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A mixed quantum classical methodology is utilized to compute the time and frequency resolved emission
spectrum of a chromophore complex dissolved in ethanol. The single complex is formed by a butanedi-
amine dendrimer to which pheophorbide-a molecules are covalently linked. The electronic excitations
are described in a Frenkel-exciton model treated quantum mechanically and all nuclear coordinates
are described classically by carrying out room-temperature MD simulations. Starting with the full quan-
tum formula for the emission spectrum, it is translated to the mixed quantum classical case and used to
compute time resolved spectra up to 2 ns. To account for radiative decay the chromophore complex
excited-state dynamics have to be described in a density matrix theory. While the full emission spectrum
only reflects excited-state decay the introduction of partial spectra allows to uncover details of excitation
energy redistribution among the chromophores.
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1. Introduction

The detection of time and frequency resolved spontaneous
emission represents a standard approach to uncover details of
excitation energy transfer (EET) in supramolecular chromophore
complexes (CC, see, for example, [1–8]). The measured emission
rates may offer access to a spatial and energetic redistribution of
the photoinduced excitation energy. Pheophorbide-a (Pheo) CC
studied in [5,6] will be of particular interest for the following.
We focus here on those CC build up by butanediamine dendrimers
to which Pheo molecules are covalently linked [5] (see also our ear-
lier work in Refs. [9–11]). Different generations of dendrimer Pheo
complexes have been synthesized, extending from P2 with two
Pheo moieties, over P4 with four (see Fig. 1) up to P32 with 32
[5]. After photo excitation the Pn are capable to form Frenkel-exci-
ton states and to generate singlet oxygen. Since the Pn posses a
rather flexible structure they may realize conformations where
some Pheo molecules are attached close together to form dimers,
trimers etc. As already discussed in [9–11] only mixed quantum
classical schemes may be ready to simulate the EET which pro-
ceeds on the highly flexible structure of the CC. Such a treatment
of large molecular systems has been widely described in literature
(see the overview in [12] and also [13,14], where a comparison
with a complete quantum description of the considered system
could be given). It is the task of the present paper to present a
mixed quantum classical computation scheme to get time and
ll rights reserved.

).
frequency resolved spontaneous emission spectra. Some prelimin-
ary data for P4 in ethanol will be also given.

Full quantum computations of spontaneous emission spectra
found huge interest in literature (for a recent overview see [15]
and references therein as well as the studies by the Mukamel-
group [16–18]). However, to the best of our knowledge, a compu-
tation in a mixed quantum classical scheme has never been carried
out. In such a scheme usually a quantum simulation of all elec-
tronic degrees of freedom is carried out while the nuclear degrees
of freedom are put into a classical description [12]. The mixed
quantum classical methodology which will be of interest for all
subsequent consideration is known as Ehrenfest dynamics (see the
recent review in [12]). On the one hand it assumes the propagation
of the time-dependent electronic wave function depending on the
actual nuclear configuration. On the other hand the latter changes
according to Newton’s equation but in the mean field induced by
the actual electronic state. Therefore, the approach accounts for a
back reaction of the electron dynamics on that of the nuclei. For
the presence of a single excitation in the huge P4 solvent system
this back reaction should be of minor importance. Consequently,
our MD simulations will be performed in the presence of the CC
electronic ground-state force field (according to the size of our sys-
tem this back reaction would be indeed a challenge for the numer-
ics). We simply arrive at a time-dependent exciton Hamiltonian. Its
ingredients, the single chromophore excitation energies Em and the
inter-chromophore Coulomb couplings Jmn responsible for excita-
tion energy transfer are considered as time-dependent quantities.

Details of such an approach and the way to compute linear
absorbance spectra can be found in [9–11]. Since the inclusion of
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Fig. 1. Snapshots of P4 in ethanol along a 1 ns room-temperature MD run (the chromophores have been labeled to identify their changed positions).
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permanent charge distributions in the electronic ground- and ex-
cited-state of the individual chromophores is indispensable when
dealing with Pheo molecules our treatment includes a generaliza-
tion of the standard Frenkel-exciton theory. Such charge distribu-
tions are considered by introducing atomic partial charges. As a
consequence, the excited-state modulation of a Pheo molecule
caused by its electrostatic coupling to the permanent charge distri-
bution of all other molecules (staying in their electronic ground-
state) can be accounted for. Moreover, the excitonic coupling could
be calculated nearly exactly by introducing so-called transition
charges [19]. We also note that the mixed quantum classical
description of EET dynamics in CC is valid for any strength of elec-
tron (exciton) vibrational coupling. This is in contrast to the full
quantum description where it is usually necessary to distinguish
between the weak and strong coupling case. And, when extended
to a nanosecond time scale (including an ensemble average of
those quantities measured in the experiment) the mixed quantum
classical description of EET simultaneously accounts for what is of-
ten named dynamic as well as static disorder.

The paper is organized as follows. The next section quotes some
details of the used Frenkel-exciton model. Section 3 describes the
translation of the full quantum formula for the emission spectrum
to a mixed quantum classical version (the derivation of the quan-
tum formula is shortly offered in the Appendix A). Preliminary re-
sults for P4 in ethanol are presented in Section 4. The paper ends
with some concluding remarks in Section 5.
2. The model

The used model has been extensively explained recently
[10,11]. Here, we shortly review the basic facts of our non-standard
Frenkel-exciton description. We first note that within the CC of
interest mutual chromophore wave function overlap and electron
exchange effects among different chromophores do not take place
(absence of the Dexter mechanism). Therefore, we may assume the
orthogonality relation humajunbi ¼ dm;nda;b to be valid, where
umaðrm; RmÞ denotes the electronic wave function of chromophore
m in state a (electronic ground-state: a ¼ g, first excited electronic
state a ¼ e). The electronic coordinates are abbreviated by rm re-
lated to the mth chromophore center of mass. (Some of our recent
electronic structure calculations for a single Pheo can be found in
[20]. They again indicate that for the present purposes only the
so-called Qy state as the first excited singlet state would be of
interest. Higher levels are clearly separated.) Moreover, the wave
function parametrically depends on all nuclear coordinates Rm of
chromophore m. The single chromophore electronic Hamiltonian
is denoted by HðelÞ

m and the related potential energy surfaces (PES)
by Vma. Thus, the approach is based on isolated chromophore quan-
tities with all additional couplings treated separately.

The model used for the total CC is based on an expansion with
respect to the CC electronic states. Since wave function overlap
between different chromophores can be excluded, the CC
ground-state is simply defined as a product of single chromophore
electronic ground-state wave functions /0ðr; RÞ ¼

Q
mumgðrm; RmÞ.

Accordingly, the singly excited CC states follow as
/mðr; RÞ ¼ umeðrm; RmÞ

Q
n–mungðrn; RnÞ. Double excited CC states

are of no interest here. The total Hamiltonian accounts for the CC
and its internal coupling (extended later to a coupling to solvent
molecules) and a coupling to the radiation field handled classically
as well as quantum mechanically:

H ¼ HCC þ HfieldðtÞ þ HCC—phot þ Hphot: ð1Þ

The CC Hamiltonian takes the form

HCC ¼ Tnuc þ VCC; ð2Þ

where Tnuc ¼
P

mTm is the kinetic energy operator of all involved
nuclear coordinates separated here into the contributions Tm of
the various chromophores. The potential VCC reads in more detail

VCC ¼
X

m

HðelÞ
m þ 1

2

X
m;n

Vmn: ð3Þ
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The Vmn cover the complete Coulomb interaction between chromo-
phore m and n.

An expansion with respect to the CC electronic states gives for
the CC Hamiltonian (off-diagonal contributions exist but are of
no importance here [11]):

HCC ¼H0j/0ih/0j þ
X
m;n

Hmnj/mih/nj ð4Þ

with

H0 ¼ Tnuc þV0ðRÞ; ð5Þ

and

Hmn ¼ Tnuc þVmnðRÞ: ð6Þ

The CC ground-state PES is given by

V0ðRÞ ¼
X

m

VmgðRmÞ þ
1
2

X
m;n

Jmnðgg; gg; Rm;RnÞ; ð7Þ

and that for the singly excited reads

VmnðRÞ ¼ dm;nðV0ðRÞ þ VmegðRÞÞ þ ð1� dm;nÞJmnðeg; eg; Rm;RnÞ:
ð8Þ

Both CC PES include Coulomb couplings among the electrons and
nuclei of all chromophores. The coupling is accounted for by the
electronic matrix elements of the overall electrostatic interaction
Vmn between chromophore m and n [11]. They have the following
general structure ða; b; c;d ¼ g; eÞ:

Jmnðab; cdÞ ¼
Z

drmdrnu�maðrmÞu�nbðrnÞVmnuncðrnÞumdðrmÞ: ð9Þ

To carry out the computation of Jmn for a particular pair of chro-
mophores we apply the concept of atomic centered partial charges
(transition charges) [9,11,19] and write

Jmnðab; cdÞ ¼
X
l;m

qmlðadÞqnmðbcÞ
jRml � Rnmj

: ð10Þ

The qmlðadÞ and qnmðbcÞ are charges placed at the atoms of chromo-
phore m positioned at Rml and at the atoms of chromophore n posi-
tioned at Rnm, respectively. If a ¼ dðb ¼ cÞ the charges represent
ordinary ones, but if a – dðb – cÞ they are named transition charges.
As demonstrated in [19], Eq. (10) reproduces exact results nearly
perfectly if the charges are properly determined (fit of the electro-
static field). Since this determination is only valid for the electronic
ground-state nuclear equilibrium configuration we cannot exclude
that their use within MD simulations introduces small errors.

Eq. (7) for V0 indicates the inclusion of an electrostatic coupling
among all chromophores staying in their electronic ground-state.
Because of the separate presentation of V0 in the excited-state
PES matrix Vmn, Eq. (8), the latter quantity contains ground-state
excited-state PES differences, in each case including the Coulomb
coupling to all other chromophores:

VmegðRÞ ¼ VmeðRmÞ þ
X

k

Jmkðeg; ge; Rm;RkÞ

� VmgðRmÞ �
X

k

Jmkðgg; gg; Rm;RkÞ: ð11Þ

This expression shows that an electrostatic coupling between the
excited chromophore and all other ones staying in the ground-state
is also accounted for.

Solvent solute Coulomb coupling is incorporated by introducing
all solvent molecules into the definition of the electronic CC states
/0 and /m (the excitonic coupling between the solvent and the sol-
ute can be ignored and respective polarization contributions are of
less importance). Therefore, we multiply the /0 and /m by the sol-
vent part /sol ¼

Q
m2sol ~umg with the single solvent molecule elec-
tronic ground-state wave functions ~umg . As a result, the nuclear
kinetic energy operator Tnuc has to include solvent contributions.
Moreover, V0, Eq. (7) may include in its m and n summation sol-
vent contributions. Concerning Vmn, Eq. (8), solvent contributions
are restricted besides V0 to the k-summations in Vm eg , Eq. (11).
Although, polarization forces can be introduced in a similar way
we neglect respective contributions and account for them indi-
rectly in using a Pheo excitation energy which has been deduced
from the experiment.

We finalize the description of the Hamiltonian, Eq. (1), by focus-
ing on the quantized photon field. It enters via the standard
Hamiltonian

Hphot ¼
X
k;k

�hxkðaþkkakk þ 1=2Þ; ð12Þ

determined by creation and annihilation operators of photons aþkk
and akk, respectively (with polarization k and wave vector k). The
photon energy is denoted by �hxk. The coupling of photons to the
CC takes the form

HCC—phot ¼ �h
X
k;k

ĥkkðakk þ aþkkÞ; ð13Þ

with

ĥkk ¼
X

m

gkkðmÞj/mih/0j þH:c:; ð14Þ

and with

gkkðmÞ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2px2

m eg

V�hxk

s
nkkdm: ð15Þ

V denotes the quantization volume, �hxm eg is the basic electronic
transition energy in chromophore m, and nkk the unit vector of
transversal polarization. The coupling to the classical radiation field
HfieldðtÞ which is responsible for the CC excited-state preparation is
of no interest for the following. We introduce the excitation via an
appropriate assumption for the EET initial state.

3. Mixed quantum classical description of the luminescence
spectrum

The standard version of a mixed quantum classical description
of molecular dynamics is based on the so-called Ehrenfest dynam-
ics. There, the electronic degrees of freedom are described quan-
tum mechanically using the time-dependent Schrödinger equation

i�h
@

@t
Uðr; t; RðtÞÞ ¼ HðRðtÞ; tÞUðr; t; RðtÞÞ: ð16Þ

For the present application, we may take the overall Hamiltonian,
Eq. (1) (concerning its dependence on photon contributions we will
comment in a moment). The time-dependence of the nuclear coor-
dinates follows from Newton’s equation

Mm
@2

@t2 RmðtÞ ¼ �rmhUðt; RðtÞÞjHðRðtÞ; tÞjUðt; RðtÞÞi: ð17Þ

where Mm and Rm are the mass and the coordinate of the mth nuclei,
respectively. The force acting on the nuclei follows from the expec-
tation value of the Hamiltonian taken with the actual electronic
wave function.

Since photon contributions enter we have to modify this stan-
dard approach by additionally introducing an averaging with re-
spect to photon states. Therefore we replace the expression on
the right-hand side of Eq. (17) by trphotfcW ðtÞHðRðtÞ; tÞg, with the
trace expression removing photon contributions and with cW ðtÞ
denoting the overall statistical operator. A similar quantity has
been also introduced in the Appendix A, Eqs. (A.1) and (A.5), where
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the full quantum formula of the emission rate is given. Here,
however, cW ðtÞ has to be understood as an operator where the
nuclear coordinates enter as classical quantities. But for practical
computations this consideration is of minor importance because
the ground-state classical path approximation is taken, i.e. we
use the potential h/0ðRðtÞÞjHCCðRðtÞÞj/0ðRðtÞÞi which, finally, is
approximated by a standard MD force field.

Based on this ground-state classical path approximation we
presented a detailed discussion of P4 EET dynamics in Ref. [11].
First, such simulations give the probability PmðtÞ ¼ jBmðt; t0Þj2 to
have chromophore m in the excited-state. The related probability
amplitude Bmðt; t0Þ ¼ h/mjUðt;RðtÞÞi follows from a projection of
the overall wave function into state /m. For P4 the probabilities
show oscillations in the 0.1 to 1 ps range. This range corresponds
to typical values of the excitonic coupling of about 10 meV and less
[9]. The Pm as well as Bm are single CC quantities (without any aver-
age) which simply follow as the solution of a time-dependent
Schrödinger equations with an explicitly time-dependent Hamilto-
nian. Consequently, the dynamics are completely coherent. Decay
of coherence can only be expected when changing from Pm to an
ensemble average hPmiens. This has been done in [11] by replacing
the ensemble average by a time-averaging Pm (with a 10 ps time
slice). However, constant chromophore populations as obtained
asymptotically in standard density matrix or rate theories does
not appear. Instead, all the Pm fluctuate around the mean high-
temperature population of 1/4 typical for P4. (To relate this type
of EET to standard Förster transfer is under progress. We also refer
to Ref. [24], where the residues of vibrational overlap in a mixed
description of non-adiabatic transitions have been discussed.)

In contrast to our earlier description of EET dynamics in [11],
here it is essential to replace the time-dependent Schrödinger
equation (16) by an equation for a density operator. This need is al-
ready indicated by the full quantum formula for the time and fre-
quency resolved emission (see Appendix A), where EET is
accounted for via a reduced density operator from which photon
states have been already removed. Moreover, such a reduction be-
comes also necessary since equations of motion have to be used
which include radiative decay. In similarity to Eq. (A.5) we intro-
duce a reduced density operator denoted by r̂, which quantum
character, however, is only determined by the CC electronic de-
grees of freedom.

Since exact formulas for time and frequency resolved emission
spectra are less standard we shortly present the derivation of the
full quantum expressions in the Appendix A (see also [4,15,21]).
This full quantum expression, Eq. (A.10), together with the time
evolution of the EET density matrix entering Eq. (A.10) have to
be translated to a mixed quantum classical version (with all nucle-
ar coordinates handled classically). Unfortunately, there does not
exist an unambiguous procedure to get such a mixed quantum
classical version (see, for example, [24] and our own discussion
in [10,11]). In order to correspond to this uncertainty we first com-
ment on a translation in the absence of excited-state decay. An ac-
count for decay processes will be given in the subsequent section.

3.1. Translation of the emission rate to the mixed quantum classical
case: absence of excited-state decay

If any influence of radiative decay is of less importance (concen-
tration on a time region below 1 ns) one may introduce the density
operator entering the emission rate formula, Eq. (A.10), and
describing EET according to the following pure state ansatz (at
time �t)

r̂ð�tÞ ¼ jUð�t; Rð�tÞÞihUð�t; Rð�tÞÞj: ð18Þ

Matrix elements with the excited CC electronic states result in
rmnð�tÞ ¼ Bmð�t; t0ÞB�nð�t; t0Þ; ð19Þ

with Bmð�tÞ ¼ h/mjUð�t; Rð�tÞÞi.
Moreover, to translate Eq. (A.10) to the mixed quantum classical

case matrix elements of the time evolution operators have to be
introduced. The CC ground-state matrix elements of the time evo-
lution operator are replaced, for example, by

A0ðt; t0Þ ¼ h/0jUCCðt; t0Þj/0i; ð20Þ

where UCCðt; t0Þ is the time evolution operator defined by HCCðRðtÞÞ
with time-dependent nuclear coordinates (note the initial condition
A0ðt0; t0Þ ¼ 1). The CC excited-state coefficients describe time evolu-
tion starting at the intermediate time �t. They read

A�kðt;�t; nÞ ¼ ðh/kjUCCðt;�tÞj/niÞ
� ¼ h/njUþCCðt;�tÞj/ki; ð21Þ

with Akð�t;�t; nÞ ¼ dk;n. One may combine both coefficients entering
Eq. (A.10) to get (note the use of conjugated complex expressions
compared with the emission rate formula)eAkðt;�t; nÞ ¼ A�0ðt; t0ÞA0ð�t; t0ÞAkðt;�t; nÞ ¼ A�0ðt;�t; kÞAkðt;�t; nÞ: ð22Þ

Introducing an ordering with respect to the different density matrix
elements (see the next section for application) the mixed quantum
classical variant of the photon emission rate is written as

Fðx; tÞ ¼
X
m;n

Fmnðx; tÞ; ð23Þ

with

Fmnðx; tÞ ¼ 4x3

3pc3�h
Re
Z t

t0

d�t e�ixðt��tÞ � hrmnð�tÞ
X

k

eA�kðt;�t; nÞ

� ½dkðtÞd�mð�tÞ�iens: ð24Þ

The various Fmn can be considered as partial emission spectra. The
bracket h� � � iens accounts for an averaging with respect to different
initial CC solvent nuclear configurations (ensemble average). The
time-dependence of the transition dipole moments is understood
to be originated by the actual nuclear motion inducing a changing
magnitude and spatial orientation according to the formula
(remember the introduction of atomic centered transition charges
in Eq. (10))

dmðtÞ ¼
X
l2m

qmlðegÞRmlðtÞ: ð25Þ

All introduced coefficients can be calculated by respective equa-
tions of motion [9,10] (nonadiabatic couplings have been ne-
glected). We have

i�h
@

@t
A0ðt; t0Þ ¼H0ðtÞA0ðt; t0Þ: ð26Þ

as well as

i�h
@

@t
Amðt;�t; kÞ ¼

X
n

HmnðtÞAnðt;�t; kÞ: ð27Þ

Both equations are combined to

i�h
@

@t
eAmðt;�t; kÞ ¼

X
n

½HmnðtÞ � dmnH0�eAnðt;�t; kÞ: ð28Þ

To compute the emission spectrum according to Eq. (23), first we
have to propagate the density matrix rmn up to �t. It describes CC ex-
cited-state dynamics initiated by optical excitation (the direct ac-
count of this process has been replaced here by a proper choice of
the initial density matrix). Next, we need the excited-state matrix
element eA�k for the time interval between �t and t (the time-depen-
dent dipole moments are easily calculated). The variation of x
within this procedure results in the frequency dependency of the
spectrum (a possible change from this ideal spectrum to a measured
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one is explained in the next section). If the time-dependence of
rmnð�tÞ is slow enough and if the off-diagonal elements are small
we arrive at

Fðx; tÞ �
X

m

Fmmðx; tÞ ¼
X

m

hrmmðtÞImðxÞiens: ð29Þ

The emission spectrum is determined by the superposition of (time
independent) single chromophore spectra ImðxÞ weighted by the
actual chromophore population. The thermal averaging (together
with the introduction of an additional dephasing factor) reduces
the �t interval on a time region of about t � 128 fs. Thus Fðx; tÞ fol-
lows by an integral starting at t � 128 fs up to the actual time t.

3.2. Translation of the emission rate to the mixed quantum classical
case: presence of excited-state decay

When including radiative decay we may again use the transla-
tion scheme of the emission rate to a mixed description practiced
in the foregoing section. The exception would be, however, the
more involved re-interpretation of the density matrix q̂mn of the
full quantum formula, Eq. (A.10). As discussed previously, it has
to be replaced by rmn which is the pendant to q̂mn but defined
for the case of classically handled nuclear coordinates. Hence, Eq.
(A.12) can be adopted but with q̂mn replaced by rmn and with the
Hamiltonian matrix HmnðtÞ now being a time-dependent quantity
(due to the time-dependence of the nuclear coordinates). In the
same manner we can also use directly Eq. (A.13) as long as radia-
tive decay is concerned (the respective continuum of additional
photon states has been removed from the description via introduc-
ing a reduced density operator). In the case of non-radiative decay
the use of rates is conceptually somewhat questionable (since the
vibrational degrees of freedom have been completely considered
via MD simulations their indirect account via non-radiative rates
would led to a double count, see the discussion in [23]).
4. The P4 luminescence spectrum

Nuclear dynamics of the P4 solvent system have been accounted
for by carrying out MD simulations of a single CC placed in a box of
1148 ethanol molecules at room-temperature and at normal pres-
sure (simulation of a NpT-ensemble). In order to do this the NAMD
program package [25] has been used together with the AMBER
force field of parm99 and the GAFF parameter sets [26,27] (for
Fig. 2. Ideal time and frequency resolved emission spectrum of P4 (normalized by its max
excitation corresponds to an equal distribution of population and the absence of inter-c
further details see [10,11]). The coordinates of all atoms were
recorded every 2 fs, and were used to construct the time-depen-
dent CC Hamiltonian including the solvent-induced chromophore
excitation energy shifts. So far it was not possible to account for
the intra chromophore coordinate dependence of the single chro-
mophore PES VmaðRmÞða ¼ g; eÞ. But this missing additional source
of electronic energy level fluctuation can be compensated by an
appropriately chosen overall dephasing time sdeph entering
Fðx; tÞ, Eq. (23), as expð�ðt � �tÞ=sdephÞ (see also Ref. [10]).

Since the CC exciting external field is outside the scope of the
present considerations we have to account for it by establishing
appropriate initial conditions. To have some reference data, we,
first, assume equal population of all four chromophores (balanced
initial excitation). Then, the population is related to the mutual ori-
entation of the transition dipole moment and the electric field vec-
tor what is considered as a rather realistic choice for the initial state
(unbalanced initial excitation). The absence of inter-chromophore
coherences in both cases is justified by the particular way of excita-
tion chosen in the experiment [5], where photon absorption in the
S2-state region has been realized within a sub-ps time interval fol-
lowed by a subsequent sub-ps internal conversion to the S1-state.

4.1. Balanced initial excitation energy distribution

For the initially excited-state of P4 we assume here excitation
energy localization at the chromophores with equal probability,
i.e. rmnðt0Þ ¼ dm;n=4. The ideal time and frequency resolved emis-
sion spectrum of P4 (cf. Fig. 1) is depicted in Fig. 2. This frequency
resolved emission spectrum (together with the related frequency
integrated spectrum) clearly displays radiative decay. To corre-
spond to the experimentally observed decay [5], we took an overall
decay rate with 1=k ¼ 3:5 ns.

The numerical effort to compute the spectrum has restricted the
ensemble average to the use of data corresponding to 10 different
MD runs. As also done for all following spectra it has been normal-
ized by its maximum. The rather flat data are due to the use of
curves displaying the frequency resolved emission every 6 ps. But
the performed averaging with respect to 10 MD runs and the use
of a dephasing time sdeph of 20 fs have also a particular influence
(this value came out from our studies in Ref. [10] on the CC
absorbance).

A time trace of Fig. 2 taken at the absorption maximum is
shown in Fig. 3. To compare the computed emission with mea-
sured data the ideal spectrum Fðx; tÞ, Eqs. (23) and (24) has to
imum and averaged by 10 MD runs as well as a dephasing time of 20 fs). The initial
hromophore correlations, i.e. rmn ¼ dmn=4 (for more details see text).



Fig. 3. Time resolved emission of P4 as in Fig. 2 but taken at the photon energy of
15;015 cm�1 (black line, time step 168 fs). The emission convoluted with an
apparatus function (see inset and the text for more details) is shown by the gray
line (red online).

Fig. 4. Early part of the P4 time resolved emission (normalized to its initial value
and averaged by 10 MD runs as well as by a dephasing time of 20 fs). The initial
density matrix is taken as rm;nðt0Þ � dm;njdmEj2 (the exciting laser pulse moves in z-
direction with the electric field part E polarized in y-direction, see also text; highest
initial population of 0.8 at m ¼ 1). Shown are the different (diagonal) partial
emission spectra Fmm , Eq. (24) (m ¼ 1; . . . ;4, from top to bottom panel).
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be convoluted with an apparatus function aðtÞ stemming from a
single photon counting experiment (see insert of Fig. 3 and [5]):

Fðx; tÞ ¼
Z 1

0
dsaðsÞFðx; t � sÞ: ð30Þ

The respective curve which follows from this relation is also given
in Fig. 3 and matches the measured decay curve of Ref. [5].

In the displayed 2 ns time region we do not find any signature of
EET. According to our recent studies of EET in Ref. [11] this had to
be expected. There, we observed a redistribution of excited-state
population from an initially unbalanced distribution within less
than 200 ps. It was followed by a rather chaotic excitation energy
oscillation among all four chromophores but roughly with an equal
distribution of population at an average. The behavior differs if ini-
tially a dimer (two closely arranged chromophores) is prepared (its
formation within a single MD run, however, is rather improbable
[10,11]).

To get a closer view on the EET dynamics directly after CC exci-
tation the ideal emission spectrum of Fig. 3 has been inspected
within a time window of the first 80 ps after preparation of the ini-
tial state (not shown). This higher time resolution does not offer
any indication of initial excitation energy redistribution. The expla-
nation is also simple. Using the initial condition of equal chromo-
phore population we prepared the equilibrium state of the
excited CC (in the mixed quantum classical description). Any
change of population is only due to radiative decay (not visible
on the 80 ps time scale).

4.2. Unbalanced initial excitation energy distribution

To carry out the simulations with a more realistic initial state
we populated the different chromophores according to the actual
excitation. The direct population of the S2-state of the chromoph-
ores gives a value � jdmEj2 (to stay simple we used the transition
dipole moment into the S1-state, E is the electric field-strength
amplitude). Fast internal conversion results in a respective popula-
tion of the S1-state and we may set

rmnðt0Þ ¼ dm;n
jdmEj2P
k
jdkEj2

: ð31Þ

Note, that the non-radiative transitions have destroyed any coher-
ences among different chromophores, but the orientation of the
CC with respect to the exciting field has been considered. Of course,
in such a case it becomes necessary to carry out a complete orien-
tational averaging. This was not possible. Instead, to have some
characteristic non-balanced initial excitation energy distribution,
we took again those data corresponding to the 10 MD runs used
for the averaging. The chosen geometry (the exciting laser pulse
moves along the z-axis and is polarized along the y-axis) results
in a population somewhat less than 0.8 for chromophore 1 and of
less than 0.2 for chromophore 4. The initial populations of chromo-
phore 2 and 3 are more than one order of magnitude smaller. It fol-
lows a time trace of the ideal emission spectrum similar to that
shown in Fig. 3. A closer inspection indicates, however, that the
fluctuations of the spectrum are about five times larger than in
the case of a balanced initial chromophore population.

To analyze the emission spectrum in more detail we use the
separation, Eq. (23), into partial spectra, Eq. (24), where the single
partial emission spectrum Fmn is exclusively determined by the sin-
gle rmn. The contributions due to the diagonal density matrix ele-
ments are shown in Fig. 4. They nicely display excitation energy
redistribution within the first 20 ps to reach a common mean value
near 0.25 in the renormalized partial emission spectra. Interest-
ingly, the off-diagonal partial spectra Fmn are much smaller (what
is not the case for the off-diagonal density matrix elements [11]).
This observation also indicates that the approximation Eq. (29)
for the spectrum seems to be valid. However, such a behavior is
hidden when drawing the total emission rate F. The mutual com-
pensation of the structures in the partial spectra has been also ob-
served when choosing other types of initially unbalanced
chromophore populations.

We can also state that the fluctuations of the Fmm are much
smaller than those of the overall spectrum F. This is due to the
large fluctuations of the off-diagonal partial spectra (Fmn with
m – n) around zero. Caused by respective fluctuations of the off-
diagonal density matrix elements the resulting fluctuations of F
amount 5% of its initial value. Changing to partial spectra following
from an initially balanced population of the chromophores the
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fluctuations of the off-diagonal density matrix elements are much
smaller (three orders of magnitude compared to those based on an
unbalanced initial population).

5. Conclusions

The time and frequency resolved emission spectrum of the
pheophorbide-a complex P4 dissolved in ethanol has been com-
puted in a mixed quantum classical methodology. The quantum
part is given by the electronic excitations of the complex while
all nuclear coordinates are described classically. This is achieved
by carrying out standard room-temperature MD simulations. In or-
der to apply this mixed technique the full quantum formula for the
emission spectrum has been translated to the mixed description.
Using a particular density matrix theory one may account for radi-
ative decay of the chromophore complex within this mixed
description.

A clear indication of excitation energy transfer is obtained if a
non-balanced initial distribution is used. It corresponds to an indi-
rect S1-state population of the pheophorbide-a molecules via an
S2-state optical excitation and a subsequent internal conversion
to the S1-state. However, to obtain signatures of excitation energy
transfer requires the introduction of partial emission spectra refer-
ring to the contribution of a single chromophore. The full emission
spectrum only reflects excited-state decay.
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Appendix A. Calculation of the spontaneous emission spectrum

To characterize spontaneous emission we introduce the rate
RkkðtÞ determining the number of photons emitted per time into
the state with polarization k and wave vector k. Since emission ap-
pears into the photon vacuum we may set

Rkk ¼
@

@t
Nkk ¼

@

@t
tr cW ðtÞaþkkakk

n o
: ðA:1Þ

The trace defining the expectation value of the photon-number at
time t concerns the CC, the solvent and the photon states. The sta-
tistical operator cW ðtÞ accounts for the respective time evolution.
Consequently, the rate to emit a photon at time t and with energy
�hx reads (note RkkðtÞ 	 Rkðx; tÞ and the introduction of a solid angle
integration)

Fðx; tÞ ¼ Vx2

ð2pcÞ3
X

k

Z
doRkðx; tÞ: ðA:2Þ

It is sufficient for the following to determine the quantity Rkk in sec-
ond order with respect to the CC–photon interaction HCC—phot, Eq.
(13). First, we note

Rkk ¼ itr ĥkk akk � aþkk

� �cW ðtÞn o
: ðA:3Þ

This equation indicates that a restriction becomes possible to an
expression for cW which is of first-order with respect to HCC—phot. It
can be deduced from

cW ðtÞ ¼ U0ðt; t0ÞcW ðt0Þ �
i
�h

Z t

t0

d�tU0ðt;�tÞ HCC—phot;cW ð�tÞh i
�

� �
;

ðA:4Þ

which represents the integrated equation of motion for cW (the time
evolution superoperator U0 abbreviates the solution of the respec-
tive density operator equation at the absence of the CC–photon cou-
pling). Consequently, the second term of the right-hand side is
inserted into Eq. (A.3) and the total density operator cW is split into
a photon part Wphot and a CC-solvent part q̂ðtÞ. The first has to be
chosen as that of the photon vacuum jvacihvacj and the latter
may be written as

q̂ðtÞ ¼ trphotfcW ðtÞg; ðA:5Þ

with the overall density operator cW already been introduced in Eq.
(A.1).

We further take into account the separation of U0 into a CC plus
(classical) external field part UCCþfield and a photon part. So, we may
finally write:

RkkðtÞ ¼ 2Re
Z t

t0

d�te�ixkðt��tÞtrCCþsol ĥkkUCCþfieldðt;�tÞ ĥkkq̂ð�tÞ
� �n o

:

ðA:6Þ

Note that the trace is reduced to CC and solvent contributions (ĥkk

has been introduced in Eq. (14)). The density operator q̂ has to be
propagated including the exciting external field E. A further propa-
gation of ĥkkq̂ð�tÞ from �t to t also in the presence of E is described by
the time evolution superoperator UCCþfieldðt;�tÞ.

Now, the CC electronic state part of the trace is taken explicitly
(summation with respect to the CC ground-state /0 and the singly
excited-states /m). It remains a trace with respect to all involved
vibrational states (of the CC as well as of the surrounding solvent,
note the use of Eq. (14))

trCCþsol ĥkkUCCþfieldðt;�tÞ ĥkkq̂ð�tÞ
� �n o

¼
X
m;n

trvib gkkðmÞh/0j UCCþfieldðt;�tÞgkkðnÞj/nih/0jq̂ð�tÞð Þj/mif g

þ
X
m;n

trvib gkkðmÞh/0j UCCþfieldðt;�tÞg�kkðnÞj/0ih/njq̂ð�tÞ
� �

j/mi
� �

þ
X
m;n

trvib g�kkðmÞh/mj UCCþfieldðt;�tÞgkkðnÞj/nih/0jq̂ð�tÞð Þj/0i
� �

þ
X
m;n

trvib g�kkðmÞh/mj UCCþfieldðt;�tÞg�kkðnÞj/0ih/njq̂ð�tÞ
� �

j/0i
� �

:

ðA:7Þ

The formula can be simplified considerably if some obvious
assumptions are taken. First, we account for the fact that the opti-
cal preparation of the excited-state is short compared to the emis-
sion process and, thus, short compared to the time interval of
observation (determined by the time argument t). In such a case
the time evolution of the emission, given by UCCþfieldðt;�tÞ, can be
replaced by a field-free evolution UCCðt � �tÞ (in contrast to the
propagation of the density operator which accounts for the exter-
nal field). We further assume that UCC does not cause electronic
transitions. Then, due to the orthogonality of the CC electronic
states, Eq. (A.7) reduces to the second and the third term on the
right-hand side. Since the third term gives an anti-resonant con-
tribution it will be also neglected. Introducing electronic matrix
elements of the density operator we get the rate of photon
emission

RkkðtÞ ¼
4px2

eg

V�hxk
Re
Z t

t0

d�te�ixkðt��tÞ
X
m;n;k

� trvib nkkdmh/0je�iHCCðt��tÞ=�hj/0inkkdþn
n

�q̂nkð�tÞh/kjeiHCCðt��tÞ=�hj/mi
o
: ðA:8Þ

When calculating the quantity Fðx; tÞ, Eq. (A.2), we have to carry
out a summation with respect to the transversal polarization and
a solid angle integration which both result in:
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X
k

Z
do nkkdm½ � nkkdþn

	 

¼ 8p

3
dmdþn : ðA:9Þ

If this expression is used the full quantum rate (rate of ideal time
and frequency resolved emission) reads

Fðx; tÞ ¼ 4x3

3pc3�h
Re
Z t

t0

d�t e�ixðt��tÞ
X
m;n;k

� trvib q̂mnð�tÞh/njeiHCCðt��tÞ=�hj/kie�iH0ðt�t0Þ=�h
n

�½dð0Þk ðtÞd
ð0Þþ
m ð�tÞ�eiH0ð�t�t0Þ=�h

o
: ðA:10Þ

Here, we prevent to take the Condon approximation. The action of
the two time evolution operator matrix elements is responsible
(after partial Fourier-transformation) for the frequency dispersion
of the signal. Note the use of h/0j expð�iHCCðt � �tÞ=�hÞj/0i ¼
expð�iH0ðt � �tÞ=�hÞ and of:

dme�iH0ðt��tÞ=�hdþn ¼ e�iH0ðt�t0Þ=�hdð0Þm ðtÞd
ð0Þþ
n ð�tÞeþiH0ð�t�t0Þ=�h; ðA:11Þ

with the time-dependent transition dipole matrix elements taken in
a representation defined by the CC ground-state vibrational Hamil-
tonian H0.

The q̂mn ¼ h/mjq̂j/ni in Eq. (A.10) are defined by the density
operator q̂, Eq. (A.5), reduced to all CC-solvent states (photon con-
tributions have been eliminated). Accordingly, the q̂mn remain
operators in the vibrational state space and account for excitation
energy motion among the different chromophores including
respective vibrational dynamics (after optical excitation at t0).
For the present application the memory effect (�t dependence) as
well as the account of site off-diagonal elements of the density
operator are of some importance. If EET, however, is slow (com-
pared to the decay of the time evolution operator matrix ele-
ments), we may replace q̂mnð�tÞ by dm;nPmðtÞr̂me. This replacement
covers the neglect of inter chromophore correlations and charac-
terizes the population of chromophore m (with probability Pm)
by a vibrational thermal equilibrium distribution (described by
the density operator r̂me). Moreover, PmðtÞ can be removed from
the �t integral with the latter characterizing the line shape of the
emission. This corresponds to the standard case where the time-
dependence of the emission is determined by the temporal evolu-
tion of the excited-state population (see, for example, [22]).

A.1. Account for CC excitation decay

When entering a nanosecond time region the density matrix is
also affected by radiative and non-radiative decay of the CC excita-
tion. An expression has to be introduced from which all degrees of
freedom have been removed being responsible for the decay (in the
first place the photon states). The reduced density operator intro-
duced in Eq. (A.5) is of such a type being an operator in the com-
plete CC-solvent state space (or later in the electronic CC state
space with the nuclear coordinates treated classically).

It is a standard task of dissipative quantum dynamics to derive
an equation of motion for the CC density operator q̂ with a second
order account for the CC–photon coupling (see, for example, [22]).
Focusing on the excited CC-state contribution, with the dissipative
part given in the most simple case (Markov and secular approxi-
mation) we arrive at the following equation of motion
@

@t
q̂mnðtÞ ¼ �

i
�h

X
k

ðHmkq̂knðtÞ � q̂mkðtÞHknÞ � bDmnðt; t0Þ: ðA:12Þ

The Hamiltonian matrix has been introduced in Eq. (6) and the dis-
sipative part reads

bDmnðt; t0Þ ¼
1
2
ðkm þ knÞq̂mnðtÞ: ðA:13Þ

This expression comprises population decay in the diagonal part
and dephasing of inter-chromophore correlations via the off-diago-
nal contributions. The km include the rates kðradÞ

m!0 accounting for the
radiative excited-state decay of chromophore m. They may also
cover the rates kðICÞm!0 describing non-radiative decay (internal con-
version) as well as the rates kðISCÞ

m originated by inter-system cross-
ing to triplet states (ISC rate). Since the km do not include the effect
of excited-state wave function delocalization (a possible decay out
of exciton states [4]) an additional generalization becomes neces-
sary. This all will be the subject of a forthcoming paper [23]. Here,
we use a single decay rate km 	 k fitted to experimental data.
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