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A theoretical model for molecules interacting with intense laser pulses:
The Floquet-based quantum-classical Liouville equation

Illia Horenko, Burkhard Schmidt,a) and Christof Schütte
Freie Universität Berlin, Institut für Mathematik, Scientific Computing, Arnimallee 2–6,
D-14195 Berlin, Germany

~Received 18 May 2001; accepted 11 July 2001!

The Floquet-based quantum-classical Liouville equation~F-QCLE! is presented as a novel
theoretical model for the interaction of molecules with intense laser pulses. This equation efficiently
combines the following two approaches: First, a small but spectroscopically relevant part of the
molecule is treated quantum-mechanically while the remaining degrees of freedom are modeled by
means of classical molecular dynamics. The corresponding nonadiabatic dynamics is given by the
quantum-classical Liouville equation which is a first-order approximation to the partial Wigner
transform of full quantum dynamics. Second, the dynamics of the quantum subsystem is described
in terms of instantaneous Floquet states thus eliminating highly oscillatory terms from the equations
of motion. The resulting F-QCLE is shown to have a well defined adiabatic limit: For infinitely
heavy classical particles and for infinitely slow modulation the dynamics adiabatically follows the
Floquet quasi-energy surfaces for a strictly time-periodic field. Otherwise, nonadiabtic effects arise
both from the motion of the classical particles and from the modulation of the field which is
assumed to be much slower than the carrier frequency. A numerical scheme to solve the F-QCLE is
based on a Trotter splitting of the time evolution. The simplest implementation can be realized by
an ensemble of trajectories stochastically hopping between different Floquet surfaces. As a first
application we demonstrate the excellent agreement of quantum-classical and fully
quantum-mechanical dynamics for a two-state model of photodissociation of molecular fluorine. In
summary, due to the favorable scaling of the numerical effort the F-QCLE provides an efficient tool
for the simulation of medium to large molecules interacting with intense fields beyond the
perturbative regime. ©2001 American Institute of Physics.@DOI: 10.1063/1.1398577#
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I. INTRODUCTION

One of the ultimate goals in the field of physic
chemistry/chemical physics is to understand molecular
namics in real time. In particular, recent experimen
progress connected with the generation of very short
intense laser pulses has lead to novel possibilities to obse
and possibly control, molecular dynamics on a femtosec
time scale by means of various kinds of nonlinear spect
copy, e.g., pump–probe experiments.1,2 Currently there is a
trend to extend these studies towards larger and, eventu
biologically relevant molecules. The development of cor
sponding theoretical models is still posing a great challen
In particular, the requirements for theoretical models of m
lecular dynamics interacting with strong external fields
the following: First of all, the dynamics of the full molecula
system has to be modeled microscopically where at leas
most important degrees of freedom ought to be trea
quantum-mechanically. Second, the interaction of the m
ecule with the external field has to be modeled beyond
level of perturbation theory in order to account for high fie
amplitudes and the corresponding higher-order nonlinear
fects.

A pragmatic approach to meet the first of the above

a!Author to whom correspondence should be addressed. Electronic
burkhard@math.fu-berlin.de
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quirements is the use of quantum-classical hybrid schem
On the one hand, a fully quantal model of the dynamics
large molecules is clearly beyond the limits of present co
putational feasibility. On the other hand, certain quantum
fects have to be incorporated in a realistic description
photo-induced processes. However, such effects can ofte
attributed to a subsystem of the molecule under consid
ation, e.g., the electronic dynamics in studies of electro
excitation or the proton dynamics in studies of hydrog
transfer systems, whereas it may be sufficient to treat
remaining degrees of freedom by means of standard clas
molecular dynamics. The earliest variants of such hyb
schemes are based on the assumption of separability o
wave functions for the two subsystems which are interact
with each other through mean field potentials~Ehrenfest
coupling!.3–5 More recently the asymptotic properties
such models have been studied with more mathema
rigor.6–8 However, the use of such models has to be limit
to cases where the dynamics is close to separable. The
pirically based surface hopping scheme represents a firs
tempt to overcome the limitation of separability.9–11 Owing
to the simple concept of surface hopping, modified versio
of the original algorithm are still in common use in man
studies of nonadiabatic effects in molecular dynamics.12–17

During the last few years these techniques were given a m
rigorous foundation through the advent of the quantu
il:
3 © 2001 American Institute of Physics
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classical Liouville equation~QCLE!.18–22 It can be formally
derived as a partial Wigner transform of the origin
quantum-mechanical Liouville–von Neumann equat
~LvNE!.23–25 Other work is devoted to the construction
practical algorithms to solve the QCLE numerically26–29 us-
ing surface-hopping and multithreading schemes.

First attempts to develop quantum-classical models
the coupling between molecular dynamics and external fie
are still hampered by serious limitations: The standard te
nique in the literature is based on perturbation theory1,30

yielding numerically tractable equations only for specific
ser pulses.31,32 Furthermore, these approaches usually
clude higher order processes prevalent in strong fields
other work a surface hopping of classical trajectories
tween instantaneous Stark states is suggested.33,34 Naturally,
such a model is limited to very low frequency fields becau
of the highly oscillatory behavior of the fields used in typic
experiments with pulsed lasers.

In the present work we suggest to overcome these p
lems by the use of Floquet theory which is well develop
for the case of static systems~e.g., atoms!. Although origi-
nally developed for the interaction of a quantum system w
continuous light sources35,36 it has been adapted in rece
years to the treatment of amplitude and frequency modula
light.37–41In general, the attractivity of Floquet based mod
is fourfold: ~1! It allows for an adiabatic approximatio
of the time-dependent Schro¨dinger equation, possibly in
cluding nonadiabatic effects at various levels
approximation.39,42,43 ~2! Since Floquet theory is not base
on perturbation theory, it allows for higher-order effects
duced by very intense fields.~3! A Floquet description offers
the advantage of a straightforward interpretation: The und
lying ‘‘dressed state’’ picture allows a direct counting of a
sorbed or emitted photons.36 ~4! Finally, the elimination of
the fast oscillations connected with the carrier frequency
the electric field allows a larger time steps in numeri
simulations.

In the present work we introduce a novel approach
the construction of an efficient simulation technique wh
combines the two approaches mentioned above. In partic
we intend to develop a quantum-classical model for mole
lar dynamics in the presence of external fields based on
quet states. This shall be accomplished by means o
Floquet-based quantum-classical Liouville equation~F-
QCLE!. Such an approach is expected to offer the followi
advantages: By virtue of the favorable scaling properties
trajectory-based implementations of the QCLE, it can
used for the description of medium to large molecules. At
same time, the use of a Floquet basis allows for descrip
of multiphoton processes while avoiding highly oscillato
nonadiabatic transition probabilities.

The remainder of this paper is organized in the followi
way: Sec. II presents a fully quantum mechanical mode
molecular dynamics based on Floquet states. Subsequen
quantum-classical description is developed in Sec. III by
use of partial Wigner transforms. Numerical simulations
Sec. IV illustrate the use of these models.
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II. QUANTUM DYNAMICS

A. Hamiltonian operator

Let us consider a physical or chemical system consis
of a heavy particle of massM and a light particle of massm
with m/M!1, where generalization to the case of seve
heavy and/or light particles is straightforward. The quant
dynamics of such a two-component system is described
two sets of position and momentum operatorsR̂,P̂ and r̂ ,p̂,
respectively. Hence, the total Hamiltonian of the system
be written as

Ĥ~ r̂ ,p̂,R̂,P̂,t !5V̂~ r̂ ,p̂,R̂,t !1
P̂2

2M
, ~1!

where the first term on the right-hand side is the Hamilton
of the light particles which can be interpreted as the poten
energy governing the dynamics of the heavy particles. In
absence of an external field, we simply have

V̂0~ r̂ ,p̂,R̂!5
p̂2

2m
1Û~ r̂ ,R̂! ~2!

representing the kinetic and potential energy where the la
is depending on the positions of the heavy particles, too.
light–matter interaction can be described in the framew
of the semiclassical dipole approximation, i.e., a quantu
mechanical system interacting with a time-dependent cla
cal field44

V̂~ r̂ ,p̂,R̂,t !5V̂0~ r̂ ,p̂,R̂!1m̂~ r̂ ,R̂!•F~ t !, ~3!

where the electric dipole momentm̂ of the molecular system
interacts with the external electric fieldF(t). It is noted that
the dot product accounts for the vectorial nature of the t
quantities and allows for the description of polarization
fects. Typically, for modern experiments with conventiona
pulsed lasers the time-dependence of the electric field
given by

F~ t !5F0~Vt !sin~vt ! ~4!

representing fast oscillations with a constant carrier f
quencyv with modulated amplitudeF0(Vt) defining the
envelope~shape! of the light pulse. The time scale of th
modulation is assumed to be much slower than that of
carrier frequency (V/v!1).

B. Scaled Schro¨ dinger equation

The dynamics of the system is governed by the ti
dependent Schro¨dinger equation~TDSE!,

i\
d

dt
uc~ t !&5Ĥ~ t !uc~ t !& ~5!

giving the evolution of the quantum-mechanical state vec
In the following we shall use a coordinate representation
the heavy particle operatorsR̂,P̂ which allows us to write the
Hamiltonian of the total system as

Ĥ~ r̂ ,p̂,R,t !5V̂~ r̂ ,p̂,R,t !2
\2

2M
DR , ~6!
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where the heavy particle potential can be written as

V̂~ r̂ ,p̂,R,t !5
p̂2

2m
1Û~ r̂ ,R!1m̂~ r̂ ,R!•F~ t !. ~7!

These expressions can be understood as quantum mech
operators inr̂ ,p̂ parametrically depending on the positionR
of the heavy particle and on the timet. Similarly, the quan-
tum mechanical state vectoruc(t)&Rr which is a vector in the
Hilbert space spanned byR and r can be cast in coordinat
representation with respect toR,

uc~R,t !& r5^Ruc~ t !&Rr , ~8!

which yields — for each value ofR and t — a vector in the
reduced Hilbert spaceHr spanned byr only. Later we shall
introduce a partial Wigner transform with respect toR while
retaining the quantum-mechanical operators inr̂ ,p̂ which
opens the way towards a quantum-classical model of
lecular dynamics.

In order to investigate the asymptotic properties of qu
tum dynamics, we propose a practical scaling of the qua
ties of interest. Following earlier work we introduce a sca
time,6

t85
\

AmM
t, ~9!

while the potential energy as well as the dipole moment sc
according to

Û85
m

\2
Û and m̂85

m

\2
m̂. ~10!

The corresponding scaling of the high~carrier! and low
~modulation! frequencies is then obtained from the de Br
glie relationE5\v,

v85
m

\
v and V85

m

\
V, ~11!

which leads to the scaled equation of motion~TDSE!,

i e
d

dt8
uc~R,t8!&5F V̂8~R,t8!2

e2

2
DRG uc~R,t8!&, ~12!

with the scaled potential

V̂8~R,t8!5
p̂2

2\2
1Û8~ r̂ ,R!1m̂8~ r̂ ,R!

•F0S g
v8

e
t8D sinS v8

e
t8D , ~13!

where we have introduced the dimensionless numbers

e5Am

M
and g5

V

v
, ~14!

which serve as smallness parameters characterizing the
viation from adiabatic behavior. Note that we will drop th
primes on the scaled quantities throughout the remainde
this article for simplicity.
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C. Instantaneous Floquet states

In this section we want to construct instantaneous F
quet states which are exact solutions of the time-depen
Schrödinger equation for the light particles subsystem int
acting with a strictly time-periodic Hamiltonian (F0

5const), i.e., for a continuous wave~cw! light source. As a
first step we derive adiabatic eigenstatesufn(R)& r of the mo-
lecular system in the absence of an external field,

V̂0~R!ufn~R!& r5En~R!ufn~R!& r , ufn~R!& rPHr ,
~15!

whereEn are adiabatic eigenenergies ofV0 and whereHr is
the Hilbert space spanned by the light particles. In the lim
of an infinitely large number of photons, the state of t
external field can be characterized by eigenstates of
~scaled! photon number operator,36

N̂uhm& t52 i e
d

dt
uhm& t5mvuhm& t , uhm& tPHt , ~16!

whereHt is the corresponding Hilbert space. Using a co
dinate representation int these states can be expressed a

hm~ t !5^tuhm& t5
1

Aeu
eim ~v/e! t, hm~ t !PL2~0,eu!,

~17!

yielding square integrable functions which are time-perio
with respect to the optical cycle of the fieldu52p/v.45 The
corresponding orthogonality relation is given by the sca
product inHt

^hm8uhm& t5E
0

eu

hm8
* ~ t !hm~ t !dt5dm8m . ~18!

Finally, ‘‘dressed’’ states are constructed as tensor produ
of molecular states~15! and field states~16!,

uwnm
dia~R!&&ªufn~R!& r ^ uhm& t ,

uwnm
dia&&PHrtªHr ^ Ht , ~19!

where Hrt is the extended Hilbert space or Floquet spa
with the orthonormality of the extended space basis given
the respective scalar product,

^^wn8m8
dia

~R!uwnm
dia~R!&&5^fn8~R!ufn~R!& r^hm8uhm& t

5dn8ndm8m . ~20!

The quasi-energy operator, or Floquet Hamiltonian, is
fined as the sum of the Hamiltonian for the light particl
interacting with the field~13!, and the photon number opera
tor,

V̂~R,F0!5V̂~R,F0 ,t !1N̂

5V̂0~R!1m̂~R!•F0 sinS v

e
t D2 i e

d

dt
, ~21!

where we use calligraphic symbols for operators acting
extended Hilbert space throughout this paper. Using the
abatic basis defined in Eq.~19! the corresponding matrix
representation is obtained as an expansion of
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r -dependence in adiabatic molecular states combined wit
expansion of thet-dependence in a Fourier series in harmo
ics of the carrier frequencyv,

Vn8m8,nm~R,F0!5^^wn8m8
dia

~R!uV̂~R,F0 ,t !uwnm
dia~R!&&

5~En~R!1mv!dn8ndm8m1mn8n~R!

•

F0

2
~dm8,m211dm8,m11!. ~22!

The structure of the Floquet matrix is readily understood
the following way: The diagonal entries are the poten
energy hypersurfaces ‘‘dressed’’ by an integer number
photons. The off-diagonal entries couple dressed st
which differ by exactly one photon. Hence, it is straightfo
ward to interpret transitions withm85m61 to absorption or
emission of one photon. The coupling strengths are pro
tional to the matrix elements of the dipole moment opera

mn8n~R!5^fn8~R!um̂~R!ufn~R!& r . ~23!

The diagonal or off-diagonal elements are usually referre
as permanent or transition dipole moment functions, resp
tively. Adiabatic Floquet states are obtained by diagonali
tion of V(R),

V̂~R,F0!uwa
adi~R,F0!&&5Ea~R,F0!uwa

adi~R,F0!&&,

uwa
adi&&PHrt , ~24!

where the eigenvaluesEa(R,F0) represent the adiabati
quasi-energies, or Floquet energies, of the light particles
the molecular system driven by a strictly time-periodic fie
While the diabatic energiesVnm,nm(R,F0) generally intersect
each other, the codimension of intersections of adiabatic
quet quasi-energies depends on the symmetry of the p
lem. For example, for states of equal symmetry the Wign
von Neumann theorem predicts the existence of avoi
crossings or conical intersections for one- or tw
dimensional problems, respectively.46

It is noted that the above equation reflects the cen
advantage of the Floquetansatzfor the description of quan
tum systems:45,47 Instead of solving a time dependent Schr¨-
dinger equation for the original HamiltonianV̂ of Eq. ~13!
one has to solve a time-independent Schro¨dinger equation
for the extended space Floquet HamiltonianV̂ of Eq. ~21!.
Although the extended space is of higher dimension s
approaches are known to be numerically superior.48

D. Floquet-based quantum dynamics

In this section we want to return to the original proble
of solving the time-dependent Schro¨dinger equation~12! for
the Hamiltonian of the complete molecular system comp
ing of light and heavy components. Furthermore, we now
the restriction of a constant field amplitude and consider
oscillating field with varying amplitude. In particular, th
affects the Floquet matrix~22! as well as its eigenvalues an
eigenvectors~24!. In order to estimate the influence of a
amplitude modulation, the amplitudeF0 is expanded in a
Taylor series in time,
an
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F0S g
v

e
t D5F0S g

v

e
t0D1g

v

e

]F0

]t U
t5t0

~ t2t0!1¯.

~25!

Restricting the use of this equation to one optical cycle
<t2t0<eu as required for the evaluation of the scalar pro
uct in Ht and Hrt @see Eqs.~18!, ~20!# provides an upper
limit for the linear term,

F0S g
v

e
t D5F0S g

v

e
t0D1O~g!. ~26!

Hence, neglecting changes of the field amplitude during
optical cycleeu yields an error for the Floquet matrix of Eq
~22!,

V~R,F0~ t !!5V~R,F0~ t0!!1O~g! ~27!

in case of a modulated field with slowly varying amplitud
It is noted that similar considerations are also possible
frequency modulated~‘‘chirped’’ ! pulses.39

Next, the quantum-mechanical state vector of the sys
is expanded in the diabatic basis of dressed states introd
in Eq. ~19!,

uc~R,t !&&5(
nm

xnm
dia~R,t !uwnm

dia~R!&&, ~28!

where the coefficientsxnm
dia(R,t) are readily identified as the

heavy particle wavefunction corresponding to thenth adia-
batic molecular state dressed withm photons. Inserting this
ansatz into the time-dependent Schro¨dinger equation~TDSE!
leads to the diabatic representation of the Floquet-ba
TDSE. The coupled channel equations describe the evolu
of the vector of heavy component wave functions,

i e] tx
dia~R,t !5FV~R,F0!2

e2

2
~DR12C dia~R!•¹R

1T dia~R!!Gxdia~R,t !1O~g!, ~29!

where V(R,F0) is the Floquet matrix of Eq.~22!, but for
varying amplitudeF05F0(gvt/e). Note that the scalar
product has to be understood asCn8m8,nm

dia (R)•¹R

5(kCn8m8,nm,k
dia (R)•¹Rk

. The matrix elements of the first an
second order nonadiabatic operators in extended space,

C n8m8,nm,k
dia

~R!5^^wn8m8
dia

~R!u¹Rk
uwnm

dia~R!&&

5Cn8n,k~R!dm8m ,
~30!T n8m8,nm

dia
~R!5^^wn8m8

dia
~R!uDRuwnm

dia~R!&&

5Tn8n~R!dm8m ,

can be easily expressed in terms of the kinetic coupling
the field-free molecular system,

Cn8n,k~R!5^fn8~R!u¹Rk
ufn~R!& r ,

~31!Tn8n~R!5^fn8~R!uDRufn~R!& r ,

where C is anti-Hermitian with respect to the molecula
statesCn8n,k52Cnn8,k

* while there exists no such relatio
for the second order coupling tensorT.
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Alternatively, the state vector can be expanded in ad
batic Floquet quasistationary states introduced in Eq.~24!,

uc~R,t !&&5(
a

xa
adi~R,t !uwa

adi~R,F0!&&, ~32!

where the coefficientsxa
adi(R,t) form the heavy particle

wave functions corresponding to theath Floquet state of the
light particles interacting with the field. Inserting this ansa
into the time-dependent Schro¨dinger equation~TDSE! leads
to the adiabatic representation of the Floquet-based TDS

i e] tx
adi~R,t !5FE~R,F0!2

e2

2
~DR12C adi~R,F0!•¹R

1T adi~R,F0!!2 iVG~R,F0!•
dF0

dt G
3xadi~R,t !1O~g!, ~33!

whereE(R,F0) is a diagonal matrix containing the Floqu
quasi-energies of Eq.~24! for varying amplitudeF0(gvt/e).
The matrix elements of the first and second order kine
coupling operators in the Floquet space are given by

C a8a,k
adi

~R,F0!5^^wa8
adi

~R,F0!u¹Rk
uwa

adi~R,F0!&&,

~34!T a8a
adi

~R,F0!5^^wa8
adi

~R,F0!uDRuwa
adi~R,F0!&&.

In addition, the time-dependence of the Floquet states du
the amplitude modulation gives rise to yet another coupl
term,

Ga8a,k~R,F0!5^^wa8
adi

~R,F0!u¹F0,k
uwa

adi~R,F0!&&, ~35!

which is anti-Hermitian with respect to interchange of t
Floquet statesGa8a,k52Gaa8,k

* .
The main advantage of the diabatic or adiabatic Floqu

based time-dependent Schro¨dinger equation~F-TDSE! over
the original TDSE~12! is now obvious. The Fourier decom
position of the time-dependent Hamiltonian serves to eli
nate the highly-oscillatory terms connected with the high c
rier frequencyv of the electric field. Hence, all terms on th
right-hand sides of the two evolution Eqs.~29! and~33!, i.e.,
the Floquet energies and the kinetic and field induced c
plings, vary only slowly with time as indicated by the lo
modulation frequencyV5gv. Furthermore, deviations from
the instantaneous Floquet states are of the order ofO(g).

E. Asymptotic analysis

Let us first consider the asymptotic properties of the
abatic F-QCLE as given in Eq.~29!. In the limit of a strictly
periodic field (g50), i.e., for the molecular system interac
ing with a continuous light source, the diabatic Floquet m
trix becomes stationary, and the system evolves along
dressed statesEn(R)1mv with nondiabatic transitions be
tween them induced by the off-diagonal elements of the F
quet matrix~22! and/or by the first and second order kine
coupling C dia(R),T dia(R), see Eq.~30!. Note that for sym-
metric molecules some coupling elements and/or dipole
ment functions may vanish due to certain symmetry prop
ties of the molecular eigenstatesuf(R)&.
-
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For the case of vanishing external field (F050) the po-
tential energy matrix in diabatic~dressed state! representa-
tion becomes diagonal and the corresponding quantum
namics is equivalent to that of the noninteracting molecu
The wave functions of the heavy particles evolve along
adiabatic molecular energy levelsE(R) obtained as solutions
of the time-independent Schro¨dinger equation~15! for the
light particles with nonadiabatic transitions being induced
the first and second order kinetic coupling operat
C(R),T(R), see Eq.~31!. If in addition the mass ratio of the
two components vanishes (e→0) we have the limit of purely
adiabatic~Born–Oppenheimer! evolution alongE(R).7

The adiabatic F-QCLE as given in Eq.~29! describes
evolution of the system along the Floquet quasi-energy s
faces with nonadiabatic couplings arising from two differe
mechanisms. First of all, the first and second order opera
C adi(R,F0),T adi(R,F0) stem from the action of the heav
particle kinetic operator on the Floquet states of the lig
particles. Their effect on the dynamic vanishes in the limit
e→0. Second, the change of Floquet states induced by
amplitude modulation of the field is given by the field
induced couplingG(R,F0). It ceases to influence the dynam
ics of the system in the limit of cw light source withg→0.
Finally, if both smallness parameters are infinitely sm
(g,e→0) the system evolves adiabatically along the stati
ary Floquet states.

III. QUANTUM-CLASSICAL DYNAMICS

A. Quantum Liouville equation

In the following we shall use density operators instead
state vectors to characterize the evolution of the molec
system under consideration. Apart from the possibility to d
scribe also mixed states, this description allows us to exp
the transition from quantum dynamics to classical mechan
through the method of Wigner transforms, see below. In p
ticular, the technique of partial Wigner transforms is instr
mental in the construction of quantum-classical models.
the density picture, a quantum mechanical system evolve
time according to the Liouville–von Neumann~or quantum
Liouville! equation~LvNE!,

] tD̂~ t !52
i

e
@Ĥ~ t !,D̂~ t !#, ~36!

where the scaling of Eqs.~9!–~11! has been used.
In order to solve the LvNE numerically, a specific re

resentation of the density and Hamiltonian operator has to
used. In the present work these shall be the diabatic~dressed
state! or adiabatic~Floquet state! representation of wave
functions in Eqs.~28! and~32!, respectively, from which the
density matrices can be constructed in a straightforw
manner.29 The corresponding matrix representations of t
Hamiltonian operator can be found inside the square brac
on the r.h.s. of the diabatic~29! and adiabatic~33! formula-
tion of the TDSE.

B. Partial Wigner transforms

The Wigner transform is a well established tool to re
resent quantum dynamics in phase space.49,50 In particular, it
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can be shown that the equations of motion for Wigner dis
bution functions have a well-defined classical limit. In ord
to derive a quantum-classical formulation for the dynam
of a system comprising of light and heavy particles, a par
Wigner transform with respect to the heavy particle coor
nates has to be carried out. This technique allows for a
scription of the degrees of freedom of the heavy particlesR,
in the classical limit while maintaining the quantum m
chanical nature in the degrees of freedom,r, connected with
the dynamics of the light particles.23,25 Using the scaling in-
troduced above, the partial Wigner transformAW(R,P,t) of
the ~diabatic or adiabatic! matrix representation of a
quantum-mechanical operatorÂ(R,R8,t) can be written as
the Fourier transform of an off-diagonal element of the
spective density matrix inR,

AW~R,P,t !5E
RN

ÂS R2
e

2
Y,R1

e

2
Y,t DeiP•YdY, ~37!

where an additional factor (2p)2N has to be used to obtai
correct normalization for the Wigner distribution functio
DW which is defined as the Wigner transform of the dens
operatorD̂. When using a particular~diabatic or adiabatic!
basis for the representation of the quantum subsystem inr̂ ,p̂,
the partial Wigner transform takes the form of a matrix
functions in classical phase space spanned byR,P.

First, we define the heavy particles density matrix,

Kn8m8,nm
dia

~R,R8,t !5xn8m8
dia

~R,t !~xnm
dia~R8,t !!* . ~38!

Using a result of Ref. 25, the transform of the density ope
tor in the diabatic~dressed state! picture ~28! is given by

D W
dia~R,P,t !5K W

dia~R,P,t !1
i e

2
@C dia,¹PK W

dia#11O~e2!,

~39!

where @C dia,¹PK W
dia#15(k@C k

dia,¹Pk
K W

dia#1 stands for a
generalized form of the anticommutator@A,B#15AB
1BA. Note that the first~and higher! order correction~s! are
due to the fact that the dressed state basis inherits the de
dence on the coordinatesR of the heavy particles through th
adiabatic basis of the field-free molecule of Eq.~15!. An
analogous relation holds for the partial Wigner transform
the density operator in the basis of adiabatic~Floquet! states.

The partial Wigner transform of the diabatic Ham
tonian on the r.h.s. of Eq.~29! can be expressed as

H W
dia~R,P,F0!5V~R,F0!1 1

2 uPu22 i eC dia~R!•P1O~e2,g!,
~40!

where the terms of second order ine arise both from a sec
ond order contribution of the productC•P as well as from
the second order kinetic coupling in Eq.~29!. Similarly, the
partial Wigner transform of the adiabtic Hamiltonian in E
~33! is given by

H W
adi~R,P,F0!5E~R,F0!1 1

2uPu22 i eC adi~R,F0!•P

2 iVG~R,F0!•
dF0

dt
1O~e2,g!. ~41!
i-
r
s
l
-
e-

-

y

f

-

en-

f

Again it has to be noted that the extended space represe
tion of the Hamiltonian operator offers the advantage t
there are no highly oscillatory terms connected with the c
rier frequencyv. The only time-dependence in the two equ
tions above arises from the slowly varying amplitude of t
field F05F0(t).

C. Floquet-based quantum-classical Liouville
equation

In order to obtain a quantum-classical equation of m
tion for the system under consideration, we have to calcu
the partial Wigner transform of the quantum Liouville equ
tion. Replacing all expressions in Eq.~36! by the respective
transforms and using a first order approximation ine for the
Wigner transform of products of operators,25,50–52 one
readily obtains the quantum-classical Liouville equati
~QCLE!,

] tDW52
i

e
~~HD !W2~DH !W!

52
i

e
@HW ,DW#22

1

2
~$HW ,DW%

2$DW ,HW%!1O~e!. ~42!

As will become more evident in the following section, th
commutator in the first term on the r.h.s. of the above eq
tion describes pure quantum dynamics of the light partic
while the Poisson brackets in the second term contain b
the classical dynamics of the heavy particles as well as ge
inely quantum-classical terms.

Choosing the diabatic representation of the transform
HamiltonianHW ~40! and properly evaluating the commuta
tor and the Poisson brackets we obtain thediabatic
F-QCLE ,

] tD W
dia~R,P,t !52

i

e
@V~R,F0!2 i eC dia~R!

•P,D W
dia~R,P,t !#22P•¹RD W

dia~R,P,t !

1 1
2@¹RV~R,F0!,¹PD W

dia~R,P,t !#1

1O~e,g!. ~43!

Analogously, theadiabatic F-QCLE can be derived from
Eq. ~41!,

] tD W
adi~R,P,t !52

i

e FE~R,F0!2 i eC adi~R,F0!•P

2 iVG~R,F0!•
dF0

dt
,D W

adi~R,P,t !G
2

2P•¹RD W
adi~R,P,t !

1 1
2@¹RE~R,F0!,¹PD W

adi~R,P,t !#1

1O~e,g!. ~44!

These equations describe the evolution of a matrix of dis
bution functions in classical phase space spanned by the
ordinatesR and momentaP of the heavy particles. Each o
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the diagonal or off-diagonal elements of this matrix cor
sponds to a density or a coherence, respectively, of the q
tum system formed by the light constituents of the molecu
system.

D. Numerical realization

In the following, let us consider the solutionr(t) of the
first order approximation to the adiabatic F-QCLE~44!, i.e.,
neglecting quadratic and higher terms in the two smalln
parameterse,g. We are using the concept of superoperat
in Liouville space,1

] tr~ t !52
i

e
Lr~ t ! with L5L11L21L3 , ~45!

where the superoperator on the r.h.s. of the adiab
F-QCLE is split into three contributions,25

2
i

e
L1r~R,P,t !52

i

e
@E~R,F0!,r~R,P,t !#2 , ~46!

2
i

e
L2r~R,P,t !52FC adi~R,F0!•P1

V

e
G~R,F0!

•

dF0

dt
,r~R,P,t !G

2

, ~47!

2
i

e
L3r~R,P,t !52P•¹Rr~R,P,t !

1 1
2@¹RE~R,F0!,¹Pr~R,P,t !#1 .

~48!

A straightforward approach to approximate the general s
tion of Eq. ~45! utilizes a Trotter splitting of the Liouvillian
into three parts. Hence, for a small time stept5O(e) we
find

r~ t1t!5expS 2
i

e
L1t DexpS 2

i

e
L2t D

3expS 2
i

e
L3t D r~ t !1O~e2!. ~49!

This factorization allows for a relatively simple interpret
tion of the individual constituents of the adiabatic F-QCL
as described in the following:

1. Oscillatory phases

The superoperatorL1 , Eq.~46! can be traced back to th
purely quantal dynamics of the light particle subsystem. T
corresponding time evolution is given by

rab~ t1t!5expS i

e
~Eb2Ea!t D rab~ t !. ~50!

While the coherences acquire a complex phase factors w
is proportional to the Bohr frequency of the transition b
tween the instantaneous Floquet states, densities are no
fected by this propagator.
-
n-
r

s
s

ic

-

e

ch
-
ef-

2. Exchange of population

The Liouville operatorL2 , Eq. ~47! is of genuinely
quantum-classical nature. For the sake of simplicity, let
consider two dressed states only. Moreover, we assume
the diabatic Floquet matrixV(R,F0) has two real, nondegen
erate eigenvaluesE1(R,F0) and E2(R,F0), so that the first
order kinetic couplingC adi(R,F) and the field coupling
G(R,F0) are real antisymmetric matrices with zeroes on
diagonal. Hence, the total nonadiabaticity can be charac
ized by the sum of the off-diagonal contributions,

z~R,P,F0!5C 12
adi~R,F0!•P1

V

e
G12~R,F0!•

dF0

dt
. ~51!

The corresponding time evolution can be described by
exchange of population between Floquet states

r~ t1t!5S~2zt!r~ t !S~zt!

with

S~zt!5S cos~zt! sin~zt!

2sin~zt! cos~zt!
D , ~52!

which is equivalent to a rotation of the quantum-mechani
state vector by the anglezt.

3. Classical transport

Finally, the purely classical Liouville operatorL3 , Eq.
~48! is equivalent to a classical Liouville equation for ea
entry of the density matrix,

] trab~ t !52
i

e HWab1
1

2
uPu2,rab~ t !J , ~53!

where the dynamics is governed by the effective potentia

Wab~R,F0!5
Ea~R,F0!1Eb~R,F0!

2
, ~54!

i.e., densities are transported along the corresponding
quet quasi-energy surfaces while coherences are subject
arithmetic mean potential.

4. Surface hopping implementation

Although there exists more sophisticated algorithms
the recent literature for the numerical solution of t
QCLE,27–29we will sketch here only a very simple approac
leading to the surface hopping algorithm which was ori
nally derived empirically.10 Assuming that the system is ini
tially prepared in a single Floquet-statea, the initial prob-
ability distribution raa(R,P,t5t0) is modeled by an
ensemble of points in classical phase space sampled from
Wigner distribution functionDW(R,P,t5t0) of Eq. ~39!. If
there is a nonvanishing density in more than one of the~di-
abatic or adiabatic! states in certain regions of phase spa
the trajectories are distributed accordingly while coheren
are neglected. Associated with each of the trajectories th
is a density matrix the initial value of which is one in th
corresponding diagonal element and zero elsewhere. T
time-dependent ensembles representing the multistate
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sity at subsequent times are calculated by iterating the
lowing propagation steps for each member of the ensem

~1! To model the purely quantal time evolution associa
with L1 , update the phase of the coherences accordin
Eq. ~50!;

~2! To model the quantum-classical time evolution asso
ated withL2 , update the density matrix following Eq
~52!. For more than two states this has to be replaced
an appropriate numerical solution of Eq.~47!. After lin-
earization of the trigonometric functions in Eq.~52! the
change of the diagonal elements reads

Pab~ t !5raa~ t1t!2raa~ t !522zt R~rab~ t !!, ~55!

which determines the probability for a sudden hop of a t
jectory from quantum stateb to statea;10

To model the classical time evolution associated w
L3 , transport the members of the ensemble along the res
tive potential energy surface~54!. This can be achieved b
any algorithm commonly used in classical molecular dyna
ics simulations,53 e.g., the Verlet algorithm.

Note that this simple surface hopping algorithm does
correctly account for the transport of coherences. Instead
assumed that a complete density matrix is propagated
each of the trajectories in the ensemble. This leads to
problem of overcoherence54 which is circumvented in ad
vanced numerical integrators for the QCLE.27–29

E. Discussion

As illustrated above, the purely quantal (L1), the
quantum-classical (L2), and the purely classical (L3) parts
of the adiabatic F-QCLE~44! are straightforward to under
stand and can be easily realized in a computer simula
using the surface hopping techniques discussed above. H
ever, a problem arises if the amplitudeF0(t) of the electric
field becomes very small, e.g., at the beginning and at
end of a laser pulse. In that case both the kinetic coup
C adi(R,F0) and the field induced couplingG(R,F0) may be-
come singular in the vicinity of~avoided! crossings of Flo-
quet states. Hence, the hopping probability of Eq.~55! di-
verges. As an alternative we suggest to use the diab
F-QCLE~43! in those cases. It is noted that for a propagat
in the diabatic picture there are two main differences co
pared to the adiabatic formulation. First, replacing the di
l-
le:

d
to

i-

y
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c-

-

t
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e
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n
-
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onal matrixE by the full matrixV in all Liouville operators
shifts the population transfer fromL2 to L1 . Second, ex-
change of density would also occur in the Hamiltonian flo
operator L3 ~48! through the off-diagonal elements o
V(R,F0), see Eq.~22!. However, we can neglect this popu
lation transfer to first order ine when the inequality

¹Rmn8n~R!<
2e

F0~ t !
~56!

is fulfilled. Typically, in practical simulations of molecule
the gradient of the molecular transition dipole moment
found to be relatively small even permitting the use of t
Condon approximation, i.e.,mn8n(R)5const. In conclusion,
a practical strategy for the simulation of photoinduced p
cesses should be as follows: For the beginning and the en
the laser pulse, i.e., when estimate~56! is fulfilled, one
should propagate the F-QCLE diabatically, whereas in
middle of the pulse one should switch to an adiabatic rep
sentation.

IV. EXAMPLE: PHOTODISSOCIATION OF THE F 2
MOLECULE

A. Model

As a typical example let us consider the photoexcitat
process of a~nonrotating! fluorine molecule in gas phase
Naturally, we separate the electronic degrees of freedomr,
from the ~relative! motion of the two nuclei,R, which leads
to a value for the first nonadiabaticity parameter ofe
5Am/M57.5731023 which is typical for electronically
nonadiabatic effects. Note that in this section we return
unscaled variables and all quantities are given in atomic u
(me5e5\51) unless stated otherwise.

Initially the molecule is assumed to be in its vibration
and electronic ground state. For simplicity, we will consid
only the ground (1Sg

1) and the first excited state (1Pu) in
our quantum-mechanical description of the electronic s
tem. The corresponding molecular eigenenerg
ES(R),EP(R) as well as the~perpendicular! transition di-
pole momentmPS(R) are taken from the literature.55,56 Due
to the D`h symmetry of the molecule there is no nonad
batic coupling for the field-free molecule@CPS(R)[0#, see
Eq. ~31!. The corresponding Floquet matrix is construct
from the 1Sg

1 and 1Pu levels ‘‘dressed’’ with an integer
number of photons,
V~R,F0!5S � A A A A •••

••• EP~R!2v mPS~R!•F0/2 0 0 •••

••• mPS~R!•F0/2 ES~R! 0 0 •••

••• 0 0 EP~R! mPS~R!•F0/2 •••

••• 0 0 mPS~R!•F0/2 ES~R!1v •••

••• A A A A �

D , ~57!
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where couplings occur only for dressed states differing
61 photon. A graphical representation of the dressed st
is shown in Fig. 1 for a carrier frequencyv50.15 which is
close to the center of the Franck–Condon region for
1Pu←1Sg

1 transition, i.e., the crossing of the dressed sta
EP(Rc)2ES(Rc)5v coincides with the maximum of the
ground state vibrational density. Furthermore, crossings w
other dressed states@EP(R)2v,EP(R)22v# are well out-
side the classically allowed region. These considerations
tify the use of the above effective two-state model for t
frequency range investigated in the present work (0.1<v
<0.2) effectively permitting only one-photon transition
The corresponding adiabatic states are also shown in Fi
In particular, the Floquet states exhibit an avoided cross
with an energetic gap ofE2(Rc)2E1(Rc)5mPS(Rc)F0 .

We consider a light pulse with an envelope which
obtained as one half cycle of the sin2 function,

F0~ t !5H F0 sin2~Vt ! 0<t<p/V

0 else,
~58!

the polarization of which is assumed to be perpendicula
the molecular axis. A total duration of the pulse ofp/V
5100 fs is chosen to match modern experiments with
trashort light pulses. For the central Franck–Condon
quency (v50.15) we have an optical cycle oft52p/v
51.01 fs which yields a value ofg55.131023 for the sec-
ond nonadiabaticity parameter.

B. Numerical results

Quantum-classical simulations of the photodissociat
of the F2 molecule upon1Pu←1Sg

1 transition were carried
out in the following way: The initial densityrS(R,P,t50)
of the vibronic ground state is obtained as a Wigner tra
form of the corresponding bound state wave funct

FIG. 1. Selected Floquet states for the1Pu←1Sg
1 photoexcitation of the F2

molecule forv50.15 and for three different amplitudes of the electric fie
Dashed curves: Diabatic ‘‘dressed’’ states corresponding to the ground
ES(R) and the electronically excited stateEP(R)1mv with m521,22,
23. Solid curves: Adiabatic Floquet statesE(R,F0). For comparison, the
dotted curve shows the vibrational ground state density~all quantities in
atomic units!.
y
es

e
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cS(R,t50) which can be well approximated by a Gaussi
wave packet. Then phase-space points are sampled
pseudo-random manner from this distribution function. Sta
ing from these initial conditions, trajectories are propaga
using the surface hopping algorithm outlined above. T
molecule interacts with the laser pulse specified in Eq.~58!
with a carrier frequencyv50.15 and a relatively strong am
plitude (F050.6) which is far outside the perturbative re
gime.

A typical result for the hopping probability~55! from the
1Sg

1 to the 1Pu state is illustrated in Fig. 2~a!, where a tra-
jectory has been picked that is initially very close to t
minimum of the molecular potential energy curveES(R). It
undergoes small amplitude vibrations without hopping to
excited state during the simulation time of 100 fs. It is a
parent that the variations of the hopping probability a
smooth; in particular the oscillations occur on a time sc
which is much larger than the optical cycle of the carr
frequency 2p/v'1 fs. It is very instructive to compare thi
result with the approach of Thachuket al. who use instanta-
neous Stark states instead of Floquet states in order to
scribe the long wavelength limit.33,34 As can be seen from
Fig. 2~b!, the oscillations are much faster essentially follo
ing the fast time scale of the carrier frequency. Moreover,
absolute value of the hopping probability is much high
This leads to very many hops forth and back between
states involved which may lead to serious numerical pr
lems.

The photo-induced quantum-classical dynamics of the2

molecule is displayed in Fig. 3 which gives snapshots of
~diabatic! position space densities,

rS~R,t !5E dPrS~R,P,t !, rP~R,t !5E dPrP~R,P,t !

~59!

for both the ground (1Sg
1) and electronically excited (1Pu)

state. The ground state density is largely depleted by
interaction with the laser pulse without notable vibration
excitation. At the same time there is a build-up of excit
state density rapidly traveling towards larger internucle
distances which is typical for a direct photodissociation p

ate

FIG. 2. Hopping probability for a single trajectory. The trajectory is chos
such that it does not hop during the interaction with the 100 fs laser puls
Eq. ~58!. ~a! Probability computed from adiabatic F-QCLE according to E
~55!. ~b! Corresponding probability for a QCLE using an adiabatic ba
constructed from instantaneous Stark states~Refs. 33, 34!.
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cess occurring through a purely repulsive state. The dens
are in excellent agreement with the results of quantum
chanical simulations which were obtained by numerica
solving the time-dependent Schro¨dinger equation~TDSE!. In
passing we note that the use of the Floquet-based TDSE~29!
in extended Hilbert space offers substantial numerical adv
tages over the original TDSE~12!. The elimination of the
fast oscillations in the former allows an increase in the ti
step by 1/g which is two orders of magnitude for the ex
ample considered here.

Finally, the resulting population dynamics upon intera
tion of F2 with the above laser pulse is investigated. W
consider here the population of the electronically exci
state

QP~ t !5E dRE dPrP~R,P,t ! ~60!

which is simply calculated from the~relative! number of tra-
jectories in the1Pu state, see Fig. 4. We see a monoton
increase of population with time. This is easy to understa

FIG. 3. Snapshots of ground state~solid curve! and excited state~dashed
curve! diabatic nuclear densities during the interaction of the F2 molecule
with the laser pulse of Eq.~58!. Left panels: Numerical solution of Floquet
based quantum-classical Liouville equation~F-QCLE!, see Eqs.~43!, ~44!.
Right panel: Numerical solution of the corresponding Schro¨dinger equation
for comparison, see Eqs.~29!, ~33!.

FIG. 4. Population of the electronically excited state (1Pu) during the in-
teraction of the F2 molecule with the 100 fs laser pulse of Eq.~58!. The
three pairs of curves correspond tov50.10,v50.20, v50.15 ~bottom to
top!. ~a! 100 trajectories.~b! 1000 trajectories. Quantum-classical resu
~solid curves! are compared with results of purely quantum-mechan
simulations~dashed curves!.
es
e-

n-

e

-

d

d

since each trajectory rapidly leaves the region of the cross
of the dressed states on a time scale which is much sho
than a Rabi cycle ('10 fs!. For the field amplitude consid
ered here, this population transfer can be substantial. Fo
central Franck–Condon frequency (v50.15) the transfer
reaches up to almost unity~97%!. Although this is far from
the perturbative regime, the quantum-mechanical results
very well reproduced by the quantum-classical simulatio
Furthermore, the figure illustrates the decrease of statis
errors when increasing the number of trajectories by one
der of magnitude. The remaining, very small discrepanc
are due to the approximate treatment of the coherences u
the simple surface hopping approach. They can be reme
by advanced QCLE propagators.29

V. CONCLUSIONS

In the present work, a quantum-classical description
large molecules interacting with intense, pulsed light h
been worked out. More specifically, the Floquet-bas
quantum-classical Liouville equation~F-QCLE! has been de-
rived as a first order approximation to the partial Wign
transform of the quantum Liouville equation in the two non
diabaticity parameters (e,g) yielding well-defined
asymptotic properties. In particular, fore→0 andg→0 we
have adiabatic evolution along Floquet states of the molec
interacting with a periodically oscillating field while for fi
nite values ofe andg nonadiabatic effects are caused by t
motion of the heavy particles or by modulation of the fie
amplitude, respectively.

As a first example, photodissociation of the F2 molecule
upon electronic excitation has been investigated yielding
cellent agreement of quantum-classical with purely quantu
mechanical results. Although the specific example is re
tively simple, it nevertheless serves to demonstrate
capabilities of the F-QCLE approach to photoinduced m
lecular dynamics, and generalization to more sophistica
applications is obvious:

~1! The use of instantaneous Floquet states to model
dynamics of the quantum subsystem interacting with pul
light eliminates the time scale of the fast oscillations co
nected with the carrier frequency from the equations of m
tion which have to account only for the slow time scales
the modulations of the external field. Furthermore, the F
quet basis allows for the description of multiphoton tran
tions by including higher harmonics in the dressed state
sis. Consequently, nonlinear spectroscopic effects w
beyond the perturbative regime can be included in a strai
forward manner.

~2! The use of trajectory-based methods to model
dynamics of the classical subsystem opens the way tow
higher dimensionality because of the favorable scaling of
numerical effort with increasing number of degrees of fre
dom. Moreover, replacing the simple surface hopp
scheme by more elaborate approaches for the numerica
lution of the QCLE allows for a correct description of th
light particle coherences.

In summary, the F-QCLE represents a novel and effici
model for photo-induced processes in medium to large m
lecular systems.

l
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