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Abstract

Biological function relies on the fact that biomolecules can switch between different conformations and aggregation states.
Such transitions involve a rearrangement of parts of the biomolecules involved that act as dynamic domains. The reliable
identification of such domains is thus a key problem in biophysics. In this work we present a method to identify semi-rigid
domains based on dynamical data that can be obtained from molecular dynamics simulations or experiments. To this end
the average inter-atomic distance-deviations are computed. The resulting matrix is then clustered by a constrained
quadratic optimization problem. The reliability and performance of the method are demonstrated for two artificial peptides.
Furthermore we correlate the mechanical properties with biological malfunction in three variants of amyloidogenic
transthyretin protein, where the method reveals that a pathological mutation destabilizes the natural dimer structure of the
protein. Finally the method is used to identify functional domains of the GroEL-GroES chaperone, thus illustrating the
efficiency of the method for large biomolecular machines.
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Introduction

The mechanical properties of biomolecules and their complexes

are essential to molecular function, because many molecular

processes are accompanied by conformational changes, in which

domains of the molecule must be able to move with respect to each

other [1–5]. For example the mechanical properties of actin are

strongly coupled to polymer formation and degradation [6]. Such a

coupling between different functional states and aggregation states of

molecules and their mechanical properties are ubiquitous in biology.

Understanding the nanomechanics of the biomolecules, i.e. the semi-

rigid domains and their relative mobility for each given conforma-

tional or aggregation state, is thus one of the key questions in

molecular biophysics allowing for both (i) the understanding/analysis

of the molecular nanomechanics and (ii) paving the ground for

efficient large-scale coarse-grained simulations [7–9].

The first step to analysis and simulation of molecular

nanomechanics is the identification of the rigid and flexible parts

of biomolecules in different chemical, conformational or aggregate

states considered. Conventional experimental techniques, like for

example nuclear magnetic resonance (NMR), provide limited

information about these processes.

One approach to identify the rigid and flexible parts in

biomolecules is to partition the system into domains (also called

‘‘groups’’ or ‘‘clusters’’ in other works) that are nearly rigid. In the

coarse-grained model, these domains can only move as a rigid body

with six degrees of freedom (3 translation + 3 rotation). Such a low

dimensional model of the original high-dimensional dynamics yields

itself easily to the understanding of essential mechanical properties of

the molecule and how they change between conformations. Clearly,

such a model only approximates the real mobility and the

approximation error will depend on the number of domains

considered and on the flexibility/rigidity of the molecule in the

conformation considered. Consequently, such a model is better suited

for describing functional transitions or aggregation than for processes

involving much flexibility, such as folding.

Several methods for the identification of nearly rigid domains in

biomolecules have been proposed that produce similar but not

identical results. They can be categorized into model-based methods,

where structural aspects such as hydrophobicity, topology, structural

homology or for e.g. identical sequence motifs serve to identify the

smallest building blocks [10–13]. In this category there are also a

variety of methods that try to optimize certain structural properties of

protein domains, such as the distance-mapping [14], interface area

[15], specific volume [16] and compactness of the domain [17]. In

[18] a cluster method is proposed that uses contact measures and

fuzzy logic to define protein domains.

Data-based approaches in contrast define domains based on

data of the flexibility of the biomolecule, such as MD simulations

[19,20]. One approach to obtain correlated motion of atoms

within the molecule is (quasi) harmonic analysis, namely Principal

Component Analysis (PCA) and Normal Mode Analysis (NMA)

[21,22]. Here, the motions that contribute most to the variation

between the molecular configurations are described by the

dominant eigenmodes of the covariance matrix or the Hessian

of the potential, respectively. The subspace of the first few

eigenmodes contains most of the flexibility and a number of

methods have been developed to use this information in order to

identify domains [23–25]. Other data-based approaches are based

on dynamical clustering [26], hierarchical clustering of correlation
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patterns (HCCP) [27], and the hinge detection algorithm [19,28].

The latter algorithm assumes that collections of atoms move as

rigid bodies connected by hinges or axes of rotation. Recently,

[29] has proposed a optimal method to decompose proteins into

rigid domains using equilibrium fluctuations of inter-residue

distances.

Normal-mode-based techniques are limited by the fact that

they only use local information of the energy landscape. PCA-

based clustering methods do not suffer from this limitation, but

still require all structures to be fitted to a mean or reference

structure before calculating the covariance matrix. Such a fitting

procedure works well as long as the structures are very similar,

but if very large conformational changes are involved, then

structures which are very similar to each other but very different

from the reference structure may become very different after the

fitting and thus produce a misleading covariance matrix. Thus,

it is desirable to use a method that works with internal

coordinates only. Moreover, there is a lack of the domain

identification techniques that avoid ad-hoc assumptions and

parameter choices that indirectly influence the number of

clusters. It would be rather desirable to have an explicit control

of the clustering error by adjusting the number of domains, or to

have the method select the number of domains such that the

clustering error is below a certain threshold.

The proposed method works by defining (i) a distance-deviation

matrix between atoms based on dynamical data, (ii) formulating

the clustering problem as a quadratic optimization problem that is

based on this matrix and (iii) solving this clustering problem to

optimality and obtaining an assignment of atoms to clusters. To

illustrate the strengths and limitations of this approach a number

of example systems are considered: two artificial peptides Ala5 and

MR121{GSGSW and the two biomolecules transthyretin and

the chaperone complex GroEL-GroES.

The immediate use of the method is to understand dynamic

processes in large macromolecules and their complexes which

involve changes of molecular rigidity. This includes processes like

conformational changes, ligand binding and protein aggregation

[30–32]. Besides this, the outcome of the method can be used in a

number of other biophysical problems, including the coarse-

grained simulation of macromolecular encounters and association.

Materials and Methods

The principal objective of this work is to develop a new coarse-

graining technique to partition large molecular systems optimally

into semi-rigid domains, thus providing a simple model of

molecular nanomechanics. The proposed method is data-based

and meets the following requirements:

1. Optimal and unique molecular partitioning for given data and

number of domains

2. Works with internal coordinates only and is thus independent

of a reference structure

3. Can be applied to characterize models with multiple

conformations without ‘‘overlooking’’ rarely populated confor-

mations

4. Error measure for coarse-grain quality and ability to adjust the

accuracy by the number of domains or the maximum

acceptable clustering error

5. Simple applicability and robustness - no parameters other than

number of domains

6. Model independent, so that experimental findings are easily

incorporated

7. Efficient and simple implementation

Molecular rigidity and distance deviation
Inter atomic distance-deviation is a common metric used for the

identification of rigid domains in proteins [33,34]: Within a rigid

domain, the euclidean distance between pairs of atoms remains

constant, while it fluctuates for atom pairs that lie in different rigid

domains moving relative to each other.

The analysis of local molecular rigidity is based on the distance

deviation matrix S, whose elements Sij are the Euclidean distance

deviations, between the atoms i and j in the molecule, defined as:

Sij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(dij{SdijT)2T

q
, ð1Þ

where ST indicates the ensemble average and dij~DDxi{xj DD is the

Euclidean distance between the atomic positions xi and xj . S is

symmetric (S~ST ), but not necessarily positive definite, it has

dimensions N|N for an N atomic molecule. In practice, the

ensemble average Eq. 1 may be estimated via a time expectation

value from a molecular dynamics simulation. Of course, the

reliability of the estimate and thus the result of our method will

depend on the length of the simulation: Only if all relevant

conformations of the molecule have been visited with a probability

according to the Boltzmann distribution, will Eq. 1 converge. The

distance-deviation can be computed for all solute atom pairs, or

for a reduced set of representative atoms, such as a-carbon atoms

in order to reduce memory consumption when analyzing large

macromolecules. We note that it is possible to use the matrix of

squared distance deviations instead of using distance deviations.

Alternatively to using simulations, Eq. 1 can be computed from

realizations of an NMR ensemble or several x-ray structures of the

same molecule. The mean row value of S is a measure for the

flexibility of individual atoms.

Cluster membership probability
Most methods in the literature [19,27,28] assume that each atom is

uniquely assigned to one domain. This results in a so called integer

optimization problem, which is very hard to solve [35]. Reference

[36] has suggested using a fuzzy membership, where formally each

atom i[f1, . . . ,Ng may participate in different domains

m[f1, . . . ,Mg with a certain membership probability Xmi [ ½0,1�.
Xmi~0 means that the motion of the atom is independent of the

motion of the domain, and Xmi~1 means they are perfectly

synchronized. A natural normalization condition for X[RM|N is

that the total membership probability sums up to one,

XM
m~1

Xmi~1 V i[1,:::,N ð2Þ

As a direct consequence we can write the probability Pmij
of finding

the atoms i and j within the same domain m as

Pmij
~XmiXmj ð3Þ

As it will turn out, the optimal grouping into domains is always

unique in practice (Xmj [f0,1g V m,i). Nevertheless, the introduction

of the fuzzy memberships is essential as it allows the clustering

problem to be formulated as continuous quadratic optimization

problem, which, in contrast to integer optimization problems can be

solved efficiently for very large systems.

Protein Domain Identification
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Optimization problem for identifying semi-rigid domains
We define the optimal partition of the molecule into domains as

the one that minimized deviations within the domains:

minimize q(X)~
XM
m~1

XN

i~1

XN

j~1

XmiXmjSij~trace(XSXT ) ð4Þ

This objective function measures the error describing the amount

of distance deviations neglected by confining the motion of the

atoms within their domains. Since a partitioning using M domains

can always realize a M{1 domain partitioning as a special case,

increasing the number of domains relaxes the optimization

problem and the optimal error is thus monotonically decreasing

(see also section ‘‘MR121-GSGSW peptide’’), for M~N, the

solution X~I and q(x)~0 is obtained.

In contrast to heuristic coarse-graining methods the minimiza-

tion problem in Eq. 4 leads to an optimal partitioning of the

molecule according to the number of domains chosen. Further-

more the partitioning has no bias towards equally-sized domains,

i.e. it allows for domains of very different sizes if this is requested

by the structure of S.

The minimization problem in Eq. 4 together with the normalisa-

tion condition in Eq. 2 can be written into a standard quadratic

optimization problem with linear constraints that is solved here in

order to identify the optimal partitioning into domains.

minimize q(x)~xT H x ð5Þ

such that

Ax~b

0ƒx

Here H[RMN|MN is the symmetric Hessian matrix,

H~

S 0 � � � 0

0 P
..
.

..

.
P 0

0 � � � 0 S

2
666664

3
777775

ð6Þ

and x[RMN is a column vector containing the membership

probabilities

x~(x1, . . . ,xM )T~(X1,1, . . . ,X1,N ,X2,1, . . . ,XM,N )T , ð7Þ

with Xi being the i-th row of X. The constraint matrix A[RMN|MN

and the column vector b[RMN represent the equality constraints on

x. According to Eq. 2

A~

I1 I2 � � � IM{1 IM

0 0 � � � � � � 0

..

. ..
. ..

.

0 � � � � � � � � � 0

2
66664

3
77775 ð8Þ

where I[RN|N is the identity matrix, and

bk~
1 for kƒN

0 for kwN

�
: ð9Þ

Because the Hessian matrix H is just a composition of sub-

matrix S, one may reduce problem size by introducing the sub-

vectors, xm~(Xm,1, . . . ,Xm,N )T for each domain and reassemble

Hx from the products Sxm. The numerical implementation is

described in section ‘‘Numerical implementation’’.

Numerical implementation
The present quadratic optimization problem is solved using an

active set method similar to that of Gill et al., described in [37].

The solution procedure involves two phases: the first phase

involves the calculation of a feasible point x (if one exists), the

second phase involves the generation of an iterative sequence of

feasible points that converge to the solution.

Besides the sparse definition of A and b one may reduce the size

of the problem from one MN|MN-dimensional problem to M
N|N-dimensional problems. Because H is block diagonal, one

may compute Hx as the piecewise product Sxm and reconstruct

the vector

Hx~ Sx1,Sx2, . . . ,SxM{1,SxMð ÞT ð10Þ

in a subsequent computation. This modification reduces the

memory consumption significantly (by a factor of M ), because

instead of H[RMN|MN only S[RN|N has to be held in the

memory. The involved increase of computation time is insignif-

icant. With this modification the problem size solvable on desktop

computers is up to 65,000 particles. We note that in large

molecular systems these particles may be chosen to be backbone or

a-carbon atoms, so that the number of atoms of the molecule can

be much larger.

Initial condition and ‘‘successive restart’’
Even though the method is robust for low M (see section

‘‘MR121-GSGSW peptide’’) it was found that for larger M the

solution depends on the initial condition (IC) that is provided to

the solver. A permutation of the domains only modifies the labels

and not the grouping, thus there exist at least 2M equivalent

solutions. Unfortunately, there are also multiple non equivalent

local minima where the solver may get trapped. In order to avoid

being trapped in a bad local minimum it is advisable to choose a

good initial condition xIC .

One approach to escape from local minima is applying

stochastic methods such as Monte Carlo sampling, simulated

annealing or genetic algorithms. Another simple approach that has

shown to work well in practice is to use the solution obtained for

(M{1) domains to construct X for M domains. This heuristic

approach may done by identifying the cluster membership

subvector, xmax, that has the maximum average contribution to

q(x) per member. Formally this is expressed by

xmax~argmaxm
xT

mSxmPN
i~1 Xmi

: ð11Þ

The memberships within the subvector xmax are distributed over two

domains by substituting xmax by x�, with elements x�i ~ci xmaxi
and

appending x�� with elements x��i ~(1{ci) xmaxi
as xM . Here

Protein Domain Identification
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ci [ ½0,1� is either deterministically or randomly chosen for every atom

in xmax. To assure that the number of atoms is conserved the sum of

the membership probabilities over x� and x�� is one for all member

atoms.

xIC~(x1,x2, . . . ,x�, . . . ,xM{1,x��) ð12Þ

This procedure assures that the clustering error is monotonically

decreasing with increasing number of domains (see section ‘‘MR121-

GSGSW peptide’’).

Clustering quality and number of domains
The error can be used as tool to choose the number of domains

M, either by prescribing a desired q� and asking for the smallest

number of domains with q(xopt)ƒq�, or by looking for gaps in the

error series and choosing M such that qM (xopt)%qM{1(xopt). In

some applications it may be desirable to have the number of

domains selected automatically rather than by the user. One

possible method is to select the number of domains such that the

clustering error stays below a user-imposed bound, qtol . For this, it

is useful to define the normalized clustering error as:

q(x)~
1

N

X
i

qi(x)~
1

N

X
i

P
m

P
j

Pmij
Sij

P
m

P
j

Pmij

: ð13Þ

Here, qi(x) is the normalized error for atom i. Eq. 13 is not what is

optimized here, but a measure for the mean distance deviations of

pairs within domains for a given number of clusters. It therefore

has a direct physical interpretation and measures the quality of a

clustering of the molecule into semi-rigid domains. Alternatively,

Eq. 13 can be modified to use the matrix of squared distance

deviations, leading to the RMSD as error measure. q is identically

zero when the molecule consists of M� perfectly rigid domains and

MwM� is used. q is also useful in order to make an automated

choice of M: It can be set to a value the user considers as small

enough, such as 0:05 nm. Based on this rationale, the optimal

clustering is chosen by the following algorithm:

1. Compute distance-deviation matrix, S

2. Set M~2

3. Compute optimal clustering XM of based on XM{1.

4. If q(XM )vqtol return XM

4. Else M : ~Mz1, Go to 3.

Computational performance
The computational performance of the method was demon-

strated for the examples discussed in the ‘‘Results’’ section. From

Table 1 is seen that the method is very efficient even for a large

number of particles/domains.

Molecular models and simulation setup
To demonstrate the performance and usefulness of the method

we have applied it to a series of molecular systems:

1. A 1 ms MD trajectory of Ala5, containing 36 solute atoms.

2. A 2 ms MD trajectory of the artificial peptide MR121-GSGSW

[38] (i.e. a chromophore MR121 is connected with GLY-SER-

GLY-SER-TRP), containing 81 solute atoms.

3. 500 ns MD trajectories of the wild type of transthyretin (PDB

ID code, 1DVQ) [39], containing 2,257 solute atoms, and two

point variants 58Arg, 58His, containing 2,265 and 2,260 solute

atoms respectively. The point mutants were generated by

Modeller Release 9v5 [40].

4. A 2 ns MD trajectory of the chaperone GroEL-GroES (PDB

ID code, 1GRU), containing 72,716 solute atoms.

All molecular dynamics trajectories were generated by the

molecular dynamics package Gromacs 3.3 [41] using the

standard distribution force field GROMOS96 43a2. The solutes

were solvated in SPC216 water in a cubic box with at least 1 nm

of water on each side of the solute. The structures were

equilibrated with a 10 ps molecular dynamics simulation

constraints on all bonds of the protein. A subsequent energy

minimisation without position restraints was performed with a

steepest descent minimization. The production runs were done

with LINCS constraints [42] on the hydrogen bond length and a

2 fs time step, the trajectory was written every 2 ps. The

electrostatic interactions were computed using the smooth

Particle Mesh Ewald algorithm (PME), where the full direct

and reciprocal space parts were calculated each step with a lattice

spacing of 0:12 nm. The Van der Waals interactions were

computed with a cut-off at 1 nm. All simulations were performed

with Berendsen temperature coupling and isotropic pressure

coupling to 1 atm. The temperatures used were 293 K for

systems 1z2 and 300 K for systems 3z4.

Results

We illustrate our approach on a number of test systems. In all

cases the distance deviation matrix S was computed from the data

and the optimization problem in Eq. 5 was solved for a series of

consecutive domains numbers M using the successive restart

approach described in the ‘‘Materials and Methods’’ section.

Application to Small Model Systems
Numerical example. Interestingly, although the method

formally allows for fuzzy memberships, the optimal assignment

of atoms to domains is always unique in practice, thus obtaining

an exact partitioning of atoms into domains. For example,

consider a hypothetical 3-atom system with the distance-

deviation matrix

S~

0 0:7 0

0:7 0 0:3

0 0:3 0

2
64

3
75, ð14Þ

which has the optimal solution for M = 2 subunits:

Table 1. Computation time for selected molecular systems.

System no. Atoms time in seconds

M = 2 M = 5 M = 81

MR121-GSGSW 81 0.015 0.12 14.46

Transthyretin 229 Ca 0.048 0.94 94.72

Transthyretin 2257 1.32 92.34 4:45:103

GroEL-GroES 8015 Ca 181.77 1537.01 w4:2:104

Computation time for selected molecular systems with M~f2, . . . ,81g
domains. Computations were done on a usual desktop computer with
CPU@2.5 GHz and 6.5 GB Ram, time is given in seconds.
doi:10.1371/journal.pone.0010491.t001
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X~
1 0 0

0 1 1

� �
or by permutation X~

0 1 1

1 0 0

� �
: ð15Þ

Here atom 1 is placed in the first and atoms 2 and 3 are placed

in the second domain. As described in Section ‘‘Cluster

membership probability’’ the elements of the membership

matrix either converge to one or to zero, i.e. the atoms tilt

over to the domain that produces the smallest clustering error

when including this atom. In other words, the clustering error is

minimal when each atom is fully assigned to the subunit it

belongs to most.

Now consider the case,

S~

0 0:5 0

0:5 0 0:5

0 0:5 0

2
64

3
75, ð16Þ

that has the solution for M~2

X~
1 0 1

0 1 0

� �
or by permutation X~

0 1 0

1 0 1

� �
, ð17Þ

with total error q~0:025. In contrast the fuzzy solution

X~
1 0:5 0

0 0:5 1

� �
or by permutation X~

0 0:5 1

1 0:5 0

� �
ð18Þ

has a higher total error of q~0:028. Finally, consider the

pathological case of an off-diagonally uniform distance matrix

which represents entirely uncorrelated motion

S~

0 0:5 0:5

0:5 0 0:5

0:5 0:5 0

2
64

3
75, ð19Þ

which may be found for gas particles. In this case the solution for

M~2 is degenerated:

X~
1 a 0

0 1{a 1

� �
ð20Þ

In this case the total error of q~1 was found for all a[ ½0,1�.
According to the uniformity of S this degenerate case is never

found in practice for macromolecules. Even nearly unstructured

proteins will have some structure in S because of their bonding

topology and minor deviations in S from the uniform case will

cause the atoms to be uniquely assigned to one domain such that

the error is minimum.

We conclude that no fuzzy memberships are found in

macromolecules. Note, however, that the introduction of a fuzzy

membership was still essential, because using this formulation we

could express the optimization problem as a continuous quadratic

optimization problem. The solution to this kind of problem is

much easier than the solution to the integer optimization problem

emerging by the priori assumption that the memberships must be

integer values.

Polyalanine. As a first example the optimization method was

applied to Ala5 in order to demonstrate that the method can

identify meaningful domains. Some of the resulting coarse-grain

structures and the clustering error for M~f2,:::,Ng are shown in

Figure 1. The sub-structures are approximately equally sized and

represent the optimal partitioning for a given number of domains.

As the number of domains is increased the size of the domains

diminishes. For M~6, the method successfully identifies the

domains that are nearly rigid due to bond angle, angle, improper

dihedral and v-angle constraints: There are 4 domains containing

the 4 peptide planes including the first but excluding the second

Ca plus the CH3 side chain. The remaining two domains contain

the N-terminal and the C-terminal (see Figure 1). The small

remaining clustering error reflects the vibrations still allowed

within the domains, mainly due to flexibility in the improper and

v-dihedrals. For M~19 the method clusters the system into

domains containing one backbone atom each along with the one

side chain atom connected to it. Finally the method is shown to be

consistent in the limit, because for M~N every atom is placed

into a single domain (X~I), and the error is zero qM~N~0 nm

(not shown as structure).

MR121-GSGSW peptide. In order to study a more complex

system, the method was applied to the MR121-GSGSW peptide.

Figure 2 shows a series of molecular coarse-grain structures for

selected numbers of domains M~f2,3,4,6,7g. This series shows

clearly how the flexible parts of the molecule subdivide into finer

domains. M~3 separates the GSGS chain and the

chromophores, M~4 splits also the GS domains. Using more

domains accounts for smaller decrease of the error until M~6 the

system is split into individual residues.

The corresponding distance-deviation matrix is shown in

Figure 3 (top). It is structured into blocks along the diagonal

(values are close to zero), that represent the almost rigid regions of

the molecule. The values on the diagonal are zero (Sij~0 V i~j)

(blue), while values far from the diagonal are large (red). To

identify rigid domains within the peptide we have employed the

quadratic optimization method for M~6. The convergence of the

method depends on the size of the molecular system, the number

of domains chosen and the initial conditions. For six domains in

Figure 1. Clustering error of Ala555 for m[[f2, . . . ,36g and
corresponding coarse-grain structures for m~~f3,4,6,7,19g do-
mains. The decrement of the clustering error is very steep for mƒ5
and relatively flat afterwards, suggesting that m~6 is a good choice for
the number of domains (qtol&0:005 nm). The molecule is partitioned
into its four peptide planes and two end groups containing the C- and
N-terminus respectively.
doi:10.1371/journal.pone.0010491.g001
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the artificial peptide (81 atoms) it converged within *100
iterations, and a few ms on a standard desktop computer.

The resulting membership matrix, X, and the corresponding

coarse-grain structure are shown in Figure 3 (bottom). The colors

show the assignment of atoms to domains. The elements of the

membership matrix either converge to one or to zero, i.e. the

atoms tilt over to the domain that produces the smallest clustering

error when including this atom.

In order to test the optimality of the results, we have repeatedly

solved the clustering problem for the MR121-GSGSW peptide

using different initial conditions: (i) for given M, each atom is

assigned a random membership to each domain,

Xmi*uniform ½0,1� and then normalized so that
P

m Xmi~1;

(ii) only M~2 is using a random initial condition while the

solutions for Mw2 are found by successive restart from the

previous solution with the atoms of the largest-error domain split

into the two new domains by an initial assignment of Xmi~0:5.

Figure 4 shows a comparison for the clustering error for both

cases, with ten realizations for the random initial condition plotted.

The results are identical independent of the initial condition for

small M, which suggests that these solutions are likely to be

globally optimal. For large M the solution based on random initial

condition gets trapped in different but only slightly suboptimal

local minima, while the successive restart solution is monotonically

improving for increasing M. In all cases studied, the heuristic

successive restart scheme possesses a useful monotonicity property,

and performs better than optimization of random guesses.

Application to Biological Complexes
Transthyretin. The transport protein transthyretin (TTR) is

primarily synthesized in liver, choroid plexus, and the retina. The

primary function is the transport of thyroxine and retinol binding

protein (RBP). Both molecules can bind to the homo-tetrameric

structure of TTR, which is found at a physiological pH of 7{7:4.

In contrast the 28 kDa dimer structure is observed at pH w7 and

titration of 2% sodium dextransulfate (SDS). It has two identical

127-amino-acid monomers (A - blue) and (B - green) (see Figure 5)

with an extensive b-sheet structure that form b-sandwiches [43].

The interactions between the two monomers involve electrostatic

and hydrophobic forces.

Transthyretin is one of the human proteins known to be

associated with local amyloidosis. Amyloid fibrils are the

polymerized form of the protein, their internal structure mainly

consists of cross b-sheets, arranged perpendicular to the long axis

of the fibrils [44]. Both point variants of TTR and the native

protein are known to deposit as amyloid fibrils in the extra-cellular

region, where they cause neurodegeneration and organ failure (for

reviews on amyloidosis see [45,46]). Transthyretin is known to be

associated with the amyloid diseases senile systemic amyloidosis

(SSA), familial amyloid polyneuropathy (FAP), and familial

amyloid cardiomyopathy (FAC). Other known amyloidogenic

diseases are for e.g. Alzheimer’s disease, type 2 diabetes and the

transmissible spongiform encephalopathies which are character-

ized by proteinaceous deposits in the affected relevant organs.

Transthyretin aggregation to amyloid fibers has been the subject

of many studies [43–48], however the molecular mechanisms are

Figure 2. Clustering error of MR121-GSGSW for m [[ f2, . . . ,25g
and corresponding coarse-grain structures for m~~~f2,3,4,6,7g
domains. The decrement of the clustering error is very steep for mƒ5
and relatively flat afterwards. For m~6 the number of domains is well
balanced with the expected error (qtol&0:01 nm).
doi:10.1371/journal.pone.0010491.g002

Figure 3. Distance deviation matrix S for MR121-GSGSW (top)
and membership matrix, X, for m~~6 clusters (bottom). The
colors relate the semi-rigid regions in the distance deviation matrix to
the molecular coarse-grain structure and the membership matrix.
doi:10.1371/journal.pone.0010491.g003
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still not completely understood. Structural modifications and their

effect on conformational stability were studied by structural and

computational analyses [49] and experimentally by urea and

temperature induced unfolding [50,51]. It is proposed that

amyloidogenicity of TTR is associated with anomalous structures

that favour oligomer and fibril formation. The structures are

assumed to be the product of complex dissociation via destabilisa-

tion [52] and subsequent unfolding and folding of the protein [53].

It could be verified that prior fibril formation the homo-tetramer

dissociates into two dimers [54]. Whether the dimers need to

dissociate into monomers before fibrillation can occur is still

unclear. However it is assumed that dimer dissociation is the result

of a mechanism called ‘‘edge exposure’’, where the displacement

of residues 115{123 (inner b-strand) and residues 22{41 (outer

b-strand) flattens the dimer structure [55,56].

To date, a large number of TTR variants have been associated

with amyloid formation [57]. Here we study the structural rigidity

of the wild-type and two variants commonly found, where the

leucine of residue 58 in the dimers is replaced by arginine or

histidine (TTR-58Arg and TTR-58His) and investigate their

possible role in destabilisation and dissociation of the dimer

structure. Both variants are known to be amyloidogenic, however

the phenotypic difference of FAP between the 58His and 58Arg

mutations suggest differences in the secretion efficiency or

aggregation characteristics of the TTR variants [58].

In Figure 5 we show the clustering error for increasing number

of domains and the coarse-grain structures for M~f2,4,6,8g
domains. As expected for M~2 the atoms from each monomer

are placed in separate but symmetric domains. This separation is

maintained for larger values of M. For M~4,6,8, . . . the domains

found in the two monomers are nearly, but not perfectly

symmetrical, as a result of limited statistical accuracy of the

molecular dynamics trajectory. For M~4 the algorithm identifies

two b-sheets (b) and (d) in the dimer and two structures (a) and (c)

including b-sheets and the a-helices. At M~6 the structures (a)

and (c) are split into one block containing two b-strands (f) and (g)

and one block containing two b-strands and the a-helix (e) and (h).

Figure 4. Dependence of clustering error on the choice of the initial condition. When using a random assignment to clusters for the first
step M~2 followed by successive restart (dashed red line) the error is monotonically decreasing. Choosing random initial conditions for all M (one
realization highlighted as blue solid line, 9 more realizations indicated by ‘‘+’’), the optimization gets trapped in slightly different local minima for
large M . For small M the method robustly identifies the same minimum independent of the initial condition, indicating that global optimality is
achieved in this case.
doi:10.1371/journal.pone.0010491.g004

Figure 5. Clustering error of native Transthyretin for
m[[f2, . . . ,30g and corresponding coarse-grain structures for
m~~f2,4,6,8g domains. The obtained coarse-grain structures separate
the dimer into two monomers (A) and (B) for M~2 and identify the b-
sandwich structure (a) + (b) and (c) + (d) in the two monomers for
M~4. For M~6 the method additionally identifies the a-helical
structure (e) and (h), for M~8 two flexible loops (i) and (j) are found.
doi:10.1371/journal.pone.0010491.g005
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For M~8 the two loops in the outer region containing two short

b-strands are found to be separate domains (i) and (j).

To demonstrate the applicability to experimental data we used the

method to partition molecular structures of transthyretin obtained by

x-ray crystallography. Besides the wild type structure (PDB code

1DVQ), which was also used in the molecular dynamics simulation,

five related structures of transthyretin complexed with resveratrol,

diclofenac, flurbiprofen, DDBF, oFLU, and PHENOX (PDB codes

1DVS, 1DVT, 1DVU, 1DVX, 1DVY, 1DVZ) [39] have been used

to generate the distance deviation matrix. Due to in sequence

mutations in the structures 1DVX and 1DVZ we cleaned up the

structure files to leave only comparable a-carbon atoms in all six pdb-

files. In the 1DVX file we removed residue 9+127 BLEU, 110+228

BSER and 113+231 BTHR, while in 1DVZ 7+124 BLYS and

10+127 BLEU where removed. We note that these six crystallo-

graphic x-ray structures correspond to different chemical or

crystallographic states, so that the structural differences between

them are not expected to be idendical to the structural differences

within the Boltzmann-weighted ensemble of a solvated TTR in a

single chemical state. Nevertheless, it is expected that the differences

in the crystallographic realizations are sensitive to the molecule’s

instrinsic flexibility, so that a comparison between the simulation-

based and X-ray-based results is interesting. The clustering result

obtained from the x-ray structures and clustering error with coarse-

grain structures for M~2,4,6,8 are shown in Figure 6. The

clustering of x-ray structures yield similar coarse-graining as obtained

by the clustering of molecular dynamics data. The dimer is separated

into two monomers (A) and (B) for M~2, while for M~6 the b-

sandwich (b) + (c) + (g) + (f) and a-helical (e) + (h) structures within the

dimers are identified (compare top right structure generated from

MD data). However, for increasing number of domains (M~8) the

clusterings are different. Note that the clustering error found for the

X-ray structures is much smaller, indicating that the crystallographic

realizations are much more similar to each other than the structures

accessible to the dynamics of TTR in a solvent simulation, likely

owing to crystal lattice constraints.

The distance-deviation matrices in Figure 7 show two large

blocks along the diagonal (blue) that indicate that the internal

rigidity within each of the two associated monomers is much larger

than the rigidity between the monomers. The off-diagonal regions

in the matrices (yellow-green-red) represent the inter-monomeric

rigidity and are related to the stability or binding strength between

the monomers. Large values in the matrix (red) indicate low

stability, while small values (blue) are related to high stability of the

dimer.

The structural modification induced by the amyloidogenic

variants (TTR-58Arg and TTR-58His) contribute to an de/

increase in rigidity in some regions of the structure (see increasing

red regions in the variants compared to the native TTR in

Figure 7), which lead to local de/stabilisation of the dimer. The

overall stability of the dimer is directly related to the difference

Dq12~qM~1{qM~2. Here, the binding strength Dq12Arg
~4:0:104

for TTR-58Arg is increased and Dq12His
~5:84:104 for TTR-

58His is decreased compared to the binding strength of the wild-

type Dq12wt
~5:12:104. The decreased stability for TTR-58His

variant compared to the wild type protein is supported by urea and

thermal induced unfolding experiments [51] and computational

studies that are based on an energy functions derived from non-

redundant x-ray structures [49].

However in addition to the overall stability, increased atomic

motion of specific regions in the dimer may influence the stability

of the dimer and favor transient dissociation. The local flexibility/

rigidity of atoms is reflected by qi(x), i.e. the mean row value of S.

The method is thus able to determine the relevant substructures

that may cause destabilisation by taking the row average of the

distance deviation matrix (see Figure 7). The peaks indicate

residues that have increased distance deviation with respect to all

other residues, i.e. the most flexible regions in the dimer. In

Figure 7 (right) the structures are color coded according to the row

average of S, the mutated residue 58 is colored purple. In

agreement with [51] the results indicate that compared to the wild-

type protein the 58His and 58Arg variants are mainly destabilized

at the monomer-monomer interface. In comparison to the wild-

type TTR (Figure 7 top), it is clearly seen that the 58His variant

increases the total distance deviation between the monomers (see

average value of the row mean) and the peak values at residues

11,78,105,125,193,220. In contrast the 58Arg variant of trans-

thyretin decreases the mean distance deviation, while the peak

values at residues 11,78,105,126,192,220 are still increased

compared to the wild-type TTR. Because both variants are

known to be amylogenic [58], we conclude that destabilisation is

not only determined by the overall stability, but also by specific

regions that cause local destabilisation of the protein that may lead

to transient dissociation into monomers. The method is thus able

to provide information about regions of TTR that are destabilized

in disease causing variants.

GroEL-GroES chaperone complex. The existence of semi-

rigid domains and their relative dynamics are essential for the

functionality of large macromolecular machines. Here, we analyse

the dynamics of the GroEL-GroES chaperone complex (see

Figure 8), which contains 8,015 residues (72,716 atoms). The

complex ensures the proper folding of many proteins [59] and

avoids non-native protein aggregation. GroEL is a tetradecameric

protein of 14 identical domains arranged in a cis and trans

heptameric-ring. GroES is dome shaped in either un-/bound

configuration and contains seven identical domains assembled as a

heptamer ring.

Computational studies have provided important insights into

the allosteric mechanism of the chaperonin GroEL-GroES.

Protein folding within the complex involves binding, encapsula-

Figure 6. Clustering error obtained from six x-ray structures of
Transthyretin for m[[f2, . . . ,30g and corresponding coarse-grain
structures for m~~f2,4,6,8g domains. As for molecular dynamics data
the obtained coarse-grain structures separate the dimer into two
monomers (A) and (B) for M~2 and identify the b-sandwich
(b) + (c) + (f) + (g) and a-helical (e) + (h) structures in both monomers for
M~6.
doi:10.1371/journal.pone.0010491.g006
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tion, and release of the substrate protein [60,61]. During the

GroEL-GroES cycle the GroEL binds a mis-/unfolded protein at

its apical (A) domain (see Figure 9). The binding is caused by

electrostatic and hydrophobic interactions between the exposed

hydrophobic residues of the substrate protein and those of the

apical domain. The equatorial domain (E) plays the major role in

the overall chaperonin activity. It binds and hydrolyzes ATP. The

intermediate domain (I) serves as a functional bridge between the

apical and equatorial domains. After ATP binding to every cis-

subunit, GroEL is bound to the cofactor GroES. During the

GroES binding large conformational changes at the apical domain

of the cis-ring cause upwards and outwards movement of the apical

GroEL domains, thereby increasing the size of the central cavity

and forming a dome-shaped chamber [59,61]. By this conforma-

tional change the substrate protein is captured inside the cavity,

where it will be able to undergo conformational changes toward

the folded state. During ATPs hydrolysis in the cis-ring, ATP

molecules are transferred to the trans-ring, which drives the release

of the GroES cap and the substrate protein.

Due to the size of the system only a short molecular dynamics

trajectory with duration of 2 ns was produced, which is certainly

not converged, but can nevertheless be used for a performance test

(see Section on ‘‘Computational Performance’’). In Figure 8 we

show the clustering error for m[f2,:::,40g and the most

informative structures. We note that due to insufficient statistical

information in the MD simulations (under-sampling) the optimi-

Figure 7. Distance deviation matrix for native TTR (top) compared to variants 58Arg (middle) and 58His (bottom). The mean row
value of each matrix indicates flexible regions around reference residues 11, 77, 105, 191 and 220. The corresponding structures are color coded
according to the average row value of S and show the location of residue 58 (purple). Large values (red) indicate flexible regions, while small values
(blue) indicate rigid regions in the dimer. The data suggests that the dimer interface is destabilized for both amylogenic TTR variants of the protein.
doi:10.1371/journal.pone.0010491.g007
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zation results in disconnected domains (fragmentation) for small

M (see Figure 8). Nevertheless, the clustering with M~3 reveals

the ring structure of the GroEL into two halves and finds the

GroES as a third domain revealing the essential elements

necessary to represent the conformational change caused by the

complex formation of GroEL with GroES. For a large number of

domains, e.g. for M~28, the method clearly detects functional

domains that can be directly related to the heptamer-ring structure

of the chaperone. All shown results (M~3, M~28) are equally

‘‘correct’’, but reveal different levels of detail. The fragmentation

of domains for small M may be reduced by using longer molecular

dynamics trajectories. Thus, the method is applicable to large

molecular complexes with modest requirements of computation

time, but as it is data-based the results are sensitive to the quality of

the data.

To study GroEL in more detail, we have further performed

domain identification on the subunit of the cis and trans

heptameric-rings of GroEL. The distance deviation matrix was

generated by averaging over the data of seven identical subunits

for the cis and trans ring respectively. This averaging enhances the

statistics of the molecular dynamics data. The domains found in

the optimization (see Figure 9) are in good agreement with the

functional domains in the GroEL subunit [62]. For M~3 the

major three domains (apical, intermediate and equatorial) are

found in either cis- or trans-ring subunits. The distance deviation

matrix for M~3 and the identified domain boundaries are shown

in Figure 10. The average row value and the color coding for the

three domains is shown on the right. These coarse-grain structures

are in good agreement to those used in rigid clusters models [63]

or Markov models [64]. For larger number of domains, for e.g.

M~6, the method identifies two domains in the apical,

intermediate and equatorial region respectively. For M~11 three

domains in the apical and intermediate region respectively and

four domains in the equatorial region were found.

Discussion

The coarse-graining algorithm developed in this paper is an

optimal and systematic approach to decompose ensembles of

molecular structures into semi-rigid domains. It consists of three

steps: (i) obtaining an ensemble containing the atomic fluctuations,

e.g. using molecular dynamics simulation, (ii) computation of the

pair distance-deviation matrix and (iii) definition of semi-rigid

domains by a quadratic optimization method, to distinguish and to

quantify the rigid and flexible domains within the protein

structure. The method identifies rigid regions that can vary in

size and shape. The objective function minimized in the procedure

is a direct measure of the clustering error and thus the within-

cluster flexibility neglected by assigning the atoms into domains.

We have been able to study the rigidity of proteins in systems

involving 8,015 residues on a normal desktop computer.

In contrast to other methods the algorithm does not require the

choice of any parameters other than the number of domains.

Being able to fix the number of domains is an advantage, since it

gives the user a tool to decide how much flexibility he wants to

resolve and to control the magnitude of the clustering error. A

straightforward automatic way to select the number of domains is

by requiring the clustering error to be below a specified threshold.

The coarse-graining algorithm has been applied to a number of

benchmark problems. First, the consistency and error dependence

of the method was demonstrated on two short peptides, by

systematically increasing the number of domains M from 2 to the

number of atoms N. By using appropriate initial conditions, the

clustering error was shown to be monotonically decreasing

towards zero for M~N. The method was also used to quantify

the overall stability/rigidity of several variants of the amyloido-

genic protein transthyretin (58His and 58Arg) compared to its

native structure. The rigidity properties could be correlated to the

destabilisation and amyloid-formation properties of the protein.

Compared to the wild type protein we found a decreased stability

for TTR-58His variant which is in agreement with urea and

thermal induced unfolding experiments of the protein variants

Figure 8. Clustering error for the GroEL-GroES chaperonin
complex for m[[f2, . . . ,40g and important structures. The a-
carbon atoms are colored according to the coarse-graining. The poor
statistics of the short MD simulation causes discontinuous domains
(fragmentation) for small m. The method clearly detects the functional
domains of the complex for m~28.
doi:10.1371/journal.pone.0010491.g008

Figure 9. Clustering error for the heptameric subunit of GroEL
for m [[f2, . . . ,20g. The cartoon representation of three important
structures (M~3,6 and 11) is colored according to the identified
domains. For M~3 the three functional domains (apical, intermediate
and equatorial) in the GroEL subunit are found.
doi:10.1371/journal.pone.0010491.g009
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[51] and structural and computational studies [49]. It was further

found that the TTR destabilisation is not only determined by the

overall stability, but also by local destabilisation that is different in

the variants. The method is able to identify the residues in the

disease causing variants of the protein, that have increased

flexibility compared to the wild type protein. These regions are

proposed to cause local destabilisation of the protein that may lead

to transient dissociation into monomers. For small number of

domains the coarse-graining of x-ray structures is almost similar to

the coarse-graining obtained by the clustering of molecular

dynamics data. Finally, we demonstrated that the rigidity

clustering of large molecular complexes like for example the

8,015-a-carbon atom system GroEL-GroES can be done within

less than one CPU hour. The method clearly identifies functional

and structural domains that allow to describe the conformational

change of the GroEL-GroES complex formation where the ring

structure is split along the long axis resulting in a deformation of

the cavity. For larger number of domains the method finds the

monomeric substructures in the heptameric rings of the molecular

complex. The three major domains found in such a subunit are in

good agreement with the apical, intermediate and equatorial

domain in the GroEL monomer [62].

Since the clustering method proposed here is a data-based

method, its result will depend on the quality of that data. In

principle, the result will only be globally converged, if the

underlying simulations have visited all relevant conformations

within the data set according to the Boltzmann probability.

However the GroEL-GroES results and other studies on very large

systems such as viruses [65,66] indicate that the rigidity

information required to identify semi-rigid domains within one

conformation converges very quickly. The advantage of data-

based clustering is that it is independent of the molecular model

used and can also be applied to realizations of an NMR ensemble

or a series of x-ray structures of the same protein.

Besides the robustness and reliability the method is easy to

implement, efficient and useful in obtaining the essential

nanomechanical properties of the molecule, we expect it to

become a useful tool for the analysis of large-scale molecular

systems.

As an outlook the method presented here can be used as a first

step to generate a simulation model for large molecules or

aggregates that can for example be simulated with Brownian

dynamics. In addition to the identification of mobile domains this

requires also the estimation of interaction forces and diffusion

constants from either simulation or experimental data. This task is

a subject of ongoing work.
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