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Abstract

The topic of the present paper has been motivated by a recent computa-
tional approach to identify chemical conformations and conformational changes
within molecular systems. After proper discretization, the conformations show
up as almost invariant aggregates in reversible nearly uncoupled Markov chains.
Most of the former work on this subject treated the direct problem: given the
aggregates, analyze the loose coupling in connection with the computation of
the stationary distribution (aggregation/disaggregation techniques). In contrast
to that the present paper focuses on the inverse problem: given the system as
a whole, identify the almost invariant aggregates together with the associated
transition probabilities. A rather simple and robust algorithm is suggested and
illustrated by its application to the n-pentane molecule.

Key words. essential molecular dynamics, nearly reducible, nearly completely
decomposable, nearly uncoupled Markov chain, almost invariant aggregates, transi-
tion probability.

Mathematics subject classification. 15A18, 15A51, 60J10, 60J20, 65U05.

1 Introduction

The present investigation has been motivated by a novel approach to compute the
essential features of molecular dynamical systems, as suggested first in [3] and, in a
much improved form, more recently in [12]. In these approaches chemical conforma-
tions are interpreted as almost invariant sets either in the phase space [3] or in the
position space [12] of the associated Hamiltonian dynamical system. Both conforma-
tions and rates of conformational changes need to be identified to obtain information
of chemical interest. Any discretization gives rise to finite dimensional Markov chains
and to almost invariant aggregates as discrete analogs of the above mentioned almost
invariant sets. Given such a Markov chain (usually in terms of the corresponding
transition matrix), the task is to identify an unknown number k of almost invariant
aggregates in nearly uncoupled Markov chains.

In the setting of [12], the obtained Markov chain is reversible and regular, or,
equivalently, the corresponding transition matrix is reversible and primitive—an as-
sumption, which will be crucial for the construction of the algorithm to be presented
below. The reversibility implies that all eigenvalues A are real and |A] < 1. In the



irreducible case, Perron—Frobenius theory states that A = 1 is simple and a corre-
sponding left eigenvector can be chosen to have only positive components. From
[3] we conjecture that eigenvectors corresponding to an eigenvalue cluster close to
A =1 contain the relevant information of how to decompose the discrete state space
into reasonable almost invariant aggregates: there, the case k = 2 has already been
worked out in some “Gedankenexperiment” based on left eigenvectors corresponding
to two eigenvalues A1 = 1 and Ay = 1. A possible treatment of the general case k > 2
has been demonstrated in [2] for the different scenario of almost cyclic aggregates,
whereas the case of almost invariant aggregates is only indicated. In contrast to
that, the present paper tries to generalize the concept of [3] to k > 2 aiming at a
comparable simplicity of both theory and algorithm.

In Section 2, we first treat the reducible case of an uncoupled Markov chain in
terms of the block structure of the corresponding transition matrix. In our applica-
tion context, such a structure is only present in a perturbed form and, additionally,
hidden due to permutations. That is why, in Section 3, we study the case of nearly
uncoupled Markov chains in terms of a linear perturbation analysis for the transition
matrix—following closely former work of STEWART [15]. On this basis, we are able to
extend the above mentioned “Gedankenexperiment” [3] based on right eigenvectors
corresponding to k eigenvalues close to 1. From this, we derive a rather simple and
robust algorithm in Section 4. Its application to the n-pentane molecule is finally
illustrated in Section 5.

2 Uncoupled Markov Chains

Throughout the paper, the term Markov chain will be used to denote a finite ho-
mogeneous Markov chain defined by a finite set of states {s1,...,s,} and a (row)
stochastic matrix P, the transition matrix. Sets of states are called aggregates.

As stated above, we are concerned with reversible regular Markov chains, which
bear some hidden structure of almost invariant aggregates. In order to classify the
term “almost invariant”, we first treat the situation of invariant aggregates and un-
coupled Markov chains here. For this purpose, we need to collect some important
definitions together with spectral properties of the transition matrix.

A Markov chain is called regular, if the corresponding transition matrix P is prim-
itive (irreducible and aperiodic), i.e., if there exists a natural number m > 0 such that
P™ is componentwise positive [1, 13]. For primitive stochastic matrices the Perron—
Frobenius theorem gives the following insight about the eigenvalue of largest modulus:



Theorem 2.1 [1, 13] Let P be a primitive stochastic matriz. Then

1. the so—called Perron root A = 1 is simple and dominant, i.e., |A| < 1 for any
other eigenvalue A # 1.

2. there are positive left and right eigenvectors corresponding to A = 1, which are
unique up to constant multiples.

The left eigenvector corresponding to A = 1 represents the stationary distribu-
tion m = (m1,...,m,)7, which in our application context [12] is known, while the
corresponding right eigenvector is e = (1,...,1)7.

Due to the discretization [12] we may assume that the the Markov chain is re-
versible, i.e., the corresponding transition matrix P = (p;;) satisfies!

ﬁipij = ijji fOI‘ all ’L,j (1)

Then, P is then called reversible [8]. The spectral structure of reversible stochastic
matrices is most evident with respect to the inner product (-,-); induced by the
stationary distribution:

(z,9)x = =z diag(m)y,

which corresponds to the finite dimensional weighted Euclidean space I,2(n). Two
vectors z,y satisfying (z,y), = 0 will be called w—orthogonal.

Lemma 2.2 Let P be a reversible primitive stochastic matriz. Then P is symmetric
with respect to the inner product (-, ).

Proof. It is shown in [6] that P = (p;;) is equivalent to the symmetric matrix
Pym = DPD7', (2)

where the transformation is given by D = diag(y/m;). In terms of D, equation (1)
can be written as D?P = PT D2, thus

(z, Py)r = 2" diag(m;) Py = 2" D*Py = 27 PT D% = (Pz,y)x,

which concludes the assertion. U

As a consequence of Lemma 2.2 the stochastic matrix P possesses the following
properties:

1. There exists a basis of m—orthogonal right eigenvectors, which diagonalizes P.
2. All eigenvalues of P are real and contained in the interval [—1, +1].

3. For every right eigenvector z there is an associated left eigenvector y = diag(m;) «,
which corresponds to the same eigenvalue.

'Equation (1) is also called the detailed balance condition.



To keep the notion as simple as possible, from now on eigenvectors are understood
to be right eigenvectors, unless stated otherwise.

We are now ready to introduce the term transition probabilities between aggre-
gates for an arbitrary transition matrix P = (p;;). Interpreting the entries p;; as
conditional probabilities to be in state s; and to change to state s;, the natural
generalization is the following

Definition 2.3 Given a Markov chain by its transition matriz P (not necessary
primitive) and a stationary distribution © > 0. Let A and B be two arbitrary aggre-
gates. Then the transition probability between A and B with respect to «, i.e., the
probability that the system will move (in a single step) from A to B, is given by

Z Ta Pab
I4.bel
w(A,B) = Llatels A;Bﬂ :
a

a€ly
where 14 and Ip denote the index sets corresponding to A and B, respectively. For

the special case A = B, we call w(A, A) the probability to stay within A (in a single
step).

A statistical characterization of uncoupled Markov chains (UMC) will be based on
transition probabilities between aggregates. An aggregate A is said to be invariant,
if w(A, A) = 12. A Markov chain is then called uncoupled, if it allows to decompose
the state space into disjoint invariant aggregates Aq,..., A such that

w(AZ,AJ) = 5”

As a consequence the states of an UMC with k aggregates can be ordered such
that the transition matrix P is of block—diagonal form

Dy 0 - 0
0 Dy - 0
P= D = ,
0 0 -+ D

where each block D;; is a square stochastic matrix.

Assume that each of these matrices D;; is primitive. Then, due to the Perron—
Frobenius theorem, each block possesses a unique eigenvector e; = (1,...,1)T of
length dim(D;;) corresponding to its Perron root A; = 1. Therefore in terms of the

2Note that in the case of an UMC, the stationary distribution is not unique, because the cor-
responding transition matrix is not irreducible. However, in this special case the probabilities are
independent of the chosen stationary distribution. If the Markov chain is not reversible, it is necessary
to require w(A°®, A) =0, too.
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Figure 1: Uncoupled Markov chain with ¥ = 3 aggregates. The state space
{s1,..., 800} divides into the aggregates A; = {s1,...,520}, A2 = {s30,...,849} and
As = {s50,...,800}. Left: Characteristic function xa,. Right: a possible basis of the
eigenspace corresponding to A = 1. Observe that each eigenvector is constant on each
aggregate. The sign structure associated, e.g., with the state seg is (+, —,0).

transition matrix P the eigenvalue A = 1 is k—fold and the corresponding eigenspace
is spanned by the vectors

x4; = (0,...,0,e7,0,...,00T,  i=1,...,k

Here our notation deliberately emphasizes that the eigenvectors can be interpreted
as characteristic functions of the uncoupled aggregates (see Fig. 1, left).

In general, any basis {Xi}izl,_“,k of the eigenspace corresponding to A = 1 can
be written as linear combinations of the characteristic functions x 4,, i.e., there are
coefficients «;; € R such that

k
Xi = Z&inAj’ Zzl,]{)
j=1

As a consequence, eigenvectors corresponding to A = 1 are constant on each aggre-
gate (see Fig. 1, right). With these preparations we are now ready to derive the key
tool for our algorithm to be presented in Section 4.

Lemma 2.4 Given a block—diagonal transition matriz P consisting of primitive blocks
and a m-orthogonal basis {X;}i=1,_k of its eigenspace corresponding to X = 1. As-
sociate with every state s; its sign structure

si +—  (sign((X1)i),.-.,sign((Xk)q))- (3)
Then
1. inwarient aggregates are collections of states with common sign structure,

2. different aggregates exhibit different sign structures.



Proof. In order to prove statement 1, recall that each eigenvector corresponding to
A =1 is constant on each of the aggregates, which implies that states belonging to
the same aggregate must share the same sign structure.

As for statement 2, let, without loss of generality, every aggregate consist of only
one state. In a first step, we demonstrate the assertion for an orthogonal eigenvector
basis {Q;}i=1,...r of the symmetric matrix Py, = DPD™! (see (2)). In a second
step, we then generalize it to the assertion stated in the proposition.

Define the k x k matrix Q@ = [Qy --- Q). Since Q is orthogonal, i.e., QT = Q71,
the transpose @7 is an orthogonal matrix, too. Thus, the rows of Q are orthogonal,
a fact that we will exploit in the following.

Now consider a w—orthogonal eigenvector basis {Xi}izl’m,k of P as stated in the
proposition. In view of (2), we get the following relation between the eigenvector
bases: X; = D7'Q, for i = 1,...,k. Since the transformation matrix D~ has
positive diagonal entries, the sign structures of X; and @;, 1 = 1,...,k, are the same.

In view of (3), the sign structure of the mth aggregate is equal to the sign struc-
ture of the mth row of X = [X --- Xj]. Now suppose there exist two aggregates A;
and A; with the same sign structure. Then the ith and jth row of X, and thus of @,
are equal in sign, which is in contradiction to the orthogonality of (). ]

Summarizing, Lemma 2.4 states that the set of all k eigenvectors can be used to
identify all aggregates via sign structures. Note that this can also be done by using
left eigenvectors instead of right eigenvectors, since their sign structures are the same:
For every left eigenvector y = (y;) there exits an associated right eigenvector = = (z;)
with y; = m;z;, hence sign(y;)=sign(z;).

3 Perturbation Analysis

In the context of our molecular dynamics applications, nearly uncoupled Markov
chains® (NUMC) will arise such that the corresponding transition matrix P bears
some hidden structure of an (unknown) number k of almost invariant aggregates.
Despite the unknown permutations and perturbations, we will show in this section
that eigenvectors of P can nevertheless be used to identify such aggregates. As for
the associated perturbation analysis, we closely follow the framework of STEWART
[15].

In this section, we assume the Markov chain to be reversible and primitive. There-
fore, in particular, its stationary distribution 7 is unique (see the note following The-
orem 2.1), and all transition probabilities are well-defined with respect to this 7.

As in the uncoupled case, a statistical characterization of NUMCs will be based
on transition probabilities between aggregates. An aggregate A is said to be almost
invariant , if the probability to stay in A under the condition of being in A is close
to 1, i.e., w(A, A) = 1*. A Markov chain is then called nearly uncoupled, if it allows

% Also known as nearly completely decomposable or nearly reducible Markov chains.
*If the Markov chain is not reversible, it is necessary to require w(A°, A) = 0, too.



to decompose the state space into disjoint almost invariant aggregates Aq,..., A
such that

’U)(AZ,AJ) ~ 5”

As a consequence, the states of a NUMC with k aggregates can be ordered such that
the transition matrix P is of block—diagonally dominant form

Dy Eig -+ Eyg
Eyr Doy -+ Eg
Ep1 Ego oo+ Dy

where the off-diagonal blocks E;; are small compared with the diagonal blocks D;;.
For later reference, we set | F| = € in terms of the spectral norm.

For the transition matrix (4), we assume according to STEWART [15, Condition 1
and 2] the following

Regularity condition. In the limit € — 0 the number k of blocks of the transition
matrix P remains constant.

This condition implies that for ¢ — 0 the spectrum of P can be divided into three
parts [10, 15]:

1. the Perron root A =1,
2. a cluster of £k — 1 eigenvalues approaching 1 in the limit case ¢ — 0 and
3. the remaining part of the spectrum, which is bounded away from 1.

In particular, for small ¢ there is a spectral gap between the eigenvalue cluster and
the remaining part of the spectrum.

Remark. The above characterization of nearly uncoupled Markov chains via transi-
tion probabilities between aggregates is compatible both with the coupling matriz de-
fined in [10, 15] as well as with the concept of the conductance of a Markov chain [14].
It is, however, quite different from the approach of HARTFIEL AND MEYER [7]: their
uncoupling measure does not admit a statistical interpretation and depends heavily
on the dimension of the transition matrix.

The following perturbation theorem is a specification of a thearem due to STEW-
ART [15, Theorem 4.1] reformulated for our present context.

Theorem 3.1 Let P be a reversible primitive stochastic matriz satisfying the above
reqularity condition. Then there ezists a m—orthogonal basis {X;}i=1,. n of eigenvec-
tors, which can be divided into three parts:



1. an eigenvector corresponding to the Perron root A\ =1 given by

X, = e=(,...,1)7,
2. a set of k — 1 eigenvectors corresponding to the eigenvalue cluster near A = 1
of the form
k
X, = ZOAZ‘J’XAJ.—I—O(G) i=2,...k
j=1
for appropriate coefficients c;; € R and aggregates Aq,. .., Ay corresponding to

the block—diagonally dominant form (4) of P, and

3. the remaining n — k eigenvectors corresponding to the spectrum bounded away
from 1, which cannot be interpreted as perturbations of vectors that are constant
on aggregates.

Remark. Exploiting the fact that the transition matrix P admits a complete basis
of eigenvectors (see Lemma 2.2) the above theorem is just a specification of the more
general Theorem 4.1 of [15]. The reader might notice that, because of Lemma 2.2,
the present statement may also be proved by exploiting the well-developed spectral
theory of symmetric matrices. In particular, this would allow to gain additional in-
formation about the O(¢)-error term.

By Theorem 3.1, eigenvectors corresponding to the eigenvalue cluster near A =1
essentially preserve the structure of the unperturbed case. Therefore we may as well
use the sign structures to identify almost invariant aggregates as presented in the
previous section.

MATLAB-Example. To illustrate Theorem 3.1 we define the following re-
versible primitive stochastic matrix P with k& = 3 blocks; the notation corresponds
to (4).

Generate a symmetric block diagonal matrix D and a symmetric perturbation
matrix F, both with equidistributed random entries. Now define for ¢ > 0 the
symmetric matrix

Pym = (1—06)D+4E.

A short calculation shows that normalizing the rows of Py results in a reversible
stochastic matrix P = (p;;); its stationary distribution 7 is given by the normalized
sum of the ith row of Pyym = ((Psym)ij):

n

i = Z(psym)ij/ﬂpsym||1.

=1

If at least one of the diagonal entries p;; is different from zero (which is easy to check)
than the matrix is primitive, too [1]. Figure 2 shows an associated eigenvector basis
{X1, X9, X3} of such a model matrix.
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Figure 2: Tllustration of Theorem 3.1 (see the example). As a result of the pertur-
bation process the eigenvectors X1, Xy and X3 corresponding to A =1,0.75 and 0.52,
respectively, are almost constant on the aggregates A1, A> and Az (cf. Fig. 1). The sign
structure of the eigenvectors is the same as in Fig. 1 except for X3 on the aggregate
As, where perturbations introduce “erratic” sign structures.

4 Algorithmic Realization

In this section we present the basic concept of an algorithm for the identification of
almost invariant aggregates. As derived above, this algorithm explores the special
structure of eigenvectors corresponding to an eigenvalue cluster near A = 1.

In a first step we have to determine the number & of almost invariant aggre-
gates. This is done by computing the cluster of eigenvalues near A = 1 which is
well-separated from the remaining part of the spectrum by a gap (Theorem 3.1).
Tterative eigenvalue solvers with simultaneous subspace iteration (see e.g. [9],[4, Sec-
tion 4]) would be a natural way to perform this task. Frankly speaking, however, in
our present version of the algorithm we have simply applied MATLAB to calculate
all eigenvalues and split off the cluster near 1 by examination.

Having computed the k — 1 right eigenvectors (apart from the already known
eigenvector e), each of which corresponds to an eigenvalue of the cluster, we are
then interested in a decomposition of the state space into k¥ almost invariant aggre-
gates. For an wuncoupled Markov chain this could be merely done by aggregating
states according to the piecewise constant levels in the eigenvectors or due to their
sign structure (see Section 2). Unfortunately, for nearly uncoupled Markov chains
perturbations of the eigenvectors disturb their piecewise constant “level structure”.
Moreover, we a priori do not know the specific permutation for bringing the tran-
sition matrix in a block-diagonally dominant form (4). Both together, unknown
permutations and unsuitable numbering of the states, prevent us from exploiting the
otherwise intriguing level structure.



The sign structure, however, is also perturbed, but only by the “almost zero”
entries of some eigenvectors (see Fig. 2). Fortunately, the algorithm to be presented
below allows to recover a unique decomposition of the state space by first treating
all almost zero entries as optional positive or negative signs (resulting in k& + [ pro-
visional aggregates) and in a second step by an iterative condensation to k aggregates.

For this purpose, we introduce an e-threshold and disregard any signs for all val-
ues less than ¢ (in modulus). Therefore, all states which have equal sign structure in
all components greater than ¢, can be assigned to the same aggregate. This assign-
ment need not be unique, but by repeatedly increasing e “artificial” aggregates will
be removed. This iterative process terminates as soon as the state space is decom-
posed into exactly k aggregates. Afterwards we search for unique assignments of the
ambiguous states by decreasing e again.

Note that any scaling procedure for the eigenvectors will greatly affect the per-
formance of the algorithm. In our numerical experiments it turned out that the
assignment process to the final almost invariant aggregates is especially difficult for
entries of the eigenvectors near a jump from one almost constant level to another. In
order to make our algorithm less sensitive to such assignment problems, we decided
to scale the right eigenvectors {X¢}¢:17...,k componentwise using a fractional power r
with 0 < r <1 (r = 0.1 throughout Section 5) of the stationary distribution such
that

xpeal = diag(77) X; for i=1,...,k.
For r = 0 we then obtain the right eigenvectors, whereas for r = 1 we get the left
eigenvectors (see the Remark following Lemma 2.2). The effect of this scaling is that
the above mentioned problematic perturbations will get smeared out. Moreover, to
be less dependent on aggregate sizes and absolute values of eigenvectors, we par-
titioned each scaled eigenvector into its positive and negative part and normalized
these parts by their maximum norm.

Summarizing, our identification algorithm consists of the following steps:

1. Compute eigenvectors corresponding to the cluster of eigenvalues near 1. This
includes the determination of k.

2. Scale these eigenvectors.

3. Partition the state space into aggregates according to all occurring sign struc-
tures, thus generating k 4+ [ aggregates.

4. If I > 0 gradually remove oll “artificial” aggregates.

5. Compute the probabilities to stay within each of the remaining k aggregates .

5 Numerical Example

In order to test our algorithm, we applied it to a problem from molecular dy-
namics. In the so-called united atom representation [11], the n-pentane molecule
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CHj; — (CHg)3 — CHg (see Fig. 5) consists of 5 mass points, which interact with each
other due to bond length, bond angle, dihedral angle and Lennard-Jones potentials.
The most flexible part is the dihedral angle potential (Fig. 5) with its three minima.

energy (kcal/mol)

w1 w2 2

0 1 2 3 4 5 6
@, (radiant)

Figure 3: United atom model of n-pentane with the two dihedral angles w1 and ws.
On the right: Dihedral angle potential due to [11]. The main minimum corresponds to
the trans orientation of the angle, the two side minima to the *gauche orientations.

The dynamics of the molecule is described by the Hamiltonian equations of motion
corresponding to these potentials. The typical dynamical behavior is characterized by
extremely fast bond length and bond angle vibrations, which are nonlinearly coupled
to significantly slower changes in the orientation of the dihedral angles. Therefore
the orientations of the dihedral angles describe the “conformations” of the molecule,
i.e., those subsets of the position space that are almost invariant under the flow of
the Hamiltonian system.

As worked out in detail in [12], these almost invariant subsets are implicitly
defined via some spatial Markov operator T. The invariant density of T is the well-
known Boltzmann distribution. A Galerkin-type discretization of this operator (by
means of a hybrid Monte Carlo method with step size 7 = 160fs) generates a stochas-
tic matrix P, which is primitive and reversible, inheriting the special properties of
the operator. Hence, after discretization, the almost invariant sets associated with
the operator should show up as almost invariant aggregates of the matrix P.

A uniform discretization of each of the dihedral angles into 20 parts leads us to
a number of n = 20 % 20 = 400 states and a 400 x 400 stochastic matrix P, the only
input required for our herein suggested algorithm (see Section 4).

In our particular case the stationary distribution 7 of P is a priori known explic-
itly (being the spatial discretization of the Boltzmann distribution). It is represented
in Fig. 4. This figure also shows the connection between the dihedral angle potential
and regions with high probability for the system to be within. For example, the main
maximum of the distribution corresponds to a n-pentane structure, where both dihe-
dral angles are in the trans-orientation. The other maxima can be interpreted in the

11



discr. o, discr. o

1

Figure 4: Stationary distribution 7 versus dihedral angles w; and ws.

same way as combinations of +gauche-, —gauche- and trans-orientations. However,
the stationary distribution does not contain any dynamical information. Rather, for
the identification of almost invariant aggregates we have to investigate the spectral
structure of P. For this purpose, the 10 eigenvalues of P with largest absolute value
are arranged:

k|1 2 3 4 5 6 7 8 9 10
A | 1]0.986 | 0.984 | 0.982 | 0.975 | 0.941 | 0.938 | 0.599 | 0.590 | —0.562

The first nine ones are positive. From the 10th one on negative eigenvalues appear
frequently. As can be seen, a first spectral gap arises between A5 and Ag, and an even
more significant one between A7 and Ag. We therefore tested our algorithm both for
k=5and for k =7.

right eigenvector for A=1

discr. @ discr. @

dihedral angle @, dihedral angle o, 2
t

Figure b: Right eigenvectors for largest eigenvalues A; = 1 (left) and second largest
eigenvalue Az = 0.9859 (right) versus w; and ws.
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In Fig. 5 the right eigenvectors corresponding to A; = 1 and Ay = 0.986 are
illustrated. Of course, for A = 1, we obtain e, which in grid representation is just a
flat plateau (ignoring zeroes for cut-off states). For Ay, the right eigenvector contains
more information. Just as in our model example (see Fig. 2), we can distinguish
between different plateau levels, which seem to indicate different almost invariant
aggregates.

posttive pat negative part posttive pat negative part

Figure 6: Positive and negative parts of the first seven left eigenvectors (left) and
right eigenvectors (right). Positive and negative parts are scaled with respect to the
maximum norm.

Fig. 6 represents the first seven eigenvectors split into their positive and negative
parts (as described in Section 4). The right eigenvectors show the expected almost
constant level structure, which allows to decompose the state space due to the algo-
rithm explained in the previous section. In contrast to this, the [eft eigenvectors have
distinct maxima only at the center of each constant level.

For k£ = 5, our identification algorithm started with 13 different sign structures
(I = 8) and ended up with the five aggregates as illustrated in Fig. 7. All five aggre-

13



p = 0.97379 p = 0.98016 p = 0.98219 p = 0.97378 p = 0.97881
20 77777 20 T 20 20 20 .
HH i M f
T un u T
1s 4 15 HH HHH s 15 15
EENEN |
10 10 10 HHH 10 10 1
sH s s 5:§ H s 1]
H H N T
T
1T T T T
s 10 15 20 5 10 15 20 5 10 15 20 s 10 15 20 5 10 15 20

Figure 7: The resulting almost invariant aggregates for k = 5. The values for p denote
the the probabilities to stay within these aggregates within the underlying discrete time
step 7 = 160 fs.

p = 0.97539 p = 0.97957 p = 0.98205 p = 0.97849 p = 0.9702
20 11177 20 . 20 20 20
INENI u
INEN H EEEEE
15 15 HHH 15 15 15
10 10 10 HHH 10 10
s s s s HHHH H s !
1 I T
1 NN
T Tt
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
p = 0.92252 p=0.86117
20 20
T
H s
n|
1T
15 Hid 15
T
T
10 10 %
TTTTTT

5 10 15 20 5 10 15 20

Figure 8: The resulting almost invariant aggregates for k = 7.

gates possesses a high probability to stay within. In addition, we can also compute all
transition probabilities w(A;, A;) between the identified almost invariant aggregates.
The resulting coupling matrix is given below. Its entries may be interpreted as the
probability that the system moves from A; to A; within the underlying discrete time
step T = 160fs:

0.9738 0.0006 0.0163 0.0082 0.0011
0.0006 0.9802 0.0145 0.0008 0.0040
(w(4i, Aj))ij=1,.5 = | 0.0044 0.0042 0.9822 0.0043 0.0049 |,
0.0084 0.0009 0.0165 0.9738 0.0005
0.0010 0.0038 0.0161 0.0004 0.9788

where the numbering of the aggregates corresponds to Fig. 7.

For k = 7, there were 29 sign structures in the beginning (! = 22), which were
reduced to the seven aggregates in Fig. 8. Observe, that the eigenvectors correspond-
ing to A\g and A7 (see Fig. 6) contain the additional information about the separation

14



of the +gauche/+gauche- and the —gauche/—gauche-conformation. Therefore, we
obtain a more detailed partitioning of the state space, even though the probabilities
to stay within the additional conformations are much lower. This example demon-
strates that the algorithm can even produce good results, if some of the almost
invariant aggregates possess a further substructure, which will be explored by eigen-
vectors corresponding to smaller eigenvalues. Both results, for £k = 5 and for £ =7,
are in good accordance with chemically observed conformations.
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