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Abs t r ac t 

The statistical behavior of deterministic and stochastic dynamical sys
tems may be described using transfer operators, which generalize the no
tion of Frobenius-Perron and Koopman operators. Since numerical tech
niques to analyse dynamical systems based on eigenvalues problems for 
the corresponding transfer operator have emerged, bounds on its essential 
spectral radius became of interest. This article shows that they are also 
of great theoretical interest. We give an analytical representation of the 
essential spectral radius in L\fj,), which then is exploited to analyse the 
asymptotical properties of transfer operators by combining results from 
functional analysis, Markov operators and Markov chain theory. In par 
ticular, it is shown that an essential spectral radius less than 1, uniform 
constrictiveness and some "weak form" of the so-called Doeblin condition 
are equivalent. Finally, we apply the results to study three main prob
lem classes: deterministic systems stochastically perturbed deterministic 
systems and stochastic systems 

K e y w o r d s , uniformly constrictive, asymptotically stable, exact, asymptotically pe
riodic, ergodic, aperiodic, Frobenius-Perron operator, Koopman operator, Markov 
operator, transfer operator, propagator, Doeblin condition, irreducible, uniformly er 
godic, deterministic dynamical system, stochastic dynamical system, stochastic per 
turbation, statistical behavior eigenvalue cycle 

Introduction 

Recently, efficient techniques for the numerical approximation of the essential 
statistical behavior of deterministic as well as stochastic dynamical systems 
have been proposed [1, 2, 17]. They are based on the observation that certain 
aspects of the dynamical behavior are related to eigenvalues on and near the 
unit circle of some corresponding transfer operators which generalize the notion 
of Frobenius-Perron operators Furthermore, these statistical aspects may be 
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identified exploiting the corresponding eigenfunctions. As a necessary condition 
for approximating the statistical behavior in a numerically reliable way, the 
essential spectral radius has to be bounded away from 1, allowing for finitely 
many isolated eigenvalues of finite multiplicity on and near the unit circle. W 
show that bounds on the essential spectral radius are also of theoretical interest 

This article brings together aspects from rather isolated mathematical bran
ches. We use a functional analytic approximation result based on weakly com
pact operators to get an analytic representation of the essential spectral ra
dius including upper bounds. Furthermore, we link properties known from 
Frobenius-Perron and, more general, Markov operator theory, such as ergodic-
ity, constrictiveness, asymptotic periodicity and asymptotic stability with con
cepts known from the theory of Markov chains, such as irreducibility, uniform 
ergodicity and the so-called Doeblin condition. We especially emphasize the 
result that uniform constrictiveness, some "weak form" of the Doeblin condi 
tion and an essential spectral radius less than 1 are equivalent, which, to the 
author's knowledge, is new. 

In our analysis, stochastic transition functions play a key role. On the one 
hand, they allow to define transfer operators for both the deterministic and 
the stochastic case in a common setting. On the other hand, they permit to 
"translate" results for Markov chains to Markov operators and vice versa. W 
emphasize that in the former theory, results are most often stated for bounded 
functions, whereas in the latter theory, more frequently essentially bounded 
functions are involved. Since essentially bounded functions are also the type of 
functions considered in the deterministic case, we focus on this Banach space 
Nevertheless, it should be possible to gain similar result for the Banach space 
of bounded functions. 

In Section 1 we introduce the general setting and define the stochastic tran
sition function and the transfer operators induced by them. Section 2 states 
the results about the essential spectral radius involving weakly compact opera
tors and decomposition results of the transition function. In Section 3 results 
about Markov operators and Markov chains are applied to analyse the asymp
totic properties of transfer operators Finally, the last section is devoted to the 
exemplary application to three main problem classes: deterministic systems 
stochastically perturbed deterministic systems and stochastic systems 

Transfer Operators 

Throughout the article, we fix a measure space (X,B(X),ß), where X c R", 
B(X) denotes the Borel a-algebra of X and ß is a probability measure on B(X) 
D e n e the Banach spaces 

L\ß) = lu:X^C: f \u(x)\ß(dx) < ooj . 

and 

L°°{ß) = < u : X —> C : yu-esssup u(x)\ < oo 
I XGX J 

with corresponding norms || • ||i and || • | , respectivel Note that L°(ß) C 
L\ß), which is due to Holder's inequality 



stochastic transition function is a ma 

X x B{X ,1] 

(x,A) i (x,A) 

with the properties 

(i) x i (ar, .A) is measurable for every A € B(X), 

(ii) A i (a;, A) is a probability measure for every x £ X 

We recursively define the m-step transition function pm (x, dy) via the Chapman-
Kolmogorov equation 

(x,dy) = pm-(zdy)(x,dz 
J 

for all x € A, m > 1 and (x,dy) = p(x,dy). We will assume throughout th 
article that the probability measur is stationary w.r th stochastic transition 
function, i.e 

(x,dy)ß{dx) ß{dy), 

where the above identity stands for Jxp(x,A)ß(dx) — ß(A) for every A g 
B(X). In the theory of Markov chains [14, 15] it is shown that with every 
stochastic transition function one may associated a homogeneous Markov chain 
{Xn}„£N satisfying pn(x,A) — P[Xn € A\Xo — x]. Thus, p(x,A) describes the 
conditional probability that the Markov chain moves within one step to A when 
initially started in x. 

Our point of view will be the other way around. We will see that a dynam
ical system gives rise to a stochastic transition function, which, via associable 
operators, allows to study its statistical behavior. In our setting the folloving 
two operators are commonly associated with a stochastic transition function 
the forard transfr operator or propagator P acting on L\ß) and the backward 
transfer operator T acting on the space of essentially bounded functions L°°(ß) 
For a deterministic dynamical system, the propagator and the backward transfer 
operator are identical with the Frobnius-Prron and the Koopman oprator 
respectivl 

he forward transfer operator or propagator \JJ) \JJ) is d e n e d 
via 

Pv(y)ß(dy) = (x)(x,dy)ß(dx) (3 

for every v € L\ß). As a consequence of the stationarity of ß, the indicator 
function of the entire space \ is a stationary density of P, i P — Xx 
Furthermore P is a Markov operator, i.e., P preserves norm ||Pv|| = |H| i and 
positivity Pv > 0 if v > 0, which is a simple consequence of the definition 

he backward transfer operator T L°°{ß)• L°°{ß) is defined via 

u{x) = / u(y)(x,dy) 



for every u € L°{ß). As a consequence of the second property of the stochastic 
transition function, we have T Both operators are closely connected 
via the duality bracket 

u) (x)u(x)ß(dx) 

for all v £ L\ß) and u € L°((j), namely (u,Pv)ß = {Tu,)ß hus, the 
backward transfer operator is the adjoint of the propagator: P* T For 
examples, see the applications at the end of this article 

The Essential Spectral Radius 

This section analyses the essential spectral radius of an arbitrary propagator in 
terms of its stochastic transition function. After specifying the term "essential 
spectrum", we characterize the essential spectral radius using some quantity 
A(P) that then will be related to weakly compact operators. This will enable 
us to finally reach our goal 

Denote the spectrum of P by <J(P); for some eigenvalue A G cr(P) the mul
tiplicity of A is defined as the dimension of the generalized eigenspace; see e.g. 
[10, Chap. III.6]; eigenvalues of multiplicity 1 are called simple. The set of all 
eigenvalues A € cr() that are isolated1 and of inite multiplicity will be called 
the discrete spectrum of P, denoted by Udis(P)- The complement of Odiscr(P 
in a(P) will be called the ssntial spectrum of P , denoted by aess(P). The 
essential spectral radius ress of P is defined as the smallest upper bound for all 
elements of < 7 e ) ; thus supAeo.esa(-p) A| It may be characterized in the 
following way: 

Theorem 3.1 ([19]) L P : L\fi) —> L\n) not a boundd linar oprator 
Defi the quantity A(P according to 

) = lim sup \\XA ° 
(A)-s> 

whe th limit is undrstood to takn ovr all seqncs of subsets whose 
-measure converges to zro and XA is interpreted as a multiplication oprator: 
Af{x) — X{x){x). Tn, the essntial spectral radius of P is equal to 

() = lim )1/ 

In particular, r ( ) < 

Note the strong analogy to the spectral radius r(P) of P d e n e d as the small 
est upper bound for all elements of the spectrum, thus sup e o . (P) A| = (P) In 

terms of the operator norm || • | |i, the representation r(P) = linin^oo | | P | | i 
is known [7, Chap. VII.3.5]. Loosely speaking, while || • ||i is sensitive to all 
elements of a(P) , the quantity A ) is sensitive only to those of a e . Using 

1There exists some e > 0 such that the intersection of a{P) with the ball of radius e at 
center A just contains A 



weakly compact o p e o r his will be made m o e p r i s e in the following 

A subset A c L\ß) is called relatively weakly compact, if its closure is com
pact in the weak topology [7, 13]. There is an important characterization of 
relatively weak compactness in terms of the underlying probablity measure ß: 

Lemma 3.2 (Dunford Pettis,[6, 1 ] ) A boundd subst B \n) is r 
tively weakly compact if and only if 

lim sup Hx^ 0 

We are now ready to introduce the class of weakly compact operators and 
give a useful characterization based on Lemma 32; denote by B{X) the closed 
unit ball in L\fi) 

Definition 3.3 ([7, 13]) A bounded linar operator : L\JJ) — \fi) is call 
weakly compact f S(B(X)) is relatively weakly compact, ie, th closur 
SB(X)) is compact in the weak topology 

bviously, every compact operator is weakly compact; furthermore 

Lemma 3.4 ([13]) A bounded linar oprator S \JJ) — \JJ) is weakly 
compact, if and only i S) = 0 

sing this fact we are now ready to justify the initially made interpretation 
of P) : 

Theorem 3.5 ([19]) L \ß) —> L\JJL) not a boundd linar oprator 
Th 

the essntial spctrum of P is invariant und weakly compact rturba
tions 

() = (P-S) (8 

is an arbitrary weakly compact oprator 

(ii ) = min P — S is weakly compact } 

In particular, thee exists som st approximation S in th spac 
weakly compact oprators with = P — So\ 

Theorem 3. states that A(P) measures the non-weakly compact part of P 
Since <7ess(So) C {0} for weakly compact SQ due to (8), A(P) can be interpreted 
as the spectral radius of P — So, which is related to the essential spectrum 
of P only. Note that while the definition (5) of A(P) involves sequences of 
subsets whose yu-measure converges to 0, the characterization in Theorem 3.5(ii 
is only in terms of weakly compact operators. We will exploit this fact in 
the following by analysing the relation between weak compactness of P and 
properties of the stochastic transition function p. As a result, we will see that 
absolutely continuous stochastic transition functions may give rise to weakly 
compact operators, while transition functions that are singular w t /J, never 
do so 



Corollary 3.6 Considr th propagator : L\ß \ß d by 

(y) = / (x)(x,y)ß(dx) (9 

ith absolutely continuous stochastic transition function p(x, dy) = (x, y)ß(dy) 
S is weakly compact if for some s > th inequality 

sssup / (x,y)sß(dy) 
xGX 
ss 
x£ 

holds In particular, S is weakly compact i esssupx(
x>y) < 

Proof: For ß (X) , we have 

\\X sup (x)(x,y)ß(dx)ß(dy) 
\\v\\i< 

pplying Holder's inequality twice, we nally get 

Ix^ ess sup (x,y)ß(dy) \\X\\r e s s s u p ( a ; , •) 

with 1 < r, s < oo and 1/s + 1/ = 1. For 1 , the limit of \\X for 
ß{Ä) —y 0 tends to zero, since Hxllr = A / M ^ T 

ssume that the Lebesgue decomposition of the stochastic transition func 
tion p is given by p(x, dy) = pa(x,y)ß(dy) + ps(x, dy), where pa and p denote 
the absolutely continuous and the singular part w.r.t. ß, respectively [1] Fur 
thermore, define the (not necessarily stochastic) transition function 

(x,y) = {p
0
a{ (x ifpa(x,y > n 

otherwise 

ith this notation, we are ready to state the following 

Theorem 3.7 ([20]) For an arbitrary propagator \ß) — \ß) the equal
ity 

) — in esssup(x,X) (x,X) 
e N

 XGX 

holds 

In view of Theorem 3.5, the above theorem states that the weakly compact 
part of P can be approximated by weakly compact operators defined in terms 
of /t-essentially bounded transition functions. In the particular case, where 
gives rise to a weakly compact operator heorem 3 7 states that 

e s s s u p ( x , X ) = e s s inf / pa(x,y)ß(dy) 
x€X xex 

If only some decomposition P = R + S with weakly compact is known, we 
can still apply heorem to get an upper bound on A ssume that 



the stochastic transition function can be decomposed acording to p(x, dy) = 
Pn(x,dy) + ps(x,dy) such that S, defined via S(y) = J(x)ps(x,dy), is 
weakly compact. Then 

esssup(x,X) < essinf (x,X) 

Using one of the above inequalities involving ) one is able to bound the 
essential spectral radius due to Theorem 1 

symptotic Properties 

This section analyses the asymptotic properties of transfer operators. It profits 
from the fact that the analytical representation of ress enables us to combine re 
sults from different mathematical branches, in particular, results about Markov 
operators and the theory of Markov chains. We will see that transfer operators 
with essential spectral radius less than 1 play an important role, since they ad
mit to prove results quite similar to the finite dimensional case Before going 
into the detail, we state 

Lemma 4. L : L\ß) -¥ \ß) denot an arbitrary propagator and T 
L°°(ß) L°(ß) th adjoint backard transfr oprator Then 

||X 

holds for ry € B{X) 

P r o o : For arbitrary A g B{X) we have: \\\A ° P | | i 
I I ^ X I I ) since the multiplication operator \ is adjoint to \ 

An important property for Markov operators is constrictivess 12]; it rules 
out the possibility that for some initial density v the iterates eventuall 
concentrate on a set of very small or vanishing measure 

Definition 4.2 A propagator P : L\ß)> L\ß) is called constrictive if th 
exist constants e > 0 and S > 0 such that for ry density € i ( /*) the is 
an m — m(v) € N with 

fi(A)<e = (y)ß(dy)<-6 

for all n > We call a propagator uniformly constrictive if thre exists an 
€ N such that Eq (10) holds for ry v £ L\ß) and m. 

For arbitrary \ß), uniform constrictivenes can be stated as ß(A) 
e =^ I I X P < 1 — S. Moreover, it is sufficient to assume that condition (10 
hold for n only, since—due to ||Pfc for k € N—this already implies 
(10) for all n>m. 

In view of (5) and the general version of (10), uniform constrictiveness seems 
to be closely related to A(P) < 1 and thus to some bound on the essential 
spectral radius of P . This is indeed the case, as we will see below. Furthermore 
Lemma 4.1 indicates that there should exist a similar condition involving the 



bakward transfer operator T. This, in turn, is closly related to the Doeblin 
condition, known in the theory of Markov chains [14, 15]. It states that there 
exists a probability measure v, constants > 0, 5 > 0 and m € N such that 
v(A) < e with A e B(X) implies s u p ^ ^ pm(x,A) < 1 5. Following the 
strategy of REVUZ (see remark preceding Def 4 .1 ) we introduce some "almost 
everywhere version" of the Doeblin condition 

Definition 4.3 A stochastic transition function fulfills the /i-a.e Doeblin con
dition if thre exist constants , 5 > and m € N, such that 

ß(A) < ess sup {x,A) < 
xGX 

forallGB(X) 

Using the backward transfer operator, we deduce that (11) is equivalent to 
ß(A) < > ||T™XA||OO < 1 — 6 In fact, the condition is true for all n > m, 
since for fe > 1 the inequality ||Tm+fcXA||oo < ll^llooll^X^Hoo holds. 

The next theorem states an important equivalence from which we will bene 
in the sequel 

Theorem 4.4 et P L\ß) —> L\ß) note the propagator dfid in rm 
of th stochastic transition function p : X x B(X) —> 0 1 ] . Then, the folling 
statnts are equivalnt: 

e essntial spctral radius o is lss than on: r ( ) < 1 

(ii propagator P is uniformly constrictive 

(Hi e blin condition holds for 

If conditions (ii) or (Hi) ar satisd for som and , th 
condition (i) holds ith ress) < — 6. 

P r o o ssume (i) holds i . , r(P) < 1- Due to Eqs. (5) and (6), there exists 
an m G N such that A(P m ) < 1, which implies the /t-a.e. Doeblin condition 
4.3) by Lemma 4.1. Now, (iii) is equivalent to (ii) according to Lemma 4.1 

Using the note following (10), it is obvious that (ii) and (i) are equivalent. The 
bound on (P) follows from (5) and (6) D 

In view of the established equivalence, the essential spectral radius is related 
to the possibility of the system to eventually concentrate on a set of small or 
vanishing measure. In other words, the more the dynamics is smeared over 
the entire state space, the less is the essential spectral radius. In REVUZ [15 
Chapter 6] it is shows that for so-called Harris recurrent Markov chains the 
Doeblin condition is equivalent to quasi-compactness2 of some corresponding 
transfer operator T acting on the Banach space of bounded measurable func 
tions. Due to HEUSER 3 [9, Sec. 104], this implies ress(T) < 1. In view of the 
above established equivalence, it is likely that the converse is also true 

2 The operator T is called quasi-compac f there exist some m £ N and a compact operator  
such that \\Tm - S\\ < 1. 

3 The following implication holds f T is considered to act on the complex Banach space of 
bounded functions 



Uniform constrictivenes can be defned for arbitrary M a o v o p e r a t o . Us
ing the characterization of r(P) in (6), one can still show that unifom con
strictiveness is equivalent to ress(P) < 1. As a consequence, every uniform 
constrictive Markov operator has at least one stationary density 

Now, we want to analyse the spectral structure of uniformly constrictive 
propagators satisfying Px = X- Let = exp(27n/m) for some m N; 
we call o"cycie(w) = {w,w , . . w r } an eigenvalue cycle associated with w if 
o"cycie(w) C o"discr- A subset E C X is called non-null if ß(E) > 0. A non-
null subset £ C l i s called invariant or ergodic if PXE — XE- A further 
subdecomposition of an ergodic subset E — E\ U • • • U Em into m mutually 
disjoint non-null subsets is called an ergodic cycle of length m if PXE, EJ 

for j = 1 , . . . ,m, where we set Em+\ = E\ for simplicity. 
Parts of the following two theorems are scattered over the literature see e 
12 1] 

Theorem 4.5 (Ergodic D e c o m p o s i t n ) Let : L\ß) —> L\ß) uni
formly constrictiv propagator satisfying Px = X 

there are only finitly many igenvalu A Odi r (P ith |A| = each 
ing a root of unity The dimnsion o ach eignspac is init and equal 

to the multiplicity of th corrsponding ignvalue; 

(ii the eigenvalu A = 1 is f multiplicity d and only if th exists 
composition of th stat space 

-'-EiöF 

into d mutually disjoint rgodic substs Ej and a s = X\[Ej 
measure zero 

Proof: Use the equivalence in Thm. 4.4 of this article and Thm. 3 of [7 II 
to prove the first part For the second statement we exploit the fact that Pv = v 
implies Pv+ = v+ and Pv~ = v , where v+/~ denote the positive and negative 
part of v, respectively [12]. Assume that the multiplicity of A = 1 is d. Then, as 
a consequence of the first part, there exist d linear independent eigenfunctions 
vi,... ,Vd- Due to the decomposition result for , we can also choose d linear 
independent densities, which we again denote by vi,... ,Vd, with PVJ — Vj. 

We now show that the densities can be chosen in such a way that their sup
ports Ej = supp(uj) are mutually disjoint, i . , ß(Ej n Ek) = 0 for j ^ k. If 
for some choice of linear independent densities \,.. there exist Vj & such 
that ß(Ej nEk) > 0, we simply substitue by (VJ — Vk) (VJ Vk)- This 
is possible, since sp&n{( Vk)+,(vj Vk)} — sp&n{vj,Vk} and span{(^j 
Vk)+,(v ~ v ) ~ , > 2 would be in contradiction to the fact that the mul 
tiplicity of = 1 is d. Due to Pxx , we have Vj = l/ß(Ej)xEj a n d 
J2 j ß{Ej) = 1 Finally, define F = X\\J- Ej. Since any decomposition into d 
mutually disjoint ergodic subsets results in a multiplicity of A 1 of at least 
the second statement is proved 

The above decomposition of the state space is unique up to yu-equivalence 
here is an analogous decomposition result for the stochastic transition function 



, since for e y e o d i c subset E 

ti{E) = (y)ß(dy) = f (y)fi(dy) = (x,E)p(dx) 
JE 

implies p(x, E) 1 for /^-almost every x £ E. Thus, the ergodic decomposition 
of Theorem 4.5 induces a decomposition of the stochastic transition function 
which is unique up to /«-equivalence. For a "strong" decomposition holding 
everywhere see, e , [21]. As a consequence, the characteristic function \E of 
some ergodic set E is also an eigenfunction of T corresponding to A = 1. 

Each ergodic subset E can further be decomposed if some associable eigen
value cycle is of length m > 1. For the next theorem, an eigenvalue of multi 
plicity is interpreted as v equal eigenvalues A A of multiplicity 1 

Theo rem 4.6 (Ergodic Cycle D e c o m p o s i t n ) : L\p) — \ß) 
a uniformly constrictiv propagator satisfying Px 

each igenvalu A € Udiscr(-P) of unit modulus is part of some eigenvalu 
cycle, ie., thre exists some constant m > 1 such that A € < 7 e ( c ) C 
-dir(P for w = exp(27n/m) 

(ii ther is a on-to-on corrspondnc bwee eignvalu cycls and 
godic cycl Mor prcisly let d denot th multiplicity of X = 1. Th 
set of all igenvalues of unit modulus can be ecomposd into eigenvalu 
cycles { A . . , m j } with j = 1 . . , d and rrij > 1 if and only if th 
state space can decompos into rgodic cycl ji Ejmj} 
ength rrij for j = d. 

Proof: Mimic the proof of Theorem 11 in [21] and use the Ergodic Decom
position Theorem in order to show that each ergodic subset E can be decom
posed into an ergodic cycles {E±... Em} of length m. Note that the length  

is equal to the multiplicity of A = 1 of P 1 for the restricted propagator 
PE — E ° P ° , which is well-defined by Theorem 4.5. Thus, it remains 
to show that CT(PE) H {|A| = 1} = o"cycie(w) with ui — exp(27n/m). But every 
ergodic cycle {E±,... , Em } of P is also an ergodic cycle of P and allows us to 
deine m linear independent eigenfunctions Vk ^2T=iXE , see e [1] 
which correspond to the eigenvalues for k = 

Due to the above two theorems, a uniformly constrictive propagator is some
times called asymptotically periodic [12]. From a functional analytic point of 
view, the above decomposition results are related to a partial spectral decom
position of P 

Theorem 4.7 ([7, Chap te r VIII]) Let P : L\ß) > \p) not a uni
formly constrictive propagator satisfying Pxx Xx and t IL\ dnot th 
projection on the eigenspac corrsponding to th discre eigenvalu X. n, 
for all € N 

Y^ +D 
£<T(P),\=1 



with some strict contraction D : L \ ß • \ß) satisfying D | | i < Mq for 
some constants M > and 0 < q < 1 Furthrmor, th projctions fulfill 

lim - V l / 12 
^ ^ 

=l 

th limit is undrstood to b uniform 

In the sequel, we will use the above results to analyse the asymptotic prop
erties of P 

Definition 4.8 t P : L\ß) — L\ß) dnot a uniformly constrictiv propa 
gator satisfying Pxx we say: 

) T oprator is ergodic f every ergodic subse E is asur 1 quiv 
alntly XE XE impli ß{E) = 0 or ß{E) = 1 

(ii operator P is periodic with period p if it is ergodic and p is th argst 
i n t r for which an rgodic cycl of length p occurs If p = thn P is 
call aperiodic 

Some remarks are in order. An arbitrary Markov operator P : L\ß) —y \ß) 
satisfying Pxx — Xx is said to be ergodic if Pnv converges weakly to Xx in 
the sense of Cesäro4 for all densities v e L\ß) [12]. Anticipating the results 
of the next corollary and using Thm. 5.5.1 from [12, Sec. 5.5], it can easily be 
shown that for uniformly constrictive propagators this definition is equivalent 
to Def. 4.8(i). In Markov chain theory, the term "ergodicity" is used in 
different way, since it implies aperiodicity; Corollary 4.9 may used to establish 
the relation. We now turn to the question how these properties are related to 
the decomposition results obtained in the previous two theorems 

Corollary 4.9 : L\ß) — \ß) a uniformly constrictiv propagator 
satisfying P 

is rgodic if and only if the eignvalu = is simple 

(ii) P is aperiodic if and only i the eignvalu A = is simpl and dominant 
e, n G Odicr(P) with \n\ implies n 1 

Ergodicity is related to the fact that it is impossible to decompose the state 
space into independent parts. The analogue in the theory of Markov chains is 
ß-irreducibility expressing that it is possible to move from every state to ev 
ery "relevant" subset within a finite time. More precisely, ß(A) > 0 implies 
p(x,A) > 0 for some m € M and every x e X, A e B(X). REVUZ intro
duces the following "yu-almost everywhere version" of irreducibility, which ts 
perfectly to our context 

Definition 4.10 ([15, Chap. 3.2]) stochastic transition functionp is call 
ß-& irreducible if for -almost evry x € X and A € B(X) 

ß(A)> (x,A)>0 

for som G N possibly depending on both and 
4This means that l i m „ ^ 1/n E i ( p " . « } = (Xx,u) for all e L ( » [12] 



The next theor s the r l a i o n b e w e n the two c h a i z i o n s o 
indecomposability: 

Theorem 4.11 t P : L\JJL) —> L\fj) be a uniformly constrictiv propagator 
that corrsponds to the stochastic transition function p and satiss Pxx = 
Thn P is ergodic if and only if p is ß-a.e. irreducible 

P r o o : Due to the remark following Def. 4.8, P is ergodic if and only if 
P(XB/ß(B)) converges to xx in the sense of Cesäro for every B e B(X) with 
ß() > 0. For arbitrary A £ B{X) with ß(A) > 0 this is equivalent to 

f 
lim - V / (y)X(y) p(dy) = ß(A) ß( 

=l 

lim - V ( a ; , A ) A * ( d y ) = ß(A)fi(dy) 

lim - (x, A) = n(A) yU-a 

^ 
where we used Lebesgue's dominated convergence theorem. Since ß(A) > 0 by 
assumption, this is equivalent to /i-a irreducibility according to Def 4.10 D 

Often, one is interested in dynamical systems—deterministic or stochastic— 
that exhibit a uniqu stationary density and guarantee that for every initial 
density v the iterates Pnv converge to the stationary density. In view of Corol 
lary 4.9, these systems are necessarily connected to ergodic propagators, but 
due to the possible cyclic behavior, ergodicity is no sufficient condition. As we 
will see below, one has to require aperiodicity 

Definition 4.12 ([12, C p . 5.6]) propagator P : L\ß) - \ß) is call 
asymptotically stable i = X and 

lim 

for ry dnsity v € L\ß) 

D e n e the limit propagator \ß) — \ß) by 

{y) = [ (x)ß(dx) 14 

for arbitrary € L\ß), which corresponds to the projection on the eigenspace 
spanned by In terms of ^, we can state (13) in the equivalent form: 
lim \\P — P \ 0 for £ L\JJ) Applying Thm. 4.7, we get 

Corollary 4.1 : L\ß) — \p) a uniformly constrictive propagator 
satisfying Px Xx n P is asymptotically stabl i and only if P is 
apriodic. ithr cas 

Mq — 15 

as ith som constants M > and 0 < q < 1 

12 



An analogous result to Cor. 4.13 is well established in the theory of Marko 
chains [14]. It is related to a property of the stochastic transition function 
called uniform rgodicity: SVLPXG "(a;, • ||TV —>• 0 for —>• o in the total 
variation norm 

TV sup u(y)dy) 
«|< 

We will show that a corresponding result holds if we impose a "yu-almost every 
where version" of uniform ergodicity on Note that | | J | T V = 1 ^oo I loo holds 
for the limit backward transfer operator : L°°(ß) °(ß) defned by 

u(x) / u(y)ß(dy) 

the two limit operators are related via ^ 

Definition 4.1 stochastic transition function p is call ß-a uniforml 
ergodic if 

e s s s u p ( x , • Tv 16 
xGX 

for^ 

In terms of the backward transfer operator and its limit operator, Eq. (16 
is equivalent to l imn^0 0 \\Tn — T^W^, — 0. We summarize the relation between 
asymptotically stable propagators and /i-a uniformly ergodic stochastic tran
sition functions 

Corollary 4.15 A propagator P : L\ß) — L\ß) satisfying Pxx — Xx is 
asymptotically stable if and only if th corrsponding stochastic transition func
tion p is e. uniformly ergodic. 

pplications 

crete dynamica systems. Consider the discrete dynamical system 

(X) . , 17 

where / : X —>• X is a measurable diffeomorphism5 on the probability space 
(X,B(X)ß) with X c R . Denote by 5V the Dirac measure supported on 
y € X. Then, we may write the stochastic transition function defined by (17 
as p(x,dy) — Sf(dy) For > 1, we obtain via the Chapman-Kolmogorov 
equation 

(x,dy) = 6fnx)(dy) 

Assume that ß is stationary w.rt . p, which holds if and only if / is measure 
preserving, i ß(A) = ß(~1(A)) for all A e B(X) [12]. Then, the propagator 

5 We assume that both / and / _ are measurable. 



P : L\ß) —• L\JJL) defined in terms of p(x, dy) is the well-known Frobenius 
Perron operator associated with / [12]; it satisfies 

{y)ß{dy) = (x)ß(dx) = y) ß{dx) 
J(A) 

for all v G L\ß) and A G B(X), hence Pv = v o f . Without any further 
knowledge about the stationary probability measure ß, little can be said about 
the essential spectral radius. However, it is shown in [12, Remark 4.3.1] that a 
propagator corresponding to some invertible measure preserving transformation 
cannot be asymptotically stable. Furthermore, using a result from DING [4] one 
can show that the entire discrete spectrum lies on the unit circle. 

If, for instance, it is known that the stationary measure ß is absolutely con
tinuous w.r.t. the Lebesgue measure, then, due to (18), we have A P " ) = 1 for 
all > 0 and therefore, (P) = according to heorem 3 1 

Remark: There do exist non-invertible measure preserving transformations 
that give rise to asymptotically stable propagators that are not constrictive, e.g 
the dyadic transformation on the interval [0,1] (see [12] for details). Further 
more, results for transfer operators on the Banach space of functions of bounded 
variation may be quite different from ours. Ding and Li [5] report about a dis 
crete dynamical system with a piecewise stretching mapping / on [0,1], where 
the corresponding transfer operator has s < 1 in the space of functions of 
bounded variation, whereas s = 1 in L 

Stochastically perturbed discrete dynamical systems Consider now 
some stochastic perturbation of the above dynamical system 

(X+£ . , 

where £ H }eN is an ii.d sequence of random vectors, each having the same 
density g w.r.t. ß, i.e., P(£„ G A) = JAg(x)ß(dx) for all e B(X) [12]. The 
stochastic transition function is given by 

(x,dy) = g(xf(y)ß(dy) 

and the corresponding propagator : L\ß) — \ß) admits the simple repre
sentation 

Pv(y) = / {x)g{x {y))ß{dx) 

For arbitrary g G L°°(ß), we have ress(P) = 0 by Cor. 3.6. Under a suitable 
Lyapunov condition on the stochastic transition function, it is shown in [12] that 

is asymptotically stable and thus uniformly ergodic according to Cor. 4.15. 

Although the unperturbed transfer operator corresponding to the determin
istic dynamical system may have more than one stationary density (even in
finitely many), the stochastically perturbed transfer operator possesses a unique 
stationary density under suitable conditions on the perturbation, i , the dis 
tribution of g, and a Lyapunov condition on 



In [12], the relation between the two transfer operators is studied for the 
limit of vanishing perturbation: Denote by P and Pe the transfer operators 
corresponding to the unperturbed and the perturbed system, respectively, where 
the random vectors in (19) possess the common density g(x) = 1/e g(x/e). If 
for all 0 < < eo the operators Pf have a stationary density f€ and furthermore 
the limit /* = r im»o / e exists, then /* is a stationary density of the unperturbed 
transfer operator P. The proof is based on the fact that lime_>.o \\Pef — Pf\\i — 0 
for all / e L\ß). This result allows the following intriguing interpretation 
Suppose that for all 0 < e < eo, the density fe is the uniq stationary density 
of Pe. Then, the process of decreasing the "amplitude" e of the stochastic 
perturbation can be used to "select" a specific stationary density of P, namely 
/ , since fe approximates / for small e. This procedure is used by DELLNITZ and 
JUNGE in [1] to approximate SRB measures for hyperbolic dynamical systems 

tochas i c dynamica systems For a differentiable potential function V : 
c Rd• R, the Hamiltonian equations of motion are given by 

lp ) 

-VqV(q) 

where q and p denote the states and the momenta of the system, respectively 
and M the diagonal mass matrix [8]. Let $* denote the flow associated with 
21 It is well-known that the canonical asur 

/ i c n ( g d ) = — exp(-ßV(q))d — e x p ( - ) d 

corresponding to the so-called inverse temperature ß is invariant w.r.t. the flow 
$ . In the following, we restrict our attention to potential functions V that 
allow to normalize ßcaa to a probability measure. 

Aiming at the identification of molecular conformations, DEUFLHARD et al 
[2] considered the Hamiltonian flow modeling the molecular dynamics for some 
fixe observation time span r > 0 

X $ T ( X ) 

with Xn — (Qn, Pn). Obviously, Xn is equal to the solution of the Hamiltonian 
equation of motion for the initial values XQ at t = nr. According to our first 
example, the essential spectral radius of the propagator P associated with (22 
is equal to 1 Furthermore, since $ T is invertible cannot be asymptoticall 
stable. 

Upon keeping a clear orientation towards an analysis of biomolecular sys 
tems, the computational techniques based on the above model appeared to 
be unsatisfactory [18]. Guided by concepts of statistical physics and numeri 
cal efficiency Schütte remodelled the problem and introduced in [17 16] the 
Hamiltonian stochastic syst 

I l Q ( Q ) 

where n ^ : R R is the projection on the state space variable Q and 
{Pn}„GN is an i sequence of random variables each distributed according to 



ßP, ie. , P[Pn G A (A. The stochastic transition function corresponding 
to ( 2 ) is given by 

(qA) / ^ ^T{q) ß 

for all A € B{X); in [16] it is shown that ßQ is stationary w.r.t. p. Exploiting 
properties of the Hamiltonian equation of motion, the corresponding propagator 
P : L\n)> L\ß) may be written as 

Pv{y) = (q) ß(d) 

for e L\ß) [17, 16] 
Assume that for yUQ-almost every £ X the mapping p i->- n.$T(q,p) is 

invertible in an open set U(q). If for ^ - a l m o s t every q we have ßp(U(q)) > 
n > 0, then the stochastic transition function decomposes into an absolutely 
continuous and a singular part w t Q 16] If the corresponding density is 
shown to be in L°°(ß), this yields reaa(P) < 1 — rj due to Thm 3.7. 

Asymptotic stability of the Hamiltonian stochastic system can be shown 
under some additionally mixing condition [16]: For every pair of open sets 
A,B £ B(X) there exists some m € N such that $Apm(x,B)ßQ(dx) > 0. The 
mixing condition can be interpreted as some open set accessibility of the system, 
since it states that it is possible to move from the open set A to B within m 
steps Under the above mixing condition, the propagator P is asymptoticall 
stable. Applying Cor 4.15, we finally get ß-a.e. uniform ergodicity. 

For the most significant application class of periodic boundary conditions— 
implying some compact state space X—chütte showed in [16] that the above 
conditions are indeed sat ised 
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