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Model System Setup. The model system (Fig. 2 in the paper) used
to illustrate transition path theory, has been set up in the following
manner. First, a potential function was set up as:

V (x, y) = x2 + y2 − 50 cos

s

„

x − 25

1.7

«2

+

„

y − 25

1.7

«2

−50N (x, y, 20, 20, 4, 4)

−30N (x, y, 30, 30, 8, 3)

−70N (x, y, 7, 25, 4, 15)

−40N (x, y, 25, 7, 15, 4)

−50N (x, y, 40, 40, 3, 3)

with Gaussian-type energy basins defined as
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The potentialV (x, y) was then evaluated on a lattice ofx, y inte-
ger values in the range 0,...,49. On this lattice, a jump process was
defined by a transition matrix with each row corresponds to one co-
ordinatex, y and is defined by

Tx,y→x,y = z−1

Tx,y→x,y−1 = z−1 min{1, exp[−β(V (x, y − 1) − V (x, y))]}

Tx,y→x,y+1 = z−1 min{1, exp[−β(V (x, y + 1) − V (x, y))]}

Tx,y→x−1,y = z−1 min{1, exp[−β(V (x − 1, y) − V (x, y))]}

Tx,y→x+1,y = z−1 min{1, exp[−β(V (x + 1, y) − V (x, y))]}

wherez is chosen such that the transition matrix row sums up to 1.
Entries that would go across the 0,...,49 boundary, such asT0,0→0,−1

are forced to zero. This dynamics is a Monte Carlo jump process on
a discrete lattice with potential defined byV (x, y).

The setsA andB were defined by all lattice points that are inside
a radius of 6 and outside a radius of 16 from the center at (25,25).

Since the dynamics is Markovian by definition, the application
of transition path theory consisting of computation of the station-
ary probability, the committor probabilities, the folding flux and the
coarse-grained folding flux, is exact.

PinWW Simulation Setup. All simulations were carried out with the
3.2.1 version of the GROMACS engine [1] using the GROMOS-96
43a1 force field. LINCS constraints [2] of order 4 using a tolerance of
10−4 nm were applied to all bond lengths (see also [14]) and masses
of heavy atoms were redistributed such as to increase the masses of
covalently bound hydrogen atoms to 4 atomic mass units [15]. This
permitted an integration time step of 4 fs [16]. Van der Waals in-
teractions were considered within a twin range cutoff of 0.8 and 1.4
nm without inclusion of long-range dispersion corrections so as to be
consistent with the way the force field was parametrized [17]. The re-
action field method was chosen to calculate electrostatic interactions.
The Coulomb potential was cutoff at 1.4 nm. The dielectric constant

of the continuum was set to 54 so as to be consistent with the SPC
water model that was used in the simulations [3]. Both temperature
and pressure were controlled with the Berendsen scheme, the cou-
pling constants being 0.1 ps and 1 ps respectively. The pressure was
kept at 1 bar and the compressibility of the system at5 × 106 bar.

The crystal structure of the Pin1WW domain (pdb code 1pin,
residues 6 to 39) [4] was centered in an octahedral simulation box
with at least 1.2 nm distance between the protein and the box walls
and subsequently solvated with SPC water. The positive net charge
in the protein was neutralized by the addition of four chloride ions
to the system. Energy minimization was performed by 2000 steps of
the steepest descent algorithm followed by an equilibration phase of
900 ps at 300 K while restraining positions of protein atoms by a har-
monic potential with force constant 1000 kJ mol−1 nm−2. Four 80
ns simulations at 300 K were started from the equilibrated structure
using different initial velocities drawn from the Maxwell-Boltzmann
distribution. A structure every 3.2 ns was extracted from these tra-
jectories, providing a total of 100 near-native structures. These struc-
tures were used as starting structures for 100 simulations of 115 ns
at 360 K. From the resulting ensemble, 80 structures were chosen
randomly, again starting simulations of 115 ns each at 360 K. Output
was written every 4 ps, resulting in a set of 5,175,000 configurations
from the 360 K simulations used in the analysis below.

Markov model building, validation and uncertainty. The following
steps were taken towards computing a Markov state model for the
PinWW simulations. All configurations were aligned to the X-ray
structurevia a root-mean-square deviation fit on the backbone atoms
in order to remove translation and rotation of the whole system. The
k-means algorithm was run to convergence to generate 3000 clusters
using Euclidean distances in the Cartesian coordinates of all atoms,
thus providing a fine partition of state space into conformational
states. This fine partition is necessary in order to avoid that differ-
ent metastable sets are lumped in single clusters. Each configuration
that was saved from the simulation trajectories was then mapped onto
the cluster it is located in, obtaining 180 discrete-state trajectories of
115 ns each amongst the conformational states. In order to obtain a
good Markov model of the molecular dynamics that has no signifi-
cant bias and known statistical uncertainties, the following steps were
taken:
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Figure 1. Implied timescales depending on the lagtime τ .

1. Statistically unreliable states that would bias the Markov model
towards spurious kinetics are identified and excluded from the
analysis.

2. The lagtimeτ at which the state-to-state dynamics becomes ap-
proximately Markovian was computed.

3. The maximum likelihood estimates for the transition probabilities
between all pairs of states,Tij(τ), are computed while assuring
that these estimates have no significant bias from the way trajec-
tories were launched.

4. It is tested whether the resulting model fulfillsT(nτ) ≈ Tn(τ)
by comparingp(t + nτ) = p(t)T(nτ) obtained from the
molecular dynamics simulations top(t)Tn(τ) computed from the
Markov model.

5. It is tested whether consistent models can be built from two sub-
sets of the data with different trajectory starting conditions.

6. The statistical uncertainties of the resulting modelT(τ) and the
properties computed from it are estimated.

As a first step, it is necessary to avoid incorporating pathologi-
cal states, including states that are extremely rarely visited, or sets of
states that are never left since they e.g. only occur at the end of one
of the trajectories. Therefore, only clusters were kept if they were
observed in at least 0.01 % of the available configurations. Subse-
quently, only those clusters were used for the analysis which were in
the largest connected subnetwork, where two statesi → j are con-
nected if a transitioni → j has been observed in any trajectory. The
remaining data were ignored as their inclusion into the model would
have caused numerical artifacts in the computation of the transition
matrix. In the subsequent analysis, transitions between states were
only counted for trajectory segments that stay within the set of main-
tained states.

Secondly, for the remaining 1734 clusters, transition matrices
T(τ) with different values of the lagtimeτ were computed. In order
to choose a lagtime at which the dynamics is approximately Marko-
vian for this definition of states, the approach suggested in [5] was
followed: For each lagtimeτ , the transition matrixT(τ) and the
timescales implied by its eigenvaluesλi, ti = −τ/ log(λi), were
computed (see Fig. 1. Atτ ≈ 2 ns these timescales become approxi-
mately constant, indicating Markovianity at that or longer timescales.
Thus,τ = 2ns was used for the Markov model here.

Thirdly, the transition probability for each transitioni → j (cor-
responding to conformation setsΩi andΩj within time stepτ is the-
oretically given by

Tij =

Z

x∈Ωi

πi(x) p(x, Ωj , τ),

whereπi is the stationary density restricted to setΩi andp(x, Ωj , τ)
is the probability of finding the system inΩi a timeτ after observing
it at x. While any trajectory segment of lengthτ can be used to give
an unbiased sample ofp(x, Ωj , τ), their starting points need to be
drawn from the local equilibriumπi(x) such that the estimator

T̂ij =
cij(τ)

P

k cik(τ)

with cij being the number of observedi → j transitions in time
τ provides an unbiased sample ofTij(τ). For trajectories that are
much longer than the local equilibration time of the statesi, only a
small segment at the beginning of the trajectory could be biased by
an off-equilibrium starting condition. After that, the trajectory will
sample from the local equilibria as it passes through the states. To
estimate the local equilibration times, following procedure was em-
ployed: Each of the 1734 states, was further partitioned into 2 sub-
states, and the2 × 2-transition matrix between them was computed
at a lag time of 2 ns. The second eigenvalue,λ2, provides the slowest
timescale of that sub-transition matrix viatrelax = − 2 ns

log λ2
, which is

an estimate for the relaxation time within the corresponding cluster.
For the present case, alltrelax of trajectory starting states were below
1 ns, most of them were around 0.5 ns. This indicates that within the
lag time used of 2 ns, the bias due to the starting condition should be
even small for the first transition observed in a trajectory. Each tra-
jectory has a length of 115 ns, while the lag time is 2 ns. Thus, even
if the first 2.5 independent transition events (≥ 5 relaxation times)
are somewhat affected by the off-equilibrium starting conditions, this
will only mean that 5% of the transition counts are sampled with a
bias.

As a fourth step, note that observing the implied timescales to
select an appropriate value ofτ and finding that the transition ma-
trix can be estimated in a nearly unbiased fashion from the trajectory
at that lag time, are both not rigorous tests of whether the obtained
model T(τ) is a good model of the long-time dynamics. There-
fore, it was also tested whether the Markov model can reproduce
the statistics of the molecular dynamics simulation by observing the
time-dependent probabilities in following sets

1. The folded setB, which are all clusters with mean rmsd to the
X-ray structure of less than 0.3 nm

2. The unfolded setA, which are all clusters with an average of less
than 3 hydrogen bond in hairpin 1 and less than 1 hydrogen bond
in hairpin 2.

3. 10 random setsCi obtained by partitioning state space randomly
into 10 sets such that each set is contiguous (i.e.: states in each
set are connected by a series of direct jumps in the trajectories
without having to cross another set).

Let sk(t) ∈ {1, ..., m} denote the state history of the k’th trajectory,
then the probability distribution of finding a statei in the trajectory
data is given by

wi =

Pn
k=1

PTk
t=1 δ(sk(t) − i)

Pn
k=1 Tk

whereTk is the length of thekth trajectory andδ(x) = 1 for x = 0
and0 for all otherx. The probability restricted to a setC is then
given by

wC
i =

 wi
P

j∈C wj
i ∈ C

0 i /∈ C
.

As a model test, the following “relaxation experiment” was carried
out for each set: UsingwC

i as initial probability for each of the sets
under consideration (A, B, Ci), the probability of being at that set
at later timesrτ was then computed according to (i) the molecular
dynamics trajectories and (ii) the Markov model, and subsequently
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compared. The time-dependence of the probability to be at setC
with starting distributionwC

i is given by:

pMD(C, C, rτ) =

P

i∈C wC
i pMD(i, C, rτ)

P

i∈C wC
i
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Figure 2. Markov model test: The validity of the Markov model (solid line) is com-
pared with the MD trajectories (bullets) by monitoring the relaxation of probability
out of different sets of states. Top two panels: Folded set B and Unfolded set A.
Bottom ten panels: The state space is partitioned randomly into 10 contiguous
sets.

with

pMD(i, C, rτ)

=

Pn
k=1

PTn−rτ
t=1

P

j∈C δ(sk(t) − i) δ(sk(t + rτ) − j)
Pn

k=1

PTn−rτ
t=1 δ(sk(t) − i)

=

P

j∈C cij(rτ)
Pm

j=1 cij(rτ)
,

with cij(rτ) being the number of transitionsi → j observed after
time lagrτ .

Likewise, the probability to be atC according to the Markov
model is given by:

pMSM(C, C, rτ) =
X

i∈C

[wC
T

r(τ)]ii.

Testing the validity of the Markov model then amounts to testing how
well the equality

pMD(C, C, rτ) = pMSM(C, C, rτ) [1]

holds, which is essentially a test of the Chapman-Kolmogorow prop-
erty. Note that the initial distributionwC

i is simply a reference dis-
tribution with respect to which the comparison is made. Instead,
other distributions could be used, such as the stationary distribution
induced by the Markov modelT(τ) restricted to setC.

The equality (1) is not expected to hold exactly as a result of sta-
tistical uncertainties caused by the fact that only a finite number of
transitions are available to estimate the true transition probabilities.
In order to take this into account, the uncertainties of the transition
probabilities estimated from the molecular dynamics trajectories are
computed as:

ǫ(A, A, rτ) = σ[p(i, A, rτ)]
r

r
Pm

j=1 cij(rτ)

=

s

r(p(i, A, rτ) − p2(i, A, rτ))
Pm

j=1 cij(rτ)
,

whereσ indicates the standard deviation. The test then consists of
assessing whether Eq. (1) holds within these uncertainties. Fig. 2
shows this comparison for sets (A, B, Ci), showing the the Markov
model excellently reproduces the observations of the molecular dy-
namics trajectories within the statistical uncertainties. This test was
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Figure 3. Cross-validation of two subsets of the data. Subset A consisted of
70% of the trajectories started from the folded state and 30% other trajectories.
Subset B contained the remaining 30%/70% of the trajectories. The Markov
models TA and TB were built out of data sets A and B, respectively. The figure
shows that data set A is consistent with model TB and vice versa.
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repeated multiple times with different random setsCi, and always
led to a similar agreement.

As a fifth step, a cross-validation between two subsets of the data
was conducted in order to further reduce the risk that the model was
significantly biased by the starting points of the trajectories. For this,
the data was subdivided into two sets:

1. Data set (A) contains 70% of the trajectories started from the na-
tive state and 30% of the other trajectories. A Markov modelTA

was constructed only from this data set in otherwise the same way
asT.

2. Data set (B) contains the remaining 30% of the trajectories started
from the native state and the remaining 70% of the other trajec-
tories. A Markov modelTB was constructed only from this data
set

Two Chapman-Kolmogorov tests as described above were then con-
ducted, now comparing data set (A) with modelTB and data set (B)
with modelTA. These tests showed that both models and data sets
are compatible within statistical error. The results for the folded and
unfolded sets are shown in Fig. 3.

Due to the fact that the Markov model is always constructed with
only a finite amount of simulation data, all properties computed from
the model will have statistical uncertainties associated with them. A
flexible and general method to compute uncertainties of the Markov
model and all the properties computed from it is to sample transi-
tion matrices according to their probability distribution induced by
the observed count matrixC = [cij] [12, 13]:

p(T | C) ∝ p(T)p(C | T)

Using a Dirichlet-form prior distribution, this can be rewritten as
[12, 13]:

p(T | C) ∝
m

Y

i,j=1

(Tij)
bij−1+cij [2]

wherebij are virtual prior counts that can be e.g. set to 1 if an a priori
uniform distribution of transition matrix elements is desired [13] or
to a constantn/m with somen ≥ 0 which guarantees that there is
a constant number ofn prior counts in each row, independent how
many states are used to discretize the system [12]. Here, we used
no prior countsn = 0, thus giving the prior minimal and the ac-
tual observations maximal impact. For the present 1734 state model
this prior is almost identical to the1/m prior suggested in [12] with
the additional nice property that the probability distribution in Eq.
(2) is always unimodal. To sample the resulting distribution (2), the
nonreversible transition matrix sampling algorithm described in [13]
was applied. Starting from the maximum likelihood transition matrix
tij = cij/

P

k cik, 109 Monte-Carlo steps were taken to generate a
well-mixed ensemble of transition matrices, and every106th matrix
was used to compute the property of interest (TPT net fluxes, cu-
mulative fluxes, timescales). The 80% confidence intervals centered
on the mean was computed for each of these resulting ensembles in
order to provide uncertainty intervals.

Coarse-Graining. In order to present a coarse-grained visualization
of the flux, the state space must be partitioned into meaningful coarse
sets. From a kinetic point of view, it is desirable to do this partition-
ing according to the metastabilities in the system, that is for a given
timescale of interest, those states will be grouped together which in-
terconvert rapidly within this timescale, while states which do not
interconvert rapidly are separated into different metastable sets. A
method to do this is the Perron cluster analysis (PCCA) [6, 7, 8], ap-
plied here. First, the timescalesti = −τ/ log(λi) implied by the
eigenvaluesλi of the transition matrixT(τ) are inspected. Based on
this relation, one can select a timescale of interest and thus obtains
the number of eigenvalues, and thus metastable states, the system de-
composes into. In the present system, 41 metastable states exist on
a timescale of 100 ns. The definition of these 41 metastable states

in terms of the conformational states{1, ..., m} they contain is ob-
tained from a clustering in the eigenvector space, as defined by the
PCCA method [6, 7, 8]. In the original PCCA method [6], them
conformational states are assigned toM metastable states according
to the sign structure of the corresponding elements in theM first
right eigenvectors ofT(τ). In the improved PCCA method [7] used
here, this clustering is made by first identifyingM “vertices” in the
M−dimensional eigenvector space, which are the most distant ele-
ments in this space and correspond toM representative conforma-
tional states of the metastable states. Subsequently, all otherm − M
conformational states are assigned to the metastable sets with the
nearest representative.

Some of the resulting 41 metastable sets contain conformational
states from bothA andI or bothB andI, i.e. coarse-graining the
folding flux onto them would destroy the definition of the unfolded
setA and the folded setB. Therefore, these states were split into
two substates, each containing onlyA, B or I states. As a result, 50
macrostates are obtained which were used to coarse-grain the folding
flux as described in the Theory section.

Transition Path Theory with derivations. We first derive the for-
ward committor probability for a Markov chain defined on state space
S = 1, ..., m. We define the source setA, the target setB, and the
intermediate setI. The committor probability,q+

i pertaining to two
setsA, B is the probability that starting in statei, we will go toB next
rather than toA. In order to compute this, we define anA-absorbing
process as

T̂ij =

8

<

:

Tij i /∈ A
1 i ∈ A, i = j
0 i ∈ A, i /∈ j

and then computeq+ as the hitting probability toB (see [9]). Since
the process is absorbing inA only, the hitting probability toB will
reflect the probability to go toB next rather than toA. This yields:

q+
i = 0 for i ∈ A

q+
i = 1 for i ∈ B

q+
i =

X

j∈S

Tijq
+
j for i /∈ {A, B}.

One only needs to solveqi for i /∈ {A, B}, and by incorporating the
constraints from the first two lines into the third line, one obtains:

−q+
i +

X

k∈I

Tikq+
k = −

X

k∈B

Tik for i ∈ I.

While T(τ) models the dynamics of the system forward in time, one
can likewise define a transition matrix̃T(τ) propagating the dynam-
ics backward in time. This backward transition matrix is defined as:
T̃ij =

πj

πi
Tji [9]. In a similar way as the forward committor, one

obtains the backwards committorq− as:

−q−i +
X

k∈I

T̃ikq−k = −
X

k∈A

T̃ik for i ∈ I.

If the system fulfills detailed balance, we haveπiT̃ij = πj T̃ji and
thusq+ = 1 − q−.

The flux along eachi → j pair is defined as

fAB
ij =



πiq
−
i Tijq

+
i i 6= j

0 i = j
.

The total amount of flux,F , that leaves statesA will enterB:

F :=
X

a∈A,j /∈A

faj =
X

j /∈A,b∈B

fjb

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Noé et al.



and all other states are flux-conserving:

X

j=1...m

(fAB
ij − fAB

ji ) = 0 ∀i /∈ {A, B}

Proof:
X

j=1...m

(fAB
ij − fAB

ji ) = πiq
−
i

X

j 6=i

Tijq
+
j − q+

i

X

j 6=i

πjq
−
j Tji

= πiq
−
i

X

j 6=i

Tijq
+
j − πiq

+
i

X

j 6=i

q−j T̃ij

Due to the committor equations, we can rewrite
P

j 6=i Tijq
+
j as

−Tiiq
+
i and

P

j 6=i l̃jiq
−
j as−T̃iiq

−
i and thus:

X

j=1...m

(fAB
ij − fAB

ji ) = −πiq
−
i Tiiq

+
i + πiq

+
i T̃iiq

−
i = 0.

Fromq+
i = 1 for i ∈ A andq−i = 0 for i ∈ B we see that

fAB
ij = 0 for j ∈ A

fAB
ij = 0 for i ∈ B

thus flux is not conserved at A and B, but throughout the network
such that:

X

i∈A,j /∈A

fAB
ij =

X

j /∈B,i∈B

fAB
ji .

Note that the total flux,F , yields the expected number of observed
A → B transitions per time unitτ . This number is affected by the
fact that the system, after having committed toB, needs first to get
back toA before being able to conduct anotherA → B transition.
In order to compute rates, we also need the total probability that the
system is on a “forward” move, i.e. that it had been inA last is given
by:

πA =
m

X

i=1

πiq
−
i .

Thus, the probability of a productive trajectory given that the system
had visitedA last is given byF/πA while the correspondingA → B
transition rate is given by

kAB =
F

τπA
.

Finally, the net flux is defined as

f+
ij = max{fAB

ij − fAB
ji , 0}

and inherits the flux conservation property from the reactive flux.
The resulting folding flux can be decomposed into individual

pathways. While various ways are available to do this, a particularly
interesting approach is to identify the strongest pathways first and it-
eratively remove them from the network until the network is entirely
decomposed, as described in [10]. Roughly, the algorithm proceeds
as follows.

1. D = ∅.
2. LetP = {p1 ∈ A, p2, ..., pl−1, pl ∈ B} be the pathway with

the greatest minimal fluxf .
3. Forj = 1...(l − 1)
3.1.f+

pjpj+1
:= f+

pjpj+1
− f

4. Add{P, f} to D.
5. If no A → B pathway exists, returnD. Otherwise go to 2.

Comparison of Model and Experiment. The temperature-dependent
probabilities of being in the denatured state are determined in [11]
by melting curves using UV CD and Tryptophan (Trp) fluorescence
spectroscopy. The probability is given relative to the baselines ob-
tained at low and high temperatures. For T=360 K, we obtain from
Eq. (2) with the parameters from Table 2 in Ref. [11]∆G =
14.1 kJ mol−1 and thuspfolded = 0.009. Since in the present simu-
lation only one temperature is available, and the observables UV CD
or Trp fluorescence cannot be precisely computed, this figure can-
not be directly compared to the present model. However, we can ask
how close we need to be to the native state in order to have a similar
probability of being native.pfolded = 0.009 corresponds to the set of
all structures within 0.3 nm of the native state, which is a reasonable
definition for “native”. It was also found that the probability of being
folded is rather robust and below 5% when including structures up to
about 0.5 nm of the X-ray structure. Thus, independent of the exact
definition of “native”, simulation model and experiment agree that
the PinWW structure is mostly unfolded at 360 K.

In [11], temperature jump experiments were conducted using the
intrinsic PinWW Trp fluorescence as indicators. For this, the fluo-
rescence decay curve at any timet, f(t) was compared to the fluo-
rescence decay curves at the elevated temperature,fD, (“denatured”)
and the one at the final temperature,fN , (“native”), by determining
the linear combination:

f(t) = aD(t) fD + aN (t) fN .

The factorsaD andaN determine the percentage of the ensemble
being relaxed from the elevated to the equilibrium temperature via:

χ(t) =
aD(t)

aD(t) + aN (t)
. [3]

Trp fluorescence is modulated by the polarizability of the solvating
groups. Thus, the solvent-accessible surface area (SASA) is a good
indicator for the fluorescence state of a Trp. Here, two Trp residues,
Trp11 and Trp34, are available. The SASA was computed for each
of them for each molecular dynamics frame. The mean Trp SASA
for Trp11 for any conformational statei is then given by:

s11,i =

P

k Xi(k)s11(k)
P

k Xi(k)
,

whereXi(t) is 1 if thetth frame is in statei and 0 otherwise. Anal-
ogous for Trp34 ands34,i. To simulate the relaxation of the en-
semble out of equilibrium to the present simulation temperature of
360 K, we started with a uniform probability distribution,p(0) =
[m−1, ..., m−1]T , which was propagated using the transition matrix:

p(t + τ) = p(t)T(τ)
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Figure 4. Kinetic relaxation of Trp SASA upon refolding.
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towards the equilibrium distribution. The SASA-values at any time
were computed as ensemble average:

s11(t) =

m
X

i=1

pi(t) s11,i

s34(t) =
m

X

i=1

pi(t) s34,i,

and the factorsaD andaN were computed analogously to the inter-
polated fluorescence relaxation curve in the experimentvia:

„

s11(t)
s34(t)

«

= aD(t)

„

s11(∞)
s34(∞)

«

+ aN (t)

„

s11(0)
s34(0)

«

and the percentage of being relaxed,χ(t), was computed using Eq.
(3). The relaxation curve is plotted in Fig. 4b. There is an initial
nonexponential relaxation towards a value of≈ 0.4 after≈ 5 µs fol-
lowed by a single-exponential relaxation with a timescale of 26µs.
Similarly, the experiment shows a fast nonexponential relaxation to
a value of≈ 0.4, followed by a single-exponential relaxation with
a timescale of≈13.2µs [11] (obtained from the kinetic parameters
given in Table 3 of Ref. [11] and the Arrhenius prefactor used there).

While the relative intensity of the slowest exponential relaxation
(0.4) depends somewhat on the definition of the starting distribution
and the way how Trp fluorescence is measured in the model, the
timescale itself is insensitive to these definitions as it is determined by
the slowest timescale implied by the transition matrixT(τ) and thus
defined by the second eigenvalue. Thus, the Markov model agrees
well with available experimental data.

Projection of Observables onto the committor. Expectation values
of observableso may be monitored along the folding transition by
projecting them ontoq+:

ō(q, ∆) =

P

{i|q+

i
∈[q−∆,q+∆]}

πioi
P

{i|q+

i
∈[q−∆,q+∆]}

πi
.

where∆ is a bin width that is necessary since there are only finitely
many statesi, oi is the average of the observable in statei andπi is

the stationary distribution of statei. Fig. 5a-c show how the num-
ber of h-bonds in the two hairpins evolve along the folding coordi-
nate. The sum of both hairpin h-bonds (panel c) shows a roughly
monotonous increase in two subsequent steps atq+ = 0.1 and at
q+ = 0.5. However, looking at the two hairpins individually (pan-
els a and b), shows a much more complex situation: In the range
q+ = 0.1...0.5, both hairpins form and break in an approximately
anticorrelated way. Hairpin 2 is the first to stably form, hairpin 1 fol-
lows afterq+ = 0.5. This apparently complicated behavior can be
the result of different pathways with different individual mechanisms
overlapping in theq+ coordinate. In general, the projection onto
a single degree of freedom reduces the information available in the
full-dimensional space and may thus be deceptive if one is interested
in kinetic information.
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Figure 5. Expected number of β-hairpin hydrogen bonds formed along the com-
mittor probability (pfold).
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