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The Floquet-based quantum-classical Liouville equati®rQCLE) is presented as a novel
theoretical model for the interaction of molecules with intense laser pulses. This equation efficiently
combines the following two approaches: First, a small but spectroscopically relevant part of the
molecule is treated quantum-mechanically while the remaining degrees of freedom are modeled by
means of classical molecular dynamics. The corresponding nonadiabatic dynamics is given by the
quantum-classical Liouville equation which is a first-order approximation to the partial Wigner
transform of full quantum dynamics. Second, the dynamics of the quantum subsystem is described
in terms of instantaneous Floquet states thus eliminating highly oscillatory terms from the equations
of motion. The resulting F-QCLE is shown to have a well defined adiabatic limit: For infinitely
heavy classical particles and for infinitely slow modulation the dynamics adiabatically follows the
Floquet quasi-energy surfaces for a strictly time-periodic field. Otherwise, nonadiabtic effects arise
both from the motion of the classical particles and from the modulation of the field which is
assumed to be much slower than the carrier frequency. A numerical scheme to solve the F-QCLE is
based on a Trotter splitting of the time evolution. The simplest implementation can be realized by
an ensemble of trajectories stochastically hopping between different Floquet surfaces. As a first
application we demonstrate the excellent agreement of quantum-classical and fully
gquantum-mechanical dynamics for a two-state model of photodissociation of molecular fluorine. In
summary, due to the favorable scaling of the numerical effort the F-QCLE provides an efficient tool
for the simulation of medium to large molecules interacting with intense fields beyond the
perturbative regime. ©2001 American Institute of Physic§DOI: 10.1063/1.1398577

I. INTRODUCTION quirements is the use of quantum-classical hybrid schemes.
On the one hand, a fully quantal model of the dynamics of
One of the ultimate goals in the field of physical |5rge molecules is clearly beyond the limits of present com-
chemistry/chemical physics is to understand molecular dypational feasibility. On the other hand, certain quantum ef-
namics in real time. In particular, recent eXpe”ment""lfects have to be incorporated in a realistic description of

progress connected with the generation (_)f_\_/_ery short an hoto-induced processes. However, such effects can often be
intense laser pulses has lead to novel possibilities to observ tiributed to a subsystem of the molecule under consider-

and possibly control, molecular dynamics on a femtosecond. . L . .
. : . . ation, e.g., the electronic dynamics in studies of electronic
time scale by means of various kinds of nonlinear spectros-

copy, e.g., pump—probe experimehtsCurrently there is a EXCIt?tIOFI 0; the pr(ralton dyljtamlcs t;n stt;?@s ?ft h);drotg(tarl?
trend to extend these studies towards larger and, eventuall r'ans_e.r systems, whereas it may be suflicient to treat the
biologically relevant molecules. The development of corre-'éMaining degrees of freedom by means of standard classical

sponding theoretical models is still posing a great challengdholecular dynamics. The earliest variants of such hybrid
In particular, the requirements for theoretical models of mo-Schemes are based on the assumption of separability of the

lecular dynamics interacting with strong external fields areVave functions for the two subsystems which are interacting
the following: First of all, the dynamics of the full molecular With each other through mean field potentidEshrenfest
system has to be modeled microscopically where at least tHeoupling.>> More recently the asymptotic properties of
most important degrees of freedom Ought to be treate@UCh models have been studied with more mathematical
quantum-mechanically. Second, the interaction of the moltigor®~® However, the use of such models has to be limited
ecule with the external field has to be modeled beyond th&o cases where the dynamics is close to separable. The em-
level of perturbation theory in order to account for high field pirically based surface hopping scheme represents a first at-
amplitudes and the corresponding higher-order nonlinear etempt to overcome the limitation of separabifity* Owing
fects. to the simple concept of surface hopping, modified versions
A pragmatic approach to meet the first of the above reof the original algorithm are still in common use in many
studies of nonadiabatic effects in molecular dynantics’

dAuthor to whom correspondence should be addressed. Electronic maiPurmg the last erV years these techniques were given a more
burkhard@math.fu-berlin.de rigorous foundation through the advent of the quantum-
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classical Liouville equatioiQCLE).1®~221t can be formally  Il. QUANTUM DYNAMICS
derived as a partial Wigner transform of the original A Hamiltonian operator

quantum-mechanical Liouville—von Neumann equation . ) ] o
(LVNE).2-25 Other work is devoted to the construction of Let us consider a physical or chemical system consisting

practical algorithms to solve the QCLE numeric&iiy?°us- ~ ©f @ heavy particle of masdl and a light particle of mass

ing surface-hopping and multithreading schemes. with m/M <1, _where gener:_allzatlo_n to the case of several
. . heavy and/or light particles is straightforward. The quantum
First attempts to develop quantum-classical models for

the coupling between molecular dynamics and external ﬁeldgynamms of such a two-component system is described by

are still hampered by serious limitations: The standard techt-WO sets of position and momentum operatB® andr,p,

nique in the literature is based on perturbation thedty respectively. Hence, the total Hamiltonian of the system can
- : . o be written as

yielding numerically tractable equations only for specific la-

ser pulses®? Furthermore, these approaches usually ex- . . . . o p2

clude higher order processes prevalent in strong fields. In H(r,p,R,P,t)=V(r,p,R,t)+m, @)
other work a surface hopping of classical trajectories be- i . o L
tween instantaneous Stark states is suggditédaturally; where the first term on the right-hand side is the Hamiltonian

such a model is limited to very low frequency fields becauseOf the light pa”,‘c'es which can be interpreted as the potential
of the highly oscillatory behavior of the fields used in typical energy governing the dyr_1am|cs of'the heavy particles. In the
experiments with pulsed lasers absence of an external field, we simply have

In the present work we suggest to overcome these prob- n2

lems by the use of Floquet theory which is well developed Vo(r,p,.R)= ﬁJrU(F,IA?) 2

for the case of static systents.g., atoms Although origi-

nally developed for the interaction of a quantum system Withrepresenti.ng the kinetic _a.nd potential energy w.here the latter
continuous light sourcé® it has been adapted in recent is depending on the positions of the heavy patrticles, too. The

years to the treatment of amplitude and frequency modulateléght_matte.r '”tefac“or_‘ can be de;cnb_e d n the framework
Iight.37‘41|n general, the attractivity of Floquet based modelsOf the s_emlclassmal. d|pole_apprQX|ma.t|on, €., a quantumf
is fourfold: (1) It allows for an adiabatic approximation mechanical system interacting with a time-dependent classi-

e
of the time-dependent Schiimger equation, possibly in- cal field
cluding nonadiabatic effects at various levels of  V(r,p,Rt)=Vo(r,p,R)+ a(r,R)-F(1), ©)
approximatior?>4243(2) Since Floquet theory is not based
on perturbation theory, it allows for higher-order effects in-. . - :

interacts with the external electric fiek(t). It is noted that

duced b int field&3) A Fl td ipti ff /
uced by very intense fieldé3) Oquet description ofiers the dot product accounts for the vectorial nature of the two

the advantage of a straightforward interpretation: The under- " e R
. . . . quantities and allows for the description of polarization ef-
lying “dressed state” picture allows a direct counting of ab-

) ) . fects. Typically, for modern experiments with conventionally
sorbed or e_rmtt_ed photoriS. (4 F'T‘a"y' the e_l|m|nat|on of ulsed lasers the time-dependence of the electric field is
the fast oscillations connected with the carrier frequency og

the electric field allows a larger time steps in numerical lven by
simulations. F(t)=Fo(Qt)sin(wt) (4)

In the present work we introduce a novel approach folrepresenting fast oscillations with a constant carrier fre-
the construction of an efficient simulation technique whichquency w with modulated amplitude=,(Q2t) defining the
combines the two approaches mentioned above. In particulagnvelope(shape of the light pulse. The time scale of the
we intend to develop a quantum-classical model for molecumodulation is assumed to be much slower than that of the
lar dynamics in the presence of external fields based on Flazarrier frequency @/w<1).
guet states. This shall be accomplished by means of a
Floquet-based quantum-classical Liouville equatidR-

QCLE). Such an approach is expected to offer the followingB. Scaled Schro”dinger equation

advantages: By virtue of the favorable scaling properties of
trajectory-based implementations of the QCLE, it can bed
used for the description of medium to large molecules. At the
same time, the use of a Floquet basis allows for description
of multiphoton processes while avoiding highly oscillatory

nonacri]labatlc .tran3|t|?nhpr0babll|F|es. ) in the follow giving the evolution of the quantum-mechanical state vector.
The remainder of this paper is organized in the following, e following we shall use a coordinate representation of

way: Sec. | pres_ents a fully quantum mechanical model o he heavy particle operatols P which allows us to write the
molecular dynamics based on Floguet states. Sumequentlyl—%miltonian of the total system as

guantum-classical description is developed in Sec. Il by the )
use of partial Wigner transforms. Numerical simulations in Ao A o B ﬁ_
Sec. IV illustrate the use of these models. HLP.RO=VILP.RD = 55 A, ©

where the electric dipole momeﬁl of the molecular system

The dynamics of the system is governed by the time
ependent Schainger equatiofTDSE),

d -
7 g () =H )] g(V) ©)
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where the heavy particle potential can be written as C. Instantaneous Floquet states
o 52 o o In this section we want to construct instantaneous Flo-
V(r,p,Rt)= ﬁ'f’ U(r,R)+u(r,R)-F(t). (7) quet states which are exact solutions of the time-dependent

Schralinger equation for the light particles subsystem inter-
These expressions can be understood as quantum mechaniaating with a strictly time-periodic Hamiltonian Fg
operators irf,f) parametrically depending on the positign =const), i.e., for a continuous wavew) light source. As a
of the heavy particle and on the tinteSimilarly, the quan-  first step we derive adiabatic eigenstgi¢s(R)), of the mo-
tum mechanical state vectpg(t) ), which is a vector in the ~ 1ecular system in the absence of an external field,

Hilbert space spanned iy andr can be cast in coordinate V(R R)). —E.(R R R
representation with respect R ol )|¢n( )>r n( )|¢n( )>ra |¢n( )>rEHr !(15)

|(R, 1) =(R[%(D)rr, (8 whereE,, are adiabatic eigenenergies\¢f and whereH, is

the Hilbert space spanned by the light particles. In the limit
of an infinitely large number of photons, the state of the
external field can be characterized by eigenstates of the
(scaled photon number operatd?,

which yields — for each value d® andt — a vector in the
reduced Hilbert spacg(, spanned by only. Later we shall
introduce a partial Wigner transform with respecfRaovhile
retaining the quantum-mechanical operatorsrjp which
opens the way towards a quantum-classical model of mo- . o d
lecular dynamics. N[ )= —i€ gl mmh=molnm)e, | 7m)ie My, (16)

In order to investigate the asymptotic properties of quan-
tum dynamics, we propose a practical scaling of the quantiwhere?, is the corresponding Hilbert space. Using a coor-
ties of interest. Following earlier work we introduce a scaleddinate representation inthese states can be expressed as
time® 1
(1) = (1] m@sﬁe‘m“”@ L 7m(t) eLy(0€0),

t'= Wt, © 17
gielding square integrable functions which are time-periodic
with respect to the optical cycle of the fiebd= 27/ w.*® The
corresponding orthogonality relation is given by the scalar
product inH;

while the potential energy as well as the dipole moment scal
according to

0'= 20 and o' = = (10
=—U and p'= —upu.

f K ﬁZ’u €0
(M| )= | 7 (D) ()AL= Gy (18)
The corresponding scaling of the higlearriey and low 0
(modulation frequencies is then obtained from the de Bro-Finally, “dressed” states are constructed as tensor products

glie relationE=fiw, of molecular state$l5) and field state$16),
w'=To and =0, 1) | hm(R))) =l ba(R)) @ 7).
|onm) € Hu=H, @ H,, (19

which leads to the scaled equation of motid@DSE), _ )
where H,, is the extended Hilbert space or Floquet space
2

d ) - € ) with the orthonormality of the extended space basis given by
'GEW(R'I )= V(R — EAR [p(R)), (12 he respective scalar product,
g .
with the scaled potential <<‘Pn|?mr(R)|‘Pglr?1(R)>>:<¢n’(R)|¢n(R)>r<7lm’| 77m>t
. E)Z A o =ShnOm'm- (20
VIRt ):Z_ﬁZJrU (rR)+u'(r,R) The quasi-energy operator, or Floquet Hamiltonian, is de-
fined as the sum of the Hamiltonian for the light particles
'Fo( yw—t’)sin<w—t’), (13 interacting with the field13), and the photon number opera-
€ € tor,
where we have introduced the dimensionless numbers 9(R,F0)=V(R,F0,t)+ N
= \ﬁ dye 14 iy g il ©t)—ied
€=\ adr=_. (14) =Vo(R)+ u(R)-Fy sin ;t —legp (21

which serve as smallness parameters characterizing the dethere we use calligraphic symbols for operators acting in
viation from adiabatic behavior. Note that we will drop the extended Hilbert space throughout this paper. Using the di-
primes on the scaled quantities throughout the remainder afbatic basis defined in Eq19) the corresponding matrix

this article for simplicity. representation is obtained as an expansion of the
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r-dependence in adiabatic molecular states combined with an ® ® o dF,
expansion of thé-dependence in a Fourier series in harmon-  Fo 7;") =Fol yZto)*y_ 5| (t-t)+-
ics of the carrier frequency, =t 25
_ dia i dia
Vorm nm( R Fo) = (@ (RIR,Fo, ) eam(R))) Restricting the use of this equation to one optical cycle 0
= (E,(R)+ M) 88t yn(R) $t—.t0$ €0 as required for the evaluation of the scalar prod-
uct in H, and H,; [see Eqgs(18), (20)] provides an upper
Fo limit for the linear term,
: 7(5m’,m—1+ é\m’,m+1)- (22)
w w
The structure of the Floquet matrix is readily understood in FO( 7:‘) :FO( <l T O(y). (26)

the following way: The diagonal entries are the potential
energy hypersurfaces “dressed” by an integer number of ~. . X
photons. The off-diagonal entries couple dressed state Zt;cal cycleed yields an error for the Floguet matrix of Eq.
which differ by exactly one photon. Hence, it is straightfor- '

ward to interpret transitions witth’ =m= 1 to absorption or V(R,Fo(t))=V(R,F(tg))+O(y) (27
emission of one photon. The coupling strengths are propor-

tional to the matrix elements of the dipole moment o eratorIn case of a modulated field with slowly varying amplitude.
P P It is noted that similar considerations are also possible for

fnrn(R) = (o (R)| (R)| $n(R)), - (23  frequency modulated‘chirped”) pulses®®
Next, the quantum-mechanical state vector of the system

The diagonal or off-diagonal elements are usually referred tqg oy nanded in the diabatic basis of dressed states introduced
as permanent or transition dipole moment functions, respegs £q (1)

tively. Adiabatic Floquet states are obtained by diagonaliza-

]Hence, neglecting changes of the field amplitude during one

tion of V(R), . _
on o). | HR)=3 Xe(ROIER), (29
V(R Fo)l @3 (RFo)))=E.(RFo)l 03 (R, Fo))), _
adi where the coefficient;rﬂ',;ﬂ(R,t) are readily identified as the
|ee )y e Mo, (24 heavy particle wavefunction corresponding to tité adia-

where the eigenvalues, (R,F,) represent the adiabatic batic molecular state dressed W'[ymphotons. Inserting this

quasi-energies, or Floquet energies, of the light particles onsatz into the time-dependent Safirger equatiofTDSE)

the molecular system driven by a strictly time-periodic field.leads to the diabatic representation of the Floquet-based

While the diabatic energie, m(R,Fo) generally intersect TDSE. The coupled channel equations describe the evolution

each other, the codimension of intersections of adiabatic Fiof the vector of heavy component wave functions,

guet quasi-energies depends on the symmetry of the prob- . €2 '

lem. For example, for states of equal symmetry the Wigner— ie&txd'a( Rt)=|V(R,Fq) — E(AR+ 2C9%(R)-Vg

von Neumann theorem predicts the existence of avoided

crossings or conical intersections for one- or two- .

dimensional problems, respectivéfy. +T™(R))
It is noted that the above equation reflects the central ) )

advantage of the Floquensatzfor the description of quan- Where (R,Fo) is the Floquet matrix of Eq(22), but for

tum systemé47 Instead of solving a time dependent Schro Varying amplitudeFo=Fq(ywt/€). Note that the scalar

N dia
dinger equation for the original Hamiltoniavi of Eq. (13) produdci'; has to be unders_tood agn'm’,nm(R)_'VR
one has to solve a time-independent Sdimger equation = ZkCn'm' nmi(R) - Vr,. The matrix elements of the first and
for the extended space Floquet Hamiltonidrof Eq. (21). ~ Second order nonadiabatic operators in extended space,
Although the extended space is of higher dimension such dia R =((c% (R)IV dia‘ p
approaches are known to be numerically supéfior. v i R) = (@ (RN Vi | R)))

= Cn’n,k(R) Smim s
(R)=((¢™ (R)| AR ¢T2(R)))

In this section we want to return to the original problem = Tnn(R) Smrm,
of solving the time-dependent Sclinger equationt12) for  can be easily expressed in terms of the kinetic coupling for
the Hamiltonian of the complete molecular system compristhe field-free molecular system,
ing of light and heavy components. Furthermore, we now lift B
the restriction of a constant field amplitude and consider an Cn’nvk(R)_<¢n’(R)|VRk|¢n(R)>f’
oscillating field with varying amplitude. In particular, this

. . . ’ T ’ R - ’ R A R y

affects the Floquet matri§22) as well as its eigenvalues and n'n .) <‘é“ (R)| . .Rl n _ D
eigenvectors24). In order to estimate the influence of an Where C is anti-Hermitian with respect to the molecular
amplitude modulation, the amplitude, is expanded in a statean,n,k=—C;‘n,vk while there exists no such relation
Taylor series in time, for the second order coupling tensbr

X"(R,1)+0O(y), (29

7dia (30)

D. Floguet-based quantum dynamics n'm’,nm

(31)
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Alternatively, the state vector can be expanded in adia- For the case of vanishing external fieldy = 0) the po-

batic Floquet quasistationary states introduced in(E4), tential energy matrix in diabati¢dressed stajerepresenta-
tion becomes diagonal and the corresponding quantum dy-
(R => xR, 1)|02U(R,F))), (320  namics is equivalent to that of the noninteracting molecule;

The wave functions of the heavy particles evolve along the
where the coefficientsy®¥(R,t) form the heavy particle adiabatic molecular energy levei¢R) obtained as solutions

wave functions corresponding to taéh Floquet state of the Of the time-independent Schiinger equation(15) for the
light particles interacting with the field. Inserting this ansatzlight particles with nonadiabatic transitions being induced by
into the time-dependent Scitiager equatiofTDSE) leads  the first and second order kinetic coupling operators
to the adiabatic representation of the Floquet-based TDSE,C(R).T(R), see Eq(31). If in addition the mass ratio of the
2 two components vanishes-{~0) we have the limit of7purely
; adi _ _s adi ) adiabatic(Born—Oppenheimegrevolution alongE(R).
IR =| ERFo) = 5 (Ar+2CT(RFo)- Vi The adiabatic F-QCLE as given in EQ9) describes
evolution of the system along the Floquet quasi-energy sur-

+T°%(R,Fg)) —i1QG(R,Fo)- dFo faces with nonadiabatic couplings arising from two different
dt mechanisms. First of all, the first and second order operators
X R+ O(9), 33) CM(R,Fo), T°%R,Fo) stem from the action of the heavy

) _ ) o particle kinetic operator on the Floquet states of the light
where&(R,Fo) is a diagonal matrix containing the Floquet particles. Their effect on the dynamic vanishes in the limit of

quasi-energies of E¢24) for varying amplitudeFo(ywt/€). ¢ .0, Second, the change of Floquet states induced by the
The matrix elements of the first and second order kinetigmplitude modulation of the field is given by the field-

coupling operators in the Floguet space are given by induced couplingj(R,F). It ceases to influence the dynam-
C‘Zq'a,k(R,Fo)=<<€02ql(R,Fo)|VRk| ¢§d'(R,F0))>, ics of thg system in the limit of cw light SOUFF:e.V\{Iﬂ?I—>O.
Finally, if both smallness parameters are infinitely small
727 (R,Fo)={¢*(R,Fo)| ARl ¢2U(R,F0))). (34 (v,e—0) the system evolves adiabatically along the station-

» ) ary Floquet states.
In addition, the time-dependence of the Floquet states due to

the amplitude modulation gives rise to yet another couplingj;. QUANTUM-CLASSICAL DYNAMICS
term,

_ adi adi

Garak(RFo)=((@u (RF0)| Ve, | 0o (RF0)), (35 In the following we shall use density operators instead of
which is anti-Hermitian with respect to interchange of thestate vectors to characterize the evolution of the molecular
Floquet state€, o = — G~ - system under consideration. Apart from the possibility to de-

The main advantage of the diabatic or adiabatic |:|Oquetscribe also mixed states, this description allows us to explore
based time-dependent Sétinger equationF-TDSE over the transition from quantum dynamics to classical mechanics
the original TDSE(12) is now obvious. The Fourier decom- through the method of Wigner transforms, see below. In par-
position of the time-dependent Hamiltonian serves to elimificular, the technique of partial Wigner transforms is instru-
nate the highly-oscillatory terms connected with the high carmental in the construction of quantum-classical models. In
rier frequencyw of the electric field. Hence, all terms on the the density picture, a quantum mechanical system evolves in
right-hand sides of the two evolution Eqg9) and(33), i.e.,  time according to the Liouville—von Neumartar quantum
the Floguet energies and the kinetic and field induced couliouville) equation(LvNE),
plings, vary only slowly with time as indicated by the low R i R
modulation frequency) = yw. Furthermore, deviations from aD(t)=— E[H(t),D(t)], (36)
the instantaneous Floquet states are of the ord€i(of).

A. Quantum Liouville equation

where the scaling of Eq$9)—(11) has been used.
In order to solve the LYNE numerically, a specific rep-
E. Asymptotic analysis resentation of the density and Hamiltonian operator has to be
used. In the present work these shall be the dialjdtessed
. . - - - statg or adiabatic(Floquet state representation of wave
F-QCLE Eq@29). In the | f [ . . . .
abatic F-QCLE as given in Eq29). In the limit of a strictly functions in Egs(28) and(32), respectively, from which the

periodic field (y=0), i.e., for the molecular system interact- . . ; .

ing with a continuous light source, the diabatic Floquet ma_denSItyIzgmatrlces can be_ construgted n a stra_ughtforward
trix becomes stationary, and the system evolves along th@'anner. _The corresponding matrl_x r_epresentanons of the

dressed statek, (R)+ me with nondiabatic transitions be- Hamiltonian operator can be found inside the square brackets

tween them induced by the off-diagonal elements of the Floo" the r.h.s. of the diabati@9) and adiabati¢33) formula-

quet matrix(22) and/or by the first and second order kinetictlon LIS =

coupling C"(R), 794 R), see Eq.30). Note that for sym- .

metric molecules some coupling elements and/or dipole mo—B' Partial Wigner transforms
ment functions may vanish due to certain symmetry proper- The Wigner transform is a well established tool to rep-
ties of the molecular eigenstatgs(R)). resent quantum dynamics in phase spgdc8ln particular, it

Let us first consider the asymptotic properties of the di-
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can be shown that the equations of motion for Wigner distri-Again it has to be noted that the extended space representa-
bution functions have a well-defined classical limit. In ordertion of the Hamiltonian operator offers the advantage that
to derive a quantum-classical formulation for the dynamicshere are no highly oscillatory terms connected with the car-
of a system comprising of light and heavy patrticles, a partiatier frequencyw. The only time-dependence in the two equa-
Wigner transform with respect to the heavy particle coordi-tions above arises from the slowly varying amplitude of the
nates has to be carried out. This technique allows for a defield Fo=Fq(t).

scription of the degrees of freedom of the heavy partidkes,
in the classical limit while maintaining the quantum me-
chanical nature in the degrees of freedarm;onnected with
the dynamics of the light particlés:?® Using the scaling in-

troduced above, the partial Wigner transfoAw/(R,P,t) of In order to obtain a quantum-classical equation of mo-
the (diabatic or adiabatic matrix representation of a tion for the system under consideration, we have to calculate

quantum-mechanical operatd(R,R’,t) can be written as the partial Wigner transform of the quantum Liouville equa-
the Fourier transform of an off-diagonal element of the re-tion. Replacing all expressions in E@6) by the respective
spective density matrix iR transforms and using a first order approximatiore ifor the

' Wigner transform of products of operatdrs’—>? one

readily obtains the quantum-classical Liouville equation

R— YR+ —v.t|ePYdy (37
o RT ST ’ (QCLB),

C. Floquet-based quantum-classical Liouville
equation

AW(R,P,t)=LNA

where an additional factor (2 N has to be used to obtain D= — I—((HD)W—(DH)W)
correct normalization for the Wigner distribution function €

D which is defined as the Wigner transform of the density i 1

operatorD. When using a particulafdiabatic or adiabatic =~ Z[Hw.Dwl-— 5 {Hw,Dw;

basis for the representation of the quantum subsystenpin

the partial Wigner transform takes the form of a matrix of —{Dw.,Hw}) +O(e). (42

functions in classical phase space spanne®f. As will become more evident in the following section, the
First, we define the heavy particles density matrix,  commutator in the first term on the r.h.s. of the above equa-

i i i tion describes pure quantum dynamics of the light particles

K an( RR D= X0 (RO (xR 0) 38 while the Poiss%n b?ackets in t);\e second term g(]:on?ain both

the classical dynamics of the heavy patrticles as well as genu-
inely quantum-classical terms.

Choosing the diabatic representation of the transformed
HamiltonianH,y (40) and properly evaluating the commuta-

Using a result of Ref. 25, the transform of the density opera:
tor in the diabatiqdressed stajepicture (28) is given by

DW(R,P,H)=K{(R,P t)+ [Cd'a VeK {4 +O(€), tor and the Poisson brackets we obtain tHi@batic
(39 F-QCLE,

where [.Cdla,Vp]C dia + _Ek[cdla K\%a]+ stands for a ﬁtDS\i/a( R,P,t)=— I—[V(R,Fo) —i ECdia(R)

generalized form of the antlcommutatc[rA,BL:AB €

+BA. Note that the firstand highey order correctiofs) are . p,Ds\i/a( R,P,t)]_—P- VRDS\‘f‘( R,P,t)

due to the fact that the dressed state basis inherits the depen- _

dence on the coordinat&sof the heavy particles through the + %[VRV(R,FO),VPDS\',a( R,P,t)],

adiabatic basis of the field-free molecule of EG5). An
analogous relation holds for the partial Wigner transform of +0(e.7). (43)
the density operator in the basis of adiab#filoque) states.  Analogously, theadiabatic F-QCLE can be derived from
The partial Wigner transform of the diabatic Hamil- Eq. (41),
tonian on the r.h.s. of Eq29) can be expressed as
adi _ adi
HIAR,P,Fo)=WR,Fo)+ 3|P|?—ieCR)-P+O(€2,), HPw(RPO= g(R Fo)=1eC*AR.Fo)-P
(40)

F
_ adi
where the terms of second orderédrarise both from a sec- 1QG(R,Fo) — DW(R P t)

ond order contribution of the product P as well as from i
the second order kinetic coupling in E@9). Similarly, the —P-VrDw(R,P,t)
partial Wigner transform of the adiabtic Hamiltonian in Eqg. L YVREREy), VpDad'(R,P,t)]+

(33) is given by
+0C(e,y). (44)

These equations describe the evolution of a matrix of distri-
bution functions in classical phase space spanned by the co-
ordinateskR and moment& of the heavy particles. Each of

HE(RP,Fo)=E(R,Fo)+3|P|°~ieC*(R,Fo)- P

dF
—iQG(R,Fy)- +O(e y). (4]
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the diagonal or off-diagonal elements of this matrix corre-2. Exchange of population

sponds to a density or a coherence, r_espectively, of the quan- Tnhe Liouville operator(,, Eq. (47) is of genuinely
tum system formed by the light constituents of the m°|ecu'a'huantum-classical nature. For the sake of simplicity, let us

system. consider two dressed states only. Moreover, we assume that
the diabatic Floquet matri¥(R,F ) has two real, nondegen-
erate eigenvalue§;(R,Fy) and &,(R,Fg), so that the first

D. Numerical realization order kinetic COUplingCadi(R,F) and the field COUpling
G(R,F,) are real antisymmetric matrices with zeroes on the

i In the followin_g, Igt us conside_r the.solutiqﬂt) of.the diagonal. Hence, the total nonadiabaticity can be character-
first order approximation to the adiabatic F-QCL4#), i.e., ized by the sum of the off-diagonal contributions,
neglecting quadratic and higher terms in the two smallness

parameters,y. We are using the concept of superoperators

. . . adi Q dFO
in Liouville space’ {(RP.Fo)=CH(R,Fo)- P+ —G1sRFo) 5. (51)
ﬁtp(t):_Lﬁp(t) with £= L+ Lo+ Ls, (450  The corresponding time evolution can be described by an
€ exchange of population between Floquet states
where the superoperator on the r.h.s. of the adiabatic
F-QCLE is split into three contributiorfs, p(t+7)=8(={7)p(t)S({T)
i i with
—Eﬁlp(R,P,t)z—Z[S(R,FO),p(R,P,t)],, (46)

cog{7) sin({7)
—sin({7) cog{7)]’

which is equivalent to a rotation of the quantum-mechanical

S(¢r)= (52

i . Q
— Eﬁzp(R,P,t)= —[Cad'(R,FO)- P+ ?Q(R,FO)

dF, state vector by the anglér.
W,p(R,P,t) s (47)
- 3. Classical transport
- I_Lgp(R’p’t): —P-Vgro(R,P,t) Finally, the purely classical Liouville operatdl;, Eq.
€ (48) is equivalent to a classical Liouville equation for each
entry of the density matrix,
+%[VRg(R!FO)vvpp(Rvplt)]+ y y
i 1
“9 Pap(D)= =~ Wagt 5|PIpag(t)], (53

A straightforward approach to approximate the general solu- c . _
tion of Eq. (45) utilizes a Trotter splitting of the Liouvillian Wwhere the dynamics is governed by the effective potential,

ipto three parts. Hence, for a small time step O(e) we Ea(R,Fo) +E4(R,Fo)
find Wap(R,Fo)= 5 , (54
p(t+r)=exp( — '_1;17.) exr{ — '_527) i.e., densities are transported along the corresponding Flo-
€ € quet quasi-energy surfaces while coherences are subject to an

i arithmetic mean potential.

><exp( - E£3T)p(t) +0O(€?). (49

4. Surface hopping implementation
This factorization allows for a relatively simple interpreta-
tion of the individual constituents of the adiabatic F-QCLE
as described in the following:

Although there exists more sophisticated algorithms in
the recent literature for the numerical solution of the
QCLE 2"-?we will sketch here only a very simple approach
leading to the surface hopping algorithm which was origi-
1. Oscillatory phases nally derived empirically® Assuming that the system is ini-

tially prepared in a single Floquet-state the initial prob-

The superoperatal; , Eq.(46) can be traced back to the apjlity distribution p,,(R,P,t=t,) is modeled by an
purely quantal dynamics of the light particle subsystem. Thesnsemble of points in classical phase space sampled from the

corresponding time evolution is given by Wigner distribution functiorDy(R,P,t=t) of Eq. (39). If
i there is a nonvanishing density in more than one of(the
Pap(t+ r)=exy{;(53—5a)r Pap(t). (50 abatic or adiabatjcstates in certain regions of phase space,

the trajectories are distributed accordingly while coherences
While the coherences acquire a complex phase factors whicire neglected. Associated with each of the trajectories there
is proportional to the Bohr frequency of the transition be-is a density matrix the initial value of which is one in the

tween the instantaneous Floquet states, densities are not e€brresponding diagonal element and zero elsewhere. Then
fected by this propagator. time-dependent ensembles representing the multistate den-
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sity at subsequent times are calculated by iterating the folonal matrix& by the full matrixV in all Liouville operators
lowing propagation steps for each member of the ensemblghifts the population transfer fromi, to £;. Second, ex-

(1) To model the purely quantal time evolution associateQChange of density would also occur in the Hamiltonian flow

with £, , update the phase of the coherences according tBP€rator £z (48) through the off-diagonal elements  of
Eq. (50); V(R,F;), see Eq(22). However, we can neglect this popu-

(2) To model the quantum-classical time evolution associJation transfer to first order ir when the inequality

ated with £,, update the density matrix following Eq. 2€

(52). For more than two states this has to be replaced by ~ Vrinn(R)< 7 (56)
. . . ; o(t)

an appropriate numerical solution of Eg.7). After lin-

earization of the trigonometric functions in EG2) the is fulfilled. Typically, in practical simulations of molecules
change of the diagonal elements reads the gradient of the molecular transition dipole moment is

found to be relatively small even permitting the use of the
Condon approximation, i.eu,,(R)=const. In conclusion,
Pap()=paa(t+ 1) = paa(t) = —2{7 Rlpap(t), (59 4 practical strategy for the simulation of photoinduced pro-
) . . cesses should be as follows: For the beginning and the end of
yvh|ch determines the probability for alosudden hop of atraihe |aser pulse, i.e., when estima(g®) is fulfilled, one
jectory from quantum statg to statea; should propagate the F-QCLE diabatically, whereas in the

To model the classical time evolution associated withyiggje of the pulse one should switch to an adiabatic repre-
L3, transport the members of the ensemble along the respegg iation

tive potential energy surfacg4). This can be achieved by
any algorithm commonly used in classical molecular dynam-
ics simulations? e.g., the Verlet algorithm. IV. EXAMPLE: PHOTODISSOCIATION OF THE F,

Note that this simple surface hopping algorithm does no{wo"ECULE
correctly account for the transport of coherences. Instead it i&. Model

assumed that a complete density matrix is propagated with As a typical example let us consider the photoexcitation

each of the trajectories in thg en_semble. This Iea@s to thﬁrocess of anonrotating fluorine molecule in gas phase.
problem of ovgrcqherenEAewhlch IS C|rcum\2/§nted in ad- Naturally, we separate the electronic degrees of freedom,
vanced numerical integrators for the QCEE: from the (relative motion of the two nucleiR, which leads
to a value for the first nonadiabaticity parameter of
=Jm/M=7.57x10 2 which is typical for electronically
As illustrated above, the purely quantal,), the nonadiabatic effects. Note that in this section we return to
quantum-classical4,), and the purely classicallg) parts  unscaled variables and all quantities are given in atomic units
of the adiabatic F-QCLEA44) are straightforward to under- (m.=e=#%=1) unless stated otherwise.
stand and can be easily realized in a computer simulation Initially the molecule is assumed to be in its vibrational
using the surface hopping technigues discussed above. Hovand electronic ground state. For simplicity, we will consider
ever, a problem arises if the amplituéig(t) of the electric  only the ground J(Eg) and the first excited staté{,) in
field becomes very small, e.g., at the beginning and at theur quantum-mechanical description of the electronic sys-
end of a laser pulse. In that case both the kinetic couplingem. The corresponding molecular  eigenenergies
C*(R,F,) and the field induced coupling(R,F,) may be- Ex(R),E;(R) as well as the(perpendicular transition di-
come singular in the vicinity ofavoided crossings of Flo- pole momenius(R) are taken from the literatur&° Due
quet states. Hence, the hopping probability of Esp) di-  to the D.,, symmetry of the molecule there is no nonadia-
verges. As an alternative we suggest to use the diabatigatic coupling for the field-free molecul€ ;s (R)=0], see
F-QCLE(43) in those cases. It is noted that for a propagationEg. (31). The corresponding Floguet matrix is constructed
in the diabatic picture there are two main differences comfrom the 12g and 1, levels “dressed” with an integer
pared to the adiabatic formulation. First, replacing the diagnumber of photons,

E. Discussion

En(R)~@  pns(R)-Fol2 0 0
V(R,Fp) = , 5
(RE=1 0 0 En(R)  wuns(R)-Fol2 - o7

0 0 ,LLHE(R)FO/Z EE(R)+LL)
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0,15
@ 0,10 -
“ 0,051 oF
0,00
0,15
@ 0,10
W o051 =
g
0,00 a i
0,15 02— 2674560 80 100
t [fs]
7z 010
w 0.05|- FIG. 2. Hopping probability for a single trajectory. The trajectory is chosen
’ ) such that it does not hop during the interaction with the 100 fs laser pulse of
o,oo2 '~~3 n " Eq. (58). (a) Probability computed from adiabatic F-QCLE according to Eq.

(55). (b) Corresponding probability for a QCLE using an adiabatic basis
R constructed from instantaneous Stark stdkafs. 33, 34

FIG. 1. Selected Floguet states for té,«— 'S photoexcitation of the f
molecule forow=0.15 and for three different amplitudes of the electric field.

Dashed curves: Diabatic “dressed” states corresponding to the ground stat; _ . . -
Es(R) and the electronically excited staig;(R)+ mw with m=—-1,—2, $E(R’t 0) which can be well approxmated by a Gaussian

—3. Solid curves: Adiabatic Floquet staté6R,F,). For comparison, the wave packet. Then phase'sf)a:ce _po_ints. are sampled in a
dotted curve shows the vibrational ground state den@ityquantities in ~ pseudo-random manner from this distribution function. Start-

atomic unit3. ing from these initial conditions, trajectories are propagated
using the surface hopping algorithm outlined above. The

molecule interacts with the laser pulse specified in &)

where couplings occur only for dressed states differing byyith a carrier frequencw=0.15 and a relatively strong am-
+1 photon. A graphical representation of the dressed Stateﬁitude (Fo=0.6) which is far outside the perturbative re-
is shown in Fig. 1 for a carrier frequeney=0.15 which is ime.

close to the center of the Franck—Condon region for the Atypical result for the hopping probabilits5) from the
1,13 transition, i.e., the crossing of the dressed statess + 1 o -
u g P 9 29 to the*I1, state is illustrated in Fig.(2), where a tra-

En(Re) ~Ex(Rc)=w coincides with the maximum of the jactory has been picked that is initially very close to the
ground state vibrational density. Furthermore, crossings Withninimum of the molecular potential energy curize(R). It
other dressed stat¢&(R) — w,Eq(R) —20] are well out- ngergoes small amplitude vibrations without hopping to the
s_lde the classically allowed region. These considerations jussycited state during the simulation time of 100 fs. It is ap-
tify the use of the above effective two-state model for thep,rent that the variations of the hopping probability are
frequency range investigated in the present work €l smooth; in particular the oscillations occur on a time scale
=0.2) effectively permitting only one-photon transitions. yyhich is much larger than the optical cycle of the carrier
The corresponding adiabatic states are also shown in Fig. %requency 2rlw~1 fs. It is very instructive to compare this
In particular, the Floquet states exhibit an avoided crossingegit with the approach of Thachek al. who use instanta-
with an energetic gap df;(Rc) —&1(Re) = uns(Re)Fo-  neous Stark states instead of Floquet states in order to de-
We consider a light pulse with an envelope which isgcripe the long wavelength limie®* As can be seen from
obtained as one half cycle of the $ifunction, Fig. 2b), the oscillations are much faster essentially follow-
Fo SIP(Qt) 0<t=<m/Q ing the fast time scale of the carrier frequency. Moreover, the
(58) absolute value of the hopping probability is much higher.
This leads to very many hops forth and back between the
the polarization of which is assumed to be perpendicular tatates involved which may lead to serious numerical prob-
the molecular axis. A total duration of the pulse #fQ) lems.
=100 fs is chosen to match modern experiments with ul-  The photo-induced quantum-classical dynamics of the F
trashort light pulses. For the central Franck—Condon fremolecule is displayed in Fig. 3 which gives snapshots of the
guency @=0.15) we have an optical cycle af=27/w (diabatig position space densities,
=1.01 fs which yields a value of=5.1x 102 for the sec-

ond nonadiabaticity parameter. PZ(R’U:I dPps(R,P,1), PH(R:t):f dPpy(R,P,t)
(59

for both the ground € ;) and electronically excited(I,,)
Quantum-classical simulations of the photodissociatiorstate. The ground state density is largely depleted by the
of the K, molecule upon'Il,—'S transition were carried interaction with the laser pulse without notable vibrational
out in the following way: The initial densitys (R,P,t=0) excitation. At the same time there is a build-up of excited
of the vibronic ground state is obtained as a Wigner transstate density rapidly traveling towards larger internuclear
form of the corresponding bound state wave functiondistances which is typical for a direct photodissociation pro-

Fo(t)=
o) 0 else,

B. Numerical results
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L I since each trajectory rapidly leaves the region of the crossing
- t=0fs of the dressed states on a time scale which is much shorter

T T T than a Rabi cycle£10 fs). For the field amplitude consid-

0 e ered here, this population transfer can be substantial. For the
T T t=501s | central Franck—Condon frequency € 0.15) the transfer
= + g reaches up to almost unitp7%). Although this is far from

ol A“I““ — I k: — the perturbative regime, the quantum-mechanical results are

o T ic100ts very well reproduced by the quantum-classical simulations.

. 1 ] Furthermore, the figure illustrates the decrease of statistical

L T L s errors when increasing the number of trajectories by one or-

v e R SR TR T der of magnitude. The remaining, very small discrepancies

R R are due to the approximate treatment of the coherences using

FIG. 3. Snapshots of ground statolid curve and excited statédashed the S|mple surface hopplng approach. They can be remedied

curve diabatic nuclear densities during the interaction of thenfolecule DY advanced QCLE pr0pagat&95-

with the laser pulse of Ed58). Left panels: Numerical solution of Floquet-

based quantum-classical Liouville equatidhQCLE), see Eqs(43), (44). V.. CONCLUSIONS

Right panel: Numerical solution of the corresponding Sdinger equation

for comparison, see Eqe29), (33). In the present work, a quantum-classical description of

large molecules interacting with intense, pulsed light has

) ) _been worked out. More specifically, the Floquet-based
cess occurring through a pure_ly repulsive state. The dens't"?:'ﬁjantum—classical Liouville equatidf-QCLE) has been de-
are in excellent agreement with the results of quantum meryeq as a first order approximation to the partial Wigner
chanical simulations which were obtained by numericallyyansform of the quantum Liouville equation in the two nona-
solving the time-dependent Schiinger equatiofTDSE). In diabaticity ~parameters e(y) vielding well-defined
passing we note that the use of the Floquet-based TRSE  agymptotic properties. In particular, fer~0 andy—0 we
in extended Hilbert space offers substantial numerical advarsaye adiabatic evolution along Floquet states of the molecule
tages over the original TDSEL2). The elimination of the  jneracting with a periodically oscillating field while for fi-
fast oscillations in the former allows an increase in the time,ite values ofe andy nonadiabatic effects are caused by the
step by 14 which is two orders of magnitude for the ex- mqtion of the heavy particles or by modulation of the field
ample considered here. _ _ _ amplitude, respectively.
~ Finally, the resulting population dynamics upon interac- ag g first example, photodissociation of the olecule
tion of F, with the above laser pulse is investigated. We 5o electronic excitation has been investigated yielding ex-
consider here the population of the electronically excited.g|ient agreement of quantum-classical with purely quantum-

state mechanical results. Although the specific example is rela-
tively simple, it nevertheless serves to demonstrate the
®H(t):f de dPpn(R,P,t) (60)  capabilities of the F-QCLE approach to photoinduced mo-

o ) lecular dynamics, and generalization to more sophisticated
which is simply calculated from th@elative number of tra- applications is obvious:
Jectories in the'TI,, state, see Fig. 4. \We see a monotonic (1) The use of instantaneous Floquet states to model the
increase of population with time. This is easy to U”derStaanynamics of the quantum subsystem interacting with pulsed
light eliminates the time scale of the fast oscillations con-
nected with the carrier frequency from the equations of mo-

;’:-_ tion which have to account only for the slow time scales of
0’6-_ the modulations of the external field. Furthermore, the Flo-
= '} quet basis allows for the description of multiphoton transi-
& 041 tions by including higher harmonics in the dressed state ba-
0.2r sis. Consequently, nonlinear spectroscopic effects well
1.0 beyond the perturbative regime can be included in a straight-
081 forward manner.
= 0,61 (2) The use of trajectory-based methods to model the
o o04fF dynamics of the classical subsystem opens the way towards
0.2l higher dimensionality because of the favorable scaling of the
0,00 I numerical effort with increasing number of degrees of free-

0 20 40 60 80 100

t [fs] dom. Moreover, replacing the simple surface hopping

scheme by more elaborate approaches for the numerical so-
FIG. 4. Population of the electronically excited stat#l() during the in-  lution of the QCLE allows for a correct description of the
teraction of the & molecule with the 100 fs laser pulse of E&S8). The light particle coherences.

three pairs of curves correspondae=0.10,w=0.20, w=0.15 (bottom to In summary the F-QCLE represents a novel and efficient
top). (@) 100 trajectories(b) 1000 trajectories. Quantum-classical results ' . .
(solid curves are compared with results of purely quantum-mechanicalodel for photo-induced processes in medium to large mo-

simulations(dashed curvés lecular systems.
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