­
age and h basic idea o HMC let us shortl recall that the transiion 

pobabili tes may c o p u t e d via th Markov chain (16 associated w t h 
our transition operator T. I t e r i o n s o (16 r e i equencs </& hich are 
(asyptotically) distributed due t Q and allow t determine the r e l i 
frequency of transiions g& € Bj qu+ B fo rbitrary box number j 
and I Th convergence guarantees that t e r e l i v e frequencis a p p o x i a t e  

sire transiion p o b a b i i s i h nse tha 

T h , we have to ask whether one can realie th teration (16 by r e a c 
ing he exac fl T by an a p p o p i a t e a p p r o x i a i o n . For answering this 
question, let \PA enote a reversible and volumepreserving onestep dis 
retization of the ow #*, i.e., of t e H a l t o n i a n q u i o n s (5). The reader, 
ho is not famiar wit this n o i o n , may think of \PA as dnoting th 

wel lnown Verlet discretization [46,1] w i h stepsize At. T a p p o x i i o n 
f # via m steps of this discretizaion yields discrete 

= (r/m] 

w t h m b i n g rge e n o g h such that the tepsi r/rn is adquate nfortu 
nately, the underlying s a i o n a y d n s i y /o is ot invariant under the action 
of g, since does not reerve the energy of the system. ( e r e is no dis 
retizaion which is syplec t ic and reversible and simultaneousy preserv 

energy exactly [20 We may r e d e t e energy e r r r , p o d u d by g, to an a 
b i t r y small value by increasing m ut this ul lead o a ally inffici 
c o u t i o n scheme 

Standard Hybrid Monte Carlo (HMC) Hence, we have to look f 
Markov chain, which all o s a l e while containing ony g and not the 
flow itself. This requreme naturall leads o so-called hybrid" Monte 
Carlo vaiant which o our knowledge hav een i n t r o d u d in the late 
80's (c ]) and have in MD ostly bee for condnsed atter and 
polymerlke systems (cf. 6,26,17]). HMC erates a sequenc (qj) C Ü 
in position space The HMC update tep qj +i is b a s d on the typica 
Metropolis Monte Carlo p r o p o s a l / a c c a n c strategy part of t 
HMC poposa tep is o choose moment pj randomly from gaining th 

ate Xj (q cond part, c o u t e t oposa ate Xj via a 
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short app rox ia t e t r a j e c y of the underlying Hamiltonian system, i.e 
choose Xj = g(xj) hen apply e andad Metropois MC a c c a n c te 
to Xj and Xj, let t accpted state e Xj+i, and finally set q XJ 
In o t e r w d s HM r e i s an iteration of t Markov chai 

i g( a 

(q, , j " ^ 
etting — m i x p — ß A E ) ) 

AE 

h pj i n d p e n d n t l chosn randomly from V and j randomly from the 
equidistribution in [ , . In his form, HMC has o be understood as a pure 
position sampling of t spa ia canonica distribution Q s c h that t e re 
sulting Markov chain {qj} all to approx ia te the e x p i o n values o 
appropiate spatial observables A : Q HI in nse that we hav a s y p ­

icall 413744] 

- > f A(qQ(q)d 22 

w h a consant C not expicitly depending on dim 6N. T , we are 
able to approx ia te the esire transiion pobabilitie w(r(Bk),r(Bi,T) 

s i m y " by c o i n g according o (20 The main advantag HMC in this 
con te t is o b v i o : we need a p p o x i m i o n s of $Xj and get t e m " f r free 
if we u e mAt = ith sufficintly small At in he HMC i t e r i o n ( 1 ) . 

Theoretically, the transition matrix P is reversible. In ode r t reproduc 
his poper t for ts a p p r o x i i o n , we may s i p l y count each transition 

fr E>k to Ei as a transiion B, too ( xpoi ing e reversibi 
f t discretizaion \PA 

Reweighted Hybrid Monte Carlo ( A H M C ) It is wel lnown ha MC 
s imul ions r ensemble averages ay s f e r fr possible ical ing 
down" [3 This phenomenon occur the i t e r i o n Xu Xk+ get 
t r a p p d ne loca potential minimum due to high ee rgy barriers so hat 
a poper sampling of the phase space within reasonable computing mes is 

r e n t e d . Typically, this also happens o HMC applicaions o b i o o l e u l e 
[19,34] erefre, a novel approach combining HMC w t h e reweighing 
technique [135] has been developed 4] This HMC variant generates 
distribution of a mixed-canonical ensemble composd of two canonical ensem 

les at low and high temperature. I s anaysis s h o s an efficint samping o 
the canonica distribution at the low temerature , whereas t high tempera­
ture componnt faciliates cossing of th rucial energy barrers. We will call 
this variant "adaptive temerature HMC" ( T H M C in the following. T 
s a i n g posiions q erated by high temera ture update teps have to b 
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reweighted in o e r to g u a n t e e overall convergnce to e canonical position 
distribution to he l w temperature. Moreover, we have to suppy addiiona 
t r a j e o r i s in order to g a n t e e that the initial m m e a of the set of tra­
j e e s starting in on of the s a l i n g posiion are weighted accoding 
to t corret l temperature. Fo etais of t e A H M C const ruion, t 
reader is referred o our article [14] 

Th ssity o introducing g e r a i z a i o n s o HMC is c a d by the ex­
istence of almost invariant sets: If there are almos invaian et denoted B 
and C, with small transition p o b a b i y w(r(B),r(C,T, th b o h , th 
Markov chain (16) associated e transition operator and he rigina 
HMC Markov chain need a huge number of t e r i o n s in ode r to p o d c e 
sufficintly many of the rare transiions betwee B and C. his poblem is 
circumvnted by introdcing the A H M C chai hich facilitates s c h tran­
sitions but has o be reweighted i er to yiel s a i n g s of t igina 
canonical distribution. 

The reader might aso noice, that t e r e are her Monte Carlo Markov 
chain technique which all to or barrer cossing ( r e x a l e , t 
multicanonical g o m [25] simulate tempering [35], J -a lk ing 8], t 
f luc tu ing p o t e i a l method 33] and o e r novel appoach 5] 

Essential Degrees of Freedom 

Typica biomlecular systems contain hundreds or thousands of a s . A 
a consquence, any d i re t spatial discretizaion of the transition operator T 

fer from th cur dimension since t number of discretization boxe 
grows xponntiall wit h si f t e mlecul system under considera­
tion. Our trategy o cirumvent th cu re o dimension is b a s d on chemi 
cal observaion. In the chemical literature conformtions o b i o l e u l e s are 

ostly descibed in terms of few essential degrees of freeom. In sbspac 
f essntial degrees of freedo anharmonic motion occur that compise os 
f the positional fluctuaion, while in he remaining dgrees of freedom th 

m i o n has a narro Gassian distribution and can b considered as "phys 
ically constrained". We may determie e s s i a rees of freedom her i 
th coordinate space according to AMADEI ET AL. [2 or in th spac of inter 
na grees of freedom, eg., torsion angles, by statisica analysis of circula 
da 5 1 B h p o c u r e reul t in a tremendo r e i o n o dimension 
(see ec. 5.2) 

After par t ioning th chos e s s i a grees of freedom resulting in dis 
retization boxes B\,.., m we assemble t e transition atrix P and solv 
h corresponding eignvalue oblem. Since we ony nee Perron cluter 

of the l g e s t eignvalues n 1, we apply bspace riented i t e r i 
techniques (see, e.g., 40] or [ S c . 4.1) to sove the eignvalue problem  

is i p o r t a n t that t e convernce rate only d e n d s on he s p c t r gap 
etween th erron cluter and t e remaining part of t spectrum (see c. 
3) and is indepenent of the size of the transition matri and s of t 
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number discretization boxs . Therefre, n e r the HMC s a l i n g tech­
niques nor t solution of the eignvalue oblem do scale e x p o n i a l l 
h si f t e m l e u l e 

al E x p i m 

In this setion, t perfrmance of th abov derive a g o r h m in appi 
cation to n - p t a n and he t r i r ibonleot id a d n y l ( # ' - 5 ' c y i d y y l f ü ? ' 
5'cytidin are p r e n t e d . T appication o n - p a n llows to llo osely 
the single teps of th g o m , while t case f t e r ibonucleide exem 
plifie th erfrmanc f t lgo n appli o bioogicall relevan 
systems. 

1 lication to n-Pentane 

Fig. 2 illustrates e chemicall obser c o n r m i o n s of t n - p a n 
leule C H ( C H C H 

Fig. 2. Different conformations of n-penta 
transgauche, gauchegauche orientations 

For t e n-pntan Hamiltonian, we use the united a o m model (c . Fig. 3) 
w t h he typica bond length and bond angle p o t e i a l s and a nnad-Jon 
pote t ia l modelling e interaction between the first and the las f t e unite 

s". T dihed angle potentials are chosn according 9], f. Fig. 3 
The form f t dihedral angle p o t e i a shows ree different minima corre 
sponding to the trans and gauche intations of th angles. T v i b r i o n a 
frequencies induced by t e s potentials are considerably s l l e r than hos 
i n d d by e bond interacions. Consequentl in his simple e x a l e , t 
d i h e a l angles can b eleted as e e s s i a rees of freedo m e i o n 
abov in S c . 
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-180 -90 0 90 180 

Fig. 3 . United atom model of n-pentane with the two dihedral angles wi and o>2 
On the left: Dihedral angle potential due to [39]. The main minimum corresponds to 
the trans orientation of the angle, the two side minima to the igauche orientations 

Figures elow llustrate the performance of the gorithm for t h 
t e m e r a t u r e T 00K. T h discret izaion boxes are constructed via niform 
dcompos i t ion of t possible value [0 2n x [0, 2TT] f the two d i h a l angle 
ji and in n 20 x 20 400 b o x s . The HMC s a i n g has bee r e i e d 

using he Verlet t ime discret izaion w i h a sub t r a j ec toy length of = fs. 
Fig. 4 sho he r e u l t i n g s q u e n c s o HMC steps in terms of t dih 
angles. 

HMC steps x 105 

Fig. 4. HMC simulation of n-pentane for T = 300K. From top to bottom: The two 
dihedral angles verus the step number and the convergence of the potential energy 
expectation (V) 

We observe frequent transitions between t different "trans" and gauch 
n t i o n s of both angles. This observation i l l u t r a t e tha t i is not suffici 

o now the obability o be within a particula o r i e i o n of the angles but 
hat the e s s i a l dynamica i n f o r m i o n is g i e n by t p o b a b i stay 
ithin it u t r a n s i i o n i n o a n o e r ion occurs. 
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B a s d on such a HMC s a i n g th M = 200000 steps, t e transition 
matrix P is assemled by p r o c u r e explain in S c . 42 . Within his 
sampling length, th HM method p r o d u s a suffici sampling f th 
canonical densiy (see t e equilibraion diagram on bottom of Fig. 4) Tha 
is in this case, we observe no seriou trapping problems and appicaion o 
ATHMC is no absolutely necessary. When s c h i n g ower temperature 
(as, eg., for t simulaion underlying Fig. 8 below), the rate of convergenc 
f th HMC samling sows down significantly and an applicaion of ATHMC 

allow o d r e a s s a i n g lenghs r m r e than an o e r of magnitu (c 

4]) 
F o m S c . 1 we know hat t discrete invaian dnsi ty { ( B i , . . . , 

is g i n by he left e i g n v r P r t e largest eigenvalue A = 1 Th 
result is g i e n in Fig. 5. As x p t e d , th invaian dnsi ty s h o s disinc 
ocal m a x i a at t e m i n i a of t dih angle p o t e i a s . 

0.1 

Fig. 5. Discrete canonical distribution for n-pentane versus the i n d i s of the di 
cretization boxes of the two dihedral angles and T = K. 

Conformations. Follwing [11], the chemica conformions are anayz 
via the right e i g n v s corresponding o an igenvalue luster ar 
A p r e a t i o n of t erivaion of t goithmic proceure w u l d b 
yond t scope of t pre paper We herein ony give ketch of t 
cons t ru ion principle: In a f tep, determine the eignvalue luster nea 
A — 1, which is separated f r m t e remaining part of t spct rum by a 
significan spectr gap in our case, these are th sev l r g e t eigenvalues. 
Fig. s h o s a schematic plo f t e corresponding ight eigenvetors. We ob­
serve that we may dcompose th discretizaion d o a i n i n o disoint regions 
by disinguishing between differen posiive, gative, and almost zero value 

f t h e eigenvctors. Th details of t g o h m i c r e i z a i o n are nontrivial 
b c a u has o inclu an i t e r i o c u r e to dcide wha is almos 
ero". 
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Fig. 6. Schematc plot of the right eigenvectors c o r p o n d i n g to the seven largest 
eigenvalues A i , . . . , A7 of P versus the indices ( 1 , . . . , ) x ( 1 , . . . , 20) of the dis 
cretization boxes of the two dihedral angles wi and W2- Positive entries of the 
eigenvectors are indicated by black boxes, negative entries by gray boxes and white 
boxes indicate almost zero entries K. 

y analyzing e e i g n v e c r s as illustrated, t algorithm fr 11 i d n ­
i f s t e c o n o r m a i o n a ubsets shown in Fig. 7. s can b see the auto­

m i c p r o c u r e in fac u p p i he chemically expected i r m a i o n . After 
idenifying th c o n r m a t i o n s , th corresponding p o b a b i i e s o s a y i h i n 

ach c o n f r m a t i o n a ubset can b c o m u t e due t q u a i o n ( 9 ) . The re 
sulting values p are also given in Fig. 7. observe tha t the t r ans / t r ans 
conformation is s ight ly more able than different t rans /gauch and 
gauche/ t rans conormat ions . x p t e , t e two g a c h e / g a c h c o n r m a ­
ions are learl less stable 

As already emphasized above, t h pobab i l i t i to stay ithin should not 
be confu ith the p o b a b i l to be within a c o n r m a t i o n , which is already 
g i n by he i n v a i a n d n s i (cf. Fig. 5) In t e table below, these tw 
differen p r o b a b i s are liste for each of t e c o n f o r m i o n a l bsets sho 
in Fig. (±g and note t i g a c h and t rans o i o n s 

c o n r m i o n g/t +g g g / t g +g/t +g+g 
ob, o be w h i n 
ob, o s a y hi 

20 473 11 
97 

he sligh differences betwee the p o b a b i i t i e s to be w h i n t ± g / t and 
± g o r a t i o n s ay be u e d as an err indicator for the s a m i n g . 

p r o b a b i t y o be w h i n the + g a c h e / g a u c h e or gauche/+gauche o a ­
ions is less han 0.000 s h o i n g hat t y are rrelevan in his conte 
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p = 0.97634 p = 0.98031 p = 0.98226 p = 0.97909 p = 0.97675 

p = 0.9234 p = 0.91771 
20 | | 11 | | | | 11 | | | | 11 | | 20 | | | || | | | || | | | | || | 

15 

10 

5 

5 10 15 20 5 10 15 20 

Fig. 7. Almost invariant sets for T = 300K. The numbers p on top of each figure are 
the probabilities to stay within the corresponding subsets during the time span T. 
From the left hand side on top to the right hand side below we see the -gauche/trans 
trans/+gauche, -gauche/-gauche, trans/trans, trans/-gauche, +gauche/trans, and 
+gauche/+gauche conformations (cf ig. 2) 

P a r a m e t e r Sens i t iv i ty . he r e u l t s p r e n t e d herein surely d e p n d on 
n u m e r o crucia p a a m e t e r s , some f them ing of physical nature g., t 
temperature T ) , others being i n t r o d d by a l g o h m g., t number  

discretization b o x s or t e leng M of th HM s a i n g ) . We wan 
to e m p h a s i e tha t the l g o i t as i ands now is ar fr ing p e r f e t l y 
t u d . We t h s can o n y pre some e x p e r n c e from numerical experi 
me r t h n-pentane m l e u l e and some er c o m p a a b l y small systems. 

At f i t , let us consider t p e n d n c f t c o n r m a t i o n s on e tem 
perature T Varying e temperature etween T 200K and 600K we 
do not obser an influenc on th ident i f id conformaions. But, as to b 
e x p c t e , the probabilities o stay hin these c o n f o r m i o n s are reas­
ing increasing Fig. 8 show e corresponding d r e a s e of t e nin 
a r s t eigenvalues of the transition matrices P P ( T ) . so i l l u t r a t e 
ha in all cases tested so far there e x i s s a distinct spectral gap etween 

s e e n largest e ignva lue sed o id c o n r m a t i o n a l subset and 
remaining par t f t spectrum 

Obviousy, the q u a l y of t e r e u l t s depends crucially on the length M o  
HMC sampling. If, for f i x d t e m e r a t u r e and s p a i a discret izaion, t 

n u m e r of teps is d c r e a s d fr M — 200.000 do o M = 0.000, we 
observe tha t the approximation quality of the i nva i an t d e n s i y slowly deteri 

rates. This corresponds to a sowly increasing distortion of t a p p r o x i a t e 
c o n o r m i o n a l " subsets. T it is of p r m a y importance to check t 

q u y of t Monte Carlo s a i n g via a p p o p i a t e c o n v e r n c indica 
[2 
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Fig. 8. Te 
matrix P. 

0.5 -

-0.5 

Fig. 9. Sensitivity of the absolutly larget eigenvalues of P for diffeent unifor 
discretizations of [0, 2TT] with n = = 9 boxes (dashed line), n = 9 x 9 = 8 
(dashed-dotted), and n = 20 x 20 = 400 boxes (dense line). Note that the seven 
largest eigenvalues - only these are used for the identification of the conformations 
- remain almost unperturbed if the grid gets coarer 

D e p e n d e n c e o n D i scre t i za t ion . Finally, let us illustrate an xtremel 
por tan property of the r e e n t e d algorithm, t t a b i l i y of the r e u l t  

significantly c o a e r discret izaions are u d . For th n-pentan 
o l e u l e we indeed can r e d e t d c o p o s i t i o n of t d iscret izaion do­

mai from n — 20 20 boxe n 3 3 boxes but t lgor s t l l 
i d e i f s appox ima te ly th same c o n f o r m i o n s and n a r l y the same prob­
abilities (bot to stay and to be w t h i e reason for this is illustrate 
in Fig. 9: since t HM o c d u r e samples he phas space i n d e n d e n 
he discretization, the s v e n t e ignvalues of t e transition matr ix P 

are only insignificantly pertur h n u m e r discret izaion b o x s is 
r e d . 
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2 lication to a Ribonucleotide 

In his sction, th performance of th a g o r h m in appicaion e t r i 
bonuleotide adnyyl^ ' -5ycyidylyl^ ' -59cyt id in at temperature = 295 
is presented. The t r i n l eo t ide m l e u l e is odelled by means of the poten­
ia and masss of the extendd a r e r e i o n o Gromos [45]. So 

s are glected. 
e numerical result o be presented are b a s d on an HM s a p l i n g 

of the canonical dnsi ty using s t ra jec to r ies of leng r 80 femtos 
onds computed by means of the Verlet discretization with stepsi At = 
femtosconds. For th paameter HMC simulations ypically requre thou 
sands o iteraions only leave th n ighbohood of th iniia configurion. 

ppicaion of A H M C h adapive temeratures betwee T = 295K and  
400 c i r c u m v t s poblem: on observes frequent transiions i 

th rucial torsion angles of t e molecule (for detais see [14]). e A H M C 
s imul ion was terminated by h associated convergenc i n d i c a r [21] after 
M = 32.000 steps, resulting in s a i n g squenc qi,. M, and co 

responding reweighting f a c s . Th s a i n g procss was comleted by th 
"transition sampling" by c o u t i n g four t r a j e c e s $(qk,Pk,i) r each 
f t s a i n g positions g& h iniial m m e a p andomly chos fr 

V 
a s d on his ATHMC sampling, the e s s i a l egrees of freedom f th 

leule were determind by appying an i d i f i c a t i o n procedure b a s d on 
isical anaysis o circular d a a [15,6] similar to tha proposed by AMADEI 

ET AL. [2 ut using sion angles instead o position i n r m i o n 8]. In this 
procedure generalized angle coordinates are introdu inear combinaions 
of t e torsion angles defined by e i g e n v s of the c i u l covariance matri 
hat measures corre l ions between e t s i o n angle) he distribution o  

s a m i n g sequenc (qu) with r e s p t t geeralized coordinates has 
e form o some narrow Gaussian r most of t coodinates (indicating tha 
y can b considered as physically constraind"), while it is non-Gassian 

or a s a l l n u m e r coodinates onl (cf. Fig. 1 0 . In our case, ony four de 
grees of freedom showed s c h non-Gaussian distribution. The parttioning o 
he corresponding fourdimensional essential configurion space was chos 

such hat the distributions are composd into hei single G a s s i a n - k e 
parts (cf. Fig. 1 ) . This pocess generated 36 discretizaion boxes. 

For this parttioning, the transiion atrix P ( s ie 36 x ) was assemle 
by c o i n g e transiions between discretization boxes b a s d on th 
4 x 2.000 128000 sutra jectoies of t e transiion sampling and weighing 
ach transiion due to i reweighting f a c . Since every box had been hit by 
ufficiently any e th statisica samping as accpted o be reliable 

c o m p u t i o n of the dominant eignvalues of P yielded a Perron cluter 
ignvalue h a significan gap e remaining part of th s p t r u m 

000 999 74 96 33 
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0.0 

0.0 

0.0 

0.0 

-100 0 
degrees 

100 

Fig. 10. Distribution of the sampling sequence qi,... ,QM with respect to two of 
the generalized angle coordinates introduced in the text. Left: Distribution for an 
essential degree of freedom (possible decomposition illustrated by dashed lines) 
Right: Gausian d i t i b u t i o n for some nearly "physically constrained" degree of 
freedom. 

Finally, the c o n o r m i o n a bset were computed bas on he corre 
sponding 8 right e i g e n v c t o s of P via h idet i f ica t ion a g o m p r e n t e 
i . The results t u r e d out to be r a t e r i n s n s i i v e t f u r t e r refinemen 

f the pa r t i ion ing . The corresponding probabil o s a y w h i n and o b 
i h i c o n r m i o n a bsets are listed i e f l l i n g able: 

c o n r m i o n 
ob, o be w h i n 
ob, o s a y hi 

20 
99 

85 
96 96 

38 02 
888 

11 
38 

The resulting d y n a i c a l c o n r m i o n s are osely related c o n r m a ­
tions r e u l t i n g fro s a n d a d geometric identification a l g o r i m ut t h 
available d y n a i c a i n f r m i o n a l l s o gai f u r t e r insigh in the t ran­
s i ions betwee c o n r m i o n a bsets ( a detailed c o p a i s o n ee 

8]) 

A c k n o w l e d g m e n t s . is a pleasure t hank ank Co r many h e l f u l 
d i scss ions . W H . as supporte i h i n the D F G - S c h w e r p u k t " E r g o d t h 

e, Anays i s nd z i n t e S i m u l i o n d y n a i s c h e r Systeme" nder an 
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