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Abstract. We consider a continuous-time Markov process on a large continuous or discrete state
space. The process is assumed to have strong enough ergodicity properties and exhibit a number of
metastable sets. Markov state models (MSM) are designed to represent the effective dynamics of
such a process by a Markov chain that jumps between the metastable sets with the transition rates
of the original process. MSM are used for a number of applications, including molecular dynamics,
since more than a decade. Their approximation quality, however, has not yet been fully understood.
In particular, it would be desirable to have a sharp error bound for the difference in propagation
of probability densities between the MSM and the original process on long time scales. Here, we
provide such a bound for a rather general class of Markov processes ranging from diffusions in energy
landscapes to Markov jump processes on large discrete spaces. Furthermore, we discuss how this
result puts formal support or shows the limitations of algorithmic strategies that have been found
to be useful for the construction of MSMs. Our findings are illustrated by numerical experiments.
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1 Introduction

We consider a continuous-time Markov process (Xt)t∈R on some state space E which may be continuous
or discrete but large. We assume that the process is sufficiently ergodic in E such that there is a unique
invariant measure μ. The associated semi-group of transfer operators is denoted (Tt)t∈R; the transfer
operators describe how the process propagates functions in state space, e.g., if v0 is a function at time
t = 0 then Ttv0 is the function that results from time-t-transport of v0 via the underlying dynamics.

Markov state models (MSM) have been considered for processes that have metastable dynamics [1, 2,
3, 4], especially in Molecular Dynamics. Recently the interest in MSMs has drastically increased since
it could be demonstrated that MSMs can be constructed even for very high dimensional systems [2] and
have been especially useful for modeling the interesting slow dynamics of biomolecules [5, 6, 7, 8, 9, 10]
and materials [11] (there under the name ”kinetic Monte Carlo”). Their approximation quality on
large time scale has been rigorously studied, e.g., for Brownian or Glauber dynamics and Ising models
in the limit of vanishing smallness parameters (noise itensity, temperature) where the analysis can
be based on large deviation estimates and variational principles [12, 13] and/or potential theory and
capacities [14, 15]. In these cases the effective dynamics is governed by some MSM with exponentially
small transition probabilities and its states label the different attractors of the underlying, unperturbed
dynamical systems. Other approaches tried to understand the multi-dimensional setting for complex
dynamical systems by generalization of Kramer’s approach, e.g., by discussing asymptotic expansions
based on the Wentzel-Kramers-Brillouin approximation in semiclassical quantum dynamics, matched
asymptotics or similar techniques, see e.g. [16, 17]. Another rigorous approach to the construction of
MSM involves the exploitation of spectral properties. The relation between dominant eigenvalues, exit
times and rates, and metastable sets has been studied by asymptotic expansions in certain smallness
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parameters as well as by functional analytic means without any relation to smallness parameters [18,
19, 3, 4, 1]. In real applications with high-dimensional state spaces asymptotic expansions are based
on assumptions that typically cannot be checked and often enough are not satisfied, involve quantities
that cannot be computed, and/or are rather specific for a certain class of processes. Even if a smallness
parameter can be defined we typically cannot check whether we are in the asymptotic regime such
that the theoretical results cannot be used for error estimates. A general approach for accessing the
approximation quality of a MSM is still missing. Here, we will pursue this by following the functional
analytic approach found in [20, 19, 3].

In order to explain the construction of a MSM, we first fix a lag time τ > 0 and consider some finite
subdivision A1, ...An of E, such that

n⋃
j=1

Aj = E Ai ∩Aj = ∅ ∀i �= j, (1)

with “nice” sets Aj (e.g. with Lipschitz boundary). We introduce the discrete process (X̂k)k∈N on the
finite state space Ê = {1, ..., n} by setting

X̂k = i⇔ Xkτ ∈ Ai. (2)

(X̂k) describes the snapshot dynamics of the continuous process (Xt) with lag time τ between the sets
A1, ..., An. This process (X̂k) is generally not Markovian, i.e.

P[X̂k+1 = j|X̂k = ik, X̂k−1 = ik−1, ..., X̂0 = i0] �= P[X̂k+1 = j|X̂k = ik]. (3)

However, MSMs attempt to approximate this process via a discrete Markov process (X̃k)k∈N on Ê =
{1, ..., n} defined by the transition matrix P with entries

Pij = Pμ[X̂1 = j|X̂0 = i] = Pμ[Xτ ∈ Aj |X0 ∈ Ai]. (4)

While the long-term dynamical behavior of the original process (Xkτ )k∈N is governed by Tkτ = T k
τ for

k ∈ N, the long-term dynamics of the MSM process (X̃k)k∈N is governed by P k. Thus, for accessing the
approximation quality of the Markov state model compared to the original process, we have to study
the error (use subscript τ either for both T and P or none.)

E(k) = dist(T k
τ , P

k),

where dist denotes an appropriate metric measuring the difference between the operators. We will see
that under strong enough ergodicity conditions on the original Markov chain, we have E(k) ≤ 2ρk for
some 0 < ρ < 1. However, we are interested in how E(k) depends on the lag time τ and the sets
A1, . . . , An such that the error E can be kept below a user-defined threshold.

The remainder of the article is organized as follows. In Section 2 we introduce the setting and give the
general definiton of MSM transfer operators. Then, in Sec. 3 we compare the densities of the random
variables (X̂k) to the densities of the MSM process (X̃k) and see, how the approximation quality of
these densities depends on the choice of the state space discretization A1, ..., An and the lag time τ .
Section 4 extends our findings to some algorithmic strategies for the construction of MSMs that are
discussed in the literature. Finally, the results are illustrated on numerical examples in Section 5.

2 The MSM transfer operator

2.1 Setting

We consider the transfer operators Tt as operators on L2
μ = {v : E → R :

∫
v2dμ < ∞} with scalar

product 〈v, w〉 =
∫
vwdμ. In the following ‖ · ‖ will denote the associated norm ‖v‖2 = 〈v, v〉 on L2

μ and
the corresponding operator norm ‖B‖ = max‖v‖=1 ‖Bv‖ of an operator B : L2

μ → L2
μ.
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In L2
μ, Tτ has the general form∫

C

Tτv(x)μ(dx) =
∫

P[Xτ ∈ C|X0 = x]v(x)μ(dx), for all measurable C ⊂ E,

such that Tτ1 = 1 where 1(x) = 1 for all x ∈ E. In the following we set T := Tτ .

2.2 Assumptions on the original process

Now let us assume that T has m real eigenvalues λ1, ..., λm ∈ R

λ0 = 1 > λ1 ≥ λ2 ≥ ... ≥ λm, (5)

with an orthonormal system of eigenvectors (uj)j=1,...,m, i.e.

Tuj = λjuj, 〈ui, uj〉 =

{
1, i = j

0, i �= j
(6)

and u0 = 1. Furthermore we assume that the remainder of the spectrum of T lies within a ballBr(0) ⊂ C

with radius r < λm. In order to keep track of the dependence of the eigenvalues on the lag time τ we
introduce the associated rates

λj = exp(−Λjτ), r = exp(−Rτ), r/λ1 = exp(−τ(R − Λ1)) = exp(−τΔ), (7)

of which the spectral gap Δ > 0 will play an essential role later on.
Based on the above assumptions we can write

Tv = TΠv + TΠ⊥v =
m∑

j=0

λj〈v, uj〉uj + TΠ⊥v, (8)

where Π is the orthogonal projection onto U = span{u1, ..., um}

Πv =
m∑

j=0

〈v, uj〉uj (9)

and Π⊥ = Id − Π is the projection error with

‖TΠ⊥‖ ≤ r < λm, spec(T ) \ {1, λ1, ..., λm} ⊂ Br(0) ⊂ C. (10)

Furthermore, we assume that the subspace U and the remaining subspace don’t mix under the action
of T :

ΠTΠ⊥ = Π⊥TΠ = 0 (11)

and therefore the dynamics can be studied by considering the dynamics of both subspaces separately

T k = (TΠ)k + (TΠ⊥)k ∀k ≥ 0, (12)

where the operator TΠ is self-adjoint because of (6). In addition we also define the orthogonal projection
Π0 as

Π0v := 〈v, u0〉u0 = 〈v,1〉1.
According to the above we have the asymptotic convergence rate ‖T k − Π0‖ = λk

1 for all k ∈ N.
Remark 2.1 The assumptions (5), (6), (10), and (11) are definitely satisfied if T is self-adjoint and

has strong enough ergodicity properties. T is self-adjoint if the underlying original Markov process (Xt)
is reversible. But it may also be sufficient if, e.g., (Xt) has a dominant self-adjoint part as it is the case
for second-order Langevin dynamics with not too large friction [21], or for thermostatted Hamiltonian
molecular dynamics or stochastically perturbed Hamiltonian systems [3, 22].
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2.3 MSM Projection

Let χA denote the characteristic function of set A. We define the orthogonal projection Q onto the n
dimensional space of step functions Dn = span{χA1 , ..., χAn}, i.e.

Qv =
n∑

i=1

〈v, χAi〉
μ(Ai)

χAi =
n∑

i=1

〈v, φi〉φi (13)

with orthonormal basis (φi)i=1,...,n of Dn

φi =
χAi√
μ(Ai)

.

In short the orthogonal projection Q keeps the measure on the sets A1, .., An, but on each of the sets
the ensemble will be redistributed accoding to the invariant measure and the detailed information about
the distribution inside of a set Ai is lost.

Since the sets A1, . . . , An form a full partition of E we have

Q1 = 1, (14)

which implies

QΠ0 = Π0Q = Π0. (15)

2.4 MSM transfer operator

Now consider the projection of our transfer operator T onto Dn:

P = QTQ : L2
μ → Dn ⊂ L2

μ. (16)

In order to understand the nature of P let us consider it as an operator on a finite dimensional space,
P : Dn → Dn. Here, as a linear operator on a finite-dimensional space, it has a matrix representation
with respect to some basis. Let us take the basis (ψi)i=1,...,n of probability densities given by

ψi =
χAi

μ(Ai)
. (17)

By using the definition of T we get

Pψi = QTQψi = QTψi =
n∑

j=1

〈Tψi, χAj 〉
μ(Aj)

χAj =
n∑

j=1

〈TχAi , χAj 〉
μ(Ai)

ψj

=
n∑

j=1

(∫
Ai

P[Xτ ∈ Aj |X0 = x]μ(dx)
)
· ψj .

such that

Pψi =
n∑

j=1

Pμ[Xτ ∈ Aj |X0 ∈ Ai] · ψj . (18)

So the transition matrix of the MSM Markov chain defined in Eq. (4) is identical with the matrix
representation for the projected transfer operator P ; therefore P is the MSM transfer operator. P
inherits the ergodicity properties and the invariant measure of T as the following lemma shows (the
proof can be found in Sec. 6.1 below):

Lemma 2.2 For every k ∈ N we have

‖P k − Π0‖ ≤ ‖(TQ)k − Π0‖ ≤ λk
1 .
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3 Approximation quality of coarse-grained transfer operators

3.1 Approximation Error E

The approximation quality of the MSM Markov chain can be characterized by comparing the operators
P k and T k for k ∈ N restricted to Dn:

E(k) = ‖QT kQ− P k‖ = ‖QT kQ−Q(TQ)k‖. (19)

Lemma 2.2 immediately implies that this error decays exponentially,

E(k) = ‖QT kQ−P k‖ ≤ ‖QT kQ−Π0‖+‖P k−Π0‖ ≤ ‖Q(T k−Π0)Q‖+‖P k−Π0‖ ≤ 2λk
1 , (20)

independent of the choice of the sets A1, . . . , An. Since we want to understand how the choice of the
sets and other parameters like the lag time τ influence the approximation quality we have to analyse
the pre-factor in much more detail.

3.2 Main Result: An Upper Bound on E

The following theorem contains the main result of this article:

Theorem 3.1 Let T = Tτ be a transfer operator for lag time τ > 0 with properties as described
above, in particular (5), (6), (10), and (11). Let the disjoint sets A1, ..., An form a full partition and
define

‖Q⊥uj‖ =: δj ≤ 1 ∀j, δ(A) := max
j=1,...,m

δj (21)

where Q⊥ = Id −Q denotes the projection onto the orthogonal complement of Dn in L2
μ. Furthermore

set

η(τ) :=
r

λ1
= exp(−τΔ) < 1, with Δ > 0.

Then the error (19) is bounded from above by

E(k) ≤ min
[
2 ; C(δ(A), η(τ), k)

]
· λk

1 , (22)

with a leading constant of following form

C(δ, η, k) = (mδ + η)
[
Csets(δ, k) + Cspec(η, k)

]
(23)

Csets(δ, k) = m1/2(k − 1) δ (24)

Cspec(η, k) =
η

1 − η
(1 − ηk−1). (25)

The proof can be found in Section 6.2.

3.3 Interpretation and Observations

The theorem shows that the overall error can be made arbitrarily small by making the factor [Csets(δ, k)+
Cspec(η, k)] small. In order to understand the role of these two terms, consider for now the time of interest
to be fixed at some k ≥ 2. It can then be observed that:

1. The prefactor Csets depends on the choice of the sets A1, . . . , An only. It can be made smaller than
any tolerance by choosing the sets appropriately and the number of sets, n large enough.
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2. The prefactor Cspec is independent of the set definition and depends on the spectral gap Δ and the
lag time τ only. While the spectral gap is given by the problem, the lag time may be chosen and
thus Cspec can also be made smaller than any tolerance by choosing τ large enough. However, the
factor Cspec will grow unboundedly for τ → 0 and k → ∞, suggesting that using a large enough
lagtime is essential to obtain an MSM with good approximation quality, even if the sets are well
approximated.

If we are interested in a certain time scale, say T , then we have to set k− 1 = T/τ . Then the pre-factor
gets the form

C(δ, η, T/τ) = (mδ + η)
[
m1/2T

τ
δ +

η

1 − η
F

]
, F = 1 − exp(−TΔ),

in which the numbers m, and T have been chosen by the user, the spectral gap Δ is determined by
the (m + 1)st eigenvalue and thus, for given m, a constant of the system. The error thus depends on
the choice of the sets (via δ) and the lag time τ (and with it η = exp(−τΔ)). In the case where one
is interested in the slowest process in the system, the time of interest may be directly related to the
second eigenvalue via T ∝ 1/Λ1. For example, one may choose the half-life time of the decay of the
slowest process: T = log 2/Λ1.

Vanishing noise diffusion. There are quite a few articles concerned with showing that a diffusion
process in a multi-well landscape for vanishing noise can be approximated by a Markov jump process
between the basins of the wells [4]. There the one-dimensional continuous stochastic process (Xt)t∈R is
governed by the stochastic differential equation

dXt = −∇V (Xt)dt+
√

2εdBt, (26)

where Bt denotes standard Brownian motion,
√

2ε the small noise intensity and V the potential as, e.g.,
illustrated in Figure 1.

P
ot

en
tia

l V

A
1 A

2

Δ V

Fig. 1 The double well potential V .

The associated process satisfies our assumptions on the transfer operator. In particular, the transfer
operator is self-adjoint such that the spectrum is real-valued and we have Λ1 ∝ exp(−ΔV/ε). As ε→ 0,
we have Δ = O(1) while the timescale of interest increases exponentially, T ∝ exp(ΔV/ε). Taking
m = 1, it is indeed found that the projection error δ, with sets A1, A2 chosen as shown in Figure 1, also
decreases exponentially with ε: As shown in Ref. [17], there is a 0 < v < ΔV such that δ ∝ exp(−v/ε).
When choosing the lag time τ such that it decreases exponentially with ε → 0, τ ∝ exp(−ξ/ε) with
ξ > max(ΔV −2v, 0), then the upper bound E on the approximation error decreases exponentially with
ε,

E(T ) ∝ exp((ΔV − 2v − ξ)/ε), with ΔV − 2v − ξ > 0.

Note that the fraction T/τ still grows exponentially with the vanishing noise, i.e. the time resolution
of the MSM improves drastically compared to the timescale of interest. If v > ΔV/2, τ can even be on
the order of 1/ε while still retaining an exponentially vanishing error.
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Bounding the error. Consider that the desired quality of the MSM approximation is defined by the
user via some tolerable error bound tol at some timescale T . This requirement is met by satisfying
E(T ) ≤ tol. A rational procedure for guaranteeing this can be outlined as follows:

1. Define the timescale of interest, T .

2. Define the number of eigenfunctions, m, that we are seeking to approximate well.

3. Compute the spectral gap, Δ, which is ideally given by the (m + 1)st eigenvalue. This will be
directly accessible only for simple systems. For more complex systems, it may however be possible
to bound Δ from below and thus guarantee that E(k) remains an upper bound. In practical cases
involving statistical uncertainty (e.g. molecular dynamics), one may only be able to estimate a
probability distribution of the eigenvalues and thus, for any given dataset, be able to specify a Δ
that the real spectral gap is almost certainly larger.

4. Set the desired lag time, τ depending on how much time resolution is desired compared to the time
scale of interest.

5. Solve

tol = (mδ + η)
(
m1/2δ

T

τ
+

η

1 − η
F

)
, with η = exp(−τΔ), and F = 1 − exp(−TΔ). (27)

for δ and adapt the choice of the sets A1, . . . , An and their number n to the requirement δ = δ(τ)
as it results from (27). We will illustrate this in an explicit example in Section 5.

For practical applications, δ can also only be estimated and an approach to do this based on two
differently fine discretizations is outlined in Sec. 4.3 below

Metastability. [3] gives the following theorem in which smallness of the projection error δ is related
to the metastability of a subdivision A0, . . . , Am of state space:

Theorem 3.2 Let T be a self-adjoint transfer operator with lag time τ and properties as described
above, in particular (5), (6), (10), and (11). The metastability of an arbitrary decomposition A0, . . . , Am

of the state space is bounded from below and above by

1 + (1 − δ21)λ1 + . . .+ (1 − δ2m)λm + c ≤
m∑

j=1

Pμ[Xτ ∈ Ai|X0 ∈ Ai] ≤ 1 + λ1 + . . .+ λm ,

where, as above, δj = ‖Q⊥uj‖, and c = −r (
δ21 + . . .+ δ2m

)
.

This result tells us that the minimization of δ with m+ 1 sets (for m+ 1 eigenvalues) corresponds to
identifying the subdivision with maximum joint metastability.

3.4 Generalization of the projection Q

Thm. 3.1 can easily be generalized. Firstly, we can easily see that we do not need to assume that
the dynamical process (Xt) under consideration is time-continuous. Our results still hold, if T = Tτ

denote the transfer operator for τ steps of some time-discrete process, and the lag time is no longer a
continuous but a discrete variable.

It is not required that Q is the projection onto some space spanned by indicator functions. Q can be
any orthogonal projection onto some linear subspace D of L2

μ with the property Q1 = 1, i.e., 1 ∈ D:
Theorem 3.3 Let T = Tτ be a transfer operator for lag time τ > 0 with properties as described

above, in particular (5), (6), (10), and (11). Let Q denote the projection onto some linear subspace D
of L2

μ and define

‖Q⊥uj‖ =: δj ≤ 1 ∀j, δ(A) := max
j=1,...,m

δj (28)
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where Q⊥ = Id − Q. Define the projected transfer operator P = QTQ. Furthermore set η(τ) =
exp(−τΔ) < 1 with Δ > 0. Then the error E(k) = ‖QT kQ− P k‖ is bounded from above by

E(k) ≤ min
[
2 ; C(δ(A), η(τ), k)

]
· λk

1 , (29)

where C(δ, η, k) is as in Thm. 3.1.
Note that in this general case P does not necessarily have the interpretation of a transition matrix.

For this, consider the following two examples:

1. Let us decompose state space into two components, E = Ex × Ey, such that every z ∈ E can be
written z = (x, y) with x ∈ Ex, y ∈ Ey. We consider the (infinite dimensional) subspace

D = {g ∈ L2
μ : g(x, ·) is constant on Ey for all x ∈ Ex},

and

Qv(x) =
∫

Ey

v(x, y)μx(dy), (30)

where μx(C) =
∫

C μ(x, dy)/
∫

Ey
μ(x, dy) is the marginal of the invariant measure for fixed x. As-

sociated averaged transfer operators are considered in the context of so-called Hybrid Monte Carlo
methods, see [3, 2].

2. Consider the same projection Q as in Eq. (30) above, with Ex = span{u0, ..., um}, i.e. the
projection onto the m-dimensional slow subspace of the dynamics. For this case, the MSM error
E(k) is 0 for all k, showing that a Markovian formulation of the dynamics in the slow subspace
is in principle possible. In practical applications, however, it is often desired to obtain equations
of motion in a subspace spanned by some slow intrinsic degrees of freedom of the system, which
usually do not perfectly lie in span{u0, ..., um}, such that there is still a finite projection error
remaining.

3. Instead of the indicator functions we may choose mollified indicator functions fj ≥ 0, j = 1, . . . , n.
Then D = span{f1, . . . , fn} but the ansatz function may no longer be orthogonal such that we have
to consider the mass matrix M with entries Mij = 〈fi, fj〉. Then,

Qv =
n∑

i,j=1

(M−1)ij〈fj , v〉fi. (31)

Such mollified or fuzzy MSM have been considered, e.g., in [23] (see Section 4.1 below).

4 Algorithmic Considerations

4.1 Almost exact fuzzy MSM

Let us return to the last example of generalization in Sec. 3.4. There, the MSM subspace spanned
by the indicator function of sets has been replaced by another finite dimensional subspace, D =
span{f1, . . . , fn}, with ansatz functions that no longer are indicator functions. Now, assume that we
can design (almost everywhere) non-negative ansatz function by linear combination of the eigenvector
uj , i.e.,

fj =
m∑

k=0

ajkuj , with scalars ajk for j = 0, . . . ,m.

Then, by construction, we have that D = span{f0, . . . , fm} = U and 1 ∈ D such that Theorem 3.3
applies with projection error δ = 0. This results in a fuzzy MSM with transfer operator P = QTQ with
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Q according to (31); obviously P can no longer be interpreted as a transition matrix between sets in
state space. In addition to δ = 0 we also have Π = Q in the proof of Thm. 3.1. This implies immediately
that

E(k) = ‖QT kQ− P k‖ = 0, ∀k = 1, 2, 3, . . . ,

showing that the MSM is exact. M. Weber et al have developed such an MSM variant and discussed its
applicability and interpretation [23]; in particular they show how to optimally compute the coefficients
aij for non-negative fuzzy membership functions [24]. A warning seems appropriate: The exactness
requires to have the eigenvectors of T exactly. This is something that cannot be assumed in practice: the
eigenvectors result from numerical computations and will be effected by statistical and numerical errors.
Thus, any practical implementation of this strategy will also have to consider the actual approximation
quality of the MSM depending on the δ induced by the numerical approximation of the fi and on the
lagtime τ .

4.2 MSM based on projections of the original dynamics

In practice, MSMs are often constructed not by considering arbitray sets Aj ⊂ E but only sets which
result from discretization of the subspace of a certain set of “essential” coordinates θ : E → θ(E) ⊂ E.
For example, in molecular systems, one usually ignores the solvent coordinates [8, 25, 6] and may
even further only consider a subset of solute coordinates such as torsion angles [25, 6]. The projection
of the original process on the essential subspace, θ(Xt)t∈R, will then in general be far from being
Markovian. However, this does not concern our result or the construction of MSM in general. Let
E(A) = {x ∈ E : θ(x) ∈ A} denote the cylinder set that belongs to a subset A of the essential subspace
θ(E). Thus, any subdivision A1, . . . , An of θ(E) will induce a subdivision E(A1), . . . , E(An) of the full
state space E. Thus, the above results are fully valid if applied to these subdivisions. So the question
of whether an MSM based on a definition of states in a subspace θ has good approximation quality
boils down to the question of whether the projection error δ can be kept below a certain accuracy
threshold based on cylinder sets. A necessary condition for this possibility is that the eigenvectors
u0, ..., um of the original transfer operator in full state space E are almost constant along the fibers
E(ϑ) = {x ∈ E : θ(x) = ϑ}. In other words, the approximation quality of the MSM can be good if the
variables ignored by the projection onto θ are sufficiently fast.

4.3 Comparing coarser and finer MSM

In practical cases, the eigenvectors and eigenvalues of T are not directly available. Because of that
many articles in the MSM literature consider a fine subdivision of the state space and the associated
MSM first and construct the final, coarse MSM based on the eigenvectors and -values of the fine MSM
[2, 26, 8, 5, 6]. In order to analyse this procedure based on the above estimate of the MSM error, let us
consider a case with two subdivisions of very different fineness,

A
(1)
1 , ...A

(1)
N : fine subdivision of E,

A
(2)
1 , ...A

(2)
n : coarse subdivision of E, n� N,

consider the associated projections

Q(1) : fine grid orthogonal projection
Q(2) : coarse grid orthogonal projection
Q(12) : fine to coarse orthogonal projection.

and the induced MSM transfer operators

P (1) = Q(1)TQ(1) : transfer operator of fine MSM process
P (2) = Q(2)TQ(2) : transfer operator of coarse MSM process.

Obviously the projection error of the eigenvectors of T can be quite different:
This is a preliminary version. Do not circulate!
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Lemma 4.1 The fine and coarse projection error,

δ(1) = max
j

‖Q(1),⊥uj‖, δ(2) = max
j

‖Q(2),⊥uj‖,

and the errors of the fine and coarse MSM satisfy the estimate

δ(2) − δ(1) ≤ δ(12)

(δ(2))2 − (δ(1))2 ≤ (δ(12))2

E2(k) − E1(k) ≤ ‖Q(12)(P (1))kQ(12) − (P (2))k‖,

where δ(12)j = ‖Q(12),⊥Q(1)uj‖, and the last norm has to be evaluated on Range(Q(1)) = span{χAj , j =
1, . . . , n}.

The proof of this lemma is given in Sec. 6.3 below.
This Lemma makes explicit that coarse-graining the state definition via Q(12) will always increase

the MSM error, as long as statistical effects are not considered.

4.4 Statistical and total error

When considering MSM for biomolecular systems the MSM transfer operator P or its matrix repre-
sentation (Pij) are normally not known exactly. Instead, only statistical approximations P̃ij of its
entries

P̃ij ≈ Pμ(Xτ ∈ Aj |X0 ∈ Ai).

are available. Thus, the total error of an MSM compared to the original dynamics is not E(k) =
‖QT kQ− P k‖ but

Ẽ(k) = ‖QT kQ− P̃ k‖ ≤ E(k) + ‖P k − P̃ k‖.

There are several approaches to estimation of the statistical error ‖P k − P̃ k‖ [27, 28, 29]. So it seems
that combining these approaches to the results presented herein should give control of the total error
Ẽ. However, a warning seems appropriate: Being able to bound E via Theorem 3.1 requires knowledge
of P instead of P̃ such that additional research will be needed to be able to bound the total error.

5 Numerical Examples

5.1 Double well potential

The results and concepts from above will first be illustrated on a one-dimensional diffusion in a double-
well potential. In contrast to the diffusive dynamics considered in Sec. XX above, this example does
not rely on vanishing noise approximations but considers the process dXt = −∇V (Xt)dt + σdBt with
some σ > 0. The potential V and its unique invariant measure is shown in Fig.2.
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Fig. 2 (a) The potential V and (b) the associated invariant measure.
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This process satisfies all necessary assumptions and by resolving only the slowest process (m = 1),
the following spectral values are obtained:

Λ1 = 0.201, R = 16.363, Δ = 16.162.

The eigenvector u1 is given in the middle panel of Figure 3; It is seen that it is almost constant on the
two wells of the potentials and changes sign close to where its saddle point is located.

Projection error δ. Let us first choose the lag time τ = 0.1. Then λ1 = 0.9801 and r = 0.1947.
Fig. 3 shows the values of the projection error δ for n = 2 and sets of the form A1 = (−∞; x] and
A2 = (x; ∞) depending on the position of the dividing surface, x. One can see that it is optimal for
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Fig. 3 Upper panel: Potential V . Middle panel: Eigenvector u1. Lower Panel: Projection error δ for different
sets A1 = (−∞; x] and A2 = (x; ∞) plotted against x.

the boundary between the two sets to lie close to the saddle point of the potential, where the second
eigenvector is strongly varying.

Next let us study the effect of different discretizations/partitioning of state space on δ. First,
A1, ..., An are chosen as a uniform discretization of x, the case n = 5 being shown in Fig.4. For
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Fig. 4 Galerkin approximation Qu1 of second eigenvector. Left panel: uniform grid of n = 5 sets. Right panel:
Adaptive grid with n = 5 sets.

the uniform discretization the projection error δ does not monotonically decrease with increasing n, as
shown in Fig. 5. This means that our discrete approximation of the transfer operator can even get
worse while uniformly refining the grid. Therefore using a uniform discretization should be avoided.
Next, a simple adaptive refinement strategy is considered: For the case n = 2, the dividing surface is
placed so as to minimze the δ error (see Fig. 3). For n = 3, another dividing surface is introduced at
a point that minimized the resulting δ-error, and so on. See Figure 4 (panel) for the result for n = 5.
While this strategy does not yield an optimal discretization for n > 2, it guarantees that the error de-
creases monotonically with increasing n, as shown in Fig. 5. Fig.4 (panel) shows that the refinement is
concentrated on the transition region between the minima of the potential, since most of the projection
error is made in this region resulting from the strong variation of the eigenvector.
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Fig. 5 Approximation error δ against number of sets n for uniform and adaptive discretization.

Effect of the lag time. Next let us study the effect of different lag times τ . For this, we fix the
choice of the sets to n = 3 adaptive sets. Figs. 6 and 8 show the bound on the MSM approximation
error E(k) from Theorem 3.1 compared to the exact approximation error E(k) computed via extensive
direct numerical simulation. Upon increasing the lag time from τ = 0.1 to τ = 0.5 the bound from
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Fig. 6 Bound and exact error E for τ = 0.1 on adaptive grid with n = 3 adaptive sets.

Theorem 3.1 becomes much sharper, see Fig. 7. Secondly, the approximation quality of the MSM
becomes significantly better when the lag time is increased. Finally, Fig. 9 compares exact errors and
bounds for n = 3 sets with uniform and adaptive grid with lag time τ = 0.5 exhibiting a dramatic
advantage of the adaptive over the uniform discretization for longer lag times.

Number of sets necessary to yield a given error and lag time. Let us shortly come back to
the question how to build an MSM if the maximum acceptable approximation error tol is given. In the
present case, Δ is known explicitly. Thus, as explained in Sec.3.3, for a given lag time τ the value of
δ that is required for E(T ) = tol = 0.1 can be computed (Fig. 10, solid line). Next, we consider the
adaptive discretization with n = 2, 3, 4, . . . and compute their δ-error (Boxes in Fig. 10). This shows
that the required error tolerance of 0.1 can be obtained with different n-τ pairs, e.g. using n = 2 with
τ ≈ 0.3 or n = 5 with τ ≈ 0.15.

5.2 Double well potential with diffusive transition region

Let us now consider a one-dimensional diffusion in a different potential with two wells that are connected
by an extended transition region with substructure: dXt = −∇V (Xt)dt + σdBt with σ = 0.8. The
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Fig. 7 Bound and exact error E for τ = 0.5 on adaptive grid with n = 3.

τ

τ

Fig. 8 Exact error E for different lag times (τ = 0.1 and 0.5) on adaptive grid with n = 3.
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Fig. 9 Exact error and bound for uniform and adaptive grid, n = 3, τ = 0.5.

potential V and its unique invariant measure are shown in Fig.11. We observe that the transition region
between the two main wells now contains four smaller wells that will have their own, less pronounced
metastability each. When considering the semigroup of transfer operators associated with this dynamics
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Fig. 10 Dependence of the requirement for δ on τ for prescribed error tol = 0.1. The boxes indicate some
values of δ that can be realized by choosing n adaptive boxes.
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Fig. 11 The potential V with extended transition region and the associated invariant measure for σ = 0.8.

we find the dominant eigenvectors as shown in Fig. 12. The eigenvectors all are almost constant on
the two main wells but are non-constant in the transition region. The dominant eigenvalues take the
following values (in the form of lagtime-independent rates as introduced above):

Λ0 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7

+0.0000 −0.0115 −0.0784 −0.2347 −0.4640 −0.7017 −2.9652 −3.2861

The main metastability has a corresponding timescale |1/Λ1| ≈ 87 related to the transitions from one
of the main wells to the other. Four other, minor metastable timescales related to the interwell switches
between the main and the four additional small wells exist in addition.

Adaptive subdivisions and projection error. Let us first fix m = 2 and lagtime τ = 0.5 and
study how the decay of the projection error depends on the number n of sets in the respective optimal
adaptive subdivision. To this end we first observe that adaptive subdivisions will have to decompose the
transition regions finer and finer, see Figure 13 for an example for n = 20. The decay of the projection
error δ with n is shown in Figure 14. Figure 14 also includes the comparison of the decay of δ with n
and the decay of the total propagation error of the underlying MSMs. We observe that the two curves
decay in a similar fashion as suggested by our error bound E on the propagation error.

The role of m and lagtime τ . There is a trade-off between the projection error δ and the spectral
part of the error that can be modulated by varying the number of resolved eigenfunctions, m. When
increasing m, more eigenvectors are taken into account and the minimal projection error that can be
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Fig. 12 Invariant measure and eigenvectors uj , j = 1, . . . , 4 for Brownian motion in the potential V with
extended transition region from Figure 11 for σ = 0.8.

obtained with a fixed number of stepfunctions, n, will increase. On the other hand, the spectral part of
the error will decrease as growing m increases the spectral gap Δ. This means that increasing m and
thus Δ will allow to decrease the lagtime τ without changing the spectral error.

In order to understand how strongly the projection error δ depends on m we show the dependence
of δ on m and the number n adaptively chosen sets in Figure 15. We observe that the increase of m for
fixed n is significant but not dramatic. Let us next assume that we want to guanrantee that the total
propagation error is below 0.1 for all times k. Then, a certain choice of m and n fixes Δ and δ and
allows the minimal lagtime τ∗ to be computed that is required to guarantee maxk E(k) ≤ 0.1. Figure 16
shows how τ∗ depends on m and n. It is observed that m = 2 yields the best results, that is, for given
n the lagtime can be chosen smallest with m = 2 in comparison to m = 1 and m = 5 (and other values
of m not shown in the last figure).
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Fig. 13 Potential and eigenvectors uj , j = 1, 2 and their stepfunction approximation Quj for n = 20 adaptive
sets. The resulting projection error is δ = 0.052.

5 10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

number n of sets

 

 

δ for m=2

max
k
||QTkQ − QPkQ||

Fig. 14 Decay of δ and of the maximal propagation error maxk ‖QT kQ − P k‖ with the number n of sets in
the optimal adaptive subdivision for m = 2.
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6 Proofs

6.1 Proof of Lemma 2.2.

P r o o f. Because of Π0Q = QΠ0 = Π0 and ‖T − Π0‖ = λ1 we have for k = 1:

‖TQ− Π0‖ = ‖(T − Π0)Q‖ ≤ λ1. (32)

Since furthermore TΠ0 = Π0, and TΠ is self-adjoint we find for arbitrary v ∈ L2
μ:

Π0Tv = 〈Tv,1〉1 = 〈TΠv,1〉 1 + 〈TΠ⊥v,Π1〉1
= 〈v, TΠ1〉1 + 〈ΠTΠ⊥v,1〉1 = 〈v,1〉1 = Π0v,

where the identity before the last follows from (11). Therefore

Π0T = TΠ0 = Π0. (33)

From this and QΠ0 = Π0Q = Π0 it follows that (TQ− Π0)k = (TQ)k − Π0 and thus with (32)

‖P k − Π0‖ = ‖Q(TQ)k −QΠ0‖ ≤ ‖(TQ)k − Π0‖ = ‖(TQ− Π0)k‖ ≤ ‖TQ− Π0‖k ≤ λk
1 ,

which was the assertion.

6.2 Proof of Theorem 3.1

First we observe that the error in (19) at time k consists of the k−1 projection errors that are propagated
until time k is reached, as direct calculation shows:

QT kQ−QP kQ =
k−1∑
i=1

QT iQ⊥(TQ)k−i.

By this expression we can estimate the approximation error E by observing that it consists of two
different parts. Because of Q⊥Q⊥ = Q⊥ we have

‖QT kQ−QP kQ‖ ≤
k−1∑
i=1

‖QT iQ⊥‖‖Q⊥(TQ)k−i‖. (34)

The first term ‖QT iQ⊥‖ describes the propagation of the projection error in i steps and the second term
‖Q⊥(TQ)k−i‖ measures how large a projection error can be in the
(k − i)-th iteration of applying operator P . So the i-th summand explains the effect of propagation of
error that is made in the (k − i)-th iteration.

We will estimate the overall error by looking at both parts of error separately. Let us prepare this
with the following lemma:

Lemma 6.1 For the first part of the error we have the upper bound

‖QT kQ⊥‖ ≤ √
mλk

1δ + rk.

P r o o f. Let v be arbitrary with ‖v‖ = 1. Because u0 = 1 and Q⊥u0 = 0,

(TΠ)kQ⊥v = T kΠQ⊥v =
m∑

j=1

λk
j 〈Q⊥uj, v〉uj ,

which leads to

‖(TΠ)kQ⊥v‖2 =
m∑

j=1

λ2k
j 〈Q⊥uj, v〉2

(21)

≤ mλ2k
1 δ2.
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and therefore

‖Q(TΠ)kQ⊥‖ ≤ √
mλk

1δ. (35)

Now we can estimate

‖QT kQ⊥‖
(12)

≤ ‖Q(TΠ)kQ⊥‖+ ‖Q(TΠ⊥)kQ⊥‖
(35)

≤ √
mλk

1δ+ ‖TΠ⊥‖k
(10)

≤ √
mλk

1δ+ rk. (36)

Now we can proof Theorem 3.1.

P r o o f. First recall that the first argument 2 in the minimum taken in (22) comes from (20). More-
over, recall (34), that is,

‖QT kQ−QP kQ‖ ≤
k−1∑
i=1

‖QT iQ⊥‖‖Q⊥(TQ)k−i‖.

Because Q⊥Π0 = 0 we can write

‖Q⊥(TQ)k−i‖ = ‖Q⊥TQ(TQ)k−i−1‖ = ‖Q⊥TQ((TQ)k−i−1 − Π0)‖.

Moreover

‖Q⊥TQ‖ ≤ ‖Q⊥TΠQ‖ + ‖Q⊥TΠ⊥Q‖ ≤ ‖Q⊥TΠQ‖ + r

and for v with ‖v‖ = 1

‖Q⊥TΠQv‖2 =
m∑

i,j=1

〈Qv, ui〉〈Qv, uj〉λiλj〈Q⊥ui, Q
⊥uj〉 ≤ m2λ2

1δ
2‖v‖2.

We use Lemma 2.2 to get

‖Q⊥TQ((TQ)k−i−1 − Π0)‖ ≤ (mλ1δ + r)λk−i−1
1 . (37)

Inserting (37) and Lemma 6.1 into (34) yields

E(k) = ‖QT kQ−Q(TQ)k‖ ≤ (mλ1δ + r)
k−1∑
i=1

(
√
mλi

1δ + ri)λk−i−1
1 .

Now we have

k−1∑
i=1

(
√
mλi

1δ + ri)λk−i−1
1 =

√
mδ(k − 1)λk−1

1 + λk−1
1

k−1∑
i=1

ηi

and

k−1∑
i=1

ηi =
1 − ηk

1 − η
− 1 =

η − ηk

1 − η
=

η

1 − η
(1 − ηk−1).
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6.3 Proof of Lemma 4.1

Remember that Q(1), Q(2) denote the projection from L2
μ to the fine and coarse stepfunction spaces,

while Q(12) denotes the projection from fine to coarse.

P r o o f. We first find easily that Q(2) = Q(12)Q(1), and Q(2),⊥ = Q(1),⊥ + Q(12),⊥Q(1). Setting
δ
(12)
j = ‖Q(12),⊥Q(1)uj‖ this implies:

(δ(2)j )2 = ‖Q(2),⊥uj‖2 = 〈(Q(1),⊥ +Q(12),⊥Q(1))uj , (Q(1),⊥ +Q(12),⊥Q(1))uj〉
= ‖Q(1),⊥uj‖2 + ‖Q(12),⊥Q(1)uj‖2 + 2〈Q(12),⊥Q(1)uj , Q

(1),⊥uj〉
= (δ(2)j )2 + (δ(12)j )2,

where the last identity follows from the fact that Q(1),⊥Q(12) = 0 on Range(Q(1)) which implies
Q(1),⊥Q(12),⊥ = Q(1),⊥ The above identity implies the assertions concerning the δ-estimates. With
respect to the estimate on the error it suffices to observe that

E2(k) = ‖Q(2)T kQ(2) − (P (2))k‖ = ‖Q(12)Q(1)T kQ(12)Q(1) − (P (2))k‖
= ‖Q(12)Q(1)T kQ(1)Q(12)Q(1) − (P (2))k‖
≤ ‖Q(12)Q(1)T kQ(1)Q(12)Q(1) −Q(12)(P (1))kQ(12)Q(1)‖

+‖Q(12)(P (1))kQ(12)Q(1) − (P (2))kQ(1)‖
≤ E1(k) + ‖Q(12)(P (1))kQ(12) − (P (2))k‖

where the last norm has to be evaluated on Range(Q(1)) = span{χAj , j = 1, . . . , n} which comes from
ignoring the Q(1) in the last step of the estimate.

7 Conclusion

We have presented a rigorous upper bound to the error in the propagation of functions in state space
between an ergodic dynamical process and a MSM based on a complete partitioning of state space.

We have demonstrated that this error mainly depends on two components: (1) the projection error
associated with how well the discretization of state space can approximate the change of the dominant
eigenfunctions of the original process, and (2) the lag time chosen in the transition matrix of the MSM.
In particular, for fixed, large enough lag time, we have seen that an increasingly fine discretization
of state space decreases the error independently of whether the original process coarse grained to the
subdivision still satisfies the Markov property or not. This observation justifies the algorithmic strategy
of constructing MSMs by finely partitioning state space using clustering algorithms that has been
employed by several researchers in the field [6, 30, 31].

Our results also gives formal support to the practical experience that grouping discretization elements
into metastable sets is a good strategy when a small MSM is desired [6, 23, 8, 1], but will nevertheless
increase the approximation error of the MSM compared to the fine discretization for a given lag time
τ . A given error tolerance can then again be met by further increasing τ to reduce the spectral part
of the error. On the other hand, if a metastable subdivision does not yield a sufficiently low error for
a desirable choice of τ , further reduction of the projection error by introducing additional refinements
of the subdivision are needed. We have seen that such refinements will be at the transition regions.
In contrast to the assumption that has been made in many applications of MSM, this shows that in
order to improve the quality of an MSM one needs to go to a partitioning of state space that is not
metastable.

Additional algorithmic questions like the the possible advantage of fuzzy memberships and the use of
subdivisions based on only a subset of state space variables have also been discussed. The influence of
the statistical error and possible strategies for bounding the total approximation error of the MSM was
also discussed. Note that the requirement of improving the quality of the MSM by fine subdivisions of
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the transition regions calls for adaptive simulation methods as the statistical sampling is typically worst
in the transition regions.

Summarizing, on the one hand our analysis puts the questions concerning the approximation quality
of MSM onto solid ground and the functional form of the error immediately suggests the development
of adaptive algorithms for obtaining a discretization of state space such that the MSM approximation
is guaranteed to stay below a user-defined tolerance. On the other hand, we could see that there are
situations, such as potentials with large diffusive transition regions where the full partitioning of state
space might require using too many states to be practically useful and new algorithmic strategies will
be required for efficient construction of high quality MSMs.
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