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Abstract

The photodissociation dynamics of HF molecules embedded in icosahedral HFAr clusters upon excitation with an12

ultrashort light-pulse is investigated. Assuming a frozen cluster, three-dimensional symmetry adapted wavepackets for the
hydrogen photofragment are propagated in time. The emphasis is on the dependence of the HF photodissociation dynamics
on the initial quantum state of the diatomic molecule. Depending on the spatial characteristics of the initial rotational state
inside the rare gas cage, different cage exit probabilities are found. This opens the way to a rotational control of
photochemistry of small molecules in weakly bound clusters. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Photochemical reactions in weakly bound van der
Ž .Waals vdW clusters are often studied as model

systems for solvation effects in chemical reaction
w xdynamics 1,2 . Both in experiment and in theory

clusters allow to investigate the stepwise growth of a
‘micro-solvation’ thus serving to bridge the gap be-
tween gas- and condensed-phase dynamics. The most
prominent kind of solvent effects on the photochem-
istry of molecules is the cage effect. This notion
dates back to the 1930s when a reduced quantum
yield for the photolysis of iodine in solution was

w xfound 3 . Upon photo-induced breaking of a molecu-
lar bond by excitation to a repulsive state, the solvent
particles may confine photofragments inside a cage
formed by the solvent particles. This can lead to a

) E-mail: bschmidt@chemie.fu-berlin.de

delayed cage exit where photofragments undergo a
few vibrational periods inside the solvent cage be-
fore they exit through the ‘windows’ of the cage. On
a longer timescale, this confinement may also induce
non-adiabatic transitions to the electronic ground
state leading to re-making of the broken bond.

During the last few years, the photodissociation of
hydrogen halides in a rare gas environment has
emerged as a prototypical systems for the study of
the solvent cage effect. For example, photodissocia-
tion in the Ar–HCl dimer has been studied by means

Ž . w xof classical, hybrid quantumr semi- classical 4 , ap-
w x w xproximate quantum 5 , and exact quantum 5–8

simulations. The central question in all of these
Ž .studies is the existence or the extent of the cage

Ž .effect for the case of only one or two solvent atoms
and the possible occurrence of a resonance structure
in various observables. The effect of increasing sol-
vent cluster size has been studied for photodissocia-

Ž .tion of HF in Ar HF ns1–54 by means of classi-n
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w xcal trajectories sampling a quantum initial state 9 .
In another study, icosahedral Ar HCl and Ar HCl12 54

aggregates have been investigated in a semiclassical
w xsurface hopping study 10 . Also in matrix isolation

studies hydrogen halide molecules have been estab-
lished as a standard model system, see e.g. the

w xexperimental work on HCl in Ar matrices 11 .
Building on earlier classical and quantum-mechani-

w xcal 12 simulations of HI in Xe, semiclassical simu-
lations of HCl in crystalline Ar have also been

w xperformed 13,14 . Moreover, quantum-mechanical
simulations of the hydrogen atom wavepacket dy-

w xnamics have been reported for this system 15,16 .
A unique feature of photochemistry in the above-

mentioned cluster and matrix systems stems from the
special properties of the initial state. On the one
hand, the initial solvent geometry is confined by the
structure of the complex to some extent. On the other
hand, there are very floppy large-amplitude motions

w xin the electronic ground state 2 . The emphasis of
the present work is on the role of the bending or
rotational degrees of freedom of a hydrogen halide
molecule in a rare gas cluster. For small systems
with an incomplete solvation shell, the rotation is
hindered by the anisotropy of the atom–molecule
potentials but the amplitudes of the so-called libra-
tional motions about the equilibrium geometry can

Žbe quite extended. For larger systems with one or
.more complete solvation shells the anisotropy of the

ground state interaction partly cancels and in matri-
ces hydrogen halide molecules are known to be

w xalmost freely rotating 15,17 .
In the present Letter, we want to further elucidate

on the effect of the initial quantum state of the guest
molecule on the photodissociation dynamics inside
an icosahedral closed-shell rare gas cluster. Our main

Ž .emphasis will be on the following questions: 1
What is the nature of the ground state rotational
wavefunctions and how do they correlate with the

Ž .cage geometry? 2 How does the cage exit probabil-
ity of the hydrogen photofragment depend on the
initial state and how can it be controlled by rota-
tional pre-excitation of the molecule? For this pur-
pose we will first calculate rotational wavefunctions
in the electronic ground state and then propagate
three-dimensional wavepackets in the electronically
excited state to simulate the processes of caging and
cage exit quantum-mechanically.

As a model system, we choose icosahedral Ar HF12

clusters which can be considered an almost ideal
model system for the following reasons. First of all,
the Ar–HF potential in the ground electronic state is
one of best known atom–molecule potentials, and
for the excited state there are reasonably accurate
data. Furthermore, it is known from matrix spec-
troscopy, that HF can rotate almost freely in argon
and that the effect of rotation–translation coupling
Ž .RTC can be safely neglected. Finally, for a cluster
with only one shell, the photodissociation is com-
plete on a timescale of -100 fs so that non-adia-
batic transitions and recombination play a negligible
role for the short time dynamics. Details of our
model and the theoretical methods are given in Sec-
tion 2. The technique of symmetry adaption is de-
scribed in Appendix A. The results are presented and
discussed in Section 3. The final Section 4 summa-
rizes our findings and gives conclusions.

2. Methodology

2.1. Interactions

The interactions of pure rare gases as well as of
systems doped with hydrogen halide systems are
among the most thoroughly studied interatomic and
intermolecular forces. The electronic ground state
interaction is, to a good accuracy, dominated by
pairwise interactions of the closed-shell particles.

Ž .Hence, the potential energy surface PES for Ar HF12

is constructed as a pairwise sum of atom–molecule
and atom–atom potentials similar to previous stud-

w xies, see e.g. Ref. 9 ,
n

V s V q V , 1Ž .Ý Ýg Ar , HF Ar , Ari i j
is1 i-j

where V is the anisotropic Ar–HF potentialAr , HFi

formulated in a vibrationally adiabatic representa-
tion. Its long-range part is fixed using known disper-
sion coefficients, the short and medium range has
been determined by fitting a highly flexible model
function to the best available infrared and far-in-
frared spectroscopic data of the Ar–HF complex
w x18 . The second term V represents the interac-Ar , Ari j

tion between a pair i and j of Ar atoms. We use an
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Ar–Ar potential function from the literature which is
w xbased on a multi-property fit 19 .

Ž .It is noted that the pairwise approach of Eq. 1
has been shown to reproduce all experimental HF

Žvibrational frequency shifts for small clusters ns
. w x w x1–4 20 evenly well as for the matrix case 17 .

Including also three-body interactions causes only
w xsmall corrections 21 .

The potential energy surface for the electronically
excited state is constructed as a sum of pairwise
additive atom–atom contributions:

n n

V sV q V q V q V ,Ý Ý Ýe HF Ar , H Ar , F Ar , Ari i i j
is1 is1 i-j

2Ž .

where V is the repulsive 1
P state of the HF guestHF

molecule adapted from ab initio data available in the
w xliterature 22 . The most crucial ingredient in calcu-

lating the cage exit dynamics is the Ar–H interac-
Ž .tion. Here we do not rely on the semi- empirical

potentials used in all the previous simulations of the
photodissociation dynamics hydrogen halides in Ar
w x4,9,10 but rather use results of recent quantum-

w xchemical ab initio MP2 calculations 23 . Finally, the
rare gas–halide interaction is taken from the work of

w xRef. 24 where potential energy curves were fitted to
differential scattering cross-sections of magnetically

w xstate-selected fluorine atoms 24 . In the present
work we restrict ourselves to the ground state poten-

Ž .tial V of Ar–F thus neglecting the orbital3r2, 1r2
2 w xdynamics of the P state 25 .

2.2. Approximations

The full quantum dynamics of a system consisting
of 14 atoms such as Ar HF is not exactly tractable12

given today’s computational means. Both for the
calculation of stationary ground state wavefunctions
as well as for the excited state wavepacket dynamics
we have to restrict our model to include only the

Ž .most relevant nuclear degrees of freedom. Hence,
the following two approximations are introduced.

Ž .1 The rare gas atoms are assumed to be frozen
Ž .Ts0 . This is equivalent to treating the complete
system like a dimer consisting of the diatomic
molecule with its six degrees of freedom and a

frozen Ar solvation shell of perfect icosahedral sym-
metry.

Ž .2 To further reduce the dimensionality of the
problem, the center of mass of the hydrogen halide
molecule is assumed to be fixed at the center of the
icosahedral solvation shell.

While these are relatively poor approximations for
the smallest clusters they can be justified for larger
clusters with a closed solvation shell where large-
amplitude motions are not accessible due to the close
packing. Moreover, RTC is not expected to be very
strong because the range of the rotationally averaged

w xAr–HF interaction 18 is slightly smaller than that
w xof the Ar–Ar interaction 19 . In the absence of

ro-vibrational spectra of Ar HF clusters, supporting12

evidence has to come from the spectroscopy of HF
in Ar matrices, which indicates that both the cou-

Ž .pling to lattice vibrations phonons and RTC are
w xindeed very weak 17 .

2.3. Stationary waÕefunctions

In our calculations of ground state wavefunctions
we suppose that rotational and vibrational degrees of
freedom of the HF molecule in the Ar cluster are
decoupled because the frequency scales are very well
separated. Moreover, it is known that vibrational
frequencies exhibit only a very small shift with
respect to the gas-phase values which is in the order

w xof only 1% of the fundamental frequency 20,26 .
Consequently, the ground state wavefunction is con-
structed as a product of the ground vibrational wave-

Žfunction of a Morse oscillator with parameters taken
w x.from Ref. 22 and a two-dimensional rotational

wavefunction.
The purely rotational Hamiltonian for a rigid rota-

tion of the guest molecule is expressed in spherical
coordinates as

ˆ2j u , fŽ .
Ĥ s qV u , f , 3Ž . Ž .g g22mr

ˆwith j being the angular momentum and m repre-
sents the reduced mass of the 1H19 F system. Rota-
tional energy levels and wavefunctions are then ob-
tained as eigenvalues and eigenvectors of the Hamil-
tonian represented in a spherical harmonics basis,

H Ž i.
X X sBj jq1 d X d X qV X X , 4Ž . Ž .g , jn j n j j nn g , jn j n
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where Bs20.15 cmy1 is the rotational constant.
Ž .The matrix elements of the ground state potential

Ž .energy 1 are obtained as integrals over the surface
of a unit sphere,

p 2p Ž i.
X XV s sin u du df Z u , f V u , fŽ . Ž .H Hg , jn j n jn g

0 0

=Z Ž i.
X X u , f . 5Ž . Ž .j n

Ž .Here real-valued symmetry adapted spherical har-
Ž . Ž .monics SASHs Z u , f have been used which

transform according to an irreducible representation
i of the icosahedral point group I , see Appendix A.h

2.4. Close-coupled waÕepackets

The photodissociation dynamics is modelled by
promoting the initial wavefunction onto the excited

Ž .state potential of Eq. 2 which corresponds to an
excitation of the HF molecule to the repulsive 1

P

state. Note that the instantaneous excitation corre-
sponds to a laser pulse which is short compared with
the timescale of the subsequent dynamics. The initial
wavepacket is propagated in time subject to the
excited state Hamiltonian

2 2 ˆ2
" 1 E j u , fŽ .

Ĥ sy rq qV r , u , f ,Ž .e e2 22m r Er 2mr

6Ž .

where the first two terms represent the radial and
angular part of the kinetic energy of the relative
HF-motion, respectively, and the third term is the

Ž .potential energy surface 2 of the electronically
excited state of Ar HF. In analogy to the ‘close-12

Ž .coupled wavepacket’ CCWP method commonly
w xused in diatom-surface scattering theory 27 , the 3-D

wavefunction is expressed as a sum of products of
Ž . Ž .radial r and angular u , f functions:

Ž i.Ž . Ž i.N j` x r , tŽ .jnŽ i. Ž i.c r , u , f ; t s Z u , f ,Ž . Ž .Ý Ý jnrjs0 ns1

7Ž .

where the time-dependence is cast into the radial
Ž i.Ž . Ž .functions x r, t . Inserting ansatz 7 into thejn

time-dependent Schrodinger equation for the Hamil-¨
Ž .tonian 6 and projection on one of the angular

SASH functions yields the following set of coupled
equations for the radial functions:

E
Ž i.i" x r , tŽ .jn

Et

"
2 E2 j jq1 "

2Ž .
Ž i.s y q x r , tŽ .jn2 2ž /2m Er 2mr

q V Ž i.
X X r x Ž i.

X X r , t , 8Ž . Ž . Ž .Ý Ý jn j n j n
XX nj

where matrix elements of the excited state potential
energy surface are defined as the integrals

p 2 pŽ i. Ž i.
X XV r s sin u du df Z u , fŽ . Ž .H Hjn j n jn

0 0

=V r , u , f Z Ž i.
X X u , f . 9Ž . Ž . Ž .e j n

It is noted that the use of a symmetry adapted basis
Z X X
Ž i. greatly reduces the numerical effort through aj n

Ž i.Ž .decreased number Ý N j of coupled equations toj

be solved. For example, within the A representationg

the rotational state js30 is the first one where two
Ž ŽA g .Ž . .SASHs are found N j s2 while for all lower

Ž ŽA g .Ž .states either one N j s1, e.g. for js0, 6, 10,
.12, 16, . . . or, more often, no SASH is found

Ž ŽA g .Ž . .N j s0 . Hence, for jF30 only 13 out of 961
functions are required. Although this ratio is less
favourable for the other representations of the Ih

group, the technique of symmetry adapted
wavepackets is nonetheless very worthwhile.

Moreover, it is computationally very advanta-
Ž .geous to evaluate the integrals 9 by expanding the

Ž .potential function V r, u , f in SASHs of the totallye
Ž .symmetric representation A using a direct productg

scheme with Gauss–Legendre integration in u and
f. Typically, the summation over angular momen-
tum states is truncated at js30 and 100=200
integration points are employed. For the electronic

Ž . Ž .ground state 5 a much smaller basis set jF10 is
found to be sufficient. The resulting integrals over
products of three spherical harmonics can be ob-

w xtained from Clebsch–Gordan coefficients 28 .
Ž .The coupled Eq. 8 are solved numerically using

a Fourier collocation scheme for discretization of the
w xradial coordinate r 29 . A grid consisting of 1024

equidistant points ranging up to 4 nm was used. The
time evolution operator is approximated by expan-

Ž .sion of the exponential in a series of complex
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w xChebychev polynomials 30 . Typically, truncation
after the 100th order permits a relatively long time
step of 2.5 fs.

3. Results

3.1. Ground state rotational waÕefunctions

In order to understand the rotational spectroscopy
Ž .of Ar HF, the potential energy function V u , f12 g

for rotation of the HF molecule in the field of the 12
surrounding Ar atoms is considered. It turns out that
the potential energy surface exhibits maxima at ori-
entations corresponding to the C axes, i.e. where5

the H atom is pointing towards one of the Ar atoms
and minima along C axes. However, the modulation3

between maxima and minima is only 3 cmy1. In
w xview of the atom–molecule potential of Ref. 18

which features an anisotropy of )100 cmy1 be-
Ž y1 .tween the Ar–HF y220 cm and the Ar–FH

Ž y1 .y107.5 cm geometry, this is an astonishing
result. It indicates that for the twelve Ar atoms in an

icosahedral arrangement, the anisotropy of the indi-
vidual interactions cancels almost completely. Note

Ž .that this is not the case for HF in an Ar matrix fcc
where the undulation of the potential energy surface
for rotation in the locally octahedral environment

y1 w xamounts to )30 cm 15,17 . Also for the case of
HCl inside an icosahedral Ar clusters or fcc Ar
matrices, the modulation depth is of the order of 30

y1 w xcm 23 .
Based on this potential energy surface, rotational

energy levels and wavefunctions are obtained by
Ž .diagonalization of the Hamiltonian matrix 4 for the

rigid rotation of an HF molecule inside the first
complete solvation shell. With the undulation of the
potential energy surface being considerably smaller
than the rotational constant of the HF molecule, the
rotational energy spectrum does not differ strongly
from that of a freely rotating molecule with E sj
Ž .Bj jq1 , see the energy levels indicated in Fig. 1.

However, there are splittings induced by the symme-
try of the cage. It can be shown by group theoretical
arguments that the lowest rotational state to split
under the influence of a field of icosahedral symme-

Ž .Fig. 1. Rotational wavefunctions of the HF molecule in an icosahedral Ar HF cluster electronic ground state . The angular dependence of12

the wavefunctions of the lowest four rotationally excited states is superimposed on a sphere. The circumscribed icosahedra illustrate the
orientation relative to that of the solvent cage.
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try is the js3 level. The 7-fold degeneracy is lifted
and the resulting T and G states are separated in2u u

energy by 0.5 cmy1.
The most important consequence of the icosahe-

dral microsolvent is the spatial characteristic of the
Ž .rotational wavefunctions. The totally symmetric A g

rotational ground state is virtually not influenced by
the icosahedral microsolvent, and it features a distri-
bution of HF orientations which is very close to an
isotropic one. Apart from the js0 state there is only

Ž y4 .a tiny admixture 5=10 of the js6 state in the
respective eigenvector. Also the first few rotationally
excited states can be almost exclusively attributed to
a single SASH basis function. The first two excited

Ž . Ž .states js1 T and js2 H exhibit preferential1u g

orientations along the C axes pointing towards faces3

of the triangles comprising the icosahedron. Interest-
ingly, the splitting of the js3 state results in very
different rotational wavefunctions. For the T state2u

the extrema of the wavefunction are pointing to-
Ž .wards corners C of the icosahedron, while the G5 u

Ž . Ž .state prefers the faces C and edges C but is3 2

very diffuse.

3.2. Excited state waÕepacket dynamics

The wavepacket dynamics upon electronic excita-
tion of the HF molecule is determined by the time-

Ž .dependent coupled Schrodinger equations 8 for the¨
Ž i.Ž .radial functions x r, t . In particular, the spheri-jn

cally averaged potential functions V X X
Ž i. are ofe, jn j n

importance. The radial dependence of the first three
Ž X Xdiagonal elements isA ; js j s0, 6, 10; nsng

.s1 are illustrated in Fig. 2. At short distances these
potentials are essentially equal to the 1

P state repul-
sion of the HF molecule apart from small differences
caused by the centrifugal energy, see the second term

Ž .on the r.h.s. of Eq. 8 . At larger distances there is a
barrier indicating repulsion of the hydrogen atom
from the Ar solvation shell. The barrier height is
strongly correlated with the angular characteristics of
the corresponding SASH functions which are illus-
trated in the top part of Fig. 3. For the js6 state,
the sharp focussing of the orientational distribution
towards the Ar atoms results in a barrier that is much
higher than that for the isotropic rotational ground
state. In contrast, the distribution of the js10 state
along C and C axes avoids the Ar atoms and thus2 3

ŽA g. Ž . ŽFig. 2. Diagonal elements of the potential matrix V r Eq.e, j1 j1
Ž ..9 for the electronically excited state. The potential curves

Ž .correspond to the lowest three rotational states js0, 6, 10 which
transform according to the totally symmetric irreducible represen-

Ž .tation A of the icosahedral point group I .g h

gives rise to a strongly reduced barrier. The effective
potential barriers for higher rotational states are in a
similar range, with the js6 and the js10 marking
the extremes of strong and weak caging, respec-
tively.

First let us consider the wavepacket dynamics for
photodissociation of an HF molecule which is ini-
tially in its rotational ground state. According to the
Condon approximation, we promote an initial Õs0,
js0 product wavefunction from the electronic
ground state to the electronically excited state. Ini-
tially, the expectation value of the HF distance is 94
pm which corresponds to a total energy of 509
kJrmol on the excited state surface. Under the influ-
ence of the repulsion, the wavepacket quickly moves
outwards. Approaching the potential barrier it is
influenced by the non-vanishing off-diagonal ele-
ments of the potential matrix which are coupling the
individual rotational states. As a consequence, higher
rotational states are populated on the timescale of a
few femtoseconds.

After ;9 fs the wavepacket has reached the top
of the barrier where it undergoes bifurcation, see Fig.
3. One part of the wavepacket is reflected inwards
from the cage atoms, while another part penetrates
the solvent cage. The branching ratio depends on the
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Fig. 3. Wavepacket dynamics of HCl photodissociation in a rigid icosahedral Ar HF cluster. The initial state is the rotational ground state12
Ž . Ž . ŽA g.js0 A . The upper part shows the first three symmetry adapted spherical harmonics SASHs Z for the A representation of the Ig j1 g h

Ž . ŽA g.Ž . Ž Ž ..point group; the lower part shows snapshots of the corresponding time-dependent radial wavefunctions x r, t see Eq. 7 . Thej1
Ž .dashed horizontal lines indicate the radius of the Ar cage 0.36 nm .

rotational state. This can be seen in the snapshots for
ts18 fs. For js6 and js10 the probability ampli-
tude outside the cage is smaller or larger, respec-
tively, than for the isotropic js0 state. The re-
flected part undergoes quasi-bound oscillations with
a period of ;18 fs. In the course of these oscilla-
tions, further probability amplitude is gradually leak-
ing into the continuum of free states, see e.g. our
snapshot for ts27 fs.

3.3. Cage-exit probability

Analogous wavepacket propagations to simulate
the photodissociation quantum dynamics of HF in
Ar HF are also performed for other initial state. In12

particular, each of the rotationally excited states of
Ž .Fig. 1 js1–3 is taken as initial states. In order to

compare the results, we define the probability of
cage exit as the quantum-mechanical probability to
find the hydrogen photofragment after a certain time
outside the solvent cage,

`
2Ž i. Ž i.< <P t s x r , t , 10Ž . Ž . Ž .ÝH jn

rsrcjn

where r is a critical radius slightly larger than thec

cage radius beyond which there is no return of
probability amplitude into the cage. We set ts20 fs
in order to account only for the immediate cage exit
within the first vibrational period. Our findings are
summarized in Fig. 4 where the cage exit probability
versus the initial rotational state is shown. The first

Ž .two rotationally excited states js1 T and js21u
Ž .H exhibit very similar cage exit probability as theg

Ž .rotational ground state js0 A between Ps72%g



( )B. SchmidtrChemical Physics Letters 301 1999 207–216214

Ž .Fig. 4. Immediate cage-exit probability ts20 fs for HF pho-
Ž .todissociation inside an icosahedral solvation shells Ar HF .12

and Ps74%. This indicates that the maxima of the
rotational wavefunctions along a C axis do not lead3

to an increased chance of cage exit because of the
neighbouring three Ar atoms. However, the js3
states show a pronounced difference of the photodis-
sociation dynamics. There is a strongly enhanced

Ž .cage effect for the T state Ps51.7% . In con-2u

trast, the G state which avoids the C axes shows au 5
Ž .much larger cage exit probability 91.3% than any

of the other states.

4. Discussion

We have studied the photodissociation of HF in
icosahedral Ar HF clusters. Assuming a frozen rare12

gas cage and a fixed HF center of mass, two sets of
calculations have been performed. First, rotational
states in the electronic ground state have been ob-
tained. The most interesting finding is the T rG2u u

splitting of the js3 level accompanied by different
orientations of the corresponding rotational wave-
functions. Second, starting from these initial states,
three-dimensional wavepackets have been propa-
gated to model the cage exit process of the hydrogen
photofragment where the use of symmetry adapted
wavepackets has proved to be very instrumental.
Note that two processes could be neglected that

Žtypically occur on a somewhat longer timescale tG

.100 fs : The first one is the excitation of cage
vibrations possibly leading to cage fragmentation.
This assumption is justified by the relatively low
energy transfer in light–heavy collisions rendering

w xcage fragmentation relatively slow 9 . The second
simplification is the restriction to purely adiabatic

Ž .dynamics because: 1 the different excited states
Ž1 3 3 . w xP, S, P are very similar to each other 22 ; and
Ž .2 recombination in the ground state is slow and
does not play an important role for only one solvent

w xshell 10 .
The main result of the present Letter is the strong

dependence of the cage exit probability on the initial
rotational state of the guest molecule inside the
icosahedral cluster which is dictated by the spatial
structure of the ground state rotational wavefunction.
This finding opens a new way of controlling the
excited state dynamics: By pre-exciting a molecule
to a specific rotational state, the photodissociation
quantum yield can be controlled to a certain extent.
Thus the present approach represents an alternative
to the recently suggested structural control by brute

w xforce alignment 31 . In particular, we have found
that the cage exit dynamics upon photodissociation
strongly depends on the fact whether the initial state
wavefunction preferentially samples the orientations
pointing towards cage atoms or pointing towards
windows between them. This idea of ‘rotationally
mediated chemistry’ has been demonstrated for the

w xfirst time in Ref. 15 for matrix-isolated hydrides, in
analogy to the concept of ‘vibrationally mediated

w xchemistry’ already established in the 1970s 32 . In
very recent work, it has been shown that the different
dissociation dynamics of photofragments of libra-
tionally excited molecules can also be used to con-
trol the dynamics of subsequent reactions in weakly

w xbound clusters 33 .
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Appendix A. Symmetry adapted spherical har-
( )monics SASHs

This appendix is concerned with the problem of
obtaining symmetry adapted spherical harmonics
Ž . Ž i.Ž .SASHs Z u , f required for the expansion of thejn

Ž .angular dependence of the wavefunctions in Eq. 7 .
It is noted that in the solid state literature these
functions are known as surface harmonics or lattice
harmonics where they are also tabulated for the point

w xgroups relevant in crystallography 34 . In contrast,
SASHs for the icosahedral point group I have beenh

long neglected. Stimulated by new applications of
Ž .the icosahedral symmetry in chemistry fullerenes ,

Ž .solid state physics quasi-crystals , and biology
Ž .viruses , icosahedral SASHs have been investigated

w xin recent publications, e.g. 35 . However, all of
these studies are restricted to the totally symmetric
irreducible representation A .g

We employ the standard technique of forming
symmetry adapted linear combinations of a set of
basis functions using projection operators for a point

< <group G consisting of G elements. The irreducible
representations i of dimension d are characterizedi

Ž i.Ž .by matrix representations D R for each of the
symmetry operations R. Given these representations
it is straightforward to obtain SASHs Z Ž i. by apply-jn

ing the projection operators W Ž i. to spherical har-t s

monics Y ,jm

Z Ž i.sW Ž i.Y u , fŽ .jn t s jm

d
)i Ž i.s D R RY u , f , A.1Ž . Ž . Ž .Ý t s jm< <G RgG

where it is sufficient to take only the diagonal ele-
ments of the representation matrices into account
Ž .tss . The basis functions obtained for each of the
irreducible representations have to be orthogonalized
using the standard Gram–Schmidt procedure. The
high symmetry of the icosahedral point group is

Ž i.Ž .reflected in the small number N j of linearly
independent SASHs.

The transformation of spherical harmonics under
Ž .the various symmetry operations R in Eq. A.1

results in a coupling of different m-sublevels of the
same angular momentum j,

j

RY u , f s P DD a , b , g Y u , f .Ž . Ž . Ž .Ýjm R jnm jn
nsyj

A.2Ž .

In case of a proper rotation a , b , g are the Euler
angles corresponding to the symmetry operation R
and the factor P is unity. Improper rotations can beR

regarded as a product of a proper rotation about the
above Euler angles and an inversion where P sR
Ž . jy1 applies. Expressions for the evaluation of the

w xWigner coefficients DD can be found in Ref. 28 :jnm

Ž .DD a , b , gjn m

w xŽ .exp yim a qg d for b s0 ,° n , m

j~ w xŽ . Ž .y1 exp yim a yg d for b sp ,s n , ym

l¢ w xŽ . Ž . Ž .y1 exp yi ma q ng d b else ,jn m

A.3Ž .
< < < <with ls n qny m ym. The b-dependent reduced

matrices are given by
Ž .min jy n , jq m

kŽ . Ž .d b s y1Ýjn m
Ž .k s max 0, my n

=
Ž . Ž . Ž . Ž .jq n ! jq m ! jy n ! jy m !'

Ž . Ž . Ž .jy ny k ! jq my k !k! ky mq n !

= 2 jq m y ny2 kw xŽ .cos br2

= 2 k q ny mw xŽ .sin br2 . A.4Ž .
Ž . Ž .The coefficients d b of Eq. A.4 are calculatedjnm

numerically using a recursion relation given in Ref.
w x34 . In the present work, SASHs for each of the 10
irreducible representations of the I point group haveh

Ž .been calculated for jF45 using Eq. A.1 . The
tabulated coefficients are available from the author
on request.
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