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Abstract

The statistical behavior of deterministic and stochastic dynamical sys-
tems may be described using transfer operators, which generalize the no-
tion of Frobenius—Perron and Koopman operators. Since numerical tech-
niques to analyse dynamical systems based on eigenvalues problems for
the corresponding transfer operator have emerged, bounds on its essential
spectral radius became of interest. This article shows that they are also
of great theoretical interest. We give an analytical representation of the
essential spectral radius in 7'(p), which then is exploited to analyse the
asymptotical properties of transfer operators by combining results from
functional analysis, Markov operators and Markov chain theory. In par-
ticular, it is shown that an essential spectral radius less than 1, uniform
constrictiveness and some “weak form” of the so—called Doeblin condition
are equivalent. Finally, we apply the results to study three main prob-
lem classes: deterministic systems, stochastically perturbed deterministic
systems and stochastic systems.

Keywords. uniformly constrictive, asymptotically stable, exact, asymptotically pe-
riodic, ergodic, aperiodic, Frobenius—Perron operator, Koopman operator, Markov
operator, transfer operator, propagator, Doeblin condition, irreducible, uniformly er-
godic, deterministic dynamical system, stochastic dynamical system, stochastic per-
turbation, statistical behavior, eigenvalue cycle

1 Introduction

Recently, efficient, techniques for the numerical approximation of the essential
statistical behavior of deterministic as well as stochastic dynamical systems
have been proposed [1, 2, 17]. They are based on the observation that certain
aspects of the dynamical behavior are related to eigenvalues on and near the
unit circle of some corresponding transfer operators which generalize the notion
of Frobenius—Perron operators. Furthermore, these statistical aspects may be
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identified exploiting the corresponding eigenfunctions. As a necessary condition
for approximating the statistical behavior in a numerically reliable way, the
essential spectral radius has to be bounded away from 1, allowing for finitely
many isolated eigenvalues of finite multiplicity on and near the unit circle. We
show that bounds on the essential spectral radius are also of theoretical interest.

This article brings together aspects from rather isolated mathematical bran-
ches. We use a functional analytic approximation result based on weakly com-
pact operators to get an analytic representation of the essential spectral ra-
dius including upper bounds. Furthermore, we link properties known from
Frobenius—Perron and, more general, Markov operator theory, such as ergodic-
ity, constrictiveness, asymptotic periodicity and asymptotic stability with con-
cepts known from the theory of Markov chains, such as irreducibility, uniform
ergodicity and the so—called Doeblin condition. We especially emphasize the
result that uniform constrictiveness, some “weak form” of the Doeblin condi-
tion and an essential spectral radius less than 1 are equivalent, which, to the
author’s knowledge, is new.

In our analysis, stochastic transition functions play a key role. On the one
hand, they allow to define transfer operators for both the deterministic and
the stochastic case in a common setting. On the other hand, they permit to
“translate” results for Markov chains to Markov operators and vice versa. We
emphagize that in the former theory, results are most often stated for bounded
functions, whereas in the latter theory, more frequently essentially bounded
functions are involved. Since essentially bounded functions are also the type of
functions considered in the deterministic case, we focus on this Banach space.
Nevertheless, it should be possible to gain similar result for the Banach space
of bounded functions.

In Section 1 we introduce the general setting and define the stochastic tran-
sition function and the transfer operators induced by them. Section 2 states
the results about the essential spectral radius involving weakly compact opera-
tors and decomposition results of the transition function. In Section 3 results
about Markov operators and Markov chains are applied to analyse the asymp-
totic properties of transfer operators. Finally, the last section is devoted to the
exemplary application to three main problem classes: deterministic systems,
stochastically perturbed deterministic systems and stochastic systems.

2 Transfer Operators

Throughout the article, we fix a measure space (X, B(X), u), where X C R",
B(X) denotes the Borel g—algebra of X and p is a probability measure on B(X).
Define the Banach spaces

LYu) = {u X > C: / lu(x)|p(de) < oo} . (1)
b'e
and
L™(u) = {u : X = C: presssup Ju(z)] < oo}
reX
with corresponding norms || - ||; and || - ||, respectively. Note that L°(u) C

LY(i1), which is due to Holder’s inequality.



A stochastic transition function is a map

X xBX) = [0,1]
(x,4) = plz,A)

with the properties
(i) &~ p(a, A) is measurable for every A € B(X),
(ii) A — p(z, A) is a probability measure for every x € X.

We recursively define the m—step transition function p™ (x, dy) via the Chapman—
Kolmogorov equation

P dy) = /X P (2, dy) ple, d2) @)

for all z € X, m > 1 and p(x,dy) = p(z,dy). We will assume throughout the
article that the probability measure y is stationary w.r.t. the stochastic transition
function, i.e.,

/X p(z,dy)u(dz) = p(dy),

where the above identity stands for [, p(z, A)u(dr) = p(A) for every A €
B(X). In the theory of Markov chains [14, 15] it is shown that with every
stochastic transition function one may associated a homogeneous Markov chain
{ X nen satislying p™(z, A) = P[X,, € A|Xo = z]. Thus, p(z, A) describes the
conditional probability that the Markov chain moves within one step to A when
initially started in z.

Our point of view will be the other way around. We will see that a dynam-
ical system gives rise to a stochastic transition function, which, via associable
operators, allows to study its statistical behavior. In our setting the folloving
two operators are commonly associated with a stochastic transition function:
the forward transfer operator or propagator P acting on LY(u1) and the backward
transfer operator T acting on the space of essentially bounded functions L>(u).
For a deterministic dynamical system, the propagator and the backward transfer
operator are identical with the Frobenius—Perron and the Koopman operator,
respectivly.

The forward transfer operator or propagator P : L¥(u) — L) is defined
via

Puyu(dy) = /X o(@)p(e, dy)u(de) 3)

for every v € L¥u). As a consequence of the stationarity of p, the indicator

function of the entire space xx is a stationary density of P, ie., Pxx = xx-

Furthermore, P is a Markov operator, i.e., P preserves norm ||Pv||; = ||Jv||; and

positivity Pv > 0 if v > 0, which is a simple consequence of the definition.
The backward transfer operator T : L) — L°(u) is defined via

Tu(e) = /X w(y)p(z, dy) (1)



for every u € L°(u). As a consequence of the second property of the stochastic
transition function, we have Txx = xx. Both operators are closely connected
via the duality bracket

(v,u), = /Xv(w)u(x)p(da:)

for all v € LYu) and u € L°(u), namely (u, Pv), = (Tu,v),. Thus, the
backward transfer operator is the adjoint of the propagator: P* = T. For
examples, see the applications at the end of this article.

3 The Essential Spectral Radius

This section analyses the essential spectral radius of an arbitrary propagator in
terms of its stochastic transition function. After specifying the term “essential
spectrum”, we characterize the essential spectral radius using some quantity
A(P) that then will be related to weakly compact operators. This will enable
us to finally reach our goal.

Denote the spectrum of P by o(P); for some eigenvalue A € ¢(P) the mul-
tiplicity of A is defined as the dimension of the generalized eigenspace; see e.g.,
[10, Chap. IIL6]; eigenvalues of multiplicity 1 are called simple. The set of all
eigenvalues A € o(P) that are isolated! and of finite multiplicity will be called
the discrete spectrum of P, denoted by ogiser (P). The complement, of ggiser (P)
in o(P) will be called the essential spectrum of P, denoted by oess(P). The
essential spectral radius ress of P is defined as the smallest upper bound for all
elements of 0ess (P), thus supye,. . (p) |A| = Tess- It may be characterized in the
following way:

Theorem 3.1 ([19]) Let P : LYu) — L¥u) denote a bounded linear operator.
Define the quantity A(P) according to

A(P) = limsup|[xac P, (5)
u(A)—=0

where the limit is understood to be taken over all sequences of subsets whose

p—measure converges to zero and x 4 s interpreted as o multiplication operator:

xaf(x) = xa(x)f(x). Then, the essential spectral radius of P is equal to
Tess(P) = lim A(P™)Y/™ (6)

n—oo

In particular, ress(P) < A(P).

Note the strong analogy to the spectral radius r(P) of P, defined as the small-
est upper bound for all elements of the spectrum, thus supy¢,(py [A| = r(P). In

terms of the operator norm || - |1, the representation 7(P) = lim, ||P”||}/ "

is known [7, Chap. VIL.3.5]. Loosely speaking, while || - ||; is sensitive to all
elements of o(P), the quantity A(-) is sensitive only to those of gess(P). Using

!There exists some ¢ > 0 such that the intersection of ¢(P) with the ball of radius ¢ at
center A just contains A.



weakly compact operators, this will be made more precise in the following.

A subset A C LY(p) is called relatively weakly compact, if its closure is com-
pact in the weak topology [7, 13]. There is an important characterization of
relatively weak compactness in terms of the underlying probablity measure u:

Lemma 3.2 (Dunford-Pettis,[6, 13]) A bounded subset B C LY(u) is rela-
tively weakly compact if and only if

lim sup ||xawl|1 =0. 7
i sup ] ™
We are now ready to introduce the class of weakly compact operators and

give a useful characterization based on Lemma 3.2; denote by By (X) the closed
unit ball in LY).

Definition 3.3 ([7, 13]) A bounded linear operator S : LYw) — LYu) is called
weakly compact if S(B1(X)) is relatively weakly compact, i.e., the closure of
S(B1(X)) is compact in the weak topology.

Obviously, every compact operator is weakly compact; furthermore:

Lemma 3.4 ([13]) A bounded linear operator S : LY u) — LYu) is weakly
compact, if and only if A(S) =0.

Using this fact we are now ready to justify the initially made interpretation
of A(P):

Theorem 3.5 ([19]) Let P : LYu) — L¥u) denote a bounded linear operator.
Then

(i) the essential spectrum of P is invariant under weakly compact perturba-
tions

O_ess(P) = Uess(P_S)J (8)
where S is an arbitrary weakly compact operator.

(i) A(P) =min{||P — S|1 : S is weakly compact }.

In particular, there exists some best approzimation Sy in the space of
weakly compact operators with A(P) = ||P — Sol|1-

Theorem 3.5 states that A(P) measures the non—weakly compact part of P.
Since e (So) € {0} for weakly compact S due to (8), A(P) can be interpreted
as the spectral radius of P — Sy, which is related to the essential spectrum
of P only. Note that while the definition (5) of A(P) involves sequences of
subsets whose u—measure converges to 0, the characterization in Theorem 3.5(ii)
is only in terms of weakly compact operators. We will exploit this fact in
the following by analysing the relation between weak compactness of P and
properties of the stochastic transition function p. As a result, we will see that
absolutely continuous stochastic transition functions may give rise to weakly
compact operators, while transition functions that are singular w.r.t. g never
do so.



Corollary 3.6 Consider the propagator S : LY(u) — LX) defined by

Suly) = /X v(@)p(e, v)u(dz) (9)

with absolutely continuous stochastic transition function p(z, dy) = p(x, y)u(dy).
Then S is weakly compact if for some s > 1 the inequality

esssup/p(w,y)su(dy) <
zeX X

holds. In particular, S is weakly compact if esssup, ,cx plx,y) < 0.

Proof: For A € B(X), we have

Ixaoslli = sup /A /X o(@)p(z, y)p(de)u(dy).

vl <1

Applying Holder’s inequality twice, we finally get
[xaoSlli < esssup ‘/ p(w,y)u(dy)‘ < lixallr esssup||p(z,-)lls
reX A zeX

with 1 <7 s < o0 and 1/s+1/r = 1. For 1 < s, the limit of ||xa4 ¢ S||; for
1(A) = 0 tends to zero, since ||xall, = /u(4). O

Assume that the Lebesgue decomposition of the stochastic transition func-
tion p is given by p(z, dy) = pa(z, y)u(dy) + ps(z,dy), where p, and p; denote
the absolutely continuous and the singular part w.r.t. u, respectively [11]. Fur-
thermore, define the (not necessarily stochastic) transition function

_ | palz,y) if pa(z,y) > n
rn(®,y) = { 0 otherwise

With this notation, we are ready to state the following

Theorem 3.7 ([20]) For an arbitrary propagator P : LX) — LY(u) the equal-
ity

A(P) = inf esssup{r,(z,X) + ps(z, X)}
neN  ,cx

holds.

In view of Theorem 3.5, the above theorem states that the weakly compact
part of P can be approximated by weakly compact operators defined in terms
of p—essentially bounded transition functions. In the particular case, where p,
gives rise to a weakly compact operator, Theorem 3.7 states that

A(P) = esssupps(z,X) = 1—essinf/ palz, y)pu(dy).
zeX TeX Jx

If only some decomposition P = R + § with weakly compact S is known, we
can still apply Theorem 3.5 to get an upper bound on A(P). Assume that



the stochastic transition function can be decomposed according to p(w dy)
pr(z,dy) + ps(z,dy) such that S, defined via Sv(y) = [y v(z)ps(z,dy), i
weakly compact. Then

A(P) < esssuppr(z,X) < 1—essinfps(z, X).
zeX zeX

Using one of the above inequalities involving A(P), one is able to bound the
essential spectral radius due to Theorem 3.1.

4 Asymptotic Properties

This section analyses the asymptotic properties of transfer operators. It profits
from the fact that the analytical representation of regs enables us to combine re-
sults from different mathematical branches, in particular, results about Markov
operators and the theory of Markov chains. We will see that transfer operators
with essential spectral radius less than 1 play an important role, since they ad-
mit to prove results quite similar to the finite dimensional case. Before going
into the detail, we state

Lemma 4.1 Let P : LYu) — LYu) denote an arbitrary propagator and T :
L) = L™(u) the adjoint backward transfer operator. Then

Ixao Pl = T"xallw
holds for every A € B(X).

Proof: For arbitrary A € B(X) we have: [lxa o P*|l1 = ||T" o x4l =
IT"x 4l|co, since the multiplication operator x4 is adjoint to xa. O

An important property for Markov operators is constrictiveness [12]; it rules
out the possibility that for some initial density v the iterates P™v eventually
concentrate on a set of very small or vanishing measure.

Definition 4.2 A propagator P : L) — L¥u) 4s called constrictive if there
exist constants € > 0 and & > 0 such that for every density v € LYu) there is
an m = m(v) € N with

WA) <e = /p" w(dy) <1—06, (10)

for all n > m. We call o propagator uniformly constrictive if there exists an
m € N such that Eq. (10) holds for every v € LYu) and n > m.

For arbitrary v € LY(u), uniform constrictivenes can be stated as u(4) <
€ = |lxac P™||1 €1-4. Moreover, it is sufficient to assume that condition (10)
hold for n = m only, since—due to ||P*||; = 1 for K € N—this already implies
(10) for all n > m.

In view of (5) and the general version of (10), uniform constrictiveness seems
to be closely related to A(P) < 1 and thus to some bound on the essential
spectral radius of P. This is indeed the case, as we will see below. Furthermore,
Lemma 4.1 indicates that there should exist a similar condition involving the



backward transfer operator 7. This, in turn, is closely related to the Doeblin
condition, known in the theory of Markov chains [14, 15]. It states that there
exists a probability measure v, constants € > 0, é > 0 and m € N such that
v(A) < e with A € B(X) implies sup,.x p™(x,A4) < 1—4. Following the
strategy of REVUZ (see remark preceding Def. 4.10), we introduce some “almost
everywhere version” of the Doeblin condition:

Definition 4.3 A stochastic transition function fulfills the p-a.e. Doeblin con-
dition if there exist constants € > 0, § > 0 and m € N, such that

uw(A) <e = esssup p"(z,A) <1-4, (11)
zeX

for all A € B(X).

Using the backward transfer operator, we deduce that (11) is equivalent to
w(A) < e = |[T™xallo €1 —=4. In fact, the condition is true for all n > m,
since for k > 1 the inequality |77 x4 llco < IT*]lool|T™x 4|00 holds.

The next theorem states an important equivalence from which we will benefit
in the sequel.

Theorem 4.4 Let P : LYu) — LYp) denote the propagator defined in terms
of the stochastic transition function p: X x B(X) — [0,1]. Then, the following
statements are equivalent:

(i) The essential spectral radius of P is less than one: res(P) < 1.
(i) The propagator P is uniformly constrictive.
(ii) The p-a.e. Doeblin condition holds for p.

If conditions (i) or (i) are satisfied for some €, > 0 and m € N, then
condition (i) holds with ress(P) <1 —4.

Proof: Assume (i) holds, i.e., ress(P) < 1. Due to Egs. (5) and (6), there exists
an m € N such that A(P™) < 1, which implies the p-a.e. Doeblin condition
(4.3) by Lemma 4.1. Now, (iii) is equivalent to (ii) according to Lemma 4.1.
Using the note following (10), it is obvious that (ii) and (i) are equivalent. The
bound on e (P) follows from (5) and (6). O

In view of the established equivalence, the essential spectral radius is related
to the possibility of the system to eventually concentrate on a set of small or
vanishing measure. In other words, the more the dynamics is smeared over
the entire state space, the less is the essential spectral radius. In REVUZ [15,
Chapter 6] it is shows that for so—called Harris recurrent Markov chains the
Doeblin condition is equivalent to quasi—compactness® of some corresponding
transfer operator T acting on the Banach space of bounded measurable func-
tions. Due to HEUSER® [9, Sec. 104], this implies ress(T) < 1. In view of the
above established equivalence, it is likely that the converse is also true.

2The operator T is called quasi—compact if there exist some m € N and a compact operator
S such that ||T™ — S|| < 1.

3The following implication holds if T is considered to act on the complez Banach space of
bounded functions.



Uniform constrictiveness can be defined for arbitrary Markov operators. Us-
ing the characterization of reg(P) in (6), one can still show that unifom con-
strictiveness is equivalent to res(P) < 1. As a consequence, every uniform
constrictive Markov operator has at least one stationary density.

Now, we want to analyse the spectral structure of uniformly constrictive
propagators satisfying Pxx = xx. Let w = exp(2mi/m) for some m € N;
we call oeyere(w) = {w,w?,... ,w™} an eigenvalue cycle associated with w if
Ocycle(w) C Odiser- A subset E C X is called non-—null if u(E) > 0. A non-
null subset £ C X is called invariant or ergodic if Pxg = xg. A further
subdecomposition of an ergodic subset E = E; U--- U E,, into m mutually
disjoint, non—null subsets is called an ergodic cycle of length m if Pxg;, = x&;,
for j =1,...,m, where we set E,,1 = E; for simplicity.

Parts of the following two theorems are scattered over the literature, see e.g.,
[7, 12, 21].

Theorem 4.5 (Ergodic Decomposition) Let P : L{u) — LYu) be a uni-
formly constrictive propagator satisfying Pxx = xx- Then

(i) there are only finitely many eigenvalues X € oqiser (P) with || = 1, each
being o root of unity. The dimension of each eigenspace is finite and equal
to the multiplicity of the corresponding eigenvalue;

(i) the eigenvalue A = 1 is of multiplicity d if and only if there exists a
decomposition of the state space

X = EU---UE,UF

into d mutually disjoint ergodic subsets E; and a set F = X\ U]- E; of u
Measure 2ero.

Proof: Use the equivalence in Thm. 4.4 of this article and Thm. 3 of [7, VIIL§]
to prove the first part. For the second statement we exploit the fact that Pv = v
implies Pvt = vt and Pv— = v~, where v/~ denote the positive and negative
part of v, respectively [12]. Assume that the multiplicity of A = 1 is d. Then, as
a consequence of the first part, there exist d linear independent eigenfunctions
v1,...,vg. Due to the decomposition result for v, we can also choose d linear
independent densities, which we again denote by vy,... ,vq, with Pv; = v;.
We now show that the densities can be chosen in such a way that their sup-
ports E; = supp(v;) are mutually disjoint, i.e., u(E; N Ex) = 0 for j # k. If
for some choice of linear independent densities vy,... ,v4 there exist v;, vy such
that p(E; N Ey) > 0, we simply substitue v;, v by (v; — ), (v; —vg)~. This
is possible, since span{(v; — vg) ", (v; — v;)~} = span{v;, v} and span{(v; —
vr)t, (v; —vk) 7, v5,v8} > 2 would be in contradiction to the fact that the mul-
tiplicity of A = 1 is d. Due to Pxx = xx, we have v; = 1/u(E;)xgs; and
>_; #(E;) = 1 Finally, define F = X \ |J, E;. Since any decomposition into d
mutually disjoint ergodic subsets results in a multiplicity of A = 1 of at least d,
the second statement is proved. |

The above decomposition of the state space is unique up to u—equivalence.
There is an analogous decomposition result for the stochastic transition function



p, since for every ergodic subset E

wWE) = /EXE(y)u(dy) = /EPXE(y)u(dy) = /Ep(va)u(dw)

implies p(z, F) = 1 for y—almost every z € E. Thus, the ergodic decomposition
of Theorem 4.5 induces a decomposition of the stochastic transition function
which is unique up to p—equivalence. For a “strong” decomposition holding
everywhere see, e.g., [21]. As a consequence, the characteristic function xg of
some ergodic set F is also an eigenfunction of T corresponding to A = 1.

Each ergodic subset E can further be decomposed if some associable eigen-
value cycle is of length m > 1. For the next theorem, an eigenvalue of multi-
plicity v is interpreted as v equal eigenvalues Ag, ..., A, of multiplicity 1.

Theorem 4.6 (Ergodic Cycle Decomposition) Let P : L) — LYu) be
a uniformly constrictive propagator satisfying Pxx = xx. Then

(i) each eigenvalue \ € oaise:(P) of unit modulus is part of some eigenvalue
cycle, i.e., there exists some constant m > 1 such that A € ocyce(w) C
ogiser(P) for w = exp(2mwi/m);

(i) there is a one—to—one correspondence between eigenvalue cycles and er-
godic cycles. More precisely, let d denote the multiplicity of A = 1. Then
set of all eigenvalues of unit modulus can be decomposed into d eigenvalue
cycles {Nj1,..., Ajm; } with j =1,...,d and m; > 1 if and only if the
state space can be decomposed into d ergodic cycles {Ejy1,... ,Ejn;} of
length mj for j=1,...,d.

Proof: Mimic the proof of Theorem 11 in [21] and use the Ergodic Decom-
position Theorem in order to show that each ergodic subset E can be decom-
posed into an ergodic cycles {E1,..., Ey} of length m. Note that the length
m is equal to the multiplicity of A = 1 of Pg™ for the restricted propagator
Pr = xg o P o xg, which is well-defined by Theorem 4.5. Thus, it remains
to show that o(Pg) N {|A| = 1} = ocyele(w) with w = exp(27i/m). But every
ergodic cycle {Ey,. .., Ey} of P is also an ergodic cycle of Pg and allows us to
define m linear independent eigenfunctions v, = ZTZl Wk PlxE,, see e.g. [1],
which correspond to the eigenvalues w* for k =1,... ,m. O

Due to the above two theorems, a uniformly constrictive propagator is some-
times called asymptotically periodic [12]. From a functional analytic point of
view, the above decomposition results are related to a partial spectral decom-
position of P.

Theorem 4.7 ([7, Chapter VIII|) Let P : LYu) — LYu) denote a uni-
formly constrictive propagator satisfying Pxx = xx ond let Iy denote the

projection on the eigenspace corresponding to the discrete eigenvalue A\. Then,
for alln € N,

pP" = Z AT, + D™
AEa(P),|A|=1

10



with some strict contraction D : L) — LYu) satisfying [|D™||1 < Mq" for
some constants M > 0 and 0 < g < 1. Furthermore, the projections fulfill

n

M, = T}LII;OEI;I//\ P, (12)

where the limit is understood to be uniform.

In the sequel, we will use the above results to analyse the asymptotic prop-
erties of P.

Definition 4.8 Let P : LYu) — LYu) denote a uniformly constrictive propa-
gator satisfying Pxx = xx. Then we say:

(i) The operator P is ergodic if every ergodic subset E is of measure 1. Equiv-
alently, Pxg = x5 implies u(E) =0 or u(E) = 1.

(i) The operator P is periodic with period p if it is ergodic and p is the largest
integer for which an ergodic cycle of length p occurs. If p =1, then P is
called aperiodic.

Some remarks are in order. An arbitrary Markov operator P : L) — L{(1t)
satisfying Pxx = xx is said to be ergodic if P™» converges weakly to xx in
the sense of Cesaro* for all densities v € LY{(u) [12]. Anticipating the results
of the next corollary and using Thm. 5.5.1 {from [12, Sec. 5.5], it can easily be
shown that for uniformly constrictive propagators this definition is equivalent
to Def. 4.8(1). In Markov chain theory, the term “ergodicity” is used in a
different way, since it implies aperiodicity; Corollary 4.9 may used to establish
the relation. We now turn to the question how these properties are related to
the decomposition results obtained in the previous two theorems.

Corollary 4.9 Let P : LYu) — LYu) be a uniformly constrictive propagator
satisfying Pxx = xx. Then

(i) P is ergodic if and only if the eigenvalue A = 1 is simple.

(i) P is aperiodic if and only if the eigenvalue X = 1 is simple and dominant,
i.e., 11 € odiser (P) with |n| = 1 implies = 1.

Ergodicity is related to the fact that it is impossible to decompose the state
space into independent parts. The analogue in the theory of Markov chains is
p—irreducibility expressing that it is possible to move from every state to ev-
ery “relevant” subset within a finite time. More precisely, u(A) > 0 implies
p™(z, A) > 0 for some m € M and every x € X, A € B(X). REVUZ intro-
duces the following “p—almost everywhere version” of irreducibility, which fits
perfectly to our context.

Definition 4.10 ([15, Chap. 3.2]) A stochastic transition function p is called
p-a.e. irreducible if for u—almost every x € X and A € B(X)

u(d) >0 = pm(z,A) >0

for some m € N possibly depending on both x and A.

4This means that limp 00 1/n 35—y (P*v,u) = {xx,u) for all u € L>(u) [12].

11



The next theorem states the relation between the two characterizations of
indecomposability:

Theorem 4.11 Let P : LY ) — LYu) be a uniformly constrictive propagator
that corresponds to the stochastic transition function p and sotisfies Pxx = xx.
Then P is ergodic if and only if p is p-a.e. irreducible.

Proof: Due to the remark following Def. 4.8, P is ergodic if and only if
P(xp/u(B)) converges to xx in the sense of Cesaro for every B € B(X) with
u(B) > 0. For arbitrary A € B(X) with u(A4) > 0 this is equivalent to

lim — / P*xe(y)xaly) p(dy) = p(A) w(B)
k=17%

n—o0

: 1 &
& tm [ 23 ) = [ au)
BT k=1 B
: 1 = k — . _
& nlggogkz_:lp (x,4) = p(4);  pae.,

where we used Lebesgue’s dominated convergence theorem. Since p(A4) > 0 by
assumption, this is equivalent to g-a.e. irreducibility according to Def. 4.10. O

Often, one is interested in dynamical systems—deterministic or stochastic—
that exhibit a wnique stationary density and guarantee that for every initial
density v the iterates P™v converge to the stationary density. In view of Corol-
lary 4.9, these systems are necessarily connected to ergodic propagators, but
due to the possible cyclic behavior, ergodicity is no sufficient condition. As we
will see below, one has to require aperiodicity.

Definition 4.12 ([12, Chap. 5.6]) A propagator P : LX) — LYu) is called
asymptotically stable if Pxx = xx and

i 1P —xxli = 0 13
N—> 00
for every density v € LY(p).

Define the limit propagator Py, : LYu) — L) by
Patly) = [ v@htdo) (14)

for arbitrary v € LY(u), which corresponds to the projection on the eigenspace
spanned by xx. In terms of P, we can state (13) in the equivalent form:
limy, o0 || P"v — Poov|l1 = 0 for v € LYy). Applying Thm. 4.7, we get

Corollary 4.13 Let P : LYu) — LYu) be a uniformly constrictive propagator
satisfying Pxx = xx. Then P is asymptotically stable if and only if P is
aperiodic. In either case,

|P" = Pxlli < Mq¢" — 0 (15)

as n — oo with some constants M >0 and 0 < ¢ < 1.
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An analogous result to Cor. 4.13 is well established in the theory of Markov
chaing [14]. It is related to a property of the stochastic transition function
called wniform ergodicity: sup,cx |[p"(z,-) — p|lrv — 0 for n — oo in the total
variation norm

oy = sup /X w(y)v(dy).

lu[<1

We will show that a corresponding result holds if we impose a “p—almost every-
where version” of uniform ergodicity on p. Note that ||u|Tv = ||Teolloo holds
for the limit backward transfer operator Tw, : L) — L°(u) defined by

Toula) = [ ulyutey)
the two limit operators are related via P} = T.

Definition 4.14 A stochastic transition function p is called p-a.e. uniformly
ergodic if

esssup [[p*(z,-) — plloy  — 0 (16)
zeX

for n — 0.

In terms of the backward transfer operator and its limit operator, Eq. (16)
is equivalent to lim,, oo ||T7 — Tol|co = 0. We summarize the relation between
asymptotically stable propagators and p-a.e. uniformly ergodic stochastic tran-
sition functions.

Corollary 4.15 A propagator P : LY u) — LYp) satisfying Pxx = Xxx is
asymptotically stable if and only if the corresponding stochastic transition func-
tion p is p-a.e. uniformly ergodic.

5 Applications
Discrete dynamical systems. Consider the discrete dynamical system
Xnp1 = f(Xn), n=12,..., (17)

where f : X — X is a measurable diffeomorphism® on the probability space
(X,B(X),u) with X C R% Denote by §, the Dirac measure supported on
y € X. Then, we may write the stochastic transition function defined by (17)
as p(x,dy) = dy(z)(dy). For n > 1, we obtain via the Chapman-Kolmogorov
equation

p"(x,dy) = dpnn)(dy). (18)

Assume that p is stationary w.r.t. p, which holds if and only if f is measure
preserving, i.e., u(A) = u(f~1(A)) for all A € B(X) [12]. Then, the propagator

5We assume that both f and f~! are measurable.
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P : LY pu) — LYu) defined in terms of p(z,dy) is the well-known Frobenius—
Perron operator associated with f [12]; it satisfies

[ s = [ e@ue) = [ o

for all v € LYy) and A € B(X), hence P*v = v o f~". Without any further
knowledge about the stationary probability measure u, little can be said about
the essential spectral radius. However, it is shown in [12, Remark 4.3.1] that a
propagator corresponding to some tnvertible measure preserving transformation
cannot be asymptotically stable. Furthermore, using a result from DING [4], one
can show that the entire discrete spectrum lies on the unit circle.

If, for instance, it is known that the stationary measure p is absolutely con-
tinuous w.r.t. the Lebesgue measure, then, due to (18), we have A(P™) =1 for
all n > 0 and therefore, ree(P) = 1 according to Theorem 3.1.

Remark: There do exist non-invertible measure preserving transformations
that give rise to asymptotically stable propagators that are not constrictive, e.g.,
the dyadic transformation on the interval [0,1] (see [12] for details). Further-
more, results for transfer operators on the Banach space of functions of bounded
variation may be quite different from ours. Ding and Li [5] report about a dis-
crete dynamical system with a piecewise stretching mapping f on [0, 1], where
the corresponding transfer operator has ress < 1 in the space of functions of
bounded variation, whereas ress = 1 in L'.

Stochastically perturbed discrete dynamical systems. Consider now
some stochastic perturbation of the above dynamical system

Xn+l = f(Xn) +£n7 n= 1727"' 9 (19)

where {£,}nen is an 1.i.d. sequence of random vectors, each having the same
density g w.r.t. p, ie., P(& € A) = [, g(a)p(dx) for all A € B(X) [12]. The
stochastic transition function is given by

plz,dy) = gz — f(y))u(dy) (20)

and the corresponding propagator P : LY(y) — LY{(u) admits the simple repre-
sentation

Puy) = /X o(@)g(z — 1 ())u(da).

For arbitrary g € L°(u), we have re5(P) = 0 by Cor. 3.6. Under a suitable
Lyapunov condition on the stochastic transition function, it is shown in [12] that
P is asymptotically stable and thus uniformly ergodic according to Cor. 4.15.

Although the unperturbed transfer operator corresponding to the determin-
istic dynamical system may have more than one stationary density (even in-
finitely many), the stochastically perturbed transfer operator possesses a unique
stationary density under suitable conditions on the perturbation, i.e., the dis-
tribution of g, and a Lyapunov condition on p.
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In [12], the relation between the two transfer operators is studied for the
limit of vanishing perturbation: Denote by P and P, the transfer operators
corresponding to the unperturbed and the perturbed system, respectively, where
the random vectors in (19) possess the common density g.(z) = 1/e g(z/e). I
for all 0 < € < ¢ the operators P, have a stationary density f. and furthermore,
the limit f, = lim._,¢ f, exists, then f, is a stationary density of the unperturbed
transfer operator P. The proof is based on the fact that lim. o ||P.f—Pf|l1 =0
for all f € LYu). This result allows the following intriguing interpretation:
Suppose that for all 0 < € < €, the density f. is the unique stationary density
of P.. Then, the process of decreasing the “amplitude” € of the stochastic
perturbation can be used to “select” a specific stationary density of P, namely
f, since f. approximates f for small e. This procedure is used by DELLNITZ and
JUNGE in [1] to approximate SRB measures for hyperbolic dynamical systems.

Stochastic dynamical systems. For a differentiable potential function V :
X Cc R? = R, the Hamiltonian equations of motion are given by
¢ = M™p (21)
p = -V, V(g
where ¢ and p denote the states and the momenta of the system, respectively

and M the diagonal mass matrix [8]. Let ®' denote the flow associated with
(21). Tt is well-known that the canonical measure

1 1 I3} _
pean(dgdp) = —exp(=BV(9))dg+ exp(—gptM 'p)dp
q P
MQ‘('dq) upzdp)

corresponding to the so—called inverse temperature j is invariant w.r.t. the flow
®!. In the following, we restrict our attention to potential functions V' that
allow to normalize p ., to a probability measure.

Aiming at the identification of molecular conformations, DEUFLHARD et al.
[2] considered the Hamiltonian flow modeling the molecular dynamics for some
fized observation time span 7 > 0

Xyt = ®(X,), n=1,2,..., (22)

with X, = (@Qn, P,). Obviously, X, is equal to the solution of the Hamiltonian
equation of motion for the initial values Xy at ¢ = n7. According to our first
example, the essential spectral radius of the propagator P associated with (22)
is equal to 1. Furthermore, since ®7 is invertible, P cannot be asymptotically
stable.

Upon keeping a clear orientation towards an analysis of biomolecular sys-
tems, the computational techniques based on the above model appeared to
be unsatisfactory [18]. Guided by concepts of statistical physics and numeri-
cal efficiency, Schiitte remodelled the problem and introduced in [17, 16] the
Hamiltonian stochastic system

Qn+l = HQ(I)T(anPn)a n= 1727"' 3 (23)

where Il : R2? — R? is the projection on the state space variable () and
{Pp}nen is an i.i.d. sequence of random variables, each distributed according to
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up, ie, P[P, € Al = pp(A). The stochastic transition function corresponding
to (23) is given by

(g, 4) = /RdXA(HQ‘I’T((LP))MP(dP)

for all A € B(X); in [16] it is shown that ug is stationary w.r.t. p. Exploiting
properties of the Hamiltonian equation of motion, the corresponding propagator
P : LY ) — LYu) may be written as

Pu(y) = Adv(HQQ_T(q,p))up(dp)-

for v € LY(u) [17, 16].

Assume that for pg—almost every ¢ € X the mapping p — IIg®7(g,p) is
invertible in an open set U(g). If for ug—almost every ¢ we have up(U(q)) >
1 > 0, then the stochastic transition function decomposes into an absolutely
continuous and a singular part w.r.t. ug [16]. If the corresponding density is
shown to be in L), this yields res(P) <1 — 7 due to Thm. 3.7.

Asymptotic stability of the Hamiltonian stochastic system can be shown
under some additionally mizing condition [16]: For every pair of open sets
A, B € B(X) there exists some m € N such that [, p™(x, B)ug(dz) > 0. The
mixing condition can be interpreted as some open set accessibility of the system,
since it states that it is possible to move from the open set A to B within m
steps. Under the above mixing condition, the propagator P is asymptotically
stable. Applying Cor. 4.15, we finally get u-a.e. uniform ergodicity.

For the most significant application class of periodic boundary conditions—
implying some compact state space X—Schiitte showed in [16] that the above
conditions are indeed satisfied.

Acknowledgment. It is a pleasure to thank Ch. Schiitte and D. Werner for
fruitful discussions and stimulating comments.
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