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Abstract

Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery
and development process. In HIV infection, two different measures, viral load decay and phenotypic
assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase
inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough
understanding of the relation between these two measures of drug efficacy is imperative for guiding future
drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics
model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs
in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug
efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new
quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the
read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total
amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-
system related clearance processes, is a key characteristic that affects both the emergence of resistance as
well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease-
and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and
the emergence of resistance most efficiently.

Author Summary

To guide drug discovery and development, measures of drug efficacy that are linked to clinical outcome
are of key importance. In HIV treatment, decay of plasma viral load is typically used as an in vivo
measure of drug efficacy, whereas phenotypic assays are used to assess drug efficacy in vitro. The recent
development of novel HIV drugs resulted in a huge discrepancy between viral load decay and in vitro
predictions of drug efficacy. We used a mathematical modelling approach to resolve this discrepancy by
introducing a new quantity, the reproductive capacity, that allows a transfer of the in vitro drug efficacy
measure into the in vivo context, enabling a direct comparison. We developed a novel model of viral
dynamics that incorporates the mechanism of action of all established and novel antivirals. Based on the
model, we analyzed the ability of the viral infection to replicate under different drug treatments, and
estimated class-specific times until virological failure. We conclude that the half life of the targeted viral
stage is an important class-specific attribute that impacts on the overall success of a drug in vivo. Our
findings have direct implication for the drug discovery and development process.

Introduction

Since 1996, human immunodeficiency virus (HIV) infection is treated with a combination therapy, known
as highly active anti-retroviral therapy (HAART) [1, 2], which has substantially improved the clinical
management of HIV [3]. Despite the success of HAART, eradication of HIV can currently not be achieved
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[4, 5], most likely due to the persistence of virus in very long lived, latently infected cells [6, 7]. For
HIV-infected individuals, life-long therapy is therefore required to prevent progression to the acquired
immunodeficiency syndrome (AIDS) and death.

During therapy, plasma viral load (HIV RNA per mL blood plasma) is recommended by the National
Institute of Health as a marker of therapy success [8], whereas measurement of the CD4 cell count is the
most important clinical marker of disease progression [9]. The in vivo potency of novel antivirals is usually
assessed by viral load decline in small clinical trials of monotherapy, e.g., [10, 11], and later evaluated
utilizing the novel agent in combination with an optimized background therapy, e.g., [12]. The in vitro
potency of antivirals is typically assessed by using phenotypic/single-round infectivity assays [13–16],
which measure the number of offspring after one round of virus replication.

Investigation of novel drug targets for the treatment of HIV infection resulted in the development
of new drug classes. In 2003 and 2007, the fusion inhibitor (FI) enfuvirtide [17], the CCR5-antagonist
maraviroc [18] and the integrase inhibitor raltegravir [19] were approved for the treatment of HIV in-
fection. Many more drugs are in late clinical development [20]. With the introduction of new drug
classes, in particular integrase inhibitors, a huge discrepancy between the efficacy measured in vitro, us-
ing phenotypic/single-round infectivity assays, and in vivo, using viral load decline, was observed [14,21].
Although integrase inhibitors cause a steep initial decline of plasma viral load [21–26], the in vitro efficacy
is amongst the lowest [14].

Mathematical modelling of viral dynamics has lead to many insights into the pathogenesis and treat-
ment of HIV. It is a valuable tool to interpret the time course of virological markers (e.g. viral load)
during HIV treatment [27–31] and contributes much to our current understanding of the in vivo dynam-
ics of HIV. Sedaghat et al. [32,33] used a mathematical modelling approach to analyze the rapid decay of
plasma viral load after application of integrase inhibitors. They infer that this characteristic viral decay
is a result of the inhibited stage within the viral life cycle rather than superior in vivo potency.

Consequently, viral load decay may be misleading for assessing the potency of integrase inhibitors (and
other novel inhibitors) in comparison to existing drug classes. However, an alternative, more appropriate
measure of drug efficacy, which allows to directly compare drugs from different drug classes is still missing.

The objectives of this article are (i) to develop a novel, generic measure of drug potency that facil-
itates comparison across different drug classes; (ii) to develop a novel mathematical model of the viral
replication cycle that incorporates the action of established and novel drugs in a mechanistic way; and
(iii) to analyze determinants of drug efficacy critical for drug discovery and development. The proposed
measure of drug efficacy, termed reproductive capacity, extends the established in vivo marker, plasma
viral load, by incorporating additional infectious viral stages, and the in vitro phenotypic/single-round
infectivity assays by taking into account host specific defense mechanisms. This enables us to understand
the observed discrepancies between in vitro and in vivo efficacy for integrase inhibitors, and to elucidate
and quantify the role of immune-system related clearance mechanisms in drug action. The results pre-
sented herein are of particular value to categorize different molecular targets in the HIV life cycle and
are expected to be of significance for guiding future HIV drug discovery and development.

Results

Development of a detailed model of viral life cycle and action of anti-retroviral
drugs

We derived a detailed virus-target cell interaction model as depicted in Fig. 1. The model incorporates
the mechanisms of action of all currently approved drugs and some drugs in late clinical development.

Target cells are produced by the immune system with some constant rate λT. An infectious virus
VI reversibly binds (with effective rate constants kon and koff) to a target cell TU, forming a complex
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VI : TU. After binding, the virus irreversibly fuses (with rate constant kfus) with the target cell and the
viral capsid containing the viral genomic RNA is released; this state is denoted by TRNA. During reverse
transcription (with effective rate constant krev), genomic viral RNA is irreversibly transformed into a
more stable DNA. Viral DNA and viral proteins form the pre-integration complex (PIC), denoted by T1.
In the next step, viral DNA of the PIC is irreversibly integrated into the DNA of the target cell (with rate
constant kT), forming the provirus T2. After integration, the infected cell cannot return to an uninfected
stage. From the proviral DNA, viral proteins are amplified and new viruses are released (with effective
rate constant N̂T[1/(cells · day)]). Only a given percentage p > 0 of the released viruses are correctly
assembled immature viruses VIM, while the remaining percentage (1 − p) are defective virions VD that
might e.g. lack the (gag-pol -polyprotein contained) enzymes. During the final step, the viral protease,
which is packed into the correctly assembled, immature virions VIM, is responsible for the maturation
of the virus. The maturation of HIV virions has been shown to be dependent on the highly ordered
cascade of cleavages, governed by differences in the inherent processing rates at each cleavage site [34,35].
We assume that a fraction (1 − q) of the released virus matures abnormally, contributing to the pool of
defective virions VD. Successful maturation eventually leads to new infectious virus particles VI (with
rate constant kmat and probability q).

Depending on the stage of the life cycle, the host organism has different abilities to clear the virus. It
was assumed that infectious, immature and defective virions VI, VIM, and VD, respectively, are cleared
with rate constant CL by the host. The uninfected target cells TU, the TRNA stage and the early infected
stage T1 are assumed to be cleared with rate constant δT, since none of these stages express viral proteins,
while the virus-producing late infected cell T2 is assumed to be cleared with rate constant δT2 � δT. In
addition to cell death, the target cell may fend-off the viral infection by degrading the viral RNA or parts
of the PIC, rendering the cell uninfected. RNA is very unstable with a half life ranging from seconds
to a maximum of two hours [36, 37]. Therefore, through degradation or, e.g., by hypermutation through
APOBEC3G [38], the viral RNA can be cleared with rate constant δRNA. The cell might also destroy
essential components of the PIC (with rate constant δPIC,T) to clear the virus.

The system of ordinary differential equations (ODEs) describing the rate of change of the different
viral species and target cells in the detailed model (depicted in Fig. 1) is given in Supplementary Text S1,
Eqs. (S1)–(S8). As typically done in kinetic studies, complex aspects of the viral dynamics are subsumed
by ‘lumped’ parameters in the model. For instance, the rate constant of the reverse transcription krev

contains all the steps necessary to transform the viral RNA into a double stranded DNA. The mechanisms
of action of the seven drug classes are based on interfering with the viral life cycle at different stages. We
assumed that the effect of a drug on the targeted process is specified by some parameter ε(t) ∈ [0, 1], i.e.,

(1 − ε) =

⎛
⎝ 1

1 +
(

C
IC50

)n

⎞
⎠ (conc. dependent efficacy), (1)

assuming some underlying averaged drug concentration C = Ĉ, see [39], some fifty percent inhibitory
concentration IC50, and some drug specific Hill coefficient n, see [14]. For the purpose of the study,
this rough approximation is sufficient, however, it is possible to also use time-varying drug concentration
C = C(t) resulting from some pharmacokinetic model, or to use more mechanistic effects models [40,41].

The actions of the different drug classes within the viral life cycle are shown in Fig. 1. CCR5 an-
tagonists inhibit the association of HIV with the CCR5 receptor in CCR5-tropic virus. They thus affect
the association constant kon. Fusion inhibitors (FI) inhibit the process of HIV fusion, affecting kfus.
Activated nucleoside reverse transcriptase inhibitors (NRTI) compete with endogenous deoxynucleoside
triphosphates for prolongation of the growing DNA chain, while non-nucleoside reverse transcriptase in-
hibitors (NNRTI) allosterically inhibit the function of the reverse transcriptase. The effects of both drug
classes result in a reduced rate at which the RNA is reversely transcribed into DNA. Integration inhibitors
affect the integration of viral DNA into the host genome catalytically [42–45]. In the proposed model, this
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alters the transition rate constant kT from early infected cells T1 to the late infected cells T2. Protease
inhibitors (PI) bind to the catalytic pocket of the viral protease enzyme, which is responsible for the
processing of the viral precursor polyproteins and thus the maturation of viral particles. In the proposed
model (Fig. 1), PIs therefore inhibit maturation by decreasing the maturation constant kmat. Matura-
tion inhibitors (MI) bind to the substrate of the viral protease (Gag-polyprotein) [46] at a specific site.
This binding perturbs the ordered sequence of cleavages that is necessary for proper maturation [47,48],
resulting in defective virus morphology [49]. In the proposed model (Fig. 1), MIs therefore decrease the
probability q that immature virus matures normally, increasing the proportion of abnormally matured,
defective viruses VD.

Impact of antiviral drugs on relative abundance of infectious viral stages

We used the detailed virus-target cell interaction model to predict the effect of the different drug classes
on the distinct stages of the viral life cycle. In order to enable a direct comparison between the different
drug classes, we artificially eliminated the feedback by keeping the uninfected target cell TU and the
infective virions VI that ‘enter’ the infection cycle constant (the two leftmost species in Fig. 1), resulting
in ‘downstream’ quasi-steady state numbers T1,ss, T2,ss, VIM,ss, VI,ss, and VD,ss. For a given drug class
and inhibition of the targeted molecular process ε, the effect of the drug on the life cycle was quantified
by the four ratios

T1,ss

TU0
,

T2,ss

T1ss

,
VI,ss

VIM,ss
,

VI,ss

VD,ss
(2)

as shown in Fig. 2. As expected, the drugs perturb the ratios of viral states that encompass their site
of action within the viral life cycle. In the present example, all states that lie downstream of the drugs’
target site are affected, while the states that lie upstream are usually not affected. The exception are
InIs, which increase the abundance of the preceding stage T1 (Fig. 2A), while decreasing the number
of the subsequent infectious stage T2 (Fig. 2B). Interestingly, the effect on the ratios is not always a
linear function of drug efficacy. PIs and MIs also show a different behavior (Fig. 2D): PIs affect the
ratio of infectious-to-defective virions by decreasing the maturation rate kmat, which lowers the number
of infective virions VI, but also lowers the number of virions that mature abnormally (contributing to
VD). MIs increase the proportion of virus that matures abnormally and decrease the proportion of virus
that matures normally, thus decreasing VI and increasing VD, without affecting kmat.

Development of a simplified two stage virus dynamics model

The detailed model (Fig. 1) contains parameters that are difficult to measure and currently not available.
We therefore reduced the detailed model based on reasonable quasi-steady state assumptions to obtain a
simplified model of virus-target cell interaction dynamics that is parameterizable in terms of established
and validated parameter values (see Supplementary Text S1). In particular, we have eliminated the
intermediate stages of the cell-virus complex TU : VI, the infected cells prior to reverse transcription
TRNA and the immature virus VIM in the original model (Fig. 1). As a consequence, we derived a
lumped infection rate constant β, which describes the infection of a susceptible cell towards the stage,
where the viral RNA has been successfully transformed into DNA. We also derived a virus clearance CLT

that is associated with the loss of virus during the intermediate stages before reverse transcription and
the release rate constant of infectious virus N.

The infection rate constant is given by

β =
kfus

KD
· ρrev,φ, (3)
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where kfus denotes the fusion rate constant, KD the dissociation constant of the virus-target cell complex,
and ρrev,φ denotes the probability that reverse transcription is successfully completed (see Supplementary
Text S1). The lumped virus clearance (loss of virus by, e.g., genome destruction) in the intermediate
stages is given by the parameter

CLT =
(

1
ρrev,φ

− 1
)
· β. (4)

The number of released, infectious viruses is given by

N = q · p · ρPR,φ · N̂, (5)

where p and q are the probabilities that the released virus is correctly assembled and matures normally,
and ρPR,φ is the probability that the released virus matures before being cleared by the immune system
(see Supplementary Text S1). The lumped model can be parameterized in terms of six unknown parame-
ters (β, N̂, λT, δT, δT2 ,CL), which equals the number of estimated parameters using standard models [28].
For the remaining parameters, we have provided values from the literature (see Supplementary Text S1).

In the following, we considered two types of target cells (T-Cells and a longer lived cell population,
which we refer to as macrophages) and finally incorporated the viral mutation process (resulting from
erroneous reverse transcription) into the overall model. Whether the longer lived cell population consists
solely of macrophages in vivo remains unknown. There is, however, some evidence that the kinetic
characteristics of the longer lived cell population are similar to those of the macrophage population
[33]. The proposed simplified two-stage virus dynamics model is shown in Fig. 3. It comprises T-cells,
macrophages, free non-infectious virus (TU,MU, VNI, respectively), free infectious virus of mutant strain
i, VI(i), and four types of infected cells belonging to mutant strain i: infected T-cells and macrophages
prior to proviral genomic integration (T1(i) and M1(i), respectively) and infected T-cells and macrophages
after proviral genomic integration (T2(i) and M2(i), respectively). The rates of change of the different
species in the reduced two-stage HIV model are given by the following system of ODEs:

d
dt

TU = λT + δPIC,T · T1(i) − δT · TU −
∑

i

βT(i) · V(i) · TU

d
dt

MU = λM + δPIC,M · M1(i) − δM · MU −
∑

i

βM(i) · V(i) · MU

d
dt

T1(i) = βT(i) · V(i) · TU − (
δT1 + δPIC,T + kT(i)

)·T1(i)

d
dt

M1(i) = βM(i) · V(i) · MU − (
δM1 + δPIC,M + kM(i)

)·M1(i)

d
dt

T2(i) =
∑

k

kT(k)T1(k) · pk→i − δT2 · T2(i) (6)

d
dt

M2(i) =
∑

k

kM(k)M1(k) · pk→i − δM2 · M2(i)

d
dt

VI(i) = NM(i) · M2(i) + NT(i) · T2(i)

−
[
CL+

(
CLT(i) + βT(i)

)
TU+

(
CLM(i) + βM(i)

)
MU

]
· V(i)

d
dt

VNI =
∑

i

[(
N̂T(i) − NT(i)

)
T2(i)+

(
N̂M(i) − NM(i)

)
M2(i)

]
− CL · VNI,
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where λT and λM are the birth rates of uninfected T-cells and macrophages, and δT and δM are their
death rate constants. The parameters kT(k) and kM(k) are the integration rate constants of mutant
strain k. The parameters δT1 , δT2 , δM1 and δM2 are the death rate constants of T1, T2,M1 and M2 cells.
The parameters δPIC,T and δPIC,M refer to the intracellular degradation of essential components of the
pre-integration complex, e.g., by the host cell proteasome within early infected T-cells and macrophages
respectively. N̂T(i) and N̂M(i) denote the total number of released infectious and non-infectious virus
from late infected T-cells and macrophages of mutant strain i and NT(i) and NM(i) are the rates of
release of infective virus (see Eq (5)). The parameters CLT(i) and CLM(i) denote the clearance of
mutant virus i through unsuccessful infection of T-cells and macrophages respectively (see Eq. (4)) and
the parameters βT(i) and βM(i) denote the successful infection rate constants of mutant virus i for T-cells
and macrophages respectively. The parameter pk→i denotes the probability to mutate from strain k to
strain i (to be defined below).

The model enabled us to mechanistically incorporate the action of all drugs that are approved or in
late clinical trial. The impact of a compound on a corresponding (lumped) parameter in the model is
specified by η:

βT,(CCR5,FI,RTI) = (1 − ηCCR5) · (1 − ηFI) · (1 − ηRTI(ρrev,φ)) · βT (7)

CLT,(CCR5,FI,RTI) = (1 − ηCCR5) · (1 − ηFI) ·
(

1
ρrev,φ

− (1 − ηRTI)
)
· βT (8)

kT,(InI) = (1 − ηInI) · kT (9)

NT,(PI,MI) = (1 − ηMI)·
(
1 − ηPI(ρPR,φ)

) · NT. (10)

The same quantities are defined for macrophages by replacing the subscript T by M ; see Supplementary
Text S1 for details. The overall viral dynamics model comprises a complete mutagenic graph. In HIV
infection, genomic mutation occurs during the reverse transcription process [50]. The reverse transcriptase
of HIV lacks a proof reading mechanism in contrast to host polymerase enzymatic reactions. However,
viral proteins from newly mutated viral genomes are only produced after integration of the viral genome
into the host cell DNA. The proteins required for the stable integration of the newly mutated viral genome
originate from the founder virus. Therefore, phenotypically, drug resistance of new mutants will only be
observed after integration, i.e., in the infectious stages T2 and M2. In total, the model includes 2L

different viral strains i that contain point mutations in any pattern of the modelled L possible mutations.
For two distinct mutations L = 2, the mutagenic graph is shown in Fig. 4A. Each mutant i can mutate
into every other mutant k in one step. The probability pk→i to mutate from a strain k into another strain
i can be directly derived from the mutagenic pathways in Fig. 4A, i.e.,

pk→i = μh(i,k) · (1 − μ)L−h(i,k), (11)

where μ denotes the mutation probability per base and reverse transcription process (μ ≈ 2.16·10−5 [50]),
h(i, k) denotes the hamming distance between strain k and strain i, and L is the total number of different
positions that are considered in our model. The phenotype of each mutant strain i is modelled by
introducing a selective disadvantage s(i), which denotes the loss of functionality (e.g., in the activity
of some viral enzyme that is affected by the mutation) relative to the wild type, and a strain specific
inhibitory activity (η(i, j)) of treatment j against the mutant strain i. For example, the strain specific
infection rate i under a certain treatment j is given by β(i, j) = (1 − η(i, j)) · (1 − s(i)) · β(wt, φ),
where β(wt, φ) denotes the infection rate constant of the wild type wt in the absence of drug φ (given in
Table 1). Since some viral strains are present only in very low copy numbers, we used a hybrid stochastic
deterministic approach [51] to model the overall virus dynamics model (see Materials and Methods section
for details).
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Reproductive capacity for predicting drug–specific impact on viral replication

The production of infectious offspring is crucial for the survival of a viral population. The phenotypic
single-round infectivity assay measures the amount of infectious offspring after one round of replication.
For a given drug, the assay quantifies the drug’s efficacy by measuring the reduction in viral offspring
relative to the drug-free situation. We defined a new quantity—termed the reproductive capacity Rcap—,
which transfers the principle of the phenotypic single-round infectivity assay into a mathematical term.
Its definition involves the quasi-species distribution and the basic reproductive numbers of all pathogenic
sub-stages. The reproductive capacity characterizes the fitness of a given state of the infection from the
perspective of a potential treatment j by quantifying the expected total number of offspring under the
treatment j.

The basic reproductive number R0 is a well characterized quantity in epidemiology that denotes the
expected number of secondary infections caused by a single infected cell/virus [52]. If R0 > 1 then the
infection will spread, while for R0 < 1 the infection will die out. The strain associated reproductive
number R0(i, j) characterizes the fitness of a viral strain i in a pharmacologically modified environment,
specified by a drug treatment j. We used the ‘survival function’ approach [53] to calculate the reproductive
numbers for mutant strains i under treatment j. In our context, the survival function is of particular
value, since it captures the possible event of mutation for all infective classes.

Based on the two-stage virus dynamics model, the basic reproductive number RV(i, j) of a single virus
of strain i under treatment j is given by

RV(i, j) =
βT(i, j)TU · kT(i, j) · NT(i, j)

ru(i, j) · rT (i, j) · δT2

+
βM(i, j)MU · kM(i, j) · NM(i, j)

ru(i, j) · rM (i, j) · δM2

(12)

with constants

ru(i, j) = CL + [CLT(i, j) + βT(i, j)] TU + [CLM(i, j) + βM(i, j)]MU (13)
rT (i, j) = δT + δPIC,T + kT(i, j) (14)
rM (i, j) = δM + δPIC,M + kM(i, j). (15)

Since infected cells are also pathogens, which can lead to a rebound of the disease even in the absence
of any virus, we also determined their basic reproductive numbers under a given treatment j. The basic
reproductive numbers RT1(i, j) and RM1(i, j) of the infectious stages T1 and M1, associated with the
viral strain i, are given by

RT1(i, j) =
kT(i, j) · NT(i, j)

rT (i, j) · δT2

· βT(i, j)TU + βM(i, j)MU
ru(i, j)

(16)

RM1(i, j) =
kM(i, j) · NM(i, j)

rM (i, j) · δM2

· βT(i, j)TU + βM(i, j)MU
ru(i, j)

. (17)

Finally, the reproductive numbers RT2(i, j) and RM2(i, j) of the infectious stages T2 and M2, associated
with the viral strain i, are given by

RT2(i, j) =
NT(i, j)

δT2

·
[
kT(i, j)TU · βT(i, j)

ru(i, j) · rT (i, j)
+

kM(i, j)MU · βM(i, j)
ru(i, j) · rM (i, j)

]
(18)

RM2(i, j) =
NM(i, j)

δM2

·
[
kT(i, j)TU · βT(i, j)

ru(i, j) · rT (i, j)
+

kM(i, j)MU · βM(i, j)
ru(i, j) · rM (i, j)

]
. (19)

We defined the reproductive capacity Rcap(j) of the entire quasi-species ensemble under treatment j as the
weighted sum of the basic reproductive numbers of all pathogenic stages of mutant strain i, i.e., free virus,
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infected T-cells and infected macrophages, where the weights are the abundance of the corresponding
pathogenic stage:

Rcap(j) =
∑

i

[
VI(i)RV(i, j) + T1(i)RT1(i, j) + M1(i)RM1(i, j) (20)

+T2(i)RT2(i, j) + M2(i)RM2(i, j)
]
.

The reproductive capacity Rcap(j) can be interpreted as the expected total number of infectious offspring
that the infection produces in one round of replication under a certain treatment j, given the current
state of the infection.

Relation to viral load and phenotypic/single-round infectivity assay. The viral load considers
the total concentration of free virus, consisting of non-infectious virus VNI and infectious virus VI(i),
belonging to all mutant strains i. In contrast to the reproductive capacity, viral load does not assess the
ability of distinct viral strains i to replicate (in terms of RV). In mathematical terms, the viral load is
given by

Vload =
∑

i

VI(i) + VNI. (21)

The in vitro reproductive capacity, corresponding to the read-out of the phenotypic assay RpA(j) (under
treatment j) is conceptionally similar to Eq. (20). However, in comparison to the above defined in vivo
measure, the in vitro measure would not take into account: (i) the clearance of any infective stage by
the immune system (relating to the parameters CL, CLT(i, j), CLM(i, j), δT, δM, δT2 , and δM2), and (ii)
the abundance of the different infected cell types (e.g., T-cells and macrophages). The assay measures
one round of replication, denoted by R̂T̂2

, starting from a late stage infected cell T̂2. Mathematically
expressed, the primary output is given by

RpA(j) =
∑

i

T̂2(i) · R̂T̂2
(i, j). (22)

Drug-class specific decay of viral load and reproductive capacity

Application of drugs/drug classes changes the total size and the composition of the viral population. The
impact of this change is typically evaluated in terms of the decay of the viral load over time. We used
the reproductive capacity Rcap(j) to also evaluate viral replication under various hypothetical treatments
j. In Fig. 5, we predicted the impact of the different drug classes on the decay of the plasma viral load
and the reproductive capacity Rcap(φ), i.e., the fitness of the whole virus population, evaluated in the
absence of drugs. As typically done, we assumed 100% drug efficacy η.

In terms of the plasma viral load decay (Fig. 5A), we observe a faster initial decay for InIs in compar-
ison to all other compound classes, in agreement with clinical data [21] and theoretical analysis [32, 33].
The onset of viral load decay is delayed for all other compound classes as observed clinically [12, 27],
see also Figure S1. In agreement with clinical data [21], in the case of InI treatment, the second phase
of viral decay starts earlier after treatment initiation and exhibits ≈ 70% less viremia in comparison to
other drug classes, but shows the same decay. Notably, the change of the ratio of infective virus-to-total
virus (see Fig. 5, inset) upon PI or MI administration is not reflected by the total viral decay in the blood
plasma.

Most noticeable, the reproductive capacity (Fig. 5B) discriminates between RTIs, FIs and CCR5-
antagonists vs. InI vs. PIs and MIs. It can be seen, that protease and maturation inhibitors reduce Rcap
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most efficiently initially and shift it to an overall lower level. Integrase inhibitors cause a slightly faster
initial decay in Rcap, in comparison to RTIs, FIs and CCR5-antagonists, which consistent with the rapid
decay in viral load (Fig. 5A). However, in contrast to viral load decay, the initial fast decay of Rcap

levels off and the second phase decay is flatter for InIs in comparison to RTIs, FIs, CCR5-antagonists,
PIs and MIs. The effect of NRTIs, NNRTIs, CCR5 inhibitors and FIs on Rcap is comparable (Fig. 5B).
Remarkably, these inhibitors induce an initial increase in Rcap (see next section for details), followed by
a slow first phase decay, followed by a second phase decay that is parallel to the decay of Rcap in the case
of PI- and MI-treatment, sustaining overall higher levels of Rcap in comparison to PIs and MIs. In the
next section, we further elucidate the reasons for these class-specific differences.

Immune-system related clearance is critical determinant of drug-class specific
decay

In view of the analysis performed in Fig. 5B, Rcap is directly correlated to the overall abundance of viral
infectives (VI, T1,T2,M1, M2).

PIs and MIs primarily act on infectious virus VI (see Fig. 5, inset), by reducing the proportionality
factor (NT/CL and NM/CL) that determines the abundance of infectious virus in the first- and second
phase decay (see Eq. (10)). The infectious virus VI is rapidly cleared by the immune system [54].
Therefore, application of highly efficient PIs and MIs leads to a rapid reduction of infectious virus VI,
as illustrated in Fig. 6D and Fig. 5 (inset). This reduction is also reflected by the initial drop of Rcap in
Fig. 5B. In the case of PI and MI treatment, infected T-cells are quickly becoming the most abundant
infectious compartment (Fig. 6D) and subsequently dominate the decay characteristics of Rcap in Fig. 5B.
In the final phase, late infected macrophages (M2) are becoming the most abundant compartment and
thus dominate the decay of Rcap in the final phase.

Integrase inhibitors prevent the integration of the viral genome and thus prevent the transition of
early infected cells (pre-integration, T1 and M1) to late infected cells (post-integration, T2 and M2),
see Fig. 3. By inhibiting the transition from early to late infectious cells, integrase inhibitors increase
the decay of late infected T2-cells (see Fig. 6C). In the case of InI treatment, infectious virus VI is
initially proportional to T2, explaining the observed more rapid first-phase decline in Rcap in Fig. 5B.
However, blocking the transition from T1 to T2 can also slow the decay of the T1-compartment, which
might become more abundant than VI after the initial decay. In the final phase both T1 and VI become
proportional to- and remain more abundant than M2, which explains the overall higher levels of Rcap in
the final phase (see Fig. 5B).

The effects of NRTIs, NNRTIs, CCR5 inhibitors and FIs on Rcap are comparable (Fig. 5B), as they
primarily act on pre-integrative early infected cells (T1 and M1). The difference between entry inhibitors
and reverse transcriptase inhibitors is marginal, because the clearance of virus by infection is negligible
compared to the clearance by the immune system (CLT < CL and CLM < CL). A positive result of
entry inhibitors (FI/CCR5) and RTIs (NRTIs/NNRTIs) is an increased number of uninfected cells, which
also results in an initial increase in the reproductive capacity Rcap (see Fig. 5B). During treatment with
NRTIs, NNRTIs, CCR5 inhibitors and FIs, infective virus VI is the most abundant compartment. The
decay in the first phase is proportional to the decay of the late infected cells, T2. Once the abundance of
T2 falls below M2, the decay of VI and thus Rcap in Fig. 5B is proportional to the decay of late infected
macrophages M2.
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The pattern of virological removal influences the time to virological rebound
after treatment application

In the following, we predict how the distinct viral dynamics after drug application affect drug efficacy
in vivo. The long-term in vivo efficacy of an antiviral drug depends on many different factors, including
the ability of the virus to adapt to the pharmacological challenge by developing resistance mutations.
The ability to develop drug resistance is strongly dependent on the induced pattern of resistance muta-
tions against a particular drug, but also on the velocity at which replication competent compartments
(VI,T1,T2, M1,M2) are removed from the body. Since anti-retroviral drug classes target different stages
in the viral life cycle, they are likely to induce different patterns by which viral compartments are removed
from the body (see Fig. 6) and might therefore exhibit different long-term in vivo efficacies.

To illustrate the sole impact of virological removal (VI, T1,T2, M1, M2) on resistance development and
therefore on drug efficacy, we have intentionally chosen a simplistic, unified mutational landscape and
considered the time to viral rebound as a long-term measure of efficacy. We denoted virological rebound,
if the viral load reaches 90% of the pre-treatment viral load. We assumed that the drugs inhibited their
targeted (lumped) parameter (see Eqs. (7)-(10)) by 90% in the wild type (η = 0.9), by 45% in a one-
mutation strain (η = 0.45) and are entirely inefficient in the double-mutant (η = 0). Drug-specific and
more realistic mutational landscapes are possible, but in view of the current analysis (elucidating the
impact of class-specific virological removal), they would blur the results.

In Table 2, the time to virological rebound for the different drug classes based on the above simplistic
mutation model is reported. The virus generally rebounds to 90% of pre-treatment levels after 1-2 month
of monotherapy, which is in the same order of magnitude as clinically observed rebound times [55–57].
Although inhibition η was assumed to be identical across all drug classes, the times to virological rebound
differed. In particular, when resistance confers a marked loss in fitness (i.e. selective disadvantage = 30%),
PIs show the longest time to virologically rebound, and the InIs the shortest.

For integrase inhibitors, the difference between the decay of plasma viral load and their predicted
long-term efficacy is quite pronounced. Their comparably shorter times to virological rebound are in
strong contrast to their steep initial decrease of plasma viral load (see Fig. 5A), but consistent with the
decay pattern of the reproductive capacity (Fig. 5B). For the EIs, RTIs, PIs and MIs, the predicted time
to virological rebound is also much more consistent with the decay characteristics of the reproductive
capacity (Fig. 5B) than with the decay pattern of total viral load (see Fig. 5A).

Discussion

In clinical studies, the first approved integrase inhibitor, raltegravir, induced an extremely rapid decline in
viral load when applied both as monotherapy [10] and in combination with an optimized NRTI background
therapy [21–24]. While it was initially speculated that the observed decline might be a result of superior
potency of raltegravir, it is now emerging that the viral decline in InI-based therapy could be a class-
specific phenomenon [25, 26]. Moreover, superior potency of InIs (in terms of η) was not confirmed by
single-round infectivity assays [14]. The mechanisms underlying the decay dynamics are still not clear [58]
and controversially discussed [21,32].

In [32], a two stage model of the viral replication cycle is presented, which explains the differences
between the decay of viral load between RTIs and InIs based on the stage at which the drugs affect the
dynamics of viral replication. The model explicitly distinguishes two viral stages, early-stage infected cells
and late-stage infected target cells, which are specifically defined for a pair of drugs under examination.
The authors further conclude that the viral dynamics produced by drugs from different anti-retroviral
classes should not be directly compared to infer drug potency [33]. An alternative measure, as it is
imperative for guiding drug discovery and prioritizing drug candidates in later development stages, is
still lacking.
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All currently approved antivirals exert their effect by inhibiting the replication of HIV. The extent at
which replication is inhibited, is therefore a unifying indicator for drug efficacy across all drug classes.
Replication assays, e.g., phenotypic assays [15] or replication capacity assays [59], analyze drug efficacy
in terms of viral replication in vitro. The replicative fitness of HIV in vivo, however, depends on the
interaction of a multitude of viral and host factors. Replication assays represent the dynamics of HIV
under the assay conditions, which lack many host factors, in particular the immune responses to the in-
fection. However, since it is particularly useful to compare compounds in terms of replication inhibition,
we adopt the dynamic approach of replication assays to define the reproductive capacity Rcap. In silico,
we are able to consider the host response to the viral infection and can thus extrapolate the replication
approach from in vitro to in vivo. In [60], the authors used a similar approach to compare the effect of
distinct antiviral classes utilizing age-structured models.

We derived a single detailed model of the viral replication cycle and deduced a reduced two stage
model, which incorporates the action of all approved HIV drugs. Our two-stage model allows to predict
the action of any number of drugs simultaneously, including common HAART cocktails, potentially be-
longing to different drug classes. In contrast, in [32], the stages of the two-stage model of viral replication
are not specified a priori and have to be determined by the two drugs that are analyzed and compared.

Based on the proposed detailed and reduced model, we identify the following effects of currently
approved drugs: EI and RTIs decrease the infection rate and thus the number of new infections. The
impact on the release of new virus (and virus decline) is therefore delayed by the viral life cycle. MIs and
PIs do not interfere with the total amount of virus that is being released, but rather shift the ratio of
infective to total virus, VI : Vtot (see Fig. 5, inset), which is not directly reflected by total plasma viral
load. Since the kinetics of the free virus are rapid [54], this has an immediate impact on the number of
new infections. Subsequently, this impact on the number of new infections affects the total viral release
(and thus total plasma virus load) in a similar manner as EIs and RTIs, creating a ‘shoulder’ phase.
Hence, we obtain

new infections =

EI, RTI︷︸︸︷
β ·TU · VI︸︷︷︸

PI,MI

life-cycle−→ total virus release. (23)

In our model, EIs, RTIs, PIs and MIs produce an identical decay of plasma viral load (see Fig. 5A), when
assuming 100% inhibition, respectively. In particular, the onset of viral load decay is similarly delayed
(‘shoulder phase’) with these inhibitors (see Figure S1), in agreement with clinical observations [12, 27].
Previously discussed theoretical differences in the viral response between RTIs and PIs (see Eq. (5.7)
vs. Eq. (5.16) in [61]) yield similar dynamics when more recent (higher) estimates of viral clearance are
used [54].

In contrast to other inhibitor classes, InIs decrease the amount of late infected cells (T2,M2) (see
Fig. 2), which has an immediate impact on total virus release, i.e.,

total virus release = N̂ · T2︸︷︷︸
InI

. (24)

The impact of InIs on viral load decay is immediate and not delayed by the viral replication cycle as
in the case of all other compounds [12, 27]. Thus, the onset of observed total viral decay is faster for
InIs than for other compounds, irrespective of their potency (which was set equal for all compounds in
Fig. 5A). Furthermore, the decay of viral load in the first phase is steeper for InIs in comparison to other
inhibitor classes (see Fig. 5A). The viral load decline in the first phase is proportional to the decay of the
late infected T-cells T2 (see Fig. 6). Sedaghat et al. [32] derived analytical solutions for the viral decay
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dynamics after InI and RTI treatment (see Eqs. (9) and (10) in [32]), which demonstrate that the viral
decay after InI treatment is determined by the death rate of late infected cells (δT2), while in the case
of RTI treatment, the decay is determined by the ”flushing-out” of the early infected cells (T1) and the
death rate of the late infected cells δT2 , leading to overall faster viral declines in the case of InI treatment
in the first phase.

The long-term in vivo efficacy of an antiviral drug depends on many different factors, particularly the
ability of the virus to adapt to the pharmacological challenge by developing resistance mutations. The
ability to develop drug resistance is strongly dependent on the induced pattern of resistance mutations
against a particular drug, but might also be influenced by the velocity at which replication competent
compartments are removed from the body. However, viral load decay focusses on only one single variable,
namely the total output of virus, whereas other infectious stages (e.g. T1,T2,M1, M2) remain ‘hidden’.
Furthermore, the ratio of infective virus-to-total virus (VI/Vtot) is not resolved, which might underes-
timate the long-term efficacy of PIs and MIs that target this ratio (see Table 2 in relation to Fig. 5A).
In the section ‘The pattern of virological removal influences the time to virological rebound after treat-
ment application’, we have compared the impact of drug-class specific removal patterns on the long-term
efficacy of antivirals (in terms of resistance development). We showed that although inhibition η was
assumed to be identical across all drug classes, the times to virological rebound (used as a measure of
long-term efficacy) differed, with PIs showing the longest time to virologically rebound, and InIs the
shortest.

The reproductive capacity has been monitored over time in Fig. 5B to depict class-specific long-term
efficacy of antivirals based on the hosts’ ability to clear the targeted infectant in the viral life cycle. The
main conclusion is that the long-term efficacy is larger for compounds that target viral life-stages that
are cleared at a fast rate. It is generally assumed that the free virus is cleared at the fastest rate [27,54].
Since MIs and PIs reduce the production of infective virus VI (see Fig. 2), they reduce the virus’ ability
to produce offspring faster than all other drug classes. Furthermore, since resistance development is cor-
related with the extent of replication, we infer that PIs and MIs, based on their viral target, are the most
efficient drug classes in terms of reducing the probability of resistance development. This assumption
correlates well with the observed rebound times in Table 2 and is also supported by the fact that the
introduction of PIs marked the success of HAART [1].

During drug discovery, the pre-clinical- and the clinical development process, in vitro surrogate mea-
sures or in vivo drug efficacy measures are important to prioritize drug candidates.

The mechanistic mode of action of a compound at its target site can be elucidated by cell free assays
that use purified viral protein, e.g. reverse transcriptase for RTIs. The influence of viral mutation, the
immune system and pharmacokinetics are absent in this type of assay. However, it is possible to deduce
the pharmacodynamic mode (e.g. Eq. (1), see also [41]) and thus the parameter ε from these types of
assays, which denotes the extent of inhibition of the molecular process by the compound. Mathematical
models of HIV dynamics use a minimal number of parameters, making them suitable for parameter fitting
and comparison with clinical data. The parameters used in the models are often lumped, summarizing
many viral processes. For example, binding, fusion and reverse transcription are part of the infection
rate β (see Eq. (3)). Inhibition of lumped model parameters (denoted by η) might therefore differ from
inhibition of the molecular process ε, which is measured by cell-free in vitro assays. We have provided
equations (Eqs. (S24) and (S31), Supplementary Text S1) that enable the use of pharmacodynamic
information ε, derived from cell free assays (inhibition of the targeted molecular process), in a (lumped)
mathematical model of HIV dynamics (utilizing η).

The presented model can be extended to incorporate drug-specific escape pathways [62,63] or realistic
time-varying drug pharmacokinetics [41]. If in vivo pharmacokinetic data is available (in terms of time-
varying concentrations C(t) in Eq. (1)), then extrapolation from in vitro to in vivo is possible and the
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mechanistic understanding of drug effects, its parametrization and extrapolation is facilitated. For RTIs
and PIs, we found a nonlinear relationship between ε and η (see Eqs. (S24) and (S31), Supplementary
Text S1). Utilization of Eqs. (S24) and (S31) allows to simulate drug effects based on their mechanistic
understanding in a lumped model, that can be compared with clinical data.

The model can also be extended to include latently infected cells (very long lived infected cells). We
did not consider them in this study, since they are expected to contribute little to the dynamics analyzed
herein (the first and the second decay phase).

The reproductive capacity is a useful concept to analyze and monitor drug efficacy in silico. In its
current form, the reproductive capacity requires detailed knowledge about (i) the composition of the
viral population, and (ii) the fitness of the different viral strains under a given treatment (reproductive
numbers, Eqs. (12) and (16)-(19)).

The fitness of certain viral strains can be assessed in vitro, e.g., by phenotypic assays. We model
strain specific fitness i under treatment j, in terms of two parameters: the selective disadvantage s(i),
which denotes the loss in replication of mutant i, relative to the wild type; and the efficacy of treatment j
against mutant i in terms of the parameter η(i, j). The selective disadvantage can, e.g., be estimated by
performing a phenotypic assay with a certain mutant virus i in the absence of drug and then comparing
it to the assay with the wild type. The parameter η(i, j) is already being assessed in practice (e.g., [15]),
usually in terms of a fold increase in IC50.

Acquisition of detailed knowledge about the composition of the viral population might, due to recent
advances in sequencing technology [64–67], become feasible in the future. However, novel sequencing
technology requires large amounts of viral RNA, which cannot be derived when the viral load is below
the limits of detection.

Materials and Methods

Realization of hybrid simulations

The overall virus dynamics in our model comprise different viral strains with copy numbers that can
vary over several orders of magnitude. For this reason we have chosen a hybrid (stochastic deterministic)
setting for numerical simulation. This approach (i) takes stochastic fluctuations in the slow reaction
processes into account; and (ii) reduces the computational costs for the simulation of the fast (deter-
ministic) system dynamics. We used the direct hybrid method proposed in [51]. Elementary reactions
were treated stochastically whenever their propensity function or the quantity of at least one of their
reactants was below a certain threshold (for all numerical simulations this threshold was set to 5). For
the numerical integration of the deterministic part of the system, we implemented a solver in C++ that
is based on numerical differentiation formulas [68] and uses strategies for error control and step size
control comparable to ode15s in Matlab [69]. To generate the data for Table 2, we performed 1000
hybrid simulations for each condition. With realization start (t = 0), the effects of the drug treatment
were simulated until the viral population size reached 90% of its pre-treatment value, i.e., virological
rebound occurred. During a simulation, the stochastic partitioning of the reaction system was dynami-
cally updated and stochastic reaction events were realized accordingly. Every numerical calculation was
computed with a relative error tolerance of 10−6 and an absolute error tolerance of 10−9. The hybrid
simulations for Table 2 were performed on two Intel Quad-Core Xeon E5345 processors with 2.33 GHz and
32 GB RAM, which took nearly 46 hours in total or approximately 6 seconds per simulation, respectively.
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Figure Legends

Figure 1. Detailed structural model of the viral life cycle and the mechanisms of action of
different anti-retroviral drug classes.
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Figure 2. Mechanistic effects of drug classes on viral infective compartments. Ratios are
affected through treatment with different drug classes. Predictions are based on the detailed model (see
Fig. 1) and mechanistic effect ε varying from 0–1. Chosen parameter values: CL = 23, δT = 0.02, δT2 =
1, kT = 0.35, δPIC,T = 0.35, δRNA = 1440, koff = 106, rfusion = 1440, rRT = 48, rmat = 12 in [1/day]; N =
1000 in [1/(cells · day)];λ = 2 · 109 in [cells/day];KD = 1000 in [cells] and q = p = 0.99 (unit less).

Figure 3. Simplified two stage virus dynamics model. Species (red cycles), reactions (black
arrows), drugs and their interference in the life cycle of HIV (blue dashed box). Target cells (TU,MU)
can become successfully infected by infective virus VI with lumped infection rate constants βT and βM,
respectively, creating early infected cells T1 and M1. Infection can also be unsuccessful after the
irreversible step of fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell
uninfected. Early infected cells T1 and M1 can destroy essential viral proteins or DNA prior to
integration with rate constants δPIC,T and δPIC,M returning the cell to an uninfected stage. The
genomic viral DNA can become integrated with rate constants kT and kM creating late infected cells T2

and M2, which can release new infectious- and non infectious virus VI and VNI with rate constants
NT,

(
N̂T − NT

)
and NM,

(
N̂M − NM

)
, respectively. Phenotypic mutation occurs at the stage of viral

genomic integration kT, kM (see section ‘Development of a simplified two stage virus dynamics model’).
All cellular compartments x can get destroyed by the immune system with respective rate constants δx

and the free virus gets cleared with rate constant CL.

Figure 4. Fitness and possible mutational pathways. A: General transition pathways between
wild type (00) and a fully drug resistant strain (11) that involves two partly-resistant intermediates
(10, 01). B: Fitness in the presence of a drug. C: Fitness in the absence of drugs. Dashed line: critical
fitness that allows the strain to survive, i.e, R0(i) > 1.

Figure 5. Decay of viral load and reproductive capacity after treatment initiation. A:
Plasma virus load decay after treatment initiation. Integrase inhibitors (InI) produce a faster decay of
virus load than all other compound classes. Red solid-, black dotted-, green dash-dotted- and blue
dashed lines indicate simulation results with different inhibitor classes and parameters from Table 1.
Black diamonds indicate median viral load data from [27] (PI monotherapy), numerically available
in [70]. Black squares and black bullets indicate median viral load data from [21] (NRTI + background
therapy and InI + background therapy, respectively). The horizontal dashed black line indicates the
limit of detection of current assays (50 copies of HIV RNA per mL). Inset: Protease- and maturation
inhibitors (PI and MI) change the ratio of infectious to total virus (VI : Vtot). B: The evolution of the
reproductive capacity (evaluated at the drug free state Rcap(φ)) after treatment with different drug
classes. Model parameters are as indicated in Table 1. The initial infection was assumed to consist of
wild type only. Drug efficacy η was assumed to be 100%. Total body virus has been converted to
plasma viral load by assuming that the virus distributes into the plasma (Vplas. = 3.1 liters, which
surrounds 2 % of infected cells) and the interstitial space (Vint. = 9.6 liters [71], which surrounds 98 %
of infected cells). The volume of distribution with reference to the plasma concentration has been
calculated using the well-known formula vol. distr = Kint.:plas. · Vint. + Vplas., see e.g. [72], where
Kint.:plas. = 98%/2% = 50. Finally, we assume that on average each virus contains 2 viral RNAs (which
are measured [viral RNA/mL] plasma).
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Figure 6. Decay of infective compartments after initiation of drug treatment. A: Decay of
infective compartments after treatment with FI and CCR5-antagonists. B: Decay of infective
compartments after treatment with NRTIs and NNRTIs. C: Decay of infective compartments after
treatment with InIs. D: Decay of infective compartments after treatment with PIs.



Tables

Table 1. Model parameters generally used in simulations
Parameter Value Reference Parameter Value Reference
λT 2 · 109 [57] λM 6.9 · 107 [33]
βT 8 · 10−12 [32] βM 1 · 10−14 §
N̂T 1000 [33] N̂M 100 [33]
δT, δT1 0.02 [33] δM, δM1 0.0069 [33]
δT2 1 [73] δM2 0.09 §
CL 23 [73] p · q · ρPR,φ 0.67 †
ρrev,φ 0.33 [74,75] μ 2.16 · 10−5 [50]
kT 0.35 [75] kM 0.07 §
δPIC,T 0.35 [75,76] δPIC,M 0.0035 §
kmat 12 [34] - - -

All parameters in units [1/day], except p · q · ρPR,φ (unit less) and μ in [1/(rev. trans. · base)]. §
parameters chosen to reproduce clinical data. † chosen according to the assumption that p = q = 1 and
utilizing parameters kmat and CL to determine ρPR,φ = kmat/(kmat + CL) = 0.67.

Table 2. Virological rebound times resulting from distinct virological removal
Drug/Selec. Disadvantage 30% 25% 20% 15% 10% 5% 1%
InI 48.13 44.44 41.33 38.70 36.43 34.65 33.25
FI/CCR5-antag. 53.71 47.81 43.09 39.57 36.47 33.77 32.06
NRTI/NNRTI 55.51 48.76 43.86 39.99 36.61 33.94 32.11
PI/MI 55.28 49.03 43.74 39.84 36.66 33.95 32.15

The time to virological rebound depends on both the cost of resistance (‘selective disadvantage’, s) and
the choice of drugs. Each table entry shows the time to virological rebound in [days] in an ensemble of
1000 hybrid stochastic deterministic simulations, where we assumed that the efficacy of the drugs
against the wild type was 90%. The drug was 45% effective against an one-mutation strain and
completely inefficient against the double-mutant. The fraction of non-infectious viruses (1− p · q · ρPR,φ)
was set to one-third and the initial population was assumed to be all wild type. The viral load was said
to be rebounded, if the viral load reached 90% of the pre-treatment viral load.
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