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Abstract. Recently, a novel concept for the computation of essential features of
the dynamics of Hamiltonian systems (such as molecular dynamics) has been pro-
posed [9]. The realization of this concept had been based on subdivision techniques
applied to the Frobenius—Perron operator for the dynamical system. The present
paper suggests an alternative but related concept that merges the conceptual ad-
vantages of the dynamical systems approach with the appropriate statistical physics
framework. This approach allows to define the phrase “conformation” in terms of
the dynamical behavior of the molecular system and to characterize the dynamical
stability of conformations. In a first step, the frequency of conformational changes
is characterized in statistical terms leading to the definition of some Markov opera-
tor 1" that describes the corresponding transition probabilities within the canonical
ensemble. In a second step, a discretization of T' via specific hybrid Monte Carlo
techniques is shown to lead to a stochastic matrix P. With these theoretical prepa-
rations, an identification algorithm for conformations (to be presented in [11]) is
applicable. It is demonstrated that the discretization of 7' can be restricted to few
essential degrees of freedom so that the combinatorial explosion of discretization
boxes is prevented and biomolecular systems can be attacked. Numerical results
for the n-pentane molecule and the triribonucleotide adenylyl(9’-5’)cytidylyl(9-
57’)cytidin are given and interpreted.
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1 Introduction

The classical microscopic description of molecular processes leads to a math-
ematical model in terms of Hamiltonian differential equations. In principle,
the discretization of such systems permits a simulation of the dynamics. How-
ever, direct simulation is even today restricted to relatively short time spans
and to comparatively small discretization steps. Fortunately, most questions
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of chemical relevance just require the computation of averages of physical
observables, of stable conformations, or of conformational changes. In a con-
formation, the large scale geometric structure of the molecule is understood
to be conserved, whereas on smaller scales the system may well rotate, oscil-
late or fluctuate. The computational characterization of a conformation via
direct simulation thus often requires inaccessibly long time spans.

Therefore, most approaches to the identification of conformations neglect
the dynamical aspect: they are interested only in finding clusters of molecu-
lar configurations with significantly different large scale geometric structure
and realize this by a straightforward statistical analysis of some appropriate
set of sampling data, compare [22,27]. Unlike these approaches, we herein
advocate to directly attack the determination of conformations together with
the computation of their stability time spans and the rate of transitions be-
tween them. Therefore, it is suggested to define the phrase “conformation”
in terms of statistical mechanics and not in terms of molecular geometry: a
conformation is understood as some almost invariant subset in the position
space — a notion which means that the fraction of systems in the molecu-
lar ensemble, that leave this subset during some fixed observation time, is
“small”. The algorithm to be presented allows to decomposed the position
space into such dynamically defined conformational subsets and to compute
the corresponding transition probabilities. This approach distinctly differs
from other approaches to the characterization of conformational transitions,
e.g., via artificial acceleration of molecular processes (cf. [24,23,43]).

The key idea of the algorithmic realization of the new approach goes
back to the work of M. DELLNITZ and coworkers on the approximation of
almost invariant sets in dynamical systems [8]. Therein, it had been sug-
gested to compute almost invariants subsets in phase space via the discretized
eigenvalue problem for the Frobenius—Perron operator, an operator which
describes the propagation of probability within the system. This “dynam-
ical systems” approach has been realized for molecular dynamics [9], but,
even though the numerical results were intriguing, this approach suffers both
from a (yet) unclear theoretical justification and from the so-called “curse of
dimension” of the proposed subdivision algorithm.

Herein, we will propose an alternative strategy that merges the conceptual
advantages of the dynamical systems approach with the appropriate statis-
tical physics framework. The key step of its derivation is the replacement of
the Frobenius—Perron operator by the statistically correct spatial transition
operator. The conceptual background of this replacement and its algorith-
mic consequences are first outlined in Section 2 and subsequently discussed
in more detail in Secs. 3 and 4. The single steps of the resulting algorithm
are illustrated by numerical results for the rather simple n-pentane molecule
(Sec. 5). Its applicability to biologically relevant systems —in particular the
circumvention of the curse of dimension— is exemplified at a small ribonu-
cleotide.
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2 OQOutline of the Method

Before we go into the technical details of this paper, we want to give some
“bird’s eye view” of the new approach as a whole.

Theoretical Framework As usual in molecular dynamics, we assume that
we are dealing with an ensemble of molecular systems that is described by
some (stationary) density fy in the phase space I' of the molecular systems
under consideration. Moreover, we suppose that the dynamical behavior of
a single molecular system starting at time ¢ = 0 in state ¢ € I can be
described by the formal solution z(t) = &z of certain Hamiltonian equations
of motion (compare Sec. 3 for details). Then the transition probability between
two subset Sy,82 C I is given by

1 T
w(S, 57 = T S/ X2 (872) fo(e) da 1

with x5 denoting the characteristic function of the set S C I', i.e., xs(z) =1
il # € § and xs(z) = 0 otherwise. We are interested in almost invariant
subsets, i.e., in sets S C I" with large probabilities to stay within, which, for
the time being, can be expressed as w(S, 9, 7) & 1. In [9], chemical conforma-
tions had been understood as such almost invariant subsets in phase space I".
However, they are usually understood to be objects in position space. There-
fore, we herein characterize conformational subsets as spatial subsets B of
positions ¢ € B. If we allow for arbitrary momenta p, we are naturally led to
the phase space fiber

I'(B) = {(¢g,p) €I, q€B} (2)

associated with B. Consequently, the spatial subset B is said to be a confor-
mational subsets whenever the phase space fiber I'(B) is almost invariant in
the sense that w(I'(B),['(B),7) ~ 1.

The crucial step towards the algorithmic identification of such conforma-
tional subsets is the derivation of some Markov operator T in Sec. 3.3, which
describes the probability of position fluctuations within the canonical ensem-
ble. Consequently, the Markov chain {gi}r—0,1,... generated by T allows to
simulate the spatial transitions in the ensemble. The chain takes values in the
position space {2 and has the following basic properties: First, its stationary
probability to be within a spatial subset B C (2, denoted by =« (B), is given
via the ensemble density fo, i.e., m7(B) = fF(B) folx) dz, and, second, its one-
step transition probabilities P(g; € C|go € B) between subsets B,C C {2
are given by the transition probabilities within the ensemble between the
corresponding spatial fibers

P(q, € Clgo € B)
7(B)

= w(I'(B), I'(C),). 3)
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This illustrates, that the generator T of the chain is the statistically correct
spatial transition operator of the ensemble. Following [8,9], our algorithmic
strategy is to identify conformational subsets via eigenmodes of the dominant
eigenvalues of T (see Sec. 3.3).

Algorithmic Realization In order to compute these eigenmodes (and thus
the conformations), we will have to discretize the corresponding eigenvalue
problem. We realize this by means of a Galerkin procedure (Sec. 4.1) based on
a box covering By, ..., B, C {2 of the position space. This discretization step
results in a reversible stochastic transition matrix whose entries are just the
transition probabilities w(I'(By), I'(B;), ) between the discretization boxes.

Due to (3), we may compute these entries of the transition matrix via
simulation of the Markov chain associated with T'. The approximation of
this chain naturally leads to standard hybrid Monte Carlo (HMC) sampling
techniques (Sec. 4.2). By construction, the transition probabilities of the re-
sulting HMC chain are similar to that of the original chain whose probability
to leave some conformational subset is extremely small. Consequently, the
same trapping problem occurs for the HMC chain, which leads to the rather
unsatisfactory convergence properties of HMC when applied to biomolecules,
as reported in the literature [34]. In order to circumvent this problem, a novel
approach combining HMC with the reweighting technique [13,5] has been pre-
sented in [14]. This HMC variant, called adaptive temperature hybrid Monte
Carlo (ATHMC), facilitates the transitions by repeatedly switching to an in-
creased temperature in order to cross crucial energy barriers followed by a
correction of this momentary overheating via reweighting to the ensemble of
the original temperature (cf. Sec. 4.2). Application of this technique allows
us to compute the entries w(I'(By),I'(B),7) of the transition matrix, even
for larger molecules.

However, even if we can compute arbitrary transition probabilities, any
discretization of the transition operator T will suffer from the “curse of di-
mension” whenever it were based on the decomposition of all of the hundreds
or thousands of degrees of freedom in a typical biomolecular system. For-
tunately, chemical observations reveal that —even for larger biomolecules—
only relatively few conformational or essential degrees of freedom are needed
to describe the conformational transitions [2]. Different techniques are avail-
able for identifying these essential degrees of freedom based on reliable simu-
lation data (see Sec. 4.3). We herein suggest to apply these techniques to an
ATHMC sampling. Having completed this identification process, we can avoid
discretization of by far the most degrees of freedom of the molecular system
under investigation; only the low-dimensional essential configuration space
has to be discretized which leads to a tremendous reduction of dimension.

Once the entries of the corresponding transition matrix have been com-
puted based on ATHMC sampling data, we have to determine the eigen-
vectors of its dominant eigenvalues. That is, only an approximation of the
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dominant eigenelements of the transition matrix is required, not its full diag-
onalization. Thus, actual evaluation of the required eigenvectors is efficiently
possible using subspace oriented iterative techniques, even if the number of
discretization boxes may be about 100.000 or larger (depending on the spec-
tral properties of the matrix, see Sec. 4.3). The final step, the determination
of the conformational subsets from these eigenvectors, is realized by means
of a specific identification algorithm presented in [11].

The whole algorithmic scheme of the direct conformational dynamics ap-
proach is illustrated in Fig. 1.

. Identification of i
Reweighted T Eva.h.latlon of
ATHMC essenlialivariables transition matrix
Conformational subsets Identification Subspace oriented
& transition probabilities of conformations eigenvalue solver

Fig. 1. Basic scheme of the algorithm. Gray boxes are presented in [11].

3 Conformations as Almost Invariant Sets

In classical MD (cf. textbook [1]) a molecule is modeled by a Hamiltonian
function

H(gq,p) = $p"M 'p + V(q), (4)

where ¢ and p are the corresponding positions and momenta of the atoms, M
the diagonal mass matrix, and V a differentiable potential. The Hamiltonian
H is defined on the phase space I' ¢ IR®". The corresponding canonical
equations of motion

¢g=M"p, p = —gradV (5)

describe the dynamics of the molecule. The formal solution of (5) with initial
state zo = (¢(0),p(0)) is given by z(t) = (¢(t), p(t)) = ®*zq, where ' denotes
the flow.

On the smallest time scales (say, 1 femtosecond) the dynamics described
by the flow &* consists of fast oscillations around equilibrium positions (bond
length or bond angle vibrations). In contrast to these fast fluctuations the
phrase “conformations” describes meta-stable global configurations of the
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molecule. Conformational changes are therefore rare events, which will show
up only in long term simulations of the dynamics (e.g. on a nano- or mil-
lisecond time scale). From a mathematical point of view, conformations are
special “almost invariant” subsets in position space: Invariant sets correspond
to infinite durations of stay (or relaxation times). If the conformations were
tnvariant sets of the flow of the Hamiltonian system, then transitions between
different conformations would be éimpossible. Since such transitions exist but
are rare, we must understand every conformation to be an almost invariant
subset of the Hamiltonian flow.

3.1 Dynamical Systems Approach

In what follows, the concept of almost invariant sets and their algorithmic
identification, which has been studied for rather general but low-dimensional
dynamical systems, will shortly be reviewed:

Some subset S C I' is called invariant under the flow &* iff, for all ¢ > 0,

$'(S) = S and, thus, $7(S) = S.

We now aim at a precise mathematical understanding of “almost invariance”
of a subset S C I'. Therefore, we have to introduce a measure for describing
the fraction S N &7(S) that remains in S under the action of the flow &7.
The degree of invariance of S with respect to a certain probability measure
4 is given by the corresponding conditional probability
T
6(S,1) = p(S027(S5)) <1, S p-measurable. (6)
()
In particular, if S is invariant, then §(S,7) = 1 independent of the choice
of . We are interested in subsets S with §(S,7) sufficiently close to § = 1,
to be denoted as almost invariant subsets. The so-defined notion of almost
invariance obviously depends on the choice of the time span 7. However, we
will see in Sec. 3.3, that (at least for systems of chemical interest) the influence
of 7 on the identification of almost invariant subsets can be neglected.
Upon fixing a suitable time span 7, we have reduced the continuous dy-
namical system (5) to a discrete dynamical system

LTek+1 = @Tﬂj‘k, k:0,1,2,.... (7)

The long term behavior of this system is described by so-called invariant
measures: a probability measure p is invariant, iff p($7(S)) = p(S) for all
measurable subsets S C I'. Thus, u(S) may be interpreted as the probability
of finding the molecular system in S at an arbitrary instant ¢t = k7, k € Z.
Thus, invariant measures are the natural probability measures to be used in
(6) for quantifying almost invariance. Consequently, uniqueness of the invari-
ant measure is a desirable property since it guarantees that almost invariance
is well-defined.
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The numerical computation of invariant measures is equivalent to the
solution of an eigenvalue problem for the so-called Frobenius—Perron operator
U. Invariant measures correspond to eigenmodes of U for its largest eigenvalue
A = 1. It has been discovered in [8], that for many discrete dynamical systems

almost invariant sets are related to eigenmodes of the Frobenius—
Perron operator for eigenvalues A = 1 inside the unit circle (|A| < 1).

(8)

One strategy for identification of almost invariant sets is to discretize the
Frobenius—Perron operator in order to approximate these eigenvalues A = 1.
In a sequence of articles (cf. [7,8]), M. DELLNITZ and coworkers established
numerical techniques realizing this strategy for different non-Hamiltonian
systems. The Frobenius—Perron operator is discretized via a multi-level sub-
division process, which generates a box covering of the system’s relative global
attractor. Recently, this approach has been extended to Hamiltonian systems
with intriguing numerical results [9].

This “dynamical systems approach”, however, has two crucial difficulties.
First, this approach turns out to be useful only for small molecular systems,
since it suffers from combinatorial explosion of the necessary number of dis-
cretization boxes already for moderate size molecules. Second, the approach
has some deep-lying conceptual problems that are related to the properties of
the Frobenius-Perron operator for Hamiltonian systems: To understand these
problems, one has to discuss the physical meaning of the Frobenius—Perron
operator U in the context of statistical mechanics. This will help us to draw
the appropriate consequences for the molecular ensembles to be considered
herein and, finally, to transform the key ideas of the dynamical systems ap-
proach into an algorithmic concept being applicable to the identification of
biomolecular conformations.

3.2 Reformulation in Terms of Statistical Mechanics

In order to understand the physical meaning of the Frobenius—Perron opera-
tor for Hamiltonian systems, we recall the basic equations of motion in statis-
tical mechanics. The evolution of a statistical ensemble of identically prepared
systems is described by a time dependent probability density f = f(x,t) in
phase space. The propagation of the probability density is described by the
Liouville equation for the Hamiltonian H:

O f =iLf = {Haf}7 f(t:()) = Jo, (9)

where {-,-} denotes the well-known Poisson bracket and £ = —i{H,-} the
associated Liouville operator (cf. [30]). The density fo describes the initial
probability distribution in the statistical ensemble, i.e., fo(x) is interpreted
as the relative frequency in the ensemble of systems in state x at time ¢ = 0.
Therefore, the density must be defined in accordance with the initial experi-
mental preparation of the ensemble.
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On one hand, the solution of (9) is given by the flow as
f(ﬂ?,t) = fO(Spith’)a

on the other hand, it can be denoted using the semi-group generated by £
on the Hilbert space L*(I"):

J(,t) = exp(itL) fo. (10)

Frobenius—Perron Operator in Statistical Mechanics For the Hamil-
tonian system (7), the Frobenius—Perron operator U of the dynamical systems
approach is identical with the statistical propagator in (10), that is,

U = exp(irL), ylelding Uf = fod 7, (11)

acting on L*(I") = {f : [, |f(x)[?dz < oo}, for details see [31,41]. Since £
is self-adjoint [29], U is unitary in L?(I"). Thus, the spectrum of U in L?(I")
lies on the unit circle and there simply are no eigenvalues A < 1 allowing for
the identification of almost invariant sets. (The same is true in L1(I"), see
[31], Prop. 3.1.2; or [41]).

Moreover, all stationary solutions of the Liouville equations are invari-
ant densities of U, i.e., eigenvectors for the eigenvalue A = 1. In particu-
lar, for arbitrary smooth functions F' : R — [0, 1], the associated densities
f(z) = F(H(x)) are stationary solutions of the Liouville equation. Conse-
quently, there are infinitely many invariant densities (and associated invariant
measures) for U.

As a consequence of our considerations, one has to replace the Frobenius—
Perron operator by an alternative stochastic operator that represents the re-
striction to the stationary ensemble density under consideration and —since
the conformation are purely spatial objects— describes spatial fluctuation
within this ensemble. After introducing the appropriate notation in the sub-
sequent paragraph, we will see in Sec. 3.3 that this can in fact be realized.

Spatial Fluctuations in the Canonical Ensemble Most experiments
on molecular systems are performed under the conditions of constant tem-
perature and volume. The corresponding stationary density is the canonical
density associated with the Hamiltonian H

fole) = 7 exp(~fHE), with Z= /F exp (—B H(z)) d,

where 3 = 1/kgT, with T being the system’s temperature 7 and kp Boltz-
mann’s constant. Since H was assumed to be separable, fy is a product

(o) = 5 ew (<3070 ') Few(-AV@). (2

:7;(17) :QY(‘I)
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where we normalize P and Q such that

/P(p)dp = / Q(q)dg = 1.

In the following we always consider this canonical ensemble, i.e., fo will always
be given by (12).

We are interested in particular almost invariant subsets of the canonical
ensemble fo. Thus, the probability measure p in the basic definition (6) of
almost invariance is now given by the density fo. Then, the definition (1)
of the statistical transition probabilities allows to rewrite the degree (5, 1)
of invariance of some subset S C I' as §(5,7) = w(S,8,7). Thus, S C I' is
almost invariant if w(S,S,7) =~ 1.

As already discuss above, conformations are related to subsets of the
position space 2 C R3Y (the spatial component of the phase space I’ = 2 x
IR3M): conformational subsets are subsets B C {2 such that the corresponding
phase space fiber I'(B) is almost invariant, i.e., such that

w(I'(B),I'(B),7) ~ 1,
where, as a consequence of (1) and (12),
1 T
w(P(B).I(C),7) = g (/ {[, xo&r @mrorav} 0w an

with £ denoting the projection onto the position component, i.e., £ (g, p) = q.
From now on, we are interested only in subsets of this form and denote the
probability to be within B C {2 by

#(B) = / Oq)dg = / folz) da. (13)

I(B)

3.3 Definition of the Spatial Transition Operator

Ag will turn out subsequently, an appropriate choice for a stochastic operator
is the spatial transition operator T defined via momentum weighting due to

Tu(g) = / W& (,p)) P(p) dp, (14)

where v = u(q) is a function u : 2 — C and u(& ¢ 7(g,p)) means u(qy)
if (q1,p1) = & 7 (g,p) due to the definition of & . In comparison with (11),
one may interpret T as the restriction of the Frobenius—Perron operator to
the position coordinates via an appropriate averaging with respect to the
canonical momentum distribution.
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We consider T' as an operator on the weighted spaces
(@) = {u: 0€ [ ulolre@d<oc),  p=12
2

Obviously, L% (£2) is a Hilbert space with scalar product

(u,0)g = /Q u*(g) v(g) Qq) dg

and induced norm |Jul|% = {u,u)g. With respect to these spaces, the impor-
tant properties of T' are the following (cf. [41]):

1. T is a Markov operator on Lg(£2).

2. T is bounded: [|Tullg < ||lu/lo-

3. In LZQ(Q), T is selfadjoint, since &7 is reversible. Hence, the spectrum
a(T) of T is real-valued and bounded: ¢(T) C [-1,1].

4. For subsets B,C C {2 we find:

(Txp.Xx0)o = / Xr(ey (@ z) fol(z) de, (15)
r{B)

showing that T' represents the transition probabilities of our interest.

5. T is asymptotically stable in L'({2), i.e., the eigenvalue A = 1 is dominant
and simple in L'(£2) and L?({2) (this holds for all systems of chemical
interest).

The last property shows that T has a unique invariant density so that “almost
invariance” is well-defined via (6). Thus, T has all necessary properties to
replace the Frobenius—Perron operator such that, in analogy to (8), we may
identify the conformational subsets via the eigenmodes of T' for eigenvalues
near A = 1.

In contrast to the properties 1-4 which generally hold for Hamiltonian
systems, the last property is only valid for systems satisfying a certain mix-
ing condition: for every position g € {2, the map y,(p) = & 97 (¢, p) must have
sufliciently strong mixing properties (e.g., y, must not map all possible mo-
menta p to a single position ¢’ € £2). This mixing condition is satisfied, e.g.,
for all molecular systems with periodic boundary condition [41]. It, however,
excludes certain “degenerate” systems such as strictly harmonic systems with
period 7 (where y,(p) = ¢ for every momentum p).

Moreover, for systems satisfying the above condition for every v > 0,
the dominant eigenmodes of T —and, thus, the almost invariant sets— are
rather insensitive to changes in 7 [41]. In contrast to this insensitivity, the
transition probabilities do crucially depend on 7. The time span 7 appears
to be a temperature-like parameter (increases in 7 effect a kind of melting
process of the fluctuation-induced mixing in position space, compare [41] for
details).
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For the systems of interest, the cluster of eigenvalues near A = 1 is sep-
arated from the remaining part of the spectrum o(T") by some significant
spectral gap (cf. [41], Sec. 3.2): ¢(T') can be decomposed into this so-called
Perron cluster {A; = 1, Ag,..., Ay} of isolated eigenvalues A\, < ... < Ay < 1,
and the remainder og(T) C [—«, k] with some value 0 < kK < A such that
(in most cases of interest) the gap g = Ay — k is significantly larger than the
distances between the eigenvalues within the Perron cluster (for examples see
Sec. 5).

4 Transition Probabilities and Associated Markov
Chains

Since the transition operator T' is a Markov operator in L'({2) satisfying
Txo = X0, it generates a Markov chain {gx}x—o,1,... with values in the posi-
tion space {2 via the transition function

P(q1 € Blgo =q) = P(q,B) = Txg(q), for all measurable B C (2.
This chain can be realized via the discrete stochastic dynamical system [41]

dr+1 = fldST(qupk): k= 07 ]-7 sy (16)

with pg being randomly chosen from the momentum distribution P in each
step. For systems of chemical interest, the chain has been shown to be ir-
reducible and aperiodic with unique stationary density Q [41]. Moreover,
any simulation of the chain via (16) would allow to compute the desired
transition probabilities in the ensemble, since the definition of its transition
function implies

P(qx € Clgo € B) = (xc, T"xB)o, (7)

which in particular yields (3) for the one-step transition probabilities.

Thus, the replacement of the Frobenius—Perron operator U by the spatial
transition operator T induces an associated change in the dynamical descrip-
tion: the discrete deterministic dynamical system (7) associated with U is
replaced by the stochastically perturbed dynamical system (16) associated
with 7. In other words, the restriction to spatial fluctuations via averaging
with respect to the canonical momentum distribution may be interpreted as
a specific coarse graining of the dynamical description.

In order to compute the conformational subsets via the eigenvalue problem
for T, we will now proceed to the (spatial) discretization of T. We will see
that this finally also leads to a certain discretization of the Markov chain
{gx}r=0,1,.. generated by T.
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4.1 Spatial Discretization

If we restrict our attention to the weighted Hilbert space L ({2), we can (as
in [8,9]) naturally derive a special Galerkin procedure to discretize the eigen-
value problem Tu = Au. Let By, ..., B, C {2 be a covering of {2 so that BN
By =0for k#1and U}_, By = 2. Then, the sets I'(Bg), k=1,...,n, are a
covering of I'. Our finite dimensional ansatz space V,, = span{xi,...,Xn} is
spanned by the associated characteristic functions x; = xp,. The Galerkin
projection I, : LH(2) = V, of u € L (12) is defined by

LN |
Mou = 1) Xh-
u=y B e we

The resulting discretized transition operator I7,T1I, induces the approxi-
mate eigenvalue problem I1,TIl,u = Au in V,. Let A be one of the cor-
responding eigenvalues and let the related eigenvector be u = ") | @ Xk.
Then, the discretized eigenvalue problem has the form

n

Z(TXk7Xl>Q ap = >\7T(Bk)ak, Vk = 1,...,n.

=1

After division by m(By,) (known to be positive), we end up with the convenient
form
Pa = Aa with a=(a1,...,an),

where in fact the entries of the n x n matrix P are given by the spatial
transition probabilities from By to By:

py = EXeX00 _ \r(p,) 1(B)),7). (18)
(Bk)
This result finally confirms that (14) was the correct choice of a transition
operator in the statistical context.

Since T is a Markov operator, its Galerkin discretization P is a (row)
stochastic matrix, i.e., Py > 0 and >, Py = 1 forall k = 1,...,n (for
details about stochastic matrices see [4]). Hence, all its eigenvalues A satisfy
|A] < 1. Moreover, we have the following four important properties (cf. [41]):

1. The row vector m = (my,...,7), 7 = #(By) denotes the discretized
invariant density. Simple calculus reveals that 7 is a left eigenvector to
the eigenvalue A = 1, i.e., that 7P = 7.

2. P is irreducible and aperiodic, which implies, that the eigenvalue A = 1 is
simple. Hence, the discretized invariant density 7 is the unique stationary
distribution of P.

3. P is reversible, since T is self-adjoint. In other words, P fulfills the con-
dition of detailed balance:

g Py = m Py, Vi, le{l,...,n}.

Therefore, all eigenvalues of P are real-valued: o(P) C [—-1,1].
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4. Whenever the discretization is fine enough, the dominant eigenvalues of
P are good approximations of the dominant eigenvalues of T'. In this case,
P also has a Perron cluster of eigenvalues near A = 1 which is separated
from the remainder of the spectrum by a significant gap (cf. Sec. 3, last
paragraph).

This means that, for arbitrary coverings By, ..., B, C {2, the discretization
matrices P are inheriting the most important properties of the operator T'.

As any stochastic matrix, our discretization matrix P also defines a dis-
crete Markov chain, i.e., the stochastic (random) walk of a single system
through phase space. The associated statistical interpretation is as follows: If
at instance j € IN the system is in By, the probability of finding the system
in By at instance j+1is Py = w(I'(Bg), I'(By), 7). With § — oo the system
visits all subset By, with the probability 7}, the value given by the stationary
distribution of P.

According to our definition of “almost invariance”, we are interested in
such unions B = UgerBy of our “discretization boxes” By, for which the
probability w(I'(B), I'(B), ) to stay within is sufficiently close to § = 1. In
other words, we are looking for a nontrivial index set I C {1,...,n} so that
the discrete system almost certainly stays within B = Ugc7 By within one
single step j — j + 1. As derived in [11], such index sets (“almost invariant
aggregates”) can be identified via the right eigenvectors of P for eigenvalues
close to A = 1. Once a conformational subset B has been identified, the prob-
ability 6(B, 1) = w(I'(B),I'(B),7) to stay within B can easily be computed
by virtue of the relation:

1
= e Pri- 1
3(B,T) S E g Py (19)
o kaer

4.2 Realization via Hybrid Monte Carlo (HMC)

Up to now, the remaining question is how to compute the matrix P for given
boxes By. According to (18) we have to determine the transition probabilities
between the By. This task includes two subproblems:

1. “Sampling of the canonical density”: That is, we have to generate a se-
quence of states S = {x, k=1,...,M} C I that is approximately
distributed according to fo.

2. Approximation of the transition probabilities: We will see below that
this reduces to counting all such z; € S for which z; € I'(By) and
@7 x; € I'(By). For checking the last condition, sufficient approximations
&; =~ @7 x; of all M subtrajectories starting from S are needed.

The typical approach to sampling the canonical density is via Monte Carlo
(MC) techniques. The literature on this topic is extremely rich and varied
[6,42]. The reader might notice that we need not give particular merits to any
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special MC variant since every converging MC method would allow to realize
the subproblem 1 from above. In addition, one may also apply MD-based tech-
niques, e.g., constant temperature sampling of the canonical density [38,3].

Despite this, we suggest to apply a certain hybrid Monte Carlo (HMC)
technique, merely because it seems to be particularly appropriate for linking
the above mentioned subproblems 1 and 2. In order to explain this advan-
tage and the basic idea of HMC let us shortly recall that the transition
probabilities may be computed via the Markov chain (16) associated with
our transition operator T'. Iterations of (16) realize sequences {g; } which are
(asymptotically) distributed due to Q and allow to determine the relative
frequency of transitions ¢ € B; — gg4+1 € By for arbitrary box numbers j
and . The convergence guarantees that the relative frequencies approximate
the desired transition probabilities in the sense that

# (qx € Bj A qiy1 € By)
# (qr € B;)

Thus, we have to ask whether one can realize the iteration (16) by replac-
ing the exact flow ®” by an appropriate approximation. For answering this
question, let ¥4 denote a reversible and volume-preserving one-step dis-
cretization of the flow &, i.e., of the Hamiltonian equations (5). The reader,
who is not familiar with this notation, may think of #4! as denoting the
well-known Verlet discretization [46,1] with stepsize At. The approximation
of &7 via m steps of this discretization yields the discrete flow

w(F(BJ)vp(Bl)ﬂ—) (20)

g = (W/m)m, m e,

with m being large enough such that the stepsize 7/m is adequate. Unfortu-
nately, the underlying stationary density fq is not invariant under the action
of g, since g does not preserve the energy of the system. (There is no dis-
cretization which is symplectic and reversible and simultaneously preserves
energy exactly [20]. We may reduce the energy error, produced by g, to an ar-
bitrary small value by increasing m, but this would lead to a totally inefficient
computation scheme.)

Standard Hybrid Monte Carlo (HMC) Hence, we have to look for a
Markov chain, which allows to sample Q while containing only g and not the
flow itself. This requirement naturally leads us to so-called “hybrid” Monte
Carlo variants which to our knowledge have first been introduced in the late
80’s (cf. [12]) and have in MD mostly been used for condensed matter and
polymer-like systems (cf. [36,26,17]). HMC generates a sequence (g;) C §2
in position space. The HMC update step g; — g;+1 is based on the typical
Metropolis Monte Carlo proposal/acceptance strategy: The first part of the
HMC proposal step is to choose momenta p; randomly from P, gaining the
state z; = (g;,p;j). As the second part, compute the proposal state Z; via a
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short approximate subtrajectory of the underlying Hamiltonian system, i.e.,
choose &; = g(x;). Then, apply the standard Metropolis MC acceptance step
to z; and Z;, let the accepted state be z;,1, and finally set ¢; 1 = mi2 1.
In other words, HMC realizes an iteration of the Markov chain

g(x), if r < o(z),

z otherwise, (21)

gj+1 = malgj,pj,r;) with a(z,r) = {
setting  a(x) = min{l,exp(—BAE(z))},
with  AE(x) = H(g(x)) — H(x),

with p; independently chosen randomly from P and r; randomly from the
equidistribution in [0, 1]. In this form, HMC has to be understood as a pure
position sampling of the spatial canonical distribution Q such that the re-
sulting Markov chain {g;} allows to approximate the expectation values of
appropriate spatial observables A : 2 — IR in the sense that we have asymp-
totically [41,37,44]

‘%ZA(%’) - /A(Q)Q(q) dg| < o172, )

with a constant C not explicitly depending on dim(I') = 6/N. Thus, we are
able to approximate the desired transition probabilities w(I'(By),I'(By), )
“simply” by counting according to (20). The main advantage of HMC in this
context is obvious: we need approximations of 7z; and get them “for free”
if we use mAt = 7 with sufficiently small At in the HMC iteration (21).

Theoretically, the transition matrix P is reversible. In order to reproduce
this property for its approximation, we may simply count each transition
from By, to By as a transition By — By, too (thus exploiting the reversibility
of the discretization ¥4?).

Reweighted Hybrid Monte Carlo (ATHMC) It is well-known that MC
simulations for ensemble averages may suffer from possible “critical slowing
down” [32]. This phenomenon occurs when the iteration zp — zp1 gets
trapped near a local potential minimum due to high energy barriers so that
a proper sampling of the phase space within reasonable computing times is
prevented. Typically, this also happens to HMC applications to biomolecules
[19,34]. Therefore, a novel approach combining HMC with the reweighting
technique [13,5] has been developed [14]. This HMC variant generates the
distribution of a mixed-canonical ensemble composed of two canonical ensem-
bles at low and high temperature. Its analysis shows an efficient sampling of
the canonical distribution at the low temperature, whereas the high tempera-
ture component facilitates crossing of the crucial energy barriers. We will call
this variant “adaptive temperature HMC” (ATHMC) in the following. The
sampling positions g; generated by high temperature update steps have to be
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rewetghted in order to guarantee overall convergence to the canonical position
distribution to the low temperature. Moreover, we have to supply additional
trajectories in order to guarantee that the initial momenta of the set of tra-
jectories starting in one of the sampling position g; are weighted according
to the correct low temperature. For details of the ATHMC construction, the
reader is referred to our article [14].

The necessity of introducing generalizations of HMC is caused by the ez-
istence of almost invariant sets: If there are almost invariant sets, denoted B
and C, with small transition probability w(I'(B),I'(C),7), then, both, the
Markov chain (16) associated with the transition operator and the original
HMC Markov chain need a huge number of iterations in order to produce
sufliciently many of the rare transitions between B and C. This problem is
circumvented by introducing the ATHMC chain which facilitates such tran-
sitions but has to be reweighted in order to yield samplings of the original
canonical distribution.

The reader might also notice, that there are other Monte Carlo Markov
chain techniques which allow to enforce barrier crossing (for example, the
multicanonical algorithm [25], simulated tempering [35], J-walking [18], the
fluctuating potential method [33] and other novel approaches [5].).

4.3 Essential Degrees of Freedom

Typical biomolecular systems contain hundreds or thousands of atoms. As
a consequence, any direct spatial discretization of the transition operator T
suffers from the curse of dimension, since the number of discretization boxes
grows exponentially with the size of the molecular system under considera-
tion. Our strategy to circumvent the curse of dimension is based on chemi-
cal observation. In the chemical literature conformations of biomolecules are
mostly described in terms of few essential degrees of freedom. In the subspace
of essential degrees of freedom anharmonic motion occurs that comprises most
of the positional fluctuation, while in the remaining degrees of freedom the
motion has a narrow Gaussian distribution and can be considered as “phys-
ically constrained”. We may determine essential degrees of freedom either in
the coordinate space according to AMADEI ET AL. [2] or in the space of inter-
nal degrees of freedom, e.g., torsion angles, by statistical analysis of circular
data [15,16]. Both procedures result in a tremendous reduction of dimension
(see Sec. 5.2).

After partitioning the chosen essential degrees of freedom resulting in dis-
cretization boxes By, ..., B,, we assemble the transition matrix P and solve
the corresponding eigenvalue problem. Since we only need the Perron cluster
of the largest eigenvalues near A = 1, we apply subspace oriented iterative
techniques (see, e.g., [40] or [10], Sec. 4.1) to solve the eigenvalue problem.
It is important that the convergence rate only depends on the spectral gap
between the Perron cluster and the remaining part of the spectrum (see Sec.
3.3) and is independent of the size of the transition matriz and thus of the
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number of discretization boxes. Therefore, neither the HMC sampling tech-
niques nor the solution of the eigenvalue problem do scale exponentially with
the size of the molecule.

5 Numerical Experiments

In this section, the performance of the above derived algorithm in appli-
cation to n-pentane and to the triribonucleotide adenylyl(3’-5’)cytidylyl(3’-
5’)cytidin are presented. The application to n-pentane allows to follow closely
the single steps of the algorithm, while the case of the ribonucleotide exem-
plifies the performance of the algorithm when applied to biologically relevant
systems.

5.1 Application to n-Pentane

Fig. 2 illustrates the chemically observed conformations of the n-pentane
molecule CHg(CHz)gCHg

O

Fig. 2. Different conformations of n-pentane: From the left to the right: trans-trans,
trans-gauche, gauche-gauche orientations.

For the n-pentane Hamiltonian, we use the united atom model (cf. Fig. 3)
with the typical bond length and bond angle potentials, and a Lennard-Jones
potential modelling the interaction between the first and the last of the united
“atoms”. The dihedral angle potentials are chosen according to [39], cf. Fig. 3.
The form of the dihedral angle potential shows three different minima corre-
sponding to the trans and gauche orientations of the angles. The vibrational
frequencies induced by these potentials are considerably smaller than those
induced by the bond interactions. Consequently, in this simple example, the
dihedral angles can be selected as the essential degrees of freedom mentioned
above in Sec. 4.3.
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Fig. 3. United atom model of n-pentane with the two dihedral angles w; and wo.

On the left: Dihedral angle potential due to [39]. The main minimum corresponds to
the trans orientation of the angle, the two side minima to the +gauche orientations.

Figures 4 to 7 below illustrate the performance of the algorithm for the
temperature 7 = 300K. The discretization boxes are constructed via uniform
decomposition of the possible values [0, 27 x [0, 27] of the two dihedral angles
w1 and we in n = 20 x 20 = 400 boxes. The HMC sampling has been realized
using the Verlet time discretization with a subtrajectory length of 7 = 160fs.
Fig. 4 shows the resulting sequences of HMC steps in terms of the dihedral
angles.
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Fig. 4. HMC simulation of n-pentane for 7 = 300K. From top to bottom: The two
dihedral angles versus the step number and the convergence of the potential energy
expectation (V).
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We observe frequent transitions between the different “trans” and “gauche”
orientations of both angles. This observation illustrates that it is not sufficient
to know the probability to be within a particular orientation of the angles but
that the essential dynamical information is given by the probability to stay
within it until a transition into another orientation occurs.
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Based on such a HMC sampling with M = 200.000 steps, the transition
matriz P is assembled by the procedure explained in Sec. 4.2. Within this
sampling length, the HMC method produces a sufficient sampling of the
canonical density (see the equilibration diagram on bottom of Fig. 4). That
is, in this case, we observe no serious trapping problems and application of
ATHMC is not absolutely necessary. When switching to lower temperatures
(as, e.g., for the simulation underlying Fig. 8 below), the rate of convergence
of the HMC sampling slows down significantly and an application of ATHMC
allows to decrease sampling lengths for more than an order of magnitude (cf.
[14]).

From Sec. 4.1 we know that the discrete invariant density (7(Bg))i=1,...n
is given by the left eigenvector of P for the largest eigenvalue Ay = 1. The
result is given in Fig. 5. As expected, the invariant density shows distinct
local maxima at the minima of the dihedral angle potentials.

0.1

0.05+~

0 A RS L
20 tanl= =
15 =S 20
_ 5 5
discr. o discr.o

2 1

Fig. 5. Discrete canonical distribution for n-pentane versus the indices of the dis-
cretization boxes of the two dihedral angles wi and ws. 7 = 300K.

Conformations. Following [11], the chemical conformations are analyzed
via the right eigenvectors corresponding to an eigenvalue cluster near A = 1.
A presentation of the derivation of the algorithmic procedure would be be-
yond the scope of the present paper. We herein only give a sketch of the
construction principle: In a first step, determine the eigenvalue cluster near
A = 1, which is separated from the remaining part of the spectrum by a
significant spectral gap — in our case, these are the seven largest eigenvalues.
Fig. 6 shows a schematic plot of the corresponding right eigenvectors. We ob-
serve that we may decompose the discretization domain into disjoint regions
by distinguishing between different, positive, negative, and almost zero values
of these eigenvectors. The details of the algorithmic realization are nontrivial,
because it has to include an iterative procedure to decide what is “almost
zero”.
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Fig. 6. Schematic plot of the right eigenvectors corresponding to the seven largest
eigenvalues A1,...,A7 of P versus the indices (1,...,20) x (1,...,20) of the dis-
cretization boxes of the two dihedral angles w; and ws. Positive entries of the
eigenvectors are indicated by black boxes, negative entries by gray boxes and white
boxes indicate almost zero entries. 7 = 300K.

By analyzing the eigenvectors as illustrated, the algorithm from [11] iden-
tifies the conformational subsets shown in Fig. 7. As can be seen the auto-
matic procedure in fact supplies the chemically expected information. After
identifying the conformations, the corresponding probabilities to stay within
each conformational subset can be computed due to equation (19). The re-
sulting values p are also given in Fig. 7. We observe that the trans/trans
conformation is slightly more stable than the different trans/gauche and
gauche/trans conformations. As expected, the two gauche/gauche conforma-
tions are clearly less stable.

As already emphasized above, the probabilities to stay within should not
be confused with the probability to be within a conformation, which is already
given by the invariant density (cf. Fig. 5). In the table below, these two
different probabilities are listed for each of the conformational subsets shown
in Fig. 7 (£g and t denote the tgauche and trans orientations):

conformation g/t [ t/+g |-g/-g| t/t [t/-g| +g/t| +&/+g
prob. to be within [0.120]0.132]0.01210.473[0.117[0.132| 0.013
prob. to stay within|0.976(0.980 | 0.910 [0.982|0.979|0.970| 0.865

The slight differences between the probabilities to be within the +g/t and
t/+g orientations may be used as an error indicator for the sampling. The
probability to be within the +gauche/-gauche or -gauche/+gauche orienta-
tions is less than 0.0005, showing that they are irrelevant in this context.
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Fig. 7. Almost invariant sets for 7 = 300K. The numbers p on top of each figure are
the probabilities to stay within the corresponding subsets during the time span 7.
From the left hand side on top to the right hand side below we see the -gauche/trans,
trans/+gauche, -gauche/-gauche, trans/trans, trans/-gauche, +gauche/trans, and
+gauche/+gauche conformations (cf. Fig. 2).

Parameter Sensitivity. The results presented herein surely depend on a
number of crucial parameters, some of them being of physical nature (e.g., the
temperature 7), others being introduced by the algorithm (e.g., the number
n of discretization boxes or the length M of the HMC sampling). We want
to emphasize that the algorithm as it stands now is far from being perfectly
tuned. We thus can only present some experiences from numerical experi-
ments for the n-pentane molecule and some other comparably small systems.

At first, let us consider the dependence of the conformations on the tem-
perature T. Varying the temperature between 7 = 200K and 7 = 600K we
do not observe an influence on the identified conformations. But, as to be
expected, the probabilities to stay within these conformations are decreas-
ing with increasing 7 Fig. 8 shows the corresponding decrease of the nine
largest eigenvalues of the transition matrices P = P(7T). It also illustrates
that in all cases tested so far there exists a distinct spectral gap between the
seven largest eigenvalues used to identify the conformational subsets, and the
remaining part of the spectrum.

Obviously, the quality of the results depends crucially on the length M of
the HMC sampling. If, for fixed temperature and spatial discretization, the
number of steps is decreased from M = 200.000 down to M = 50.000, we
observe that the approximation quality of the invariant density slowly deteri-
orates. This corresponds to a slowly increasing distortion of the approximate
“conformational” subsets. Thus, it is of primary importance to check the
quality of the Monte Carlo sampling via appropriate convergence indicators
[21].
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Fig. 9. Sensitivity of the absolutely largest eigenvalues of P for different uniform
discretizations of [0, 27]* with n = 3 x 3 = 9 boxes (dashed line), n = 9 x 9 = 81
(dashed-dotted), and n = 20 x 20 = 400 boxes (dense line). Note that the seven
largest eigenvalues — only these are used for the identification of the conformations
— remain almost unperturbed if the grid gets coarser.

Dependence on Discretization. Finally, let us illustrate an extremely
important property of the presented algorithm, the stability of the results
even when significantly coarser discretizations are used. For the n-pentane
molecule we indeed can reduce the decomposition of the discretization do-
main from n = 20 x 20 boxes to n = 3 x 3 boxes but the algorithm still
identifies approximately the same conformations and nearly the same prob-
abilities (both to stay and to be within). The reason for this is illustrated
in Fig. 9: since the HMC procedure samples the phase space independent of
the discretization, the seven largest eigenvalues of the transition matrix P
are only insignificantly perturbed when the number of discretization boxes is
reduced.
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5.2 Application to a Ribonucleotide

In this section, the performance of the algorithm in application to the triri-
bonucleotide adenylyl (8’-57)cytidylyl (8’-57)cytidin at temperature 7 = 295K
is presented. The trinucleotide molecule is modelled by means of the poten-
tial and masses of the extended atom representation of Gromos [45]. Solvent
effects are neglected.

The numerical results to be presented are based on an ATHMC sampling
of the canonical density using subtrajectories of length 7 = 80 femtosec-
onds computed by means of the Verlet discretization with stepsize At = 2
femtoseconds. For these parameters, HMC simulations typically require thou-
sands of iterations only to leave the neighborhood of the initial configuration.
Application of ATHMC (with adaptive temperatures between 7 = 295K and
T+ = 400K) circumvents the problem: one observes frequent transitions in
the crucial torsion angles of the molecule (for details see [14]). The ATHMC
simulation was terminated by the associated convergence indicator [21] after
M = 32.000 steps, resulting in the sampling sequence qi,...,qp, and cor-
responding reweighting factors. The sampling process was completed by the
“transition sampling” by computing four subtrajectories &7 (g, px,;) for each
of the sampling positions g, with initial momenta py; randomly chosen from
P.

Based on this ATHMC sampling, the essential degrees of freedom of the
molecule were determined by applying an identification procedure based on
statistical analysis of circular data [15,16] similar to that proposed by AMADEI
ET AL. [2] but using torsion angles instead of position information [28]. In this
procedure generalized angle coordinates are introduced (linear combinations
of the torsion angles defined by eigenvectors of the circular covariance matrix
that measures correlations between the torsion angles). The distribution of
the sampling sequence (g;) with respect to these generalized coordinates has
the form of some narrow Gaussian for most of the coordinates (indicating that
they can be considered as “physically constrained”), while it is non-Gaussian
for a small number of coordinates only (cf. Fig. 10). In our case, only four de-
grees of freedom showed such non-Gaussian distribution. The partitioning of
the corresponding four-dimensional essential configuration space was chosen
such that these distributions are decomposed into their single Gaussian-like
parts (cf. Fig. 10). This process generated 36 discretization boxes.

For this partitioning, the transition matrix P (size 36 x 36) was assembled
by counting the transitions between the discretization boxes based on the
4 x32.000 = 128.000 subtrajectories of the transition sampling and weighting
each transition due to its reweighting factor. Since every box had been hit by
sufficiently many events the statistical sampling was accepted to be reliable.
The computation of the dominant eigenvalues of P yielded a Perron cluster
of 8 eigenvalues with a significant gap to the remaining part of the spectrum.

k| 1 2 3 4 3 6 7 8 9 ...
Ax|1.000]0.999(0.989]0.974(0.963(0.946]0.933(0.904/|0.805] . . .
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Fig. 10. Distribution of the sampling sequence qi1,...,gar with respect to two of

the generalized angle coordinates introduced in the text. Left: Distribution for an
essential degree of freedom (possible decomposition illustrated by dashed lines).
Right: Gaussian distribution for some nearly “physically constrained” degree of
freedom.

Finally, the conformational subsets were computed based on the corre-
sponding 8 right eigenvectors of P via the identification algorithm presented
n [11]. The results turned out to be rather insensitive to further refinements
of the partitioning. The corresponding probabilities to stay within and to be
within these conformational subsets are listed in the following table:

conformation 1 2 3 4 5 6 7 8
prob. to be within [0.320(0.285(0.116]0.107(0.095(0.038(0.028|0.011
prob. to stay within|0.991(0.981(0.961|0.986|0.962|0.949|0.888|0.938

The resulting dynamical conformations are closely related to the conforma-
tions resulting from standard geometric identification algorithms, but the
available dynamical information allows to gain further insight in the tran-
sitions between the conformational subsets (for a detailed comparison, see

[28]).
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