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Abstract

The photodissociation dynamics of HF molecules embedded in icosahedral HFAr,, clusters upon excitation with an
ultrashort light-pulse is investigated. Assuming a frozen cluster, three-dimensional symmetry adapted wavepackets for the
hydrogen photofragment are propagated in time. The emphasis is on the dependence of the HF photodissociation dynamics
on the initial quantum state of the diatomic molecule. Depending on the spatial characteristics of the initial rotational state
inside the rare gas cage, different cage exit probabilities are found. This opens the way to a rotational control of

photochemistry of small molecules in weakly bound clusters. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Photochemical reactions in weakly bound van der
Waals (vdW) clusters are often studied as model
systems for solvation effects in chemical reaction
dynamics [1,2]. Both in experiment and in theory
clusters alow to investigate the stepwise growth of a
“micro-solvation’ thus serving to bridge the gap be-
tween gas- and condensed-phase dynamics. The most
prominent kind of solvent effects on the photochem-
istry of molecules is the cage effect. This notion
dates back to the 1930s when a reduced quantum
yield for the photolysis of iodine in solution was
found [3]. Upon photo-induced breaking of a molecu-
lar bond by excitation to a repulsive state, the solvent
particles may confine photofragments inside a cage
formed by the solvent particles. This can lead to a
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delayed cage exit where photofragments undergo a
few vibrational periods inside the solvent cage be-
fore they exit through the * windows' of the cage. On
alonger timescale, this confinement may also induce
non-adiabatic transitions to the electronic ground
state leading to re-making of the broken bond.
During the last few years, the photodissociation of
hydrogen halides in a rare gas environment has
emerged as a prototypical systems for the study of
the solvent cage effect. For example, photodissocia-
tion in the Ar—HCI dimer has been studied by means
of classical, hybrid quantum /(semi-)classical [4], ap-
proximate quantum [5], and exact quantum [5-8]
simulations. The central question in al of these
studies is the existence (or the extent) of the cage
effect for the case of only one (or two) solvent atoms
and the possible occurrence of a resonance structure
in various observables. The effect of increasing sol-
vent cluster size has been studied for photodissocia-
tion of HF in Ar, HF (n = 1-54) by means of classi-
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cal trgjectories sampling a quantum initial state [9].
In another study, icosahedral Ar,, HCI and Arg,HCI
aggregates have been investigated in a semiclassica
surface hopping study [10]. Also in matrix isolation
studies hydrogen halide molecules have been estab-
lished as a standard model system, see eg. the
experimental work on HCl in Ar matrices [11].
Building on earlier classical and quantum-mechani-
cal [12] simulations of HI in Xe, semiclassical simu-
lations of HCl in crystaline Ar have aso been
performed [13,14]. Moreover, guantum-mechanical
simulations of the hydrogen atom wavepacket dy-
namics have been reported for this system [15,16].

A unique feature of photochemistry in the above-
mentioned cluster and matrix systems stems from the
special properties of the initial state. On the one
hand, the initial solvent geometry is confined by the
structure of the complex to some extent. On the other
hand, there are very floppy large-amplitude motions
in the electronic ground state [2]. The emphasis of
the present work is on the role of the bending or
rotational degrees of freedom of a hydrogen halide
molecule in a rare gas cluster. For small systems
with an incomplete solvation shell, the rotation is
hindered by the anisotropy of the atom—molecule
potentials but the amplitudes of the so-caled libra-
tional motions about the equilibrium geometry can
be quite extended. For larger systems with one (or
more) complete solvation shells the anisotropy of the
ground state interaction partly cancels and in matri-
ces hydrogen halide molecules are known to be
almost freely rotating [15,17].

In the present Letter, we want to further elucidate
on the effect of the initial quantum state of the guest
molecule on the photodissociation dynamics inside
an icosahedral closed-shell rare gas cluster. Our main
emphasis will be on the following questions: (1)
What is the nature of the ground state rotational
wavefunctions and how do they correlate with the
cage geometry? (2) How does the cage exit probabil-
ity of the hydrogen photofragment depend on the
initial state and how can it be controlled by rota-
tional pre-excitation of the molecule? For this pur-
pose we will first calculate rotational wavefunctions
in the electronic ground state and then propagate
three-dimensional wavepackets in the electronically
excited state to simulate the processes of caging and
cage exit quantum-mechanically.

Asamodel system, we chooseicosahedral Ar,, HF
clusters which can be considered an almost ideal
model system for the following reasons. First of al,
the Ar—HF potential in the ground electronic state is
one of best known atom—molecule potentials, and
for the excited state there are reasonably accurate
data. Furthermore, it is known from matrix spec-
troscopy, that HF can rotate almost freely in argon
and that the effect of rotation—trandation coupling
(RTC) can be safely neglected. Finally, for a cluster
with only one shell, the photodissociation is com-
plete on a timescale of < 100 fs so that non-adia-
batic transitions and recombination play a negligible
role for the short time dynamics. Details of our
model and the theoretical methods are given in Sec-
tion 2. The technique of symmetry adaption is de-
scribed in Appendix A. The results are presented and
discussed in Section 3. The final Section 4 summa-
rizes our findings and gives conclusions.

2. Methodology
2.1. Interactions

The interactions of pure rare gases as well as of
systems doped with hydrogen haide systems are
among the most thoroughly studied interatomic and
intermolecular forces. The electronic ground state
interaction is, to a good accuracy, dominated by
pairwise interactions of the closed-shell particles.
Hence, the potentia energy surface (PES) for Ar,, HF
is constructed as a pairwise sum of atom—molecule
and atom—atom potentials similar to previous stud-
ies, see eg. Ref. [9],

n
Vg= ZVAri,HF+ ZVAri,ArJ' (1)
i=1

i<

where Vj, ye is the anisotropic Ar—HF potential
formulated in a vibrationally adiabatic representa-
tion. Its long-range part is fixed using known disper-
sion coefficients, the short and medium range has
been determined by fitting a highly flexible model
function to the best available infrared and far-in-
frared spectroscopic data of the Ar—HF complex
[18]. The second term V. ar, Tepresents the interac-
tion between a pair i and j of Ar atoms. We use an
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Ar—Ar potentia function from the literature which is
based on a multi-property fit [19].

It is noted that the pairwise approach of Eq. (1)
has been shown to reproduce all experimental HF
vibrational frequency shifts for small clusters (n=
1-4) [20] evenly well as for the matrix case [17].
Including also three-body interactions causes only
small corrections [21].

The potential energy surface for the electronically
excited state is constructed as a sum of pairwise
additive atom—atom contributions:

n n
Ve =Vue + Z VAri,H + Z VArl,F+ ZVAri,Arl’
i=1 i=1 i<j

(2)

where V, ¢ is the repulsive 1T state of the HF guest
molecule adapted from ab initio data available in the
literature [22]. The most crucia ingredient in calcu-
lating the cage exit dynamics is the Ar—H interac-
tion. Here we do not rely on the (semi-)empirical
potentials used in al the previous simulations of the
photodissociation dynamics hydrogen halides in Ar
[4,9,10] but rather use results of recent quantum-
chemical ab initio MP2 calculations [23]. Finadly, the
rare gas—halide interaction is taken from the work of
Ref. [24] where potential energy curves were fitted to
differential scattering cross-sections of magnetically
state-selected fluorine atoms [24]. In the present
work we restrict ourselves to the ground state poten-
tid (V3,,1,,) of Ar—F thus neglecting the orbital
dynamics of the P state [25].

2.2. Approximations

The full quantum dynamics of a system consisting
of 14 atoms such as Ar;, HF is not exactly tractable
given today’'s computationa means. Both for the
calculation of stationary ground state wavefunctions
as well as for the excited state wavepacket dynamics
we have to restrict our model to include only the
most relevant (nuclear) degrees of freedom. Hence,
the following two approximations are introduced.

(1) The rare gas atoms are assumed to be frozen
(T=0). This is equivalent to treating the complete
system like a dimer consisting of the diatomic
molecule with its six degrees of freedom and a

frozen Ar solvation shell of perfect icosahedral sym-
metry.

(2) To further reduce the dimensionality of the
problem, the center of mass of the hydrogen halide
molecule is assumed to be fixed at the center of the
icosahedral solvation shell.

While these are relatively poor approximations for
the smallest clusters they can be justified for larger
clusters with a closed solvation shell where large-
amplitude motions are not accessible due to the close
packing. Moreover, RTC is not expected to be very
strong because the range of the rotationally averaged
Ar—HF interaction [18] is dlightly smaller than that
of the Ar—Ar interaction [19]. In the absence of
ro-vibrational spectra of Ar,,HF clusters, supporting
evidence has to come from the spectroscopy of HF
in Ar matrices, which indicates that both the cou-
pling to lattice vibrations (phonons) and RTC are
indeed very weak [17].

2.3. Sationary wavefunctions

In our calculations of ground state wavefunctions
we suppose that rotational and vibrational degrees of
freedom of the HF molecule in the Ar cluster are
decoupled because the frequency scales are very well
separated. Moreover, it is known that vibrationa
frequencies exhibit only a very small shift with
respect to the gas-phase values which is in the order
of only 1% of the fundamental frequency [20,26].
Consequently, the ground state wavefunction is con-
structed as a product of the ground vibrational wave-
function of a Morse oscillator (with parameters taken
from Ref. [22]) and a two-dimensional rotationa
wavefunction.

The purely rotational Hamiltonian for arigid rota-
tion of the guest molecule is expressed in spherical
coordinates as

~ JX8, ¢

Hf%ﬁwg(@mb), (3)
with jA being the angular momentum and w repre-
sents the reduced mass of the *"H'°F system. Rota-
tional energy levels and wavefunctions are then ob-
tained as eigenvalues and eigenvectors of the Hamil-
tonian represented in a spherical harmonics basis,

Hg(i)jnj/n/ = BJ(J + 1) 8jj’8nn’ + Vg,jnj’n’ ’ (4)
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where B=20.15 cm™! is the rotational constant.
The matrix elements of the (ground state) potential
energy (1) are obtained as integrals over the surface
of a unit sphere,

™ 2 i
vg‘jnj,n:[osnedefo doZ0(6, d)V,(6, d)

XZ0)(6, ). 5

Here (real-valued) symmetry adapted spherical har-
monics (SASHs) Z(0, ¢) have been used which
transform according to an irreducible representation
i of the icosahedral point group I,,, see Appendix A.

2.4. Close-coupled wavepackets

The photodissociation dynamics is modelled by
promoting the initial wavefunction onto the excited
state potential of Eq. (2) which corresponds to an
excitation of the HF molecule to the repulsive II
state. Note that the instantaneous excitation corre-
sponds to a laser pulse which is short compared with
the timescale of the subsequent dynamics. The initial
wavepacket is propagated in time subject to the
excited state Hamiltonian

. #2102 120,
H, = — r+M+Ve(r,0,d>),
2,u T or2 2ur
(6)

where the first two terms represent the radia and
angular part of the kinetic energy of the relative
HF-motion, respectively, and the third term is the
potential energy surface (2) of the electronically
excited state of Ar,,HF. In analogy to the ‘close-
coupled wavepacket’ (CCWP) method commonly
used in diatom-surface scattering theory [27], the 3-D
wavefunction is expressed as a sum of products of
radial (r) and angular (6, ¢) functions:

w NOC) (I)( t)
ypO(r,0,¢;t) = Z E ———Z{(6,9),

(7)

where the time-dependence is cast into the radia
functions x{)(r,t). Inserting ansatz (7) into the
time-dependent Schrodinger equation for the Hamil-
tonian (6) and projection on one of the angular

SASH functions yields the following set of coupled
equations for the radia functions:

ih— X](')(r,t)
1 @ +1)#2
=|-—— u (')(r t)
2w or 2ur?

+ T RV (D xfi(r.0). (8)
-

where matrix elements of the excited state potential
energy surface are defined as the integrals

]mn(r)—f snedaf dpZ(0, )

V(1. 6,6)Z2(0, ). (9)

It is noted that the use of a symmetry adapted basis
Z{!) greatly reduces the numerical effort through a
decreased number £, NO(j) of coupled equations to
be solved. For example within the A ; representation
the rotational state j = 30 is the first one where two
SASHs are found (N 9(j) = 2) while for all lower
states either one (N*9)(j) =1, e.g. for j =0, 6, 10,
12, 16, ...) or, more often, no SASH is found
(N™a(j) = 0). Hence, for j < 30 only 13 out of 961
functions are required. Although this ratio is less
favourable for the other representations of the I,
group, the technique of symmetry adapted
wavepackets is nonetheless very worthwhile.

Moreover, it is computationally very advanta-
geous to evaluate the integrals (9) by expanding the
potential function V,(r, 6, ¢) in SASHSs of the totally
symmetric representation (A ;) using a direct product
scheme with Gauss—Legendre integration in 6 and
¢. Typicaly, the summation over angular momen-
tum states is truncated at j =30 and 100 X 200
integration points are employed. For the electronic
ground state (5) a much smaller basis set (j < 10) is
found to be sufficient. The resulting integrals over
products of three spherical harmonics can be ob-
tained from Clebsch—Gordan coefficients [28].

The coupled Eq. (8) are solved numerically using
a Fourier collocation scheme for discretization of the
radial coordinate r [29]. A grid consisting of 1024
equidistant points ranging up to 4 nm was used. The
time evolution operator is approximated by expan-
sion of the exponential in a series of (complex)
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Chebychev polynomials [30]. Typically, truncation
after the 100th order permits a relatively long time
step of 2.5 fs.

3. Results
3.1. Ground state rotational wavefunctions

In order to understand the rotational spectroscopy
of Ary,HF, the potential energy function V,(6, ¢)
for rotation of the HF molecule in the field of the 12
surrounding Ar atoms is considered. It turns out that
the potential energy surface exhibits maxima at ori-
entations corresponding to the C; axes, i.e. where
the H atom is pointing towards one of the Ar atoms
and minima aong C, axes. However, the modulation
between maxima and minima is only 3 cm™. In
view of the atom—molecule potential of Ref. [18]
which features an anisotropy of > 100 cm™! be-
tween the Ar—HF (—220 cm™!) and the Ar—FH
(—1075 cm™1) geometry, this is an astonishing
result. It indicates that for the twelve Ar atomsin an

Ty, (j=1): 40.3 cm

icosahedral arrangement, the anisotropy of the indi-
vidual interactions cancels almost completely. Note
that this is not the case for HF in an Ar matrix (fcc)
where the undulation of the potential energy surface
for rotation in the locally octahedral environment
amountsto > 30 cm~?! [15,17]. Also for the case of
HCl inside an icosahedral Ar clusters or fcc Ar
matrices, the modulation depth is of the order of 30
cm~1 [23].

Based on this potential energy surface, rotational
energy levels and wavefunctions are obtained by
diagonalization of the Hamiltonian matrix (4) for the
rigid rotation of an HF molecule inside the first
complete solvation shell. With the undulation of the
potential energy surface being considerably smaller
than the rotational constant of the HF molecule, the
rotational energy spectrum does not differ strongly
from that of a freely rotating molecule with E; =
Bj(j + 1), see the energy levels indicated in Fig. 1.
However, there are splittings induced by the symme-
try of the cage. It can be shown by group theoretical
arguments that the lowest rotational state to split
under the influence of a field of icosahedra symme-

Hy (j=2): 1209 cm

Fig. 1. Rotational wavefunctions of the HF molecule in an icosahedral Ar,, HF cluster (electronic ground state). The angular dependence of
the wavefunctions of the lowest four rotationally excited states is superimposed on a sphere. The circumscribed icosahedra illustrate the

orientation relative to that of the solvent cage.
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try isthe j = 3 level. The 7-fold degeneracy is lifted
and the resulting T,, and G, states are separated in
energy by 0.5 cm™1.

The most important conseguence of the icosahe-
dral microsolvent is the spatial characteristic of the
rotational wavefunctions. The totally symmetric (A ;)
rotational ground state is virtually not influenced by
the icosahedral microsolvent, and it features a distri-
bution of HF orientations which is very close to an
isotropic one. Apart from the j = O state there is only
atiny admixture (5 x 10~ %) of the j = 6 state in the
respective eigenvector. Also the first few rotationally
excited states can be ailmost exclusively attributed to
a single SASH basis function. The first two excited
states j = 1(Ty,) and j = 2 (H,) exhibit preferential
orientations along the C; axes pointing towards faces
of the triangles comprising the icosahedron. Interest-
ingly, the splitting of the j = 3 state results in very
different rotational wavefunctions. For the T,, state
the extrema of the wavefunction are pointing to-
wards corners (C;) of the icosahedron, while the G,
state prefers the faces (C,;) and edges (C,) but is
very diffuse.

3.2. Excited state wavepacket dynamics

The wavepacket dynamics upon electronic excita-
tion of the HF molecule is determined by the time-
dependent coupled Schrodinger equations (8) for the
radial functions X(j‘g(r,t). In particular, the spheri-
caly averaged potential functions V), are of
importance. The radial dependence of the first three
diagonal elements (i=A_; j=]'=0, 6, 10; n=n
= 1) areillustrated in Fig. 2. At short distances these
potentials are essentially equal to the *II state repul-
sion of the HF molecule apart from small differences
caused by the centrifugal energy, see the second term
on the r.h.s. of Eq. (8). At larger distances there is a
barrier indicating repulsion of the hydrogen atom
from the Ar solvation shell. The barrier height is
strongly correlated with the angular characteristics of
the corresponding SASH functions which are illus-
trated in the top part of Fig. 3. For the j = 6 state,
the sharp focussing of the orientational distribution
towards the Ar atoms results in a barrier that is much
higher than that for the isotropic rotational ground
state. In contrast, the distribution of the j = 10 state
along C, and C, axes avoids the Ar atoms and thus

800

600 -

400 -

VA%eitin(r) [kd/mol]

%.0 0.2 0.4 0.6
r [nm]
Fig. 2. Diagonal elements of the potential matrix V,4gi(r) (Eq.
(9)) for the electronicaly excited state. The potential curves
correspond to the lowest three rotational states (j = 0,6, 10) which
transform according to the totally symmetric irreducible represen-
tation (A ) of the icosshedral point group I,.

givesrise to a strongly reduced barrier. The effective
potential barriers for higher rotational states are in a
similar range, with the j = 6 and the j = 10 marking
the extremes of strong and weak caging, respec-
tively.

First let us consider the wavepacket dynamics for
photodissociation of an HF molecule which is ini-
tidly in its rotational ground state. According to the
Condon approximation, we promote an initial v = 0,
j =0 product wavefunction from the electronic
ground state to the electronically excited state. Ini-
tialy, the expectation value of the HF distance is 94
pm which corresponds to a total energy of 509
kJ/mol on the excited state surface. Under the influ-
ence of the repulsion, the wavepacket quickly moves
outwards. Approaching the potential barrier it is
influenced by the non-vanishing off-diagonal ele-
ments of the potential matrix which are coupling the
individual rotational states. As a consequence, higher
rotational states are populated on the timescale of a
few femtoseconds.

After ~ 9 fs the wavepacket has reached the top
of the barrier where it undergoes bifurcation, see Fig.
3. One part of the wavepacket is reflected inwards
from the cage atoms, while another part penetrates
the solvent cage. The branching ratio depends on the
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Fig. 3. Wavepacket dynamics of HCI photodissociation in a rigid icosahedral Ar,, HF cluster. The initial state is the rotational ground state
j=0(Ay). The upper part shows the first three symmetry adapted spherical harmonics (SASHs) Z}feﬂ for the A representation of the |,
point group; the lower part shows snapshots of the corresponding (time-dependent) radial wavefunctions Xj(lAg>(r, t) (see Eq. (7). The
dashed horizontal lines indicate the radius of the Ar cage (0.36 nm).

rotational state. This can be seen in the snapshots for
t=18fs. For j = 6 and j = 10 the probability ampli-
tude outside the cage is smaller or larger, respec-
tively, than for the isotropic j=0 state. The re-
flected part undergoes quasi-bound oscillations with
a period of ~ 18 fs. In the course of these oscilla-
tions, further probability amplitude is gradually leak-
ing into the continuum of free states, see e.g. our
snapshot for t = 27 fs.

3.3. Cage-exit probability

Anaogous wavepacket propagations to simulate
the photodissociation quantum dynamics of HF in
Ar,HF are also performed for other initial state. In
particular, each of the rotationally excited states of
Fig. 1 (j = 1-3) istaken as initia states. In order to

compare the results, we define the probability of
cage exit as the quantum-mechanical probability to
find the hydrogen photofragment after a certain time
outside the solvent cage,

PO =X [ [x(r.0F, (10)

jn “r=t¢

where r. is a critical radius slightly larger than the
cage radius beyond which there is no return of
probability amplitude into the cage. We set t = 20 fs
in order to account only for the immediate cage exit
within the first vibrational period. Our findings are
summarized in Fig. 4 where the cage exit probability
versus the initial rotationa state is shown. The first
two rotationally excited states j =1 (T,,) and j=2
(H,) exhibit very similar cage exit probability as the
rotational ground state j = 0 (A ;) between P = 72%
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Fig. 4. Immediate cage-exit probability (t =20 fs) for HF pho-
todissociation inside an icosahedral solvation shells (Ary, HF).

u

and P = 74%. This indicates that the maxima of the
rotational wavefunctions along a C, axis do not lead
to an increased chance of cage exit because of the
neighbouring three Ar atoms. However, the j =3
states show a pronounced difference of the photodis-
sociation dynamics. There is a strongly enhanced
cage effect for the T,, state (P =51.7%). In con-
trast, the G, state which avoids the C; axes shows a
much larger cage exit probability (91.3%) than any
of the other states.

4. Discussion

We have studied the photodissociation of HF in
icosahedral Ar,, HF clusters. Assuming a frozen rare
gas cage and a fixed HF center of mass, two sets of
calculations have been performed. First, rotational
states in the electronic ground state have been ob-
tained. The most interesting finding is the T,,/G,
splitting of the j = 3 level accompanied by different
orientations of the corresponding rotational wave-
functions. Second, starting from these initial states,
three-dimensional wavepackets have been propa
gated to model the cage exit process of the hydrogen
photofragment where the use of symmetry adapted
wavepackets has proved to be very instrumental.
Note that two processes could be neglected that
typically occur on a somewhat longer timescale (t >

100 fs): The first one is the excitation of cage
vibrations possibly leading to cage fragmentation.
This assumption is justified by the relatively low
energy transfer in light—heavy collisions rendering
cage fragmentation relatively slow [9]. The second
simplification is the restriction to purely adiabatic
dynamics because: (1) the different excited states
(11,33, °I0) are very similar to each other [22]; and
(2) recombination in the ground state is slow and
does not play an important role for only one solvent
shell [10].

The main result of the present Letter is the strong
dependence of the cage exit probability on the initial
rotational state of the guest molecule inside the
icosahedral cluster which is dictated by the spatial
structure of the ground state rotational wavefunction.
This finding opens a new way of controlling the
excited state dynamics. By pre-exciting a molecule
to a specific rotationa state, the photodissociation
guantum yield can be controlled to a certain extent.
Thus the present approach represents an aternative
to the recently suggested structural control by brute
force alignment [31]. In particular, we have found
that the cage exit dynamics upon photodissociation
strongly depends on the fact whether the initial state
wavefunction preferentially samples the orientations
pointing towards cage atoms or pointing towards
windows between them. This idea of ‘rotationally
mediated chemistry’ has been demonstrated for the
first time in Ref. [15] for matrix-isolated hydrides, in
analogy to the concept of ‘vibrationally mediated
chemistry’ aready established in the 1970s [32]. In
very recent work, it has been shown that the different
dissociation dynamics of photofragments of libra-
tionally excited molecules can also be used to con-
trol the dynamics of subsequent reactions in weakly
bound clusters [33].
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Appendix A. Symmetry adapted spherical har-
monics (SASHs)

This appendix is concerned with the problem of
obtaining symmetry adapted spherica harmonics
(SASHSs) Z{}(8, ¢) required for the expansion of the
angular dependence of the wavefunctions in Eq. (7).
It is noted that in the solid state literature these
functions are known as surface harmonics or lattice
harmonics where they are also tabulated for the point
groups relevant in crystallography [34]. In contrast,
SASHSs for the icosahedral point group |, have been
long neglected. Stimulated by new applications of
the icosahedral symmetry in chemistry (fullerenes),
solid state physics (quasi-crystals), and biology
(viruses), icosahedral SASHSs have been investigated
in recent publications, e.g. [35]. However, al of
these studies are restricted to the totally symmetric
irreducible representation A ;.

We employ the standard technique of forming
symmetry adapted linear combinations of a set of
basis functions using projection operators for a point
group G consisting of |G| elements. The irreducible
representations i of dimension d;, are characterized
by matrix representations D()(R) for each of the
symmetry operations R. Given these representations
it is straightforward to obtain SASHs Zj(,‘]) by apply-
ing the projection operators W, to spherical har-
monics Yy,
Zi) = WEY(0, ¢)

d, _ .

=1~ [D(I)( R)ts] RYm(gvd)) ,

|G| ReG J
where it is sufficient to take only the diagona ele-
ments of the representation matrices into account
(t=s). The basis functions obtained for each of the
irreducible representations have to be orthogonalized
using the standard Gram—Schmidt procedure. The
high symmetry of the icosahedral point group is
reflected in the small number NO(j) of linearly
independent SASHS.

(A1)

The transformation of spherical harmonics under
the various symmetry operations R in Eqg. (A.1)
results in a coupling of different m-sublevels of the
same angular momentum j,

]
Rij(91¢) = Z . Pjonm(a,B,'Y)an(gyd))-

n=—]

(A2)

In case of a proper rotation «, B,y are the Euler
angles corresponding to the symmetry operation R
and the factor Py is unity. Improper rotations can be
regarded as a product of a proper rotation about the
above Euler angles and an inversion where P, =
(—1)’ applies. Expressions for the evaluation of the
Wigner coefficients &, can be found in Ref. [28]:

jnm
D@, B, Y)
expl—im(a +7)18, 1
—{ (=Dexpl—im(a —y)18, _p
(- expl—i(ma + my)]d;,n(B)  else,

for =0,

for g =,

(A3)

with | =|n|+ n—|m| — m. The B-dependent reduced
matrices are given by

min(j—n,j+ m)
dinm( B) = Y (=D
k = max(0,m— n)
VG +mIG+mIG—m!(j—m)!
(j—n=K!(j+m=K)!kI(k—m+ n)!

X[COS( B/Z)]2j+ m—n-—2k
X[sin( B/2)2k* =™, (A.4)

The coefficients d,,,( 8) of Eq. (A.4) are calculated
numerically using a recursion relation given in Ref.
[34]. In the present work, SASHs for each of the 10
irreducible representations of the I, point group have
been calculated for j <45 using Eq. (A.1). The
tabulated coefficients are available from the author
on request.
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