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P. Deuf lhard W . Huis inga A. Fischer Ch. Schüt te 

Abstract 

The topic of the present paper has been motivated by a recent computa­
tional approach to identify chemical conformations and conformational changes 
within molecular systems. After proper discretization, the conformations show 
up as almost invariant aggregates in reversible nearly uncoupled Markov chains 
Most of the former work on this subject treated the direct problem: given the 
aggregates, analyze the loose coupling in connection with the computation of 
the stationary distribution (aggregation/disaggregation techniques). In contrast 
to that the present paper focuses on the inverse problem: given the system as 
a whole, identify the almost invariant aggregates together with the associated 
transition probabilities. A rather simple and robust algorithm is suggested and 
illustrated by its application to the n-pentane molecule 

K e y words , essential molecular dynamics, nearly reducible, nearly completely 
decomposable, nearly uncoupled Markov chain, almost invariant aggregates, transi 
tion probability. 

M a t h e m a t i c s subject classif ication. 15A18, 15A51, 60J10, 60J20, 65U05.  

Introduction 

he present investigation has been motivated by a novel approach to compute the 
essential features of molecular dynamical systems, as suggested first in [3] and, in a 
much improved form, more recently in [12]. In these approaches chemical conforma­
tions are interpreted as almost invariant sets either in the phase space [3] or in the 
position space [12] of the associated Hamiltonian dynamical system. Both conforma­
tions and rates of conformational changes need to be identified to obtain information 
of chemical interest. Any discretization gives rise to finite dimensional Markov chains 
and to almost invariant aggregates as discrete analogs o the above mentioned almost 
invariant sets. Given such a Markov chain (usually in terms of the corresponding 
transition matrix), the task is to identify an u o w number k o almost invariant 
aggregates in nearly uncoupled Markov chains. 

In the setting of [12], the obtained Markov chain is rrsible and reglar, or, 
equivalently, the corresponding transition matrix is rversible and primitive—an as 
sumption, which will be crucial for the construction o the algorithm to be presented 
below. he reversibility implies that all eigenvalues A are real and |A| < 1. In the 



irreducible ase, Perron-Frobenius theory s a t e s that A = 1 is simple and a corr 
sponding left eigenvector can be chosen to have only positive components. From 
[3] we conjecture that eigenvectors corresponding to an eigenvalue cluster close to 
A = 1 contain the relevant information of how to decompose the discrete state space 
into reasonable almost invariant aggregates: there, the case k = 2 has already been 
worked out in some "Gedankenexperiment" based on lefl eigenvectors corresponding 
to two eigenvalues Ai = 1 and A2 ~ 1. A possible treatment o the general case k > 2 
has been demonstrated in [2] for the different scenario of almost cyclic aggregates 
whereas the case of almost invariant aggregates is only indicated. In contrast to 
that , the present paper tries to generalize the concept o [3] to k > 2 aiming at a 
comparable simplicity o both theory and algorithm. 

In Section 2, we first treat the reducible case of an uncoupled Markov chain in 
terms of the block structure of the corresponding transition matrix. In our applica­
tion context, such a structure is only present in a perturbed form and, additionally, 
hidden due to permutations. That is why, in Section 3, we study the case of nearl 
uncoupled Markov chains in terms of a linear turbation analysis for the transition 
m a t r i x f o l l o w i n g closely former work of S T E W A R T [15]. On this basis, we are able to 
extend the above mentioned "Gedankenexperiment" [3] based on right eigenvectors 
corresponding to k eigenvalues close to 1. From this, we derive a rather simple and 
robust algorithm in Section 4. Its application to the n-pentane molecule is finally 
illustrated in Section 5. 

ncoupled Markov Chains 

Throughout the paper, the term Markov chain will be used to denote a finite ho­
mogeneous Markov chain defined by a finite set of states {s\,... ,sn} and (row 
stochastic matrix P , the transition matrix. Sets of states are called aggregate. 

As stated above, we are concerned with reversible regular Markov chains, which 
bear some hidden structure of almost invariant aggregates. In order to classify the 
term "almost invariant", we first treat the situation of invariant aggregates and un­
coupled Markov chains here. For this purpose, we need to collect some important 
definitions together with spectral properties o the transition matrix. 

Markov chain is called regular, i the corresponding transition matrix P is prim­
itie (irreducible and aperiodic), i.e., if there exists a natural number m > 0 such that 
Pm is componentwise positive [1, 13]. For primitive stochastic matrices the Perron-
Frobenius theorem gives the following insight about the eigenvalue o largest modulus: 



h e o r e m 2.1 [1, 13] Let e a primitie stochsti matrix. Ten 

. te so-called Prron roo = 1 s simle an minant, ie. |A| < for an 
h eigenal A ^ 1 

. t r e a positie left an rig eigenor orrespoding to A = 1 ch 
niq up o constant ltiles. 

he left eigenvector corresponding to A = 1 represents the stationary distribu 
tion -K (Ki,... , T n ) T , which in our application context [12] is known, while the 
corresponding right eigenvector i s e ( l , . . . , l ) T . 

Due to the discretization [12] we may assume that the the Markov chain is re­
rsible, i e . , the corresponding transition matrix P (pij) satisfies1 

KiPi njPji for a l i i j (1) 

Then, P is then called rversible [8]. The spectral structure of reversible stochastic 
matrices is most evident with respect to the inner product ( , •) induced by the 
stationary distribution: 

(x y) d iag(T) y, 

which corresponds to the finite dimensional weigted Euclidean space l^{n) wo 
vectors x, y satisfying (x,y) = 0 will be c a l l e d o r t h o a l 

L e m a 2.2 Let be rsible primiti stochsti marix. Ten mmet 
it res the inne prduct (,•) 

P r o o f It is shown in [ ] that ( ) is equivalent to the symmetric matri 

P s PD~ (2 

where the transformation is given by D d iag( / r i ' ) In terms o D, equation (1) 
can be written as D2 = P T 2 , thus 

(x,Py)n = xd-mgn) Py = x P y = x y = (Px,y)n, 

which concludes the assertion. D 

As a consequence of Lemma 2.2 the stochastic matrix P possesses the following 
properties: 

1. here exists a basis of 7r-orthogonal right eigenvectors, which diagonalizes P. 

2. All eigenvalues o are real and contained in the interval [—1 +1] 

3. For every right eigenvector x there is an associated left eigenvector y d iag(T) x, 
which corresponds to the same eigenvalue. 

Equaion ( ) is a l o ca l ld the deaild balance cndit ion. 



To keep the notion as simple as possible, from now on eigenvecors are u n d e o o d 
to be right eigenvectors, unless stated otherwise. 

We are now ready to introduce the t ransition probabilities between aggre 
gates for an arbitrary transition matri (pij). Interpreting the entries pij as 
conditional probabilities to be in state S and to change to state S, the natural 
generalization is the following 

Definition 2.3 Gen rkov chain its ransitin matrix t neessa 
primitie) and a stationary distribution - 0. Let A and B be t bity aggre­
gates. en transition probability beten A and B with res t , ie h 
prbabilit at e sstem ill ov (in a single ste m A t , i gien 

E ab 

o,ei 

re I A an IB ente te index sets orresponding to A and B, restiel. For 
e spal se A call w(A A probability to stay within (in a single 

step). 

A statistical characterization of uncoupled Markov chains (UMC) will be based on 
transition probabilities between aggregates. An aggregate A is said to be invariant 
ifw(A,A) l2 . A Markov chain is then called coupled, i it allows to decompose 
the state space into disjoint inant aggregates \,..., Ah such that 

As a consequence the states o an UMC with k aggregates can b or such 
that the transition matrix P is o block-diagnal form 

0 
D2 

kk 

where each block Du is a square stochastic matrix. 
Assume that each of these matrices Da is primitive. Then, due to the Perron-

Frobenius theorem, each block possesses a unique eigenvector e, ( 1 , . . . , 1)T o 
length d i m ( D ) corresponding to its Perron root A 1. herefore in terms o the 

Note that in the case o an UMC, the stationary disribution is no unique, because the cor 
responding transition matrix is not irreducible. However, in this special case the probabilities ar 
independent of the chosen stationar i t i b u t i o n . If the Markov chain i ot reverible i i ecessar 
to r e q i e w(AcA) = 0, too 
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F i g u r e 1: Uncoupled Markov chain with k = 3 aggregates. The state space 
{ s . , S90} divides into the aggregates Ai = { s i , S29} -42 = {«30, • •, S49} and 
^3 = {s5o • • •, S90}. Left: Characteristic function XA2- Right: a possible basis of th 
eigenspace corresponding to A = 1. Observe that each eigenvector is constant on each 
aggregate. The sign t c t u r e asociated, e. with the tate S6 is (+ —,0) 

transition matrix P the eigenvalue A = 1 i fold and the coresponding egenspac 
is spanned by the vectors 

M , . . . , 0 e , 0 , . . . , 0 ) , . . . , fc. 

Here our notation deliberately emphasizes that the eigenvectors can be interpreted 
as chracteristic fnctions the uncoupled aggregates (see Fig. 1, left). 

In general, any basis {-2Q}«=].,.. of the eigenspace corresponding to A = 1 can 
be written as linear combinations o the characteristic functions Ai-, ie., there are 
coefcients «^ G R such that 

^ a i A j i = l,...k. 

As a consequence, eigenvectors corresponding to A = 1 are constant on each aggre­
gate (see Fig. 1, right). With these preparations we are now ready to derive the key 
tool for our algorithm to be presented in Section 4. 

L e m a 2.4 en a block-agnal transitin matrix consisting primiti block 
an a --ornal bsis { } of its eigens orrespodin o A = . As­
ociate it state its sign struct 

Si 1— s ign(Xi ) j ) , . . . , s ign ( (X) ) 

en 

. inant aggregates a colletins states ith cmm sig structure, 

rent aggregates exbit rent sign strucures. 

\ \ X1 

X2 

X3 
1 

X1 

X2 

X3 
1 

n 
H 
1 

j 

!• 
ii 
i' 



Proof. In order to prove s a t e m e n t 1, recall that each eigenvector corresponding to 
A = 1 is constant on each of the aggregates, which implies that states belonging to 
the same aggregate must share the same sign structure. 

As for statement 2, let, without loss of generality, every aggregate consist of only 
one state. In a first step, we demonstrate the assertion for an orthogonal eigenvector 
basis {Qi}i=i,...,k of t n e symmetric matrix P s y m = DPD1 (see ( 2 ) . In a second 
step, we then generalize it to the assertion stated in the proposition. 

Define the k x k matrix Q [Q\ • • • Q^]. Since Q is orthogonal, i.e., Q Q , 
the transpose QT is an orthogonal matrix, too. hus, the rows o are orthogonal  

fact that we will exploit in the following. 
Now consider a -orthogonal eigenvector basis {^Q}j=...,& of P as stated in the 

proposition. In view of (2) we get the following relation between the eigenvector 
bases: JQ D 1 Q j for i = l , . . . , f c . Since the transformation matrix Z ? 1 has 
positive diagonal entries, the sign structures of Xi and Qi, i = 1 , . . . , k, are the same. 

In view of (3), the sign structure of the m t h aggregate is equal to the sign struc 
ture o the m t h row of X = \X\ • • • X\. Now suppose there exist two aggregates 
and Aj with the same sign structure. Then the i th and j t h row o X, and thus o 
are equal in sign, which is in contradiction to the orthogonality o D 

Summarizing, Lemma 2.4 states that the set of all k eigenvectors can be used to 
entify all aggregates via sign structures. Note that this can also be done by using 

left eigenvectors instead of right eigenvectors, since their sign structures are the same 
For every left eigenvector y = (y^) there exits an associated right eigenvector x = (x 
with yi = TXi, hence sign(yj=sign(a;j) 

erturbation Analysis 

In the context o our molecular dynamics applications, nearly uncoupled Markov 
chains3 (NUMC) will arise such that the corresponding transition matrix P bears 
some hidden structure of an (unknown) number k of almost invariant aggregates 
Despite the unknown permutations and perturbations, we will show in this section 
that eigenvectors of P can nevertheless be used to identify such aggregates. As for 
the associated perturbation analysis, we closely follow the framework f S T E W A R T 

[15] 

In this section, we assume the Markov chain to be reversible and primitive. There­
fore, in particular, its stationary distribution n is unique (see the note following he 
orem 2.1), and all transition probabilities are well-defined with respect to this 

As in the uncoupled case, a statistical characterization o NUMCs will be based 
on ransitio probabilities between aggregates. An aggregate A is said to be almos 
invariant , i the probability to stay in A under the condition o being in is close 
to 1, i.e. PÖ l 4 . A Markov chain is then called ly uoupled, i it allows 

3Also known as nearly completely decomposable or nearly reducibl Markov chains 
If th arkov chai is not revesible t is necessary to requie w(A A) « 0, too. 



to decompose the s a t pace into d isoint a l s t i n a n t agg rga te s ,...,Ak 

such that 

8i 

As a consequence, the states o NUM with k aggregates can be or such that 
the transition matrix P is o block-agall minant form 

Du E1 • • • E \ 

E2 D2 • • • E 

+ E 

• • • k k 

where the off-diagonal blocks Ey are small compared with the diagonal blocks Da 
For later reference, we set ||Ü7| = e in terms of the spectral norm. 

For the transition matr i ), we assume according to S T E W A R T [15, Condition 1 
and 2] the following 

R e g u l a r i t y c o n d i t i o n . In the limit e 0 the number k o blocks o the transition 
matrix P remains constant 

This condition implies that for e 0 the spectrum P can be divided into three 
parts [10, 15 

1. the Perron root A = 1, 

2. a cluster o k — 1 eigenvalues approaching 1 in the limit case e 0 and 

3. the remaining part o the spectrum, which is bounded away from 1. 

In particular, for small e there is a spectral gap between the eigenvalue cluster and 
the remaining part o the spectrum. 

R e m a r k . The above characterization of nearly uncoupled Markov chains via transi­
tion probabilities between aggregates is compatible both with the coupling matrix de 
fined in [10, 15] as well as with the concept of the cductan a Markov chain [14] 
It is, however, quite different from the approach of HARTFIEL AND MEYER [7]: their 
uncoupling measur does not admit a statistical interpretation and depends heavil 
on the dimension o the transition matrix. 

he following perturbation theorem is a specification of a theorem due to E W ­
ART [15, heorem 4.1] reformulated for our present context 

h e o r e m 3.1 et e a rsible rimitie stochsti matrix satisfing te abov 
regularit iti hen re exists a i-orthnal si { - X } n of eigen 
ors, ch can b d int thr ts: 



. an eigenor correspoding t rr roo en b 

( l , . . . , l ) 

. a set eigenor correspodin eigenal ste r A = 
of th for 

a i e ) = 2,...k 

for ppropriate efients cxy an aggregates Ai,..., A} correspoding t 
e block-agall minant for (4 f and 

. t remainin n — eigenecor orrespoding e s t r u ou 
f 1 hich cannt b interprete as tins f or at nstant 

aggregates. 

Remark . Exploiting the fact that the transition matrix P admits a complete basis 
of eigenvectors (see Lemma 2.2) the above theorem is just a specification of the more 
general Theorem 4.1 of [15]. The reader might notice that , because of Lemma 2.2, 
the present statement may also be proved by exploiting the well-developed spectral 
theory of symmetric matrices. In particular, this would allow to gain additional in­
formation about the e)error term. 

By Theorem 3.1, eigenvectors corresponding to the eigenvalue cluster near A = 1 
essentially preserve the structure o the unperturbed case. Therefore we may as well 
use the sign structures to identi almost invariant aggregates as presented in the 
previous section. 

MATLAB—Example . To illustrate heorem 3.1 we define the following re 
versible primitive stochastic matrix P with blocks; the notation corresponds 
to (4). 

Generate a ymmetric block diagonal matrix D and a mmetc perturbation 
matrix E, both with equidistributed random entries Now define for the 
symmetric matr i 

PS { l ) D 8E 

A short calculation shows that normalizing the rows o P s y m results in a reversible 

stochastic matrix P (pij), its stationary distribution is given by the normalized 
sum the Oh row P s ( p s ) y ) 

\Ps)ij/ \\Psym\\l-

If at least one of the diagonal entries pa is different from zero (which is easy to check) 
than the matrix is primitive, too [1]. Figure 2 shows an associated eigenvector basis 
{Xi , X X} o such a model matrix. 



0 10 20 30 40 50 60 70 80 

F i g u r e 2: Illustration of The 1 ( s e t e example). As a result of the perur ­
bation process the eigenvectors Xi,X2 and X3 coresponding to A = 1,075 and 0.52 
respectively are almost constant on the aggregates A\ A2 and A (cf. Fig. 1) The sign 
tuc tu re of the eigenvectors i the same as in Fig. 1 except for on th aggregat  

where peturbations i n t c e " a t i c " sign s t c t u r e s 

lgorithmc Reaization 
In this section we present the basic concept of an algorithm for the identification of 
almost invariant aggregates. As derived above, this algorithm explores the special 
structure o eigenvectors corresponding to an eigenvalue cluster near A = 1. 

In a first step we have to determine the number k of almost invariant aggre 
gates. This is done by computing the cluster of eigenvalues near = 1 which is 
wellseparated from the remaining part of the spectrum by a gap (Theorem 3.1) 
Iterative eigenvalue solvers with simultaneous subspace iteration (see e.g. [9],[4, Sec 
tion 4]) would be a natural way to perform this task. Frankly speaking, however, in 
our present version of the algorithm we have simply applied M A T L A B to calculate 
all eigenvalues and split o the cluster near 1 by examination. 

Having computed the k — 1 right eigenvectors (apart from the already known 
eigenvector e), each of which corresponds to an eigenvalue of the cluster, we are 
then interested in a decomposition of the state space into k almost invariant aggre 
gates. For an uncoupled Markov chain this could be merely done by aggregating 
states according to the piecewise constant levels in the eigenvectors or due to their 
sign structure (see Section 2). Unfortunately, for nearly uncoupled Markov chains 
perturbations of the eigenvectors disturb their piecewise constant "level structure". 
Moreover, we a priori do not know the specific permutation for bringing the tran­
sition matrix in a block-diagonally dominant form (4). Both together, unknown 
permutations and unsuitable numbering o the states, prevent us from exploiting the 
otherwise intriguing level structure. 



The sign structure, however, is also perturbed, but only by the "almost zero" 
entries of some eigenvectors (see Fig. 2). Fortunately, the algorithm to be presented 
below allows to recover a unique decomposition of the state space by first treating 
all almost zero entries as optional positive or negative signs (resulting in k + I pro­
visional aggregates) and in a second step by an iterative condensation to k aggregates 

For this purpose, we introduce an e threshold and disregard any signs for all val 
ues less than e (in modulus) Therefore, all states which have equal sign structure in 
all components greater than e, can be assigned to the same aggregate. This assign­
ment need not be unique, but by repeatedly increasing e "artificial" aggregates will 
be removed. This iterative process terminates as soon as the state space is decom­
posed into exactly k aggregates. Afterwards we search for unique assignments o the 
ambiguous states by decreasing again. 

Note that any scaling procedure for the eigenvectors will greatly affect the per 
formance of the algorithm. In our numerical experiments it turned out that the 
assignment process to the final almost invariant aggregates is especially difficult for 
entries of the eigenvectors near a jump from one almost constant level to another. In 
order to make our algorithm less sensitive to such assignment problems, we decided 
to scale the right eigenvectors {^Q}*=,•••,/= componentwise using a fractional power r 
with < r < I (r 1 throughout Section ) o the stationary distribution such 

that 
^ d i a g « ^ for « = l , . . . , f c . 

For r = 0 we then obtain the right eigenvectors, whereas for r = 1 we get the left 
eigenvectors (see the Remark following Lemma 2.2) The effect of this scaling is that 
the above mentioned problematic perturbations will get smeared out. Moreover, to 
be less dependent on aggregate sizes and absolute values of eigenvectors, we par 
titioned each scaled eigenvector into its positive and negative part and normalized 
these parts by their maximum norm. 

Summarizing, our identification algorithm consists o the following steps: 

. C t e eigenor orrespodin ster of eigenales n r 1 is 
i n e s th determinati 

. Sale tese eigenors. 

rtiti e state s int aggregates ccordin all occurring sign struc 
ures, thus genratin I aggregates. 

- If all remove all "artial" aggregates. 

. C t e t prabilities t sta itin ech of t remainin aggregates . 

u m e r i l Example 

In order to test our algorithm, we applied it to a problem from molecular dy­
namics In the so-called united atom representation [11], the n-pentane molecule 



CH3 (CH2)3 CH3 (see Fig. 5) consists of 5 mass points which interact with each 
other due to bond length, bond angle, dihedral angle and Lennard-Jones potentials. 

he most exible part is the dihedral angle potential Fig. 5 with its three minima. 

1 0 

2 

0 0 1 2 3 4 5 6 
co ( rad iant ) 

F i g u r e 3: United atom model of n-pentane with the two dihedral angles toi and t02 
On the right: Dihedral angle potential due to [11]. The main minimum corresponds t 
the trans orientation of the angle, the wo ide m i i a t the ±gauche orientations 

The dynamics of the molecule is described by the Hamiltonian equations of motion 
corresponding to these potentials. The typical dynamical behavior is characterized by 
extremely fast bond length and bond angle vibrations, which are nonlinearly coupled 
to significantly slower changes in the orientation of the dihedral angles. Therefore 
the orientations of the dihedral angles describe the "conformations" of the molecule, 
i.e., those subsets of the position space that are a l s t i n a n t under the ow o 
the Hamiltonian system. 

As worked out in detail in [12], these almost invariant subsets are implicitly 
defined via some patial Markov oprator T. he invariant density of T is the well 
known Boltzmann distribution. A Galerkin-type discretizatin of this operator (by 
means of a hybrid Monte Carlo method with step size T = 160fs) generates a stochas 
tic matrix P , which is primitive and reversible, inheriting the special properties o 
the operator. Hence, after discretization, the almost invariant sets associated with 
the operator should show up as almost invariant aggregates o the matrix P . 

A uniform discretization of each of the dihedral angles into 20 parts leads us to 
a number of n = 20 * 20 = 400 states and a 400 400 stochastic matrix P , the onl 
input required for our herein suggested algorithm see Section 4) 

In our particular case the stationry distribution IT of P is a priori known explic 
itly (being the spatial discretization of the Boltzmann distribution). It is represented 
in Fig. 4. This figure also shows the connection between the dihedral angle potential 
and regions with high probability for the system to be within. For example, the main 
maximum of the distribution corresponds to a n-pentane structure, where both dihe 
dral angles are in the t ransor ientat ion. he other maxima can be interpreted in the 

11 



Figure 4: tationay ditibution - vesus d ihda l agles w and u 

same way as combinations of + g a u c h e , —gauche- and t ransorientat ions . However, 
the stationary distribution does not contain any dynamical information. Rather, for 
the identification of almost invariant aggregates we have to investigate the spectral 
structure of P. For this purpose, the 10 eigenvalues o with largest absolute value 
are arranged: 

10 
986 984 982 75 941 938 5 590 -0562 

The first nine ones are positive. From the 10th one on negative eigenvalues appear 
frequently. As can be seen, a first spectral gap arises between A5 and XQ, and an even 
more significant one between A7 and As- We therefore tested our algorithm both for 

= 5 and for k 7. 

discr. w discr. w 

F i g u r e 5: Right eigenvectors for l t e i g e l = 1 l f t ) and nd l 
eigenvalue = 09859 (ight) vers and u 

12 



In Fig. 5 he right eigenvectors corresponding to Ai = 1 and A2 = 0.986 ar 
illustrated. Of course, for Ai = 1, we obtain e, which in grid representation is just a 
flat plateau (ignoring zeroes for cutoff states). For A2, the right eigenvector contains 
more information. Just as in our model example (see Fig. 2), we can distinguish 
between different plateau levels which seem to indicate different almost invariant 
aggregates 

positive part 
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1 ft in 1111 

5 10 15 20 

1iiiiiiiif 

5 10 15 20 

5 10 15 
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_ 5 10 15 20 
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I 

5 10 15 

5 10 15 20 
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5 10 15 

5 10 15 

negative part 

5 10 15 20 
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5 10 15 20 

ijBj 

5 10 15 20 

5 10 15 20 

15 20 

5 10 15 20 

F i g u r e 6: Positive and ngat ive par of the frst seven left eigenvectors (left) and 
right eigenvectors ( ight) ositive and negative parts are scaled with respect to th 

Fig. 6 represents the first seven eigenvectors split into their positive and negative 
parts (as described in Section 4) The right eigenvectors show the expected almost 
constant level structure, which allows to decompose the state space due to the algo­
rithm explained in the previous section. In contrast to this, the left eigenvectors have 
distinct maxima only at the center o each constant level 

For k 5, our identification algorithm started with 13 different sign structures 
(I = 8) and ended up with the five aggregates as illustrated in Fig. 7. All five aggre 

13 



p = 
0 . 9 7 3 7 9 

2 0 

1 5 1 5 

1 0 1 0 

5 5 

p = 0 . 9 8 0 1 6 p = 0 . 9 8 2 1 9 p = 0 . 9 7 3 7 8 p = 0 . 9 7 8 8 1 

MfffWffffff III 
1 0 1 5 2 0 5 1 0 1 5 2 0 5 1 0 1 5 2 0 5 1 0 1 5 2 0 5 1 0 1 5 2 0 

F i g u r e 7: The resulting almost ivar iant aggregats fo k = 5. The va lus for p denote 
the the probabilities to stay withi these aggregates withi the u n d e l i n g d i e t e time 
tep T = 160 fs 
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Figure 8: Th esultig almot iva ian t agegates for 

gates possesses a high probability to stay within. In addition, we can also compute all 
ransition probabilities w(Ai,Aj) between the identified almost invariant aggregates 

The resulting coupling matrix is given below. Its entries may be interpreted as the 
probability that the system moves from i to within the underlying discrete time 
step 160fs: 

) 

9738 0006 0163 0082 0011 
0006 9802 0145 0008 0040 
0044 0042 9822 0043 0049 
0084 0009 0165 9738 0005 
0010 0038 0161 000 788 

where the numbering of the aggregates corresponds to Fig. 7. 
For k = 7, there were 29 sign structures in the beginning (/ = 22), which were 

reduced to the seven aggregates in Fig. 8. Observe, that the eigenvectors correspond­
ing to XQ and A7 (see Fig. 6) contain the additional information about the separation 



of the +gauche/+gauche- and the —gauche/—gaucheconformation. Therefore, we 
obtain a more detailed partitioning of the state space, even though the probabilities 
to stay within the additional conformations are much lower. his example demon­
strates that the algorithm can even produce good results, if some of the almost 
invariant aggregates possess a further substructure, which will be explored by eigen­
vectors corresponding to smaller eigenvalues. Both results, for k = 5 and for k = 7, 
are in good accordance with chemically observed conformations 
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