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Characterizing the equilibrium ensemble of folding pathways,
including their relative probability, is one of the major challenges
in protein folding theory today. Although this information is in
principle accessible via all-atom molecular dynamics simulations,
it is difficult to compute in practice because protein folding is a
rare event and the affordable simulation length is typically not
sufficient to observe an appreciable number of folding events,
unless very simplified protein models are used. Here we present
an approach that allows for the reconstruction of the full ensem-
ble of folding pathways from simulations that are much shorter
than the folding time. This approach can be applied to all-atom
protein simulations in explicit solvent. It does not use a predefined
reaction coordinate but is based on partitioning the state space
into small conformational states and constructing a Markov model
between them. A theory is presented that allows for the extraction
of the full ensemble of transition pathways from the unfolded to
the folded configurations. The approach is applied to the folding of
a PinWW domain in explicit solvent where the folding time is two
orders of magnitude larger than the length of individual simula-
tions. The results are in good agreement with kinetic experimental
data and give detailed insights about the nature of the folding
process which is shown to be surprisingly complex and parallel.
The analysis reveals the existence of misfolded trap states outside
the network of efficient folding intermediates that significantly
reduce the folding speed.

D iscovering the mechanism by which proteins fold into their
native 3D structure remains an intriguing problem (1, 2).

Essential questions are: How does an ensemble of denatured
molecules find the same native structure, starting from differ-
ent conformations? Are there particular sequences in which the
structural elements of a protein are formed (3–5)? Are there
multiple parallel routes by which protein structure formation can
proceed (6, 7)?

Full answers to these questions require one to characterize
the ensemble of folding pathways, including their relative prob-
abilities. In principle, this detailed information is accessible via
molecular dynamics (MD) simulations which, when used in con-
cert with experimental evidence, are becoming an increasingly
accepted tool to understanding structural details that are not easily
accessible via the experimental observables (8). MD simulations
with atomistic models of proteins have been used to study the
dynamics of small proteins with folding times in the microsecond
range (9–13). However, even though MD simulations make the
full spatiotemporal detail accessible to observation, the charac-
terization of the pathway ensemble is computationally difficult: A
brute-force approach would start simulations from an equilibrium
of unfolded structures, say A, and simulate until they relax into a
set of folded state B. The analysis would then only be comprised
of those trajectory segments that leave A and relax to B without
returning to A (Fig. 1). Such a procedure is generally unpracti-
cal, since protein folding is a rare event and often the affordable
simulation length is insufficient in order to observe an appreciable
number of folding events, unless very simplified simulation models
are used. On the other hand, sampling techniques that enhance
the sampling of predefined reaction coordinates may work well

for systems with simple transition pathways but are not likely to
produce unbiased results in protein folding, which likely involves
many statistically relevant but a priori unknown transition states.

It is thus desirable to develop a method that can reconstruct the
equilibrium ensemble of folding pathways from simulations that
are not driven and yet are much shorter than the folding time.
Ideally, these simulations sample different parts of conformation
space and thus provide information on different subsegments of
the folding process. The reconstruction of folding pathways needs
to be done in a statistically correct manner, so as to avoid a bias
toward fast folding pathways (14). Master-equation or Markov
models of the molecular kinetics are a natural approach toward
this goal, as they decompose the macroscopic and possibly slow
transition (folding) into a network of faster transitions between
individual conformational states (15–17). It has been shown for
small model systems that Markov models permit the combina-
tion of information from short simulations and extract the correct
long-time kinetics (18, 19). Markov models of small proteins have
also been reported to reproduce experimental folding time scales
(20). In addition, Markov models have the advantage over many
other analysis methods that they do not require the definition of
a reaction coordinate that may provide a biased or oversimplified
view on the kinetics (21).

The present paper proposes an approach for computing the
equilibrium ensemble of folding pathways from short simulations
started out of equilibrium based on (i) combining the informa-
tion from the short trajectories into a joint Markov model, and
(ii) a theory of folding pathways that is based on the mathe-
matical framework of transition-path theory (22, 23) for comput-
ing the ensemble of folding pathways along with their relative
probabilities.

In order to illustrate the approach for computing folding path-
ways, consider the model potential in Fig. 2A, which is a funnel-like
energy landscape with the “unfolded” high-energy states A1, A2,
A3, “intermediates” I1,I2, and the “native” state B. A discrete state
space was defined by a 50 × 50 grid lattice and the dynamics are
given by a Markov jump process between neighboring grid cells
(see SI Appendix for details). The main ingredient for computing
the transition pathways from A to B is the committor probability,
also known as probability of folding, pfold (see Fig. 2B) (22, 24, 25).
For every state i, the committor gives the probability to fold from
that state (toward B), instead of unfolding (toward A). Based
on the Markov model and the committor, transition-path theory
allows the “folding flux” to be computed, which represents the
net flux of folding trajectories leaving the unfolded and entering
the folded set (see Fig. 2A) and provides the probability of any
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Fig. 1. Transition-path theory provides the probability distribution of pro-
ductive A (unfolded) to B (folded) segments (solid lines) of a hypothetical,
infinitely long trajectory.

realization of the folding pathway. This folding flux allows many
quantitative properties of interest to be to computed, such as the
probability that one structural element forms before the other.

Although the full information of all possible folding pathways
is contained in the folding flux, this information is too detailed
to provide a simple illustration of the folding mechanism. There-
fore, a flux lumping procedure is derived, which allows one to
coarse-grain the folding flux into a net flux between macroscopic
conformations (Fig. 2C), showing the essential network of fold-
ing pathways. This network can be decomposed into individual
pathways, if desired (Fig. 2D). The relative probability of each
folding pathway is immediately given by the magnitude of the flux
along it.

The PinWW domain is required for the regulation of many cel-
lular processes and has been a model system for studying protein
folding (26–28). PinWW is comprised of a twisted, triple-stranded,
antiparallel β-sheet containing two Trp residues. Extensive ther-
modynamic and kinetic experiments of the PinWW–domain fold-
ing process have been conducted (26). These experiments show
that a single time scale on the 10-μs order dominates the slow-
relaxation kinetics, thus PinWW is an apparent two-state folder.
Recent measurements, however, find that some mutants have
more than one time scale, indicating that additional relaxation
processes between local energy minima appear when examining
the kinetics in detail (29).

The approach to computing folding pathways is applied to a
set of 180 explicit solvent simulations of PinWW, whose individ-
ual length is two orders of magnitude shorter than the slowest
time scales in the system. The Markov model allows the probabil-
ity of the folded state and the kinetic relaxation to be calculated,
and these results are in good agreement with experiment. It is
demonstrated that the Markov model is an approximately unbi-
ased model for the dynamics on long time scales. Remarkably, the
method allows the folding pathways to be reconstructed despite
the fact that no contiguous pathway from the unfolded to the
folded state is observed in a single simulation. The results provide
detailed insights into the surprisingly complex and parallel nature
of the folding process and reveal the existence of misregistered
trap states that slow down the folding.

Theory
Markovian Dynamics and Transition Probability Matrix. In order to
combine the information contained in many short MD trajecto-
ries, a model for the dynamics between the various molecular
conformational states is needed. Assume that the state space of
the molecule is discretized into a set of S = {1, . . . , m} confor-
mational states (typically a few thousand) and that then a m × m
transition probability matrix T(τ) is computed, where each ele-
ment Tij measures the probability of going from state i to state
j within time τ, by Tij = cij/

∑
k cik. Here, cij counts the num-

ber of times the trajectory was in i at time t and in j at time τ
later. Although this expression provides the most likely transition
matrix, the full probability distribution of T(τ), given cij, must be
considered when statistical uncertainties of T(τ) and properties
computed from it are desired. Here, 80% confidence intervals

Fig. 2. Illustration of transition-path theory on a model potential. (A) The
model potential. Three “denatured” source sets (A1, A2, A3), two intermedi-
ates (I1,I2), and one “native” target set (B) are defined. The folding flux, i.e.,
the net flux of the A → B transition among conformational states, is shown
with white arrows. (B) The forward committor (probability of folding). (C)
The coarse-grained flux of the A → B transition among macrostates. (D) The
hierarchy of the A → B transition pathways with their contributions to the
total flux.

19012 www.pnas.org / cgi / doi / 10.1073 / pnas.0905466106 Noé et al.
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are used to estimate the uncertainty of computed properties (see
SI Appendix for details).

We require that T(τ) is ergodic, i.e., any state can be reached
from any other state within a finite time. Then, T(τ) has a single
eigenvector with eigenvalue 1. When normalizing this eigenvec-
tor, it gives the stationary probability π. For equilibrium MD, π
is the Boltzmann distribution, and the detailed balance condition
holds: πiTij = πjTji.

When the vector p(t) denotes the probability of the system to
be in any of its m states at time t, the probabilities at time t + τ are
given by p(t + τ) = p(t)T(τ). In order for the Markov model to
correctly represent the long-time MD, it must be tested whether
T(nτ) ≈ Tn(τ) holds, thus allowing p(t + nτ) = p(t)Tn(τ) to be
computed (see SI Appendix for details).

Transition-Path Theory. In order to compute transition pathways,
two subsets of the state space, A and B, are defined to specify
the transition process one wants to investigate. Here, A and B
correspond to the nearly unstructured unfolded and the native
set, respectively. All remaining states are unassigned intermedi-
ate states I. What is the probability distribution of the trajectories
leaving A and continuing on to B? That is, what is the typical
sequence of I states used along the transition pathways?

The essential ingredient required to compute the statistics of
transition pathways is the committor probability, q+

i , defined as
the probability, when being at state i, that the system will reach
the set B next rather than A (22, 24, 25). In the current context, it
is the probability of folding, often denoted as pfold (24). By defini-
tion, q+

i = 0 for all i in A and q+
i = 1 for all i in B. The committor

probability for all intermediate states i can be computed by solving
the following system of equations:

−q+
i +

∑
k∈I

Tikq+
k = −

∑
k∈B

Tik.

The committor gradually increases from state A to state B (see
Fig. 2B for illustration).

Furthermore, the backward-committor probability q−
i is the

probability, when being at state i, that the system was in set A
previously, rather than in B. For a molecule in equilibrium, this
probability is simply q− = 1 − q+.

The transition probability Tij contains contributions from all
trajectories, including trajectories that leave A and return to A
before hitting B, or B → A trajectories. In order to evaluate the
statistics of A → B trajectories, only a fraction of the transitions
which come from A and go on to B is relevant, i.e. q−

i Tijq+
j . The

effective flux fij is defined as the probability flux along edge i, j,
contributing to the transition A → B:

fij = πiq−
i Tijq+

j .

The effective flux still contains unnecessary detours, such as
recrossings A → . . . → i → j → i → j → . . . → B. Thus, for any
pair i, j in the intermediate set of states, both fij and fji are positive.
In order to only consider the net flux of A → B trajectories, f +

ij ,
one computes

f +
ij = max{0, fij − fji}.

f +
ij defines the folding flux and is a network of fluxes leaving

states A and entering states B (see Fig. 2D for an illustration).
An equivalent expression for the folding flux has recently been
proposed in ref. 30. This network is flux-conserving, i.e. the total
amount of flux F that leaves states A will enter B whereas for every
intermediate state i, input flux equals output flux.

Although we will be mostly interested in the relative weight of
different pathways within the folding flux, note that the absolute
value of the flux still has a physical meaning. In particular, the
expected number of observed A → B transitions per time unit τ
is given by the total folding flux

F =
∑
i∈A

∑
j/∈A

πiTijq+
j .

Another quantity of interest is the rate of the reaction A → B,
kAB:

kAB = F

/(
τ

m∑
i=1

πiq−
i

)
. [1]

Note that all states that trap the trajectory for some time will
reduce kAB. The effect of these traps is properly accounted for in
the folding flux, even if they do not contribute to productive path-
ways. See the SI Appendix for more general transition path theory
equations and derivations.

Coarse-Graining of the Folding Flux. Because the number of m con-
formational states used to construct a Markov model is typically
large, it is convenient for illustration purposes to compute the
net flux of A → B trajectories among only a few coarse sets of
conformations. Let us consider the coarse partition of state space
S = {C1, C2, . . . , Cn} with n � m, defined such that the bound-
aries of A, B, and I are preserved, i.e. A and B are either identical
to individual Ci or to a collection of multiple Ci. Then we define
the coarse-grained folding flux:

Fij =
∑

k∈Ci ,l∈Cj

fkl . [2]

F+
ij = max{0, Fij − Fji}. [3]

The exact way of defining the sets Ci is arbitrary and depends on
which features the user is interested in. For example, Ci might be
chosen so as to distinguish between different secondary or ter-
tiary structures, or they might be defined so as to separate the free
energy minima (metastable states) of the system (15).

Decomposition into Individual Pathways. It may be convenient to
decompose the folding flux or the coarse-grained folding flux into
individual pathways Pi that connect A and B. For molecules in
equilibrium, the flux can always be fully decomposed into a sum
of circle-free A → B pathways. Note that this decomposition is
generally nonunique, i.e. there may be many ways a given flux
can be decomposed into individual pathways. However, any such
decomposition has the property that the statistical questions about
the order of events can computed from this set of pathways, which
makes them a useful analysis tool. The simplest decomposition is
obtained by starting in A and just selecting successor states in a
random order until B is found, then determining the minimal net
flux f along that chosen pathway and removing that pathway from
the network by subtracting f from every f +

ij along the pathway.
A particularly interesting way of decomposing the network is to
identify the strongest pathways first (see SI Appendix).

The decomposition generates a set of pathways, Pi, along with
their fluxes, fi. The flux fi provides the relative probability with
which pathway i is used when considering the set of pathways Pi
as possible options:

pi = fi/
∑

j

fj.

Order of Structural Events. The characterization of protein fold-
ing mechanisms is usually made in terms of describing an order of
events. For example, in PinWW, is hairpin 1 formed before hairpin
2? For each individual pathway Pi, this question can be answered.
Let E be any event whose probability p(E) is to be evaluated, such
as E = “hairpin 1 forms before hairpin 2”, then this probability
can be computed by decomposing the folding flux into pathways
Pi with individual fluxes fi and probabilities pi, and then
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p(E) =
∑

i

piδi(E), [4]

where δi(E) = 1 if E occurs in pathway Pi and 0 otherwise. Eq. 4
can only provide the correct probability if the discretization into
conformational states used is fine enough, such that the event E
can be distinguished from the alternative events. In the example
above, the conformational states need to be fine enough such that
there is no state containing states where hairpin 1 is both formed
and not formed (and likewise for hairpin 2). As p(E) is a well-
defined property of a given system, it is independent of the way by
which the folding flux is decomposed into pathways.

Application to the Folding of PinWW
In order to illustrate the utility of our approach for studying folding
mechanisms, the folding dynamics of the PinWW domain (26) is
studied here. A total of 180 MD simulations were started, 100 from
near-native conformations and 80 from different denatured con-
formations and run for 115 ns each at a temperature of 360 K. The
simulations were conducted with the GROMACS program (31)
by using explicit SPC solvent, the GROMOS96 force field (32),
and the reaction field method for computing nonbonded forces.
The simulation setup is described in detail in the SI Appendix. The
simulated structures were aligned onto the native structure and
then clustered finely into 1,734 kinetically connected and well-
populated clusters. A transition matrix T(τ) was constructed by
counting transitions between these clusters at a lag time of τ = 2
ns (see Theory). It was verified that T(τ) is a good model for
the long-time kinetics (details on the Markov model construc-
tion and validation are given in the SI Appendix). All properties
computed from the Markov model are associated with statisti-
cal uncertainty resulting from the fact that only a finite amount
of simulation data has been used to construct the model. These
uncertainties are computed by using a Bayesian inference method

described in ref. 33; the details are given in the SI Appendix. The
Markov model can further be validated by comparison with kinetic
experimental data recorded at the simulation temperature. The
kinetic relaxation curve obtained from tryptophan (Trp) fluores-
cence temperature-jump experiments (26) can be compared with
the relaxation from an off-equilibrium distribution of states (mim-
icking the situation before the T-jump) into the new equilibrium
distribution monitored by a kinetic relaxation curve that is defined
via the Trp solvent-accessible surface area (see SI Appendix for
details). In both the experiment and the model, this kinetic relax-
ation has a fast, nonexponential decay from 1 to about 0.4, pre-
sumably resulting from fast relaxation processes that affect the
Trp configurations, followed by a slow, single-exponential decay
with a timescale of 26 μs in the model (confidence intervals 8–78
μs) whereas a relaxation time of 13.2 μs was computed from the
experimentally determined kinetic parameters given in ref. 26.

In order to study the folding mechanism, a folded set B was
defined to be the set of clusters with average backbone root mean
square difference to the X-ray structure of less than 0.3 nm. The
denatured set A was defined to be the set of all clusters with little
β-structure (having a mean of <3 h-bonds in hairpin 1, which has
6 h-bonds in the native state, and <1 h-bonds in hairpin 2, which
has 3 h-bonds in the native state). Based on these definitions and
the transition matrix T(τ) between the 1,734 clusters, the commit-
tor probabilities and the folding flux were computed as described
in Theory.

In order to obtain a view of the sequence of events that is
unbiased by defining reaction coordinates, the folding pathways
must be considered individually. Therefore, the folding flux was
decomposed into individual pathways (see Theory) and for each
of them the times when hairpin 1 or 2 forms and remains stable
were computed. “Formation” was defined as having 80% of the
average number of hydrogen bonds that are present in the native
state, but variations of this threshold did not change the results

Fig. 3. PinWW folding flux. (Left)
The network of the 70% most rele-
vant folding pathways for PinWW.
The numbers on the left indi-
cate the committor probabilities,
the thickness of the arrow indi-
cates the flux of folding trajecto-
ries between each pair of confor-
mations. For each conformation,
a representative mean structure
is shown in color along with an
overlay of equilibrium-distributed
structures from that conformation
indicating the structural flexibil-
ity (gray cloud). The numbers next
to the arrows give the normal-
ized net flux (large number) and
the 80% confidence-interval lim-
its (small numbers) in percent-
ages. The blue numbers next to
the structures indicate whether the
first/second hairpin has the native
register (0), is register-shifted by
one or two residues (1,2) or is not
formed at all (-). (Lower Right)
Register-shifted trap states that do
not carry significant folding flux
but reduce the folding speed by
nearly a factor of 2.
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qualitatively. The probability that hairpin 1 forms before hairpin
2 was computed from Eq. 4: In 30% of the folding trajectories,
hairpin 1 forms before hairpin 2 (confidence interval 18%–34%)
and in 70% it is the other way around. Thus, there is no unique
mechanism in terms of the order of secondary structure formation,
which is in qualitative agreement with a structural interpretation
of mutational Φ values for the PinWW domain (34).

In order to visualize the “essential folding pathways,” coarse
conformational sets were defined, onto which the folding flux was
projected (see Theory). We employed a definition of 50 sets that
separate the most slowly converting (“metastable”) parts of state
space. The number of sets can be chosen by fixing a time scale of
interest (here 100 ns); then the number of metastable sets are given
by the number of implied time scales of the transition matrix slower
than that time scale of interest (15). The definition of metastable
states can be obtained from eigenvectors of the transition matrix
T(τ) as suggested in refs. 15, 18, and 35 (see SI Appendix for
details). Fig. 3 shows the network of the 70% most relevant path-
ways, which involves only 21 of these 50 conformational sets. The
remaining 30% of the flux is mainly in small pathways between
the structures shown in Fig. 3 and is omitted here for clarity of the
visualization. The 29 of the 50 conformational sets not shown in
the figure are only weakly involved in the A → B flux.

The denatured set (A) consists of mostly globular structures.
No completely stretched structures are observed in the simu-
lation. The coarse-grained folding flux suggests that there is a
large number of unfolded states and early intermediates that nar-
row down when coming closer to the native state. The picture
reemphasizes the existence of many structurally different parallel
pathways. Pathways where hairpin 1 forms first are shown on the
right, pathways where hairpin 2 forms first on the left. It is appar-
ent that the pathways in which hairpin 1 forms first also include
some partially helical structures formed by the sequence that will
later become the third β strand.

Fig. 3 also indicates whether a set of structures with hairpins
formed has the same register pattern as in the native state (0) or is
register-shifted by one or two residues (1,2). Most of the produc-
tive folding pathways proceed from no hairpins over on-register
intermediates to the native state. Some of the folding-efficient
structures have the smaller hairpin 2 register-shifted, but none
of them have hairpin 1 register-shifted. A special case is a struc-
ture which has both chain ends curled in such a way that they are
on-register near the termini but register-shifted by 2 residues in
between (indicated by “0–2”).

For the 50 coarse states defined here, the coarse flux network
was decomposed into individual pathways according to decreasing
flux as described in Theory. The Upper frame of Fig. 4 shows the
cumulative flux depending on the number of pathways, showing
that about 3–5 pathways are needed to carry 50% of the total flux
and about 11–20 pathways are needed to carry 90% of the total
flux. Although the absolute number of parallel pathways depends
on the number of states one defines, i.e., on the amount of coarse-
graining, the structural differences between the 50 sets defined
here imply a remarkable degree of parallelness of the folding
mechanism in the present system.

The six pathways which carry most of the total flux are depicted
in the Lower frame of Fig. 4, highlighting that there are routes
where hairpin 1 forms first (paths 3,4,6), where hairpin 2 forms
first (paths 1,2), and where there is a more or less concurrent
formation of both (path 5). Note that the percentages of individ-
ual pathways given in Fig. 4 should not be misinterpreted as the
absolute probability of finding the exact sequence of conforma-
tions. For example, these pathways do not consider the possibility
of recrossing events or changing between different paths. How-
ever, these percentages do provide the relative probabilities of
choosing each folding pathway from the ensemble of produc-
tive folding pathways. For example, pathway 1 is nearly twice as
probable as pathway 6.

Fig. 4. PinWW folding pathways. (Upper) Fluxes of individual pathways and
the cumulative flux. The bullets indicate the mean of the distribution, and
the error bars mark the 80% confidence interval. (Lower) The six individual
pathways that carry most of the total flux (nearly 60%).

Interestingly, there are three metastable sets that contribute
almost no folding flux (<5%), but the system still spends a
significant fraction of the time in them (stationary probability 18%
with confidence intervals 3%–45%). These “trap” states, depicted
in Fig. 3, have almost full β content, but the hairpins are register-
shifted with respect to the native structure, in particular at hairpin
1, which is not fully shifted in any of the intermediates that sig-
nificantly contribute to the folding flux. The effective flux (Eq. 2),
reveals that these traps are accessible from different metastable
states, all of which already have a register shift in hairpin 2 or a
partial register shift in hairpin 1 (see Fig. 3).

Removing the trap states from the Markov model increases the
absolute folding rate kAB (Eq. 1), by almost a factor of 2, showing
that there is a significant probability that the system gets stuck in
one of the trap states for some time.

Conclusions
This study suggests an approach to extract the full equilibrium
ensemble of folding pathways from short simulations started out
of equilibrium.
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The approach was applied to MD simulations of the PinWW
miniprotein whose individual length was 2 orders of magnitude
below the slowest time scale in the system. Nevertheless, the
kinetic model computed here is consistent both with the detailed
short-time information contained in the MD simulations and the
long-time observables available from experiments.

The results suggest that at the simulation temperature (360 K),
there is no unique or statistically dominant folding pathway in
terms of the order of secondary structure formation, although hair-
pin 2 demonstrates a preference for forming before hairpin 1 (70%
probability). The φ values being larger for hairpin 1 than for hair-
pin 2 in refs. 26 and 27 indicates a preference for hairpin 1 forming
prior to hairpin 2 at temperatures around 320 K, and thus a reverse
preference of pathways at these temperatures. This indication is
consistent with the present results in that the larger hairpin 1 is
expected to have both a larger enthalpic contribution stabilizing
its folded state and a larger entropic contribution destabilizing
it, which would increase upon increasing temperature. The fold-
ing pathway ensemble also includes pathways where both hairpins
are partially formed and pathways that include transient α-helical
structure.

Outside the efficient folding flux network, trap states have been
found comprising register-shifted, i.e. “misfolded” structures. The
trap is accessible from several folding-efficient conformations,
which have a small degree of register-shift already. The presence of
the trap slows down folding by nearly a factor of two. The existence
of this trap should be experimentally testable, e.g., with time-
dependent IR techniques using site-specific labeling techniques
sensitive to register-shifted conformations of hairpin 1. The model
also predicts that destabilizing these trap states by mutations that
would disfavor misregistered hairpin configurations could speed
up the folding significantly.

Although the present results allow no direct conclusions regard-
ing the folding kinetics of PinWW at body temperature, they do

suggest that protein folding kinetics may often be more parallel
and more complex than intuitively expected from experimental
evidence of two-state thermodynamics and kinetics. This finding
agrees with the fact that conformational heterogeneity has been
observed in a few experiments that have been designed to look for
it (36, 37). Moreover, the picture we suggest here is fully compati-
ble with the widely accepted folding-funnel model (38, 39), which
suggests a narrowing down of a large conformational heterogene-
ity to the native conformations via parallel routes. The existence
of parallel pathways is also supported by protein folding experi-
ments (6, 7, 36, 37). As a result, our study suggests that a purely
mechanistic question, such as “In which order do secondary struc-
ture elements fold?” is ill-defined and should rather be replaced
by a probabilistic question, such as “What is the probability of a
particular order of structure-formation events under a particular
set of conditions?”

The combination of simulation, Markov models, and transition-
path theory suggested here is a practical route to study the detailed
folding kinetics of small to moderately sized macromolecules for
which a sufficiently large number of explicit solvent trajectories
can be generated on available parallel computing facilities. The
approach avoids a biased or oversimplified model that would result
from projection onto a single or few predefined reaction coordi-
nates and could thus pave the way toward new insights into protein
folding kinetics.

In a broader sense, the present approach will be useful to study
the kinetics of many other biophysical processes, including protein
misfolding, conformational transitions in the native state, complex
enzymatic reactions, protein:ligand binding, and protein:protein
aggregation.

ACKNOWLEDGMENTS. The authors are indebted to John D. Chodera, Vijay
Pande, Martin Gruebele, and Volker Knecht for enlightening discussions. F.N.
and C.S. acknowledge German Science Foundation for funding through the
research center Matheon.

1. Kennedy D, Norman C (2005) So much more to know. Science 309:78–102.
2. Dill KA, Ozkan BS, Shell SM, Weikl TR (2008) The protein folding problem. Annu Rev

Biophys 37:289–316.
3. Feng H, Zhou Z, Bai Y (2005) A protein folding pathway with multiple folding

intermediates at atomic resolution. Proc Natl Acad Sci USA 102:5026–5031.
4. Cellitti J, Bernstein R, Marqusee S (2007) Exploring subdomain cooperativity in t4

lysozyme ii: Uncovering the c-terminal subdomain as a hidden intermediate in the
kinetic folding pathway. Protein Sci 16:852–862.

5. Friel CT, Beddard GS, Radford SE (2004) Switching two-state to three-state kinetics in
the helical protein im9 via the optimisation of stabilising non-native interactions by
design. J Mol Biol 342:261–273.

6. Goldbeck RA, Thomas YG, Chen E, Esquerra RM, Kliger DS (1999) Multiple path-
ways on a protein-folding energy landscape: kinetic evidence. Proc Natl Acad Sci USA
96:2782–2787.

7. Matagne A, Radford SE, Dobson CM (1997) Fast and slow tracks in lysozyme fold-
ing: Insight into the role of domains in the folding process. J Mol Biol 267:1068–
1074.

8. Schaeffer DR, Fersht AR, Daggett V (2008) Combining experiment and simulation
in protein folding: Closing the gap for small model systems. Curr Opin Struct Biol
18:4–9.

9. Ensign DL, Kasson PM, Pande VS (2007) Heterogeneity even at the speed limit of
folding: Large-scale molecular dynamics study of a fast-folding variant of the villin
headpiece. J Mol Biol 374:806–816.

10. Ferrara P, Caflisch A (2000) Folding simulations of a three-stranded antiparallel β-sheet
peptide. Proc Natl Acad Sci USA 97:10780–10785.

11. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated
and experimental protein-folding dynamics. Nature 420:102–106.

12. Lei H, Wu C, Liu H, Duan Y (2007) Folding free-energy landscape of villin head-
piece subdomain from molecular dynamics simulations. Proc Natl Acad Sci USA
104:4925–4930.

13. Freddolino PL, Liu F, Gruebele MH, Schulten K (2008) Ten-microsecond MD simulation
of a fast-folding WW domain. Biophys J 94:L75–L77.

14. Fersht AR (2002) On the simulation of protein folding by short time scale mol-
ecular dynamics and distributed computing. Proc Natl Acad Sci USA 99:14122–
14125.

15. Noé F, Horenko I, Schütte C, Smith JC (2007) Hierarchical analysis of conformational
dynamics in biomolecules: Transition networks of metastable states. J Chem Phys
126:155102.

16. Chodera JD, et al. (2007) Automatic discovery of metastable states for the construc-
tion of Markov models of macromolecular conformational dynamics. J Chem Phys
126:155101.

17. Buchete NV, Hummer G (2008) Coarse master equations for peptide folding dynamics.
J Phys Chem B 112:6057–6069.

18. Schütte C, Fischer A, Huisinga W, Deuflhard P (1999) A direct approach to con-
formational dynamics based on hybrid monte carlo. J Comput Phys 151:146–
168.

19. Chodera JD, Swope WC, Pitera JW, Dill KA (2006) Long-time protein folding dynamics
from short-time molecular dynamics simulations. Multiscale Model Simul 5:1214–
1226.

20. Jayachandran G, Vishal V, Pande VS (2006) Using massively parallel simulation and
Markovian models to study protein folding: Examining the dynamics of the villin
headpiece. J Chem Phys 124:164902.

21. Krivov SV, Karplus M (2004) Hidden complexity of free energy surfaces for peptide
(protein) folding. Proc Natl Acad Sci USA 101:14766–14770.

22. E W, Vanden-Eijnden E, (2006) Toward a theory of transition paths. J Stat Phys
123:503–523.

23. Metzner P, Schütte C, Vanden–Eijnden E (2009) Transition path theory for Markov
jump processes. Multiscale Model Simul 7:1192–1219.

24. Du R, Pande VS, Alexander, Tanaka T, Shakhnovich ES (1998) On the transition
coordinate for protein folding. J Chem Phys 108:334–350.

25. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling:
Throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem
53:291–318.

26. Jäger M, Nguyen H, Crane JC, Kelly JW, Gruebele M (2001) The folding mechanism of
a beta-sheet: The ww domain1. J Mol Biol 311:373–393.

27. Deechongkit S, et al. (2004) Context-dependent contributions of backbone hydrogen
bonding to β-sheet folding energetics. Nature 430:101–105.

28. Jäger M, et al. (2006) Structure-function-folding relationship in a ww domain. Proc
Natl Acad Sci USA 103:10648–10653.

29. Liu F, et al. (2008) An experimental survey of the transition between two-state and
downhill protein folding scenarios. Proc Natl Acad Sci USA 105:2369–2374.

30. Berezhkovskii A, Hummer G, Szabo, (2009) A reactive flux and folding pathways in
network models of coarse-grained protein dynamics. J Chem Phys 130:205102.

31. van der Spoel, et al. (2005) GROMACS: Fast, flexible and free. J Comput Chem
26:1701–1718.

32. van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynam-
ics: Methodology, applications and perspectives in chemistry. Angew Chem Int Ed
29:992–1023.

33. Noé F (2008) Probability distributions of molecular observables computed from
Markov models. J Chem Phys 128:244103.

34. Weikl TR (2008) Transition states in protein folding kinetics: Modeling phi-values of
small beta-sheet proteins. Biophys J 94:929–937.

35. Weber M (2003) Improved Perron Cluster Analysis. (Zuse Institute, Berlin) ZIB Report
352.

36. Lindberg MO, Oliveberg M (2007) Malleability of protein folding pathways: A simple
reason for complex behaviour. Curr Opin Struct Biol 17:21–29.

37. Mello CC, Barrick D (2004) An experimentally determined protein folding energy
landscape. Proc Natl Acad Sci USA 101:14102–14107.

38. Dill KA, Chan HS (1997) From levinthal to pathways to funnels. Nat Struct Mol Biol
4:10–19.

39. Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science
267:1619–6616.

19016 www.pnas.org / cgi / doi / 10.1073 / pnas.0905466106 Noé et al.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 801.000]
>> setpagedevice


