
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

Maximum a posteriori estimation for Markov chains based on
Gaussian Markov random fields

H. Wu, F. Noé∗
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Abstract

In this paper, we present a Gaussian Markov random field (GMRF) model for the transition
matrices (TMs) of Markov chains (MCs) by assuming the existence of a neighborhood relation-
ship between states, and develop the maximum a posteriori (MAP) estimators under different
observation conditions. Unlike earlier work on TM estimation, our method can make full use of
the similarity between different states to improve the estimated accuracy, and the estimator can
be performed very efficiently by solving a convex programming problem. In addition, we dis-
cuss the parameter choice of the proposed model, and introduce a Monte Carlo cross validation
(MCCV) method. The numerical simulations of a diffusion process are employed to show the
effectiveness of the proposed models and algorithms.
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1. Introduction

Markov chain (MC) models provide a general modeling framework for describing state evo-
lutions of stochastic and memoryless systems, and are now important and powerful tools for an
enormous range of mathematical applications, including science, economics, and engineering.
Here we only focus on the finite discrete-time homogeneous MC model, which is one of the
most common MC models, and whose dynamics can be simply characterized by a transition ma-
trix (TM) T =

[
Ti j

]
∈ Rn×n with Ti j the transition probability from the i-th state to the j-th state.

In most applications, the main problem is to estimate the transition probabilities from observed
data.

In the past few decades, a lot of different techniques have been proposed to estimated the
TMs. Many early researches devoted to the least-square (LS) approaches [1–3], for MC models

∗Corresponding author
Email addresses: hwu@zedat.fu-berlin.de (H. Wu), frank.noe@fu-berlin.de (F. Noé)
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can be transformed to linear stochastic systems with zero-mean noise. However, the conventional
LS estimators may violate the nonnegative constraints on TMs. Thus, some restricted LS meth-
ods [4–6] based on constrained quadratic programming algorithms were developed to avoid this
problem. Some researchers [2, 5] suggested utilizing the weighted LS and weighted restricted
methods to solve the problem of heteroscedasticity. By now, the best known and most popular
estimation method of MC models is maximum likelihood (ML) estimator which was proposed
in [7], for it is consistent and asymptotically normally distributed as the sample size increases
[8], and can be efficiently calculated by counting transition pairs. Some experiments show ML
estimator is superior to the LS estimators [9]. Moreover, the ML method can be applied to
revsersible TM estimation for some physical and chemical processes [10].

Recently, the Bayesian approach [11, 12] to TM estimation has received a good deal of
attention. In this approach, an unknown TM is assumed to be a realization of some prior model,
and the posterior distribution given observed data can be obtained by Bayes’ rule. Comparing
to the non-Bayesian methods, the Bayesian estimator can provide much more information than a
single point estimate, and is more reliable for small size data set if the prior model is appropriately
designed. The most commonly used prior distribution is the matrix beta distribution with density
p (T|Θ) ∝

∏
i, j T θi j−1

i j . It is a conjugate prior and can be easily analyzed and efficiently sampled
since each row of T follows the Dirichlet distribution. In some applications,Θ = 1 andΘ = 0 are
recommended, because p (T|Θ) is equivalent to the uniform distribution when Θ = 1 [13], and
Θ = 0 makes the posterior mean of the TM identical to the ML estimate [14]. The matrix Θ can
also be optimized by using the empirical Bayes approach [15]. The matrix beta prior distribution
based Bayesian estimation of revsersible TM was investigated in [13]. The shortcoming of the
matrix beta prior is that it does not take into account possible correlations between different
rows of the transition matrix. Assoudou and Essebbar [16, 17] proposed the Jeffreys’ prior
(a non-informative prior) model for TMs to overcome this problem, and no extra parameter is
required in this model. However, the Jeffreys’ prior distribution is too complicated for deriving
the Bayesian estimator, and can only be applied to MC models with very few states in practice.

The major objective of this paper is to propose a new prior model for MCs based on the
Gaussian Markov random filed (GMRF). The GMRF [18–21] model is a specific Gaussian field
model, and frequently used in spatial statistics and image processing, which constructs a global
distribution of a spatial function by considering the local correlations between points or regions.
In this paper, we assume that the state space of the MC has neighborhood structure and the
adjacent states have similar transition behaviors. This assumption generally holds for the grid
based approximate models of continuous space MCs, and the case that the state space has a
distance metric. A GMRF prior model of TMs is then designed according to the assumption,
and the corresponding maximum a posteriori (MAP) estimator is developed. In comparison with
the existing models, the new prior model is able to utilize the similarity relationship of states
better. And there is only one extra parameter is required, which can be selected by the cross
validation (CV) method. Moreover the estimation problem with noisy data is considered, and the
expectation maximization (EM) algorithm is used to get the MAP estimate.

2. Background

2.1. Gaussian Markov random fields

Let G = (V, E) be an undirected graph without loop edges, where V is the set of vertices and
E ⊂ V × V is the edge set. And vertices u, v ∈ V are said to be adjacent iff (u, v) ∈ E, which is
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denoted by u ∼ v. It is clear that ∀u, v ∈ V , v � v and u ∼ v ⇔ v ∼ u. A Gaussian Markov
random field (GMRF) Y on G is a Gaussian stochastic function that assigns to each vertex v a real
number Y (v). Here we only introduce the widely used intrinsic GMRF model [19, 22], which is
often specified through the following distribution

pGMRF (y|σ) ∝ exp

− 1
2σ2

∑
u∼v

(
Y (u) − Y (v)

d2 (u, v)

)2 (1)

where y = {Y (v) |v ∈ V}, σ is a parameter, and d (·, ·) denotes a distance measure between ver-
tices. It is clear that the neighboring data points are desired to have the similar values.

2.2. Markov chains

We consider a time-homogeneous Mariv chain (MC) {xt |t ≥ 0} on the finite state space S =
{s1, . . . , sn}. Its probability model can be described by a transition matrix (TM) T =

[
Ti j

]
∈ Rn×n

whose entries are given by
Ti j = p

(
xt+1 = s j|xt = si

)
(2)

where ∑
j

Ti j = 1, Ti j > 0 (3)

Here we define Ωn = {T|T ∈ Rn×n is a stochasic matrix}, which is a convex set.
And the probability distribution of the finite-length state sequence {x0, x1, . . . , xm} given T

can be expressed as
p (x0:m|T) =

∏
i, j

TCi j

i j (4)

where entries of count matrix C =
[
Ci j

]
are numbers of observed transition pairs with

Ci j =
∣∣∣∣{(xt, xt+1) |xt = si, xt+1 = s j, 0 ≤ t ≤ m − 1

}∣∣∣∣ (5)

3. GMRF Based MC Model Estimation

3.1. GMRF prior

Given an MC state space S = {s1, . . . , sn}, the purpose of this subsection is to provide a
GMRF model based prior distribution for the TM T =

[
Ti j

]
. Assuming a neighborhood structure

on the state space, we construct a neighborhood relation between the transition pairs as(
si, s j

)
∼ (sk, sl)⇔

(
si, s j

)
∈ (∂sk ∪ {sk}) × (∂sl ∪ {sl}) \ {(sk, sl)} (6)

Then the unknown matrix T can be modeled by GMRF with distribution

pGMRF (T|σ) ∝ exp (−u (T, σ)) (7)

where

u (T, σ) =
1

2σ2

∑
(si,s j)∼(sk ,sl)

Ti j − Tkl

d2
i jkl

2

(8)
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di jkl is the distance between
(
si, s j

)
and (sk, sl), and here defined as

di jsk =

√
d2 (si, sk) + d2

(
s j, sl

)
(9)

However, the realization of distribution (7) does not satisfy (3) in the general case. Therefore we
modify the prior distribution as

pGMC (T|σ) = pGMRF (T|σ,T ∈ Ωn) =

 1
z(σ) exp (−u (T, σ)) , T ∈ Ωn

0, T < Ωn
(10)

where
z (σ) =

∫
Ωn

exp (−u (T, σ)) dT (11)

3.2. MAP estimation

The maximum a posteriori (MAP) estimate of the TM T of an MC from observed data
{x0, . . . , xt} with count matrix C =

[
Ci j

]
is given by

T̂ = arg max
T

{
log p (C|T) + log p (T)

}
(12)

Using the proposed GMRF prior model and assuming the parameter σ is known, (12) is equiva-
lent to the following optimization problem

T̂ (σ) = arg min
T∈Ωn

−∑
i, j

Ci j log Ti j + u (T, σ)

 (13)

It is a convex problem and can be solved without any spurious local minima. In this paper, we
perform the optimization by the diagonalized Newton (DN) method (see [23] for details).

3.3. Choice of σ

We now consider the case that σ is unknown. Motivated by the above analysis, it seems
reasonable to jointly estimate T and σ by MAP method. But it is intractable to compute the joint
prior distribution p(T, σ) = p(σ)pGMC(T|σ) for z (σ) has no closed form.

So here we use cross-validation (CV) approach to select the value of σ, and adopt the Monte
Carlo cross-validation (MCCV) method proposed in [24]. The MCCV of a σ is conducted by
the following steps:

Step 1. Partition the set of observed state transition pairs randomly into train and test subsets,
where the train subset is a fraction β (typically 0.5) of the overall set, and the correspond-
ing count matrices are denoted by Ctrain

k and Ctest
k .

Step 2. Calculate
T̂k (σ) = arg max

T∈Ωn

{
log p

(
Ctrain

k |T
)
− u (T, σ)

}
(14)

and the predictive log-likelihood

CVk (σ) = log p
(
Ctest

k |T̂k (σ)
)

(15)
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Step 3. Repeat the above steps for k = 1, . . . ,K and select

σ∗ = arg max
σ

CV (σ) (16)

with CV (σ) =
∑

k CVk (σ) /K.

It can be seen from (15) that CVk (σ) → −∞ if the (i, j)-th entry of Ctest
k is positive and

that of T̂k (σ) convergences to 0. In order to avoid the possible singularity, we approximate the
logarithmic function as

log
(
Ti j

)
≈ PLη

(
Ti j

)
=

1
η

(
T ηi j − 1

)
(17)

when calculating CVk (σ), where η ∈ (0, 1) is a small number (η = 0.1 in this paper). It is easy to
prove that limη→0 PLη(x) = log(x) for x > 0.

4. Estimation with Stochastic Observations

In this section, we will take into account that the actual state transitions are unknown, and
only stochastic observations

ot |xt ∼ p (ot |xt) (18)

for t = 0, . . . ,m are available. In this case, the MAP estimator of the TM with prior parameter σ
can be expressed by

T̂ (σ) = arg max
T∈Ωn

{
log p (O|T) − u (T, σ)

}
(19)

where O = {o0, . . . , om}, and computed with the expectation maximization (EM) algorithm [25]
consisting of the following steps:

Step 1. Choose an initial T(0) ∈ Ωn and let k = 0.
Step 2. Compute the functional

Q
(
T|T(k)

)
= E

[
log (C (X) |T) − u (T, σ) |T(k),O

]
=

∑
i, j

C̄i j log Ti j − u (T, σ) (20)

where X = {x0, . . . , xm}, C (X) =
[
Ci j (X)

]
denotes the count matrix of X, and

C̄ =
[
C̄i j

]
= E

[
C (X) |T(k),O

]
(21)

Step 3. Find T(k+1) which maximizes the function Q
(
T|T(k)

)
as

T(k+1) = arg min
T∈Ωn

−∑
i, j

C̄i j log Ti j + u (T, σ)

 (22)

Step 4. Terminate if∣∣∣∣(log p
(
O|T(k+1)

)
− u

(
T(k+1), σ

))
−

(
log p

(
O|T(k)

)
− u

(
T(k), σ

))∣∣∣∣
is small enough.
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Step 5. Let k = k + 1 and go to Step 2.

Note that (22) has the same form as (13) with C̄i j ≥ 0 for any i, j, so (22) is a convex
optimization problem and can be solved by the DN algorithm too.

Further, in a similar manner to Section 3.3, the value ofσ can be designed through the MCCV
algorithm. Due to space limitations, we omit details here.

5. Simulations

5.1. Brownian dynamics model

In this section, the estimation method proposed in this paper will be applied to a Brownian
dynamics (BD) model, which is described as

dr = − f (r) dt + ρdW (23)

where ρ = 1.4, W is a standard Brownian motion, f (r) = dV (r) /dr and V (r) is the potential
function (see Fig. 1) given by

V (r) =


−111.01r3 + 178.63r2 − 82.27r + 10.55, r < 0.75
182.8915r3 − 482.64r2 + 413.69r − 113.44, 0.75 ≤ r < 1
−153.36r3 + 526.11r2 − 595.06r + 222.81 1 ≤ r < 1.25
84.94r3 − 367.53r2 + 521.98r − 242.62, 1.25 < r

(24)

Discretizing the motion equation (23) with time step ∆t = 10−3 and decomposing the state
space {r|0 ≤ r ≤ 2} into n = 100 “cells” S = {s1, . . . , sn} with si =

2i−1
n , we can get the grid based

approximate MC model

p
(
xk+1 = s j|xk = si

)
∝ exp

−
(
s j − si + ∆t f (si)

)2

2ρ2∆t

 (25)

The corresponding TM T =
[
Ti j

]
is shown in Fig. 2. Furthermore, the neighborhood structure on

S is here defined by ∂si = {si−1, si+1} ∩ S with distance measure d
(
si, s j

)
= |i − j|.

5.2. TM estimation

Here, we will use the MAP method presented in Section 3 to estimate the TM T based on a
realization {r (t) |0 ≤ t ≤ 3} of (23) (see Fig. 3), and compare it with the ML method [11]. Fig. 4
plots the MCCV results of σ and the optimal σ∗ = 0.06159.

The comparisons of the different estimators are based on the Kullback-Leibler (KL) diver-
gence rate metric [26] defined as

KLR
(
T̂‖T

)
=

∑
i j

π̂iT̂i j log
T̂i j

Ti j
(26)

where π̂ = [π̂i] denotes the stationary distribution of TM T̂ =
[
T̂i j

]
. It can measure the distances

between Markov chains on the same state space.
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Fig. 5 shows the estimation results of the proposed MAP method with different σ and ML
method. Clearly, the ML method fails to estimate the values Ti j with i ∈ [1, 7] ∪ [34, 44] ∪
[91, 100] for there are few xk are sampled within the ranges. The GMRF prior based MAP esti-
mator overcome this problem by interpolating from the other Ti j according to the GMRF model.
Moreover, as observed from the figures, the parameter σ determines the overall smoothness of
the estimated TM, and the MCCV approach can provide an appropriate value of σ.

5.3. TM estimation with noisy data

In this subsection, we study the performance of our proposed algorithms for estimating T
from noisy observations

o (t) |r (t) ∼ N
(
r (t) , v2

)
(27)

with v = 0.1.
The MAP estimator with GMRF prior in Section 4 will now be compared to the ML estimator

implemented using Baum-Welch algorithm [27]. The MCCV results are shown in Fig. 6 and the
optimal σ∗ = 0.1947.
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Figure 7: T̂

In Fig. 7, we show plots for T̂ obtained using our MAP estimator with σ = σ∗, 3σ∗ and
0.06159 (σ∗ in Subsection 5.2) and ML estimator. As can be seen from Fig. 7d, the ML estimator
exhibits strong overfitting. With comparison to ML method, the proposed MAP estimator avoids
overfitting by the regularization term u (T, σ), which penalizes excessively large value of Ti j.

Note that here σ∗ = 0.1947 is bigger than the σ∗ = 0.06159 in the previous subsection, which
may be related to noisy observation and insufficient sample size. From Figs. 5a and 7c, we can
see that the observation noise makes T̂ obtained from {o0, . . . , om} smoother than that directly
estimated by states {x0, . . . , xm}. Therefore the MCCV approach will select a bigger σ∗ to get a
suitably smooth T̂ and maximize the predictive likelihood.

6. Conclusions

The GMRF model of TMs discussed in this paper provides a general and flexible frame-
work for analyzing and estimating MCs with “smooth” TMs by extending the neighborhood
relationship between states to that between transition pairs. This model is helpful to improve the
robustness and accuracy of estimators in many practical cases, especially when the sample size
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is small with respect to the size of state space. And the convex form of GMRF model benefits
the numerical calculation. The parameter choice is a difficult problem for our model, but it can
be solved by CV methods since there is only one undetermined parameter.
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