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ABSTRACT. This paper is concerned with the problem of fuzzy aggregation of a network
with non-negative weights on its edges into a small number of clusters. Specifically we
want to optimally define a probability of affiliation of each of the n nodes of the network to
each of m � n clusters or aggregates. We take a dynamical perspective on this problem
by analyzing the discrete-time Markov chain associated with the network and mapping
it onto a Markov chain describing transitions between the clusters. We show that every
such aggregated Markov chain and affiliation function can be lifted again onto the full
network to define the so-called lifted transition matrix between the nodes of the network.
The optimal aggregated Markov chain and affiliation function can then be determined by
minimizing some appropriately defined distance between the lifted transition matrix and
the transition matrix of the original chain. In general, the resulting constrained nonlinear
minimization problem comes out to have continuous level sets of minimizers. We exploit
this fact to devise an algorithm for identification of the optimal cluster number by choosing
specific minimizers from the level sets. Numerical minimization is performed by some
appropriately adapted version of restricted line search using projected gradient descent.
The resulting algorithmic scheme is shown to perform well on several test examples.

1. INTRODUCTION

Recent advances in science and technology as well as events in our society have brought
new challenges to the field of network science. The rapid growth and wide usage of the
World Wide Web (WWW) has offered one of the most important and fascinating examples
of a network whose structure and complexity has gone far beyond the examples studied
before in the classical computer science literature. Networks have also become popular in
the social sciences to represent and analyze the interactions between individual or com-
munities. On another front, cell biology has also evolved to a stage where elementary
biochemical reactions of many intra-cellular processes are understood well enough and
their overall structure is often expressed in the form of networks. Yet another example
of application is provided by molecular science where networks have become popular re-
cently to analyze the enormous amount of data one can nowadays generate by molecular
dynamical simulations.

In all of these applications, the networks are typically very large and very complex.
In order to understand the structure and function of these networks a common strategy is
to partition them into smaller networks which are simpler yet retain some basic proper-
ties of the original ones. One possible approach to partitioning is to lump or aggregate
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the nodes in the networks into clusters (or communities, aggregates, or dominant confor-
mations depending on the application) such that the affiliation of each node to a cluster
is deterministic. The approach with deterministic affiliations is rather popular and many
variants have been widely discussed in the literature, e.g. k-means, spectral decomposition
methods and variants thereof [3, 4, 5, 6, 15, 16, 17, 18], methods based on modularity [7],
etc.

All approaches with deterministic affiliations have one essential drawback, however. In
most real-world scenarios there are nodes that do not belong to one of the communities but
bear affiliations with several communities. In these cases, it is better to use partitioning
approaches in which the affiliation of a node to a given network is probabilistic rather than
deterministic. Such approaches are usually referred to as fuzzy partitioning techniques
and the literature contains many different types of these techniques: Gaussian mixture
models [8, 9] or other Bayesian network models [10], fuzzy k-means and other clustering
algorithms [11] and fuzzy variants of spectral decomposition techniques [12, 13].

The different approaches to partitioning, either deterministic or fuzzy, differ by the
criterion they use to measure the quality of the clustered network. Indeed, one of the
main issue in partitioning is to define what is meant by best in this context. In this paper
we will adopt the strategy proposed in Ref. [1] which exploits the well-know isomorphism
between networks and Markov chains. If Ω denotes the set of nodes in the network and we
assume that the weight w(x, y) between any two nodes x ∈ Ω and y ∈ Ω is non-negative,
w(x, y) ≥ 0, then one can associate with the network a discrete-time Markov chain with
stochastic matrix P with entries

(1) P (x, y) =
w(x, y)
d(x)

d(x) =
∑
y∈Ω

w(x, y)

where d(x) is the (out) degree of nodes x. The partitioning strategy proposed in Ref. [1]
amounts to (i) constructing a simplified stochastic matrix P̃ in which the probability to
hop from a node in one cluster to one in another is uniform in the starting cluster, and (ii)
optimizing the definition of the clusters in such a way that the dynamical properties of the
simplified chain with stochastic matrix P̃ remains as close as possible to the ones of the
original chain with stochastic matrix P . Here close is understood in the sense of some ap-
propriately weighted Frobenius norm. In Ref. [1], this approach was used in the context of
deterministic partitioning. Here we generalize the technique by allowing the assignment to
the clusters to be fuzzy. Since stochastic constraints apply, the resulting optimization prob-
lem is a non-convex minimization problem with mixed equality and inequality constraints.
We show how to solve this problem by adapting standard algorithmic strategies to the spe-
cial structure at hand and analyze the complexity of the algorithm. We also show how the
new strategy permits to identify the optimal number of clusters to be used. The optimal
coarse graining is identified by the minimum of the weighted Frobenius functional.

With respect to other partitioning strategies, the one we propose has the advantage that
it explicitly takes into account and is tailored to preserve the dynamical properties of the
Markov chain associated with the network. This is especially suitable in applications where
the network is indeed the stage of some dynamics, like in the examples of biological net-
works or the networks used to analyze the time-series data obtained from molecular dy-
namics. In this context, nodes that have a high probability to be assigned to one particular
cluster are nodes that are strongly linked together kinetically, and form core clusters inside
the clusters in which the chain spend a significant amount of time. In contrast, the nodes
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that have a significant probability to be assigned to more than one cluster can be viewed as
part of the transition regions between these core cluster.

The remainder of this paper is organized as follows. In Sec.2, we formulate the con-
strained minimization problem and discuss the underlying probabilistic interpretation. Then,
we show that there is no unique minimum and discuss how to choose amongst the minima.
Based on this, Sec. 3 describes our strategy for the identification of the number of clusters.
Then, Sec. 4 introduces the algorithmic considerations, i.e., the solver for the constrained
minimization problem and finally, in Sec. 5 we will discuss some numerical experiments
including a network with hierarchical structure and an application to a transition network
that results from diffusion in a potential energy landscape.

2. DETERMINISTIC AND FUZZY CLUSTERING VIA CONSTRAINED MINIMIZATION

As explained in the introduction, any network (i.e. a weighted directed graph) with
positive weights on its edges is isomorphic with a Markov chain, see (1). From now on we
will therefore focus this Markov chain. More specifically, we will consider a discrete-time
Markov chain with finite state space Ω = {1, . . . , n}. We denote the transition matrix of
this chain by P and we assume that it has unique invariant measure µ satisfying µTP =
µT . We also assume that the entries of µ are all positive, µ(x) > 0 for all x ∈ Ω.

Our aim is to partition the state of this chain into a set of m ≤ n clusters, which
we shall denote by Ω̂ = {1, . . . ,m}. To do this, consistent with the general strategy
proposed in Ref. [1] we will proceed as follows. Assuming that the m clusters are given
(deterministically or stochastically), we will introduce a discrete-time Markov chain on
the state space Ω̂ by specifying a m × m stochastic matrix P̂ . Below we will denote
by µ̂ the invariant measure of this chain, i.e. µ̂T P̂ = µ̂T . We will then define in some
appropriate way the lift of this stochastic matrix in the original state space Ω, which is
a certain n × n stochastic matrix P̃ , and measure the distance between this P̃ and the
original P using some suitable norm. Finally, we will propose to minimize this distance
to obtain the optimal set of clusters, the optimal P̂ on these clusters, and the optimal lift
P̃ . Note that this strategy not only gives a partitioning of the original network; it also give
a coarse-graining of the dynamics specified by the stochastic matrix P isomorphic to this
network.

2.1. Deterministic clustering. A deterministic clustering can be specified by a map C :
Ω→ Ω̂ which assigns every node in Ω to one and only one clusters in Ω̂, and the associated
affiliation function Wd : Ω× Ω̂→ {0, 1} defined as

(2) Wd(x, i) =

{
1 if C(x) = i

0 otherwise.

Taken together, a map C and a m ×m stochastic matrix P̂ specifying a Markov chain on
these clusters naturally induce a dynamics on the original state space Ω. This dynamics is
defined by following 3-step rule:

(1) Given that the system is in state x, let i = C(x).
(2) Pick j ∈ Ω̂ according to the probability p̂(i, ·).
(3) Pick y ∈ Ω according to the probability µj(·) where µj(x) is the equilibrium

probability distribution of the original chain conditional on C(x) = j

(3) µi(x) =
µ(x)Wd(x, i)∑n
y=1 µ(y)Wd(y, i)
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This 3-step rule can be graphically explained as

(4) x ∈ Ω

i=C(x)

��

P̃ (x,·) // y ∈ Ω

i ∈ Ω̂
P̂ (i,·)

// j ∈ Ω̂

µj(·)

OO

and it is easy to see that it defines a discrete-time Markov chain on Ω with stochastic matrix
(the upper arrow in the graph above):

(5) P̃ (x, y) = P̂ (C(x), C(y))µj(y).

It is easy to see that P̃ and P will share the same equilibrium distribution µ̂ if the equilib-
rium distribution of P̂ satisfies

(6) µ̂(j) =
n∑
x=1

Wd(x, j)µ(x),

Assuming that this constraint is satisfied, (5) can also be written as

(7) P̃ (x, y) =
m∑

i,j=1

Wd(x, i)P̂ (i, j)Wd(y, j)
µ(y)
µ̂(j)

.

This matrix can be thought of as the lift in Ω of the stochastic matrix P̂ , an operation that
we shall denote as P̃ = LWd

(P̂ ). In matrix notation we have

(8) LWd
(P̂ ) := P̃ = WP̂D−1

µ̂ WTDµ,

with Dµ = diag{µ1, ..., µn} and Dµ̂ = diag{µ̂1, ..., µ̂m}.
The partitioning strategy proposed in Ref. [1] amounts to finding the P̃ = LWd

(P̂ ) which
is the closest to P , where closeness is measured in terms of the weighted Frobenius norm
of the difference between P and LWd

(P̂ ):

(9) E(P̂ ,Wd) =
n∑

x,y=1

µ(x)
µ(y)

(
P (x, y)− LWd

(P̂ )(x, y)
)2

The choice of the functional is motivated in the Appendix. This functional is to be mini-
mized over Wd and P̂ subject to the constraint (6) as well as

(10)

∀i, j ∈ Ω̂ : P̂ (i, j) ≥ 0,

∀i ∈ Ω̂ :
m∑
j=1

P̂ (i, j) = 1

and

(11) ∀x ∈ Ω, i ∈ Ω̂ : Wd(x, i) ∈ {0, 1}.

If we keep Wd fixed and minimize (9) over P̂ subject to (6) and (10) assuming that (11)
holds, a straightforward calculations shows that the unique minimizer is

(12) P̂ (i, j) =
n∑

x,y=1

µ(x)
µ̂(i)

Wd(x, i)P (x, y)Wd(y, j).
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We will refer to this stochastic matrix as the inverse lift of P and denote it as L̂Wd
(P ). In

matrix notation, it is

(13) L̂Wd
(P ) = D−1

µ̂ WT
d DµPWd.

Note that the inverse lift of the lift is the identity, L̂Wd
(LWd

(P̂ )) = P̂ , but the lift of the
inverse lift is not, LWd

(L̂Wd
(P )) = P̃ 6= P in general.

Inserting (13) in (9) leaves us with an objective function for Wd alone

(14) E(Wd) := E(L̂Wd
(P ),Wd) =

n∑
x,y=1

µ(x)
µ(y)

(
P (x, y)− LWd

(L̂Wd
(P ))(x, y)

)2

We can then minimize this objective function subject to the constraint in (11) to obtain the
best deterministic partition Wd. An algorithm to perform this minimization was proposed
in Ref. [1].

2.2. Stochastic interpretation of fuzzy clustering. Now we generalize the approach pre-
sented in Sec. 2.1 to stochastic or fuzzy clustering. The basic idea is to make the map
C : Ω → Ω̂ random rather than deterministic. Specifically, we assume that entries C(x)
of the map are statistically independent from one another, and that the probability that
C(x) = i for some i ∈ Ω̂ is given by

(15) P[C(x) = i] = W (x, i).

where W : Ω × Ω̂ → [0, 1] is a fuzzy affiliation function. W (x, i) can be interpreted as
the probability that the state x ∈ Ω is affiliated with the cluster state i, i.e. W (x, ·) gives a
probability distribution on the clustered space Ω̂. Obviously, this requires that

(16)

∀x ∈ Ω, i ∈ Ω̂ : W (x, i) ≥ 0

∀x ∈ Ω :
m∑
i=1

W (x, i) = 1.

Thus, one can think of a stochastic or fuzzy clustering as an ensemble of deterministic
ones distributed according to the probability distribution given by W on the set of all
deterministic clusterings. Therefore the natural extension of the lift given by (7) is achieved
by taking the ensemble average, i.e. the expectation value with respect to the distribution
given by the affiliation function W on the set of all possible deterministic clusterings C.
Let C denote this set. Then we have

(17) P̃ (x, y) = E
[
P̂ (C(x), C(y))

µ(y)
µ̂(C(y))

]
=
∑
C∈C

P[C]P̂ (C(x), C(y))
µ(y)

µ̂(C(y))

Reorganizing the sum by considering all clustering that have the same value on x and y
and using statistical independence as well as (15), P̃ (x, y) can be re-expressed as

(18)

P̃ (x, y) =
∑
i,j

P[C(x) = i]P̂ (i, j)P[C(y) = j]
µ(y)
µ̂(j)

=
m∑

i,j=1

W (x, i)P̂ (i, j)W (y, j)
µ(y)
µ̂(j)

.

Thus, the lift LW (P̂ ) of a clustered stochastic matrix can be defined in the fuzzy cluster-
ing setting as in the deterministic setting, by (7) except that the deterministic affiliation
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function Wd(x, i) in (2) has now be replaced by a fuzzy affiliation function W (x, i) satis-
fying (16).

The dynamics induced by the stochastic matrix P̃ (x, y) is the following generalization
of the 3-step rule dynamics defined in Sec. 2.1:

(1) Given that the system is in state x, pick i with probability W (x, ·).
(2) Pick j ∈ Ω̂ according to the probability p̂(i, ·).
(3) Pick y ∈ Ω according to the probability µj(·) where µj(x) is the equilibrium

probability distribution of the original chain conditional on C(x) = j

(19) µi(x) =
µ(x)W (x, i)∑n
y=1 µ(y)W (y, i)

The diagram associated with this dynamics is

(20) x ∈ Ω

W (x,·)
��

P̃ (x,·) // y ∈ Ω

i ∈ Ω̂
P̂ (i,·)

// j ∈ Ω̂

µj(·)

OO

and, assuming that (6) holds, it can be represented by the natural extension of the lift (18).
Proceeding as in Sec. 2.1 we can now determine the optimal W and P̂ by minimizing

the objective function (9) with Wd replaced by W , E(P̂ ,W ), over all permissible W and
P̂ . This problem, however, turns out to be more complicated in the present case than it
was for deterministic clustering. In particular, because of the constraints on P̂ and W , the
minimizer of E(P̂ ,W ) on P̂ at fixed W is non-explicit in general, which means that the
minimization of E(P̂ ,W ) over both P̂ and W has to be performed numerically. This is
the topic of the next section. The following diagram shows the connection between the
objects introduced above.

P

inverse lift of P wrtW
��

minE

&&LLLLLLLLLLLL P̃ = LW (P̂ )

L̂W (P ) W, P̂oo

lift of P̂ wrtW

OO

2.3. The constrained minimization problem. Finding the optimal P̂ and W leads to the
following constrained variational problem: minimize

(21) min
W,P̂

E(P̂ ,W ) =
n∑

x,y=1

µ(x)
µ(y)

(
P (x, y)− LW (P̂ )(x, y)

)2
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subject to theconstraints:

W (x, i) ≥ 0, ∀x ∈ Ω, i ∈ Ω̂(22)
m∑
i=1

W (x, i) = 1, ∀x ∈ Ω(23)

P̂ (i, j) ≥ 0, ∀i, j ∈ Ω̂(24)
m∑
j=1

P̂ (i, j) = 1, ∀i ∈ Ω̂(25)

µ̂(i) =
n∑
x=1

W (x, i)µ(x), ∀i ∈ Ω̂(26)

Since (21) is nonconvex and subject to the constraints in (22)– (26), this constraint mini-
mization is nontrivial and most of the sequel of this paper is concerned with the develop-
ment of an algorithm to perform it. Before getting there, however, we discuss some specific
difficulties that we will have to deal with when minimizing (21).

2.4. No unique solution in general. Because we deal with a non-convex functional (21),
an obvious question is whether there is a unique minimizer or not. The first trivial obser-
vation is that the numbering of the clusters cannot have any effect on the resulting lift P̃
and therefore a renumbering will not change the energy E. This means, if (W, P̂ ) was a
minimizer, (WΠ,ΠT P̂Π) would be a solution, too, for any permutation matrix Π. Clearly,
this not much of an issue since all these minima have the same interpretation.

There is, however, a more fundamental difficulty, namely that in general there are un-
countably many minimizers. To see this consider the following transformed matrices:

(27)

Q̂(i, j) =

√
µ̂(i)√
µ̂(j)

P̂ (i, j)

V (x, i) =

√
µ(x)√
µ̂(i)

W (x, i)

Q(x, y) =

√
µ(x)√
µ(y)

P (x, y)

Q̃(x, y) =

√
µ(x)√
µ(y)

LW (P̂ )(x, y)

By definition of the lift in (18), the last equation in (27) can be written as Q̃ = V Q̂V T ,
and in terms of these new matrices, the objective function (21) can be re-expressed as the
following functional of Q̂ and V :

(28) Ē(Q̂, V ) =
n∑

x,y=1

(
Q(x, y)− (V Q̂V T )(x, y)

)2

Clearly

(29) Ē(Q̂, V ) = Ē(Q̂A, VA)

for any VA and Q̂A satisfying

(30) VA = V A, Q̂A = A−1Q̂A−T
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for any invertible m × m matrix A. As a result the minimizer of (29) is not unique. Of
course, the transformation (30) leads to new WA, P̂A and µ̂A defined as

(31) µ̂A = (AT
√
µ̂)2, WA = WTA, P̂A = T−1

A P̂ T−TA

with TA = D−1√
µ̂
AD√µ̂A

and so A cannot be chosen arbitrarily, because WA, P̂A and µ̂A
must also satisfy the constraints (6), (12) and (16). A direct calculation shows that if W , P̂
and µ̂ satisfy (6) and (12), then WA, P̂A and µ̂A also satisfy these constraints if A is such
that

(32)

ATA = Id

(V A)(x, i) ≥ 0, ∀x ∈ Ω, i ∈ Ω̂

µ̂A(i) ≥ 0, ∀i ∈ Ω̂

(AT Q̂A)(i, j) ≥ 0, ∀i, j ∈ Ω̂.

Obviously a permutation Π has all these properties, but rotations may also work if the
rotation angle is small enough to keep the non-negativity constraints satisfied. There will
be no possible rotation if the following holds:

(33) ∀i ∈ Ω̂ ∃x ∈ Ω : W (x, i) = 0.

In this case indeed, each of the (m−1)-dimensional hyperplanes that generate the boundary
of the non-negativity constraint set defined by (32) contains at least one point V (x, i).
As a result if we apply A to the matrix V , all the points in the boundary of the non-
negativity constraint set will be rotated in the same direction and not all these points can
simultaneously stay inside of the set. This means that if (33) holds onlyA = Id satisfies all
the constraints in (32). In the general case, however, (33) does not hold, nontrivial rotations
are possible, and the minimizers of (29) form a continuous level set of minimizers. In
order to understand how to handle this problem we have to show how rotations can be used
to characterize a level set of minimizers: If (33) does not hold for a local minimizer of
E(P̂ ,W ), then there is a continuous set of rotations matrices that respect the constraints
in (32). Each rotationA can be represented in a canonical way by the product ofm(m−1)
elementary rotations

(34) A =
m∏

i,j=1
j>i

Ai,j .

Here Ai,j denotes a rotation restricted to the two-dimensional plane Ei,j = span{ei, ej},
where ek denotes the k-th unit vector and i, j range from 1 to m with j > i. For each of
these planes there will be a real closed interval Γ = [γ−; γ+], γ− < γ+ and for each angle
γ ∈ Γ we will have an associated rotation matrix. In the subsequent, we will denote the set
of all permissible rotations by A.

The nonuniqueness is not necessarily a problem, however, and it can be exploited. In-
deed we can choose a special rotation A to select a specific minimizer (WA, P̂A) out of
the continuum of possible minimizers with special properties that make their interpretation
easier, in particular to choose the number m of clusters. Sec. 3 is devoted to this issue.

Remark 2.1. The first constraint in (32) which says thatA must be orthogonal is sufficient
but not necessary in order that WA, P̂A and µ̂A satisfies the non-negativity constraints.
However, orthogonal matrices are sufficient for the purpose of the discussion in Sec. 3 and
so we shall restrict ourselves to those.
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3. NUMBER OF CLUSTERS

Up to now we have assumed the number of clusters m is given a priori. This is not
completely satisfactory, because knowing what is the “right” number of clusters means
knowing a lot about the structure of the Markov chain and its transition matrix P . It cannot
be assumed that we have this knowledge a priori. Next we investigate how to determine
a posteriori the number of clusters which are in some way essential for the Markov chain.
Let us first clarify what we mean with essential.

We start with the observations thatE(W, P̂ ) = 0 iff P = LW (P̂ ) and minE(W, P̂ )→
0 as m → n since LW (P̂ ) = P̂ = P in that limit. So unless we can represent exactly the
original transition matrix P by LW (P̂ ) for some m < n, the energy of the minimizer will
decrease if we increase the cluster number m. This means that in general we cannot hope
to determine m simply by looking at the energy of the minimizer.

If we assume that we have already computed a (perhaps local) minimizer of the con-
strained minimization problem for some given m, another possible strategy is to try to
reduce the number of clusters to some m̃ < m by using our insights about the non-
uniqueness. To this end, in Sec. 3.1 we will first explain how to identify specific mini-
mizers in a level set of minimizers in which one or several of the clusters are not used (in
the sense that µ̂(i) = 0 for some i ∈ Ω̂). Next in Sec. 3.2 we will extend this approach to
the much more frequent case of almost unused clusters (µ̂(i) ≈ 0 for some i ∈ Ω̂). If max-
imally r < m clusters are almost unused then m̃ = m− r may be used as an a posteriori
indicator for the cluster number. We will then see in Sec. 3.3 how to use this observation
in practice by considering what we will call kinetically almost separated clusters. Finally,
some algorithmic aspects will be discussed in Sec. 3.4.

3.1. Unused clusters. Consider a level set of minimizers that are generated by rotations
from A. In order to reduce the cluster number one can look for the minimizer in this level
set which uses as few clusters as possible, i.e. such that we have WA(x, i) = 0 for all
x ∈ Ω and for as many i ∈ Ω̂. Clearly, this amounts to finding the rotation A ∈ A which
brings WA = WTA into this form. Let us first give an illustrative example.

Example 3.1. Take

W =


1 0 0

0.8 0.1 0.1
1 0 0
0 0.5 0.5
0 0.5 0.5

 , P̂ =

0.9 0.1 0
0.4 0.2 0.4
0 0.4 0.6

 , µ =


0.3
0.2
0.2
0.1
0.2

 µ̂ =

0.66
0.17
0.17

 .

Imagine that we have P = LW (P̂ ). Then of course (W, P̂ ) would be a minimizer, because
the approximation is exact, i.e. E(W, P̂ ) = 0. But with the rotation matrix

A =

1.0000 0 0
0 0.7071 −0.7071
0 0.7071 0.7071


we get an equivalent minimizer of the form

WA =


1 0 0

0.8 0.2 0
1 0 0
0 1 0
0 1 0

 , P̂A =

0.9 0.1 0
0.2 0.8 0
0 0 1

 , µ̂A =

0.66
0.34

0

 .
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The third cluster is not used in this case, so it would be possible to get the same lift with
m = 2.

3.2. Almost unused clusters. In general we will not be able to achieve WA(·, i) = 0 for
some i ∈ Ω̂, i.e. there will be no fully unused clusters. We thus should ask whether
we can find rotations that make some clusters almost unused. In order to understand
what this means, first observe that if WA(x, i) = 0 ∀x ∈ Ω, then we have µ̂A(i) =∑n
y=1WA(x, i)µ(x) = 0. However, setting entries of µ̂A to zero means increasing the

2-norm ‖µ̂A‖2, because of the probability constraint ‖µ̂A‖1 = 1. (Too see this, remember
that the unit spheres of the 1- and 2-norm intersect only in the unit vectors, which have the
maximal number of zero entries under all probability vectors.) This suggest to determine
A via the maximization problem

(35) max
A
‖µ̂A‖2.

subject to the constraints (32). Since µ̂A = (AT
√
µ̂)2 (see (31)), an algorithmic procedure

for maximizing ‖µ̂A‖2 is as follows:

(a) parametrize A by the angles γi,j ∈ Γi,j defined above, i.e. describe A in the
canonical way given by (34), and;

(b) perform the maximization of ‖µ̂A‖2 in each plane Ei,j separately, i.e. find the
largest possible angles γi,j , such that the non-negativity constraints of (32) are
still satisfied.

Having solved this maximization problem the rotation matrix A leads to a special choice
of minimizer (WA, P̂A) out of the level set as in (31). Let us denote this clustering by
(W ∗A, P̂

∗
A).

A possible strategy is to eliminate almost unused clusters such that µ̂∗A(i) < tol for
some given threshold tol. The problem with this strategy, however, is that it is not clear
what tol should be, and the answer to this question depends sensitively on the original
invariant measure since all entries of µ̂∗A will decrease if we take more clusters. A practical
way around this difficulty is proposed next.

3.3. Almost separated clusters. Because the map C is random, two states x, y ∈ Ω are
mapped onto different clusters in some realizations, and on the same one in some other
realizations. This means that the states x and y are not strictly separated by the clustering.
However, there may be partition of Ω into m̃ cluster Si ⊂ Ω with i = 1, ..., m̃, which are
separated in most of the clustering realizations, i.e. which are such that

(36) if x ∈ Si, y ∈ Sj with i 6= j then P[C(x) = C(y)] ≤ εsep

Here εsep > 0 is a small adjustable parameter which measures the strength of the separation
of the sets (Si)1,...,m̃: the smaller εsep, the more stringent condition (36) is, i.e. the smaller
the cardinal m̃ of the partition(s) {S1, . . . , Sm̃} such that (36) holds. Therefore, given εsep,
we can identify the partition such that (36) holds which has maximum cardinal, and take
this maximum as the a posteriori estimator m̃ ≤ m for the effective number of clusters
needed. We can then re-apply our soft-clustering procedure by setting m = m̃. Because
the family of random variables (C(x))x∈Ω is independent we have

(37) P[C(x) = C(y)] =
m∑
i=1

P[C(x) = i]P[C(y) = i] =
m∑
i=1

W (x, i)W (y, i).
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This measure of separability might not be well-defined because of non-uniqueness of the
minimizer W , and we can again exploit this uniqueness. To see how let us define

(38) S(x, y) := (P[C(x) = C(y)]) = (WWT )(x, y).

The first observation is that in the limit εsep → 0 all minimizers from the continuous level
set that we had found in (2.4) lead to the same completely separated states, because

(39) S(x, y) = 0⇔ SA(x, y) = (WAW
T
A )(x, y) = 0

(The proof can be found in the appendix.) That is, for εsep = 0 we will get the same
a posteriori estimator m̃ ≤ m regardless of the choice of minimizer WA. Please note also
that if we had m̃ = m there would not be a continuous level set of equivalent minimizers
at all (see (33)).

For εsep > 0 this is not true, because we have in general

S 6= SA, i.e.
m∑
i=1

W (x, i)W (y, i) 6=
m∑
i=1

WA(x, i)WA(y, i).

Therefore we have to specify which minimizer we want to take for analysis of separability
in order to have a well-defined a posteriori estimator. Herein we simply take the special
minimizer W ∗A that solves the maximization problem in (35), maxA ‖µ̂A‖2.

Remark 3.2. Using the definition (38) the maximization problem (35) leads to

(40) ‖µ̂A‖22 = µTSAµ =
n∑

x,y=1

µ(x)µ(y)(WAW
T
A )(x, y)

n∑
x,y=1

µ(x)µ(y)SA(x, y).

That is, the solutionW ∗A to (3.2) leads to a separation matrix S∗A(x, y), which tends to have
higher values for pairs of states x, y whose equilibrium probabilities µ(x), µ(y) has higher
values. Because we need S∗A(x, y) ≤ εsep for separation this automatically leads to a more
stringent condition for states with relatively high probability. Thus, unlike the procedure in
Sec. 3.3, the one above is less sensitive to the value of the equilibrium distribution, which
makes the choice of εsep > 0 easier.

3.4. Algorithmic determination of number of clusters. The a posteriori estimator m̃
of the number of clusters can be found by calculating the maximal pairwise εsep-separated
system according to the separation matrix S∗A, i.e. m̃ is the maximal number, such that
there is a set {x1, ..., xm̃} with S∗A(xi, xj) < εsep ∀i 6= j.

To interpret this in a graph theoretical way we introduce the separation graph G =
(V,E) with V = Ω and adjacency matrixA, that is defined byA(x, y) = 1⇔ S∗A(x, y) <
εsep. Then the a posteriori estimator is exactly the clique number of G and we can calculate
m̃ by solving the maximum clique problem, that is equivalent to the maximal independent
set problem. Both are NP-complete but in special cases it is possible to calculate a solution
in polynomial time in |V | = n. There are also a lot of algorithms in graph theory and
combinatorial optimization, e.g. [21], which calculate the clique number approximately
with polynomial or even linear effort. There are also a priori bounds on the clique number
depending on the number of nodes and edges. More details on the maximum clique prob-
lem can be found in the extensive literature on graph theory or combinatorial optimization,
e.g. [22].

Finally, we note that if the procedure searches for an m̃ ≤ m given m; if it returns
m = m̃, we should check for more clusters by doubling m.
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4. CONSTRAINED MINIMIZATION ALGORITHM

In this section we explain how to modify the standard approach in [20] to solve the
optimization problem described in Sec. 2.3. We stress that there are several other possible
algorithms (interior point methods, Newton, mirror prox, etc.) to perform this optimiza-
tion, and some of these algorithms may be more efficient. The method we use has one
crucial advantage, however: it finds a minimizer which fulfills the constraints exactly, not
approximately as may other methods do. We also note that the complexity per iteration of
our algorithm is dominated by the evaluation of the functional.

We begin by noting that there is a unique solution to the unconstrained optimization
problem

P̂ ∗ = argminP̂E(P̂ ,W )

for fixed full rank matrix W . The minimizer P̂ ∗ can be calculated in two steps as follows:

Set V := WTDµW, where Dµ = diag{µ(1), .., µ(n)}(41)

Solve V P̂ ∗D−1
µ̂ V = WTDµPW, where Dµ̂ = diag{µ̂(1), .., µ̂(m)}(42)

The minimizer P̂ ∗ will automatically fulfill all constraints, except perhaps (24). If (24) is
violated by the solution P̂ ∗, we will have to use numerical minimization techniques.

The above property leads us to the following general subspace iteration scheme for op-
timization:

Input: P ∈ Rn,n, Parameters m, ε, initial matrix W (0)

Output: Approximations W, P̂
Initialize iteration index i=0
Repeat

(M1) Solve P̂ (i) = argminP̂E(P̂ ,W (i−1)) under constraints (24), (25), and
µ̂T = µ̂T P̂ with µ̂ due to (26). If P̂ (i) = P̂ ∗ with P̂ ∗ from (42) using
W = W (i−1) fails to satisfy the constraints then apply appropriate numerical
constrained minimization techniques.

(M2) Solve W (i) = argminWE(P̂ (i),W ) under constraints (22) and (23) via
appropriate numerical constrained minimization techniques.

until E(W (i−1), P̂ (i−1))− E(W (i), P̂ (i)) < ε

Output W = W (i+1), and P̂ = P̂ (i+1).

To perform the numerical constrained minimization, we propose to use an appropriately
modified projected line search method using gradient descent. Next, we explain this tech-
nique for the step (M2) from above (i.e., P̂ = P̂ (i) is fixed and we have to minimize E
wrt. to W ); it can be used in complete analogy for step (M1). First we explain the basic
procedure for choosing the stepsize of every step of this iterative method; then we discuss
how to handle the equality and inequality constraints.

Stepsize. At every step we choose a search direction S according to the present state W ,
such that 〈∇WE,S〉 < 0, and perform an efficient line-search in this direction. Therefore
we have to find an α > 0, the stepsize, such that (i) E(W + αS) < E(W ) and (ii) the
energy reduction E(W + αS) − E(W ) is acceptable, i.e. big enough. In order to find α,
one considers the ratio q of the reduction and the linear forecast

q(α) =
E(W + αS)− E(W )

α∇WETS
.
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The denominator is always negative, so we have an energy reduction iff q(α) > 0. Now
one could choose from several line search conditions to get an acceptable α, for example
Armijo-Goldstein (AG) conditions:

q(α) > σ and ∃α̃ < βα : q(α̃) < 0

with predefined parameters σ ∈ (0, 1
2 ) and β > 1. If an α satisfying the AG conditions

can be found, then we have a guaranteed reduction (because q(α) > σ > 0). At the same
time we have to make sure that the step is not too small, because in the range of βα there
is a state that does not fulfill the reduction condition. The determination of such an α can
be done by backtracking algorithms.

Equality constraints. One possible choice of the search direction S is steepest (gradient)
descent, i.e., S = −∇WE. However, we have to find a stochastic matrix W along that
direction and this may be an infeasible. Denote the current iterate of the clustering matrix
by W0 ∈ S1 and observe that the set S1 = {A ∈ Rn,m :

∑m
j=1Aij = 1} (rowsum

one matrices) is an affine subspace of Rn,m. Obviously it holds S1 = W0 + S0 with W0

any matrix in S1 where S0 = {A ∈ Rn,m :
∑m
j=1Aij = 0} denotes the linear space of

rowsum zero matrices. Thus we have to choose a search direction S ∈ S0, because then

W0 + αS ∈ S1 ∀α.

We choose S as orthogonal projection of −∇WE onto S0, i.e. S = −∇ETTT with

T̃ij =


1, if j ≤ i
−i, if j = i+ 1
0, else

i = 1, ...,m− 1, j = 1, ...,m

and T being the normalized matrix with columns

Ti =
T̃i

‖T̃i‖
.

Inequality constraints. We also need to account for the non-negativity constraints. This
means optimizing on the set S+

1 = {A ∈ S1|Ai,j ≥ 0}, which is a closed convex subset
of the affine space S1. Now two problems arise:

(1) The line-search minimum Wk+1 = Wk + αSk could lie outside of S+
1 . This can

be easily cured by just setting q(α) < 0, if Wk + αSk /∈ S+
1 .

(2) We could reach the boundary. If Wk ∈ ∂S+
1 in the most cases −∇E(Wk) and

therefore Sk will point out of S+
1 . Then there would not be any feasible α ≥ 0

that satisfies the Armijo-Goldstein conditions. This is precisely the case when one
of the two following conditions holds for some x, i:
(i) W (x, i) = 0 and ∇WEx,i > 0,

(ii) W (x, i) = 1 and ∇WEx,i < 0
This problem can be solved by doing the line-search row-wise and project only
the elements, for which (i) or (ii) do not hold, and set Sx(i) = 0 for all x, i with
(i) or (ii). If there are k elements in a row which should be projected, this can be
done by using the left upper (k, k− 1)-submatrix of T ∈ Rm,m−1, k ≤ m, which
defines the projection in Rk. In practise one should not wait until the boundary
is completely reached, because this will imply taking very small line-search steps.
There should be a tolerance tol, such that W is treated like a boundary point, if
dist(W,∂S+

1 ) < tol.
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Algorithm. Putting everything together we arrive at the following constrained minimiza-
tion algorithm:

Input: P ∈ Rn,n, Parameters m,σ ∈ (0, 1
2 ), β > 1, tol, ε > 0

Output: W, P̂
Initialize W 0, P̂ 0 ∈ S+

1 arbitrarily, k = 0
while |E(W k+1, P̂ k+1)− E(W k, P̂ k)| > ε do

W k+1 := W k

G := ∇WE(W k, P̂ k)
for x=1 to n do

Ix := {j : (i) and (ii) do not hold for (Gx(j),W k+1(x, j)}
l := #Ix
φ : {1, ..., l} → Ix onto and one-to-one
Define Ĝi := Gx(φ(i)), i = 1, ..., l
Set Tl as left upper (l, l − 1)-submatrix of projection T
Ŝ := −ĜTlTTl

Si :=

{
Ŝφ−1(i) , i ∈ Ix
0 , else

, i = 1, ..., n

Perform a line-search in direction S to update W k+1(x, ·)
end
µ̂ = (W k+1)Tµ
V = (W k+1)TDµW

k+1

Solve the linear system V P̂ k+1D−1
µ̂ V = (W k+1)TDµPW

k+1

if (24) does not hold then
Perform line-searches as above to find P̂ k+1 ∈ S+

1

end
end

After termination, if needed one can compute the a posteriori estimator m̃ for the num-
ber of clusters as introduced in Sec. 3.

One can choose to do the row-wise line-searches in succession or in parallel. It is also
possible to perform line-searches in matrix valued directions, i.e. optimizing everything at
the same time. In this case one needs a strategy which avoids that reaching the boundary in
one row of W will stop each line-search so that the clustering of the other states can only
get better in another iteration. One possibility is to start with a larger boundary tolerance
tol and let it decrease with each iteration.

Initial iterates. Concerning the choice of the initial values for W and P̂ one has several
options. The one preferred by the authors is to use as initial value a deterministic clustering
computed by means of an efficient combinatorial method. In general one has only to
make sure that the initial values W 0 and P̂ 0 fulfill the constraints in (22)–26 because this
guarantees that each iterate will then lie inside of the feasible set. One could use completely
random but normalized initial values too. The advantage of using a good deterministic
clustering as initial value is that the algorithm starts on the boundary of the permissible
set and the projected search directions will point into this set. Hence, even if one uses the
matrix-valued variant, there will be no slow down effect on the convergence when one state
approaches the boundary.



OPTIMAL FUZZY AGGREGATION OF NETWORKS 15

Remarks on Complexity. Computing the lift P̃ for given W and P̂ is obviously of or-
der O(n2m2) and computing the energy from the lift has complexity O(n2). Therefore
evaluating the functional requires O(n2m2) operations. The computation of the projected
gradient with respect toW and P̂ also has the same complexity, and so the total complexity
of the algorithm is O(n2m2). Notice however that this statement assumes that the number
of iterations of our gradient descent technique is bounded with respect to to n and m. We
cannot guarantee that it does not increase with n and m; this is a general possible pitfall of
(constrained) gradient descent techniques. We will not comment on this issue in general;
however, our numerical experiments (with moderate values form and n) did not show such
an increase.
Matrix-valued variant. Performing one iteration in the matrix-valued variant of the algo-
rithm means performing one line-search in the direction of negative projected gradient. As
a result we have to evaluate the functional several times to get an acceptable step-length α.
In practise it will need only a few backtracking steps to find such an α, and there also is a
fixed upper bound inside of the backtracking algorithm for this number of steps. In other
words the complexity of doing one iteration with the matrix-valued variant is O(n2m2).
Obviously one can also try to minimize the required number of iterations till convergence
choosing good initial values via the strategies discussed above.
Line-search for each row separately. In this case each iteration consists of n line-searches
and therefore the cost of one iteration is O(n3m2). However, we observed that the con-
vergence of this method (in terms of required number of iteration) is much faster, even for
random initial values. The numerical examples below were computed with at most 5m
iterations. Moreover one could approximate the line-search reduction quotient q(α) in a
more sophisticated way than by simply evaluating the functional, because only one row
of W + αS is changed with respect to W . This could again lead to a complexity that is
O(n2m2).

5. NUMERICAL EXAMPLES

As a first illustration of our approach,in Secs. 5.1 and 5.2 we cluster the test network
with 30 nodes and associated 30×30 transition matrix P shown in Fig. 1. Then in Sec. 5.3

FIGURE 1. Transition matrix P . Brighter values indicate higher entries,
i.e., higher transition probabilities.

we apply our method to cluster the transition network resulting from a diffusion process in
a double-well energy landscape.

In all the calculations reported below, the initial values of the optimization algorithm
were chosen randomly and normalized to be consistent with the stochastic constraints.
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5.1. Test network: strong cluster separation, εsep = 0.05. Fig. 2 shows the a posteri-
ori estimator m̃ plotted against the number m of clusters used in the minimization. The

FIGURE 2. A posteriori estimator m̃ for separation parameter εsep =
0.05 versus numberm of clusters used in the minimization for the 30×30
matrix P mentioned in the text. The results indicate 2 clusters.

results in the figure clearly indicate that we should take only two clusters. Setting m = 2
results in the clustering W (·, i), i = 1, 2 shown in Fig. 3. The inverse lift gives the transi-

FIGURE 3. Clustering W (·, i), i = 1, 2 as function of x for m = 2.

tion rates on the clusters and it also shows strong metastability.

LW (P ) =
(

0.8403 0.1597
0.1397 0.8603

)
These results can be understood by re-ordering the original matrix P appropriately. Fig. 4
shows the effect of some permutation of P that uncovers the block structure hidden in P .
We observe that indeed two clusters are visible which are connected by transition states.
Finally, Fig. 5 shows the lift P̃ associated with the clustering with m = 2 clusters. We
observe that the optimal clustering reproduces the (hidden) block structure of the original
matrix; however, as a lift of the 2 × 2 matrix it cannot reproduce the fine structure within
the blocks.
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FIGURE 4. Re-ordering ΠPΠT of the 30 × 30 matrix P such that the
dominant blocks hidden in P become visible.

FIGURE 5. Lift P̃ based on clustering with m = 2.

5.2. Test network: weaker cluster separation, εsep = 0.1. Now we increase εsep to the
value of 0.1, i.e., we lower our separation requirement. Looking at the a posteriori estima-
tor m̃ in this case, we observe that not all m lead to m̃ = 2, see Fig. 6.

FIGURE 6. A posteriori estimator m̃ for separation parameter εsep = 0.1
versus number m of clusters used in the minimization for the 30 × 30
matrix P mentioned in the text. The results indicate 2 or 3 clusters.
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According to Fig. 6 we should also consider m̃ = 3 clusters if we are less strict in terms
of separation. The clustering with m = 3 results in the clustered matrix

P̂ =

0.9897 0.0012 0.0090
0.0001 0.9466 0.0534
0.0181 0.0656 0.9163

 ,

the inverse lift

LW (P ) =

0.8349 0.0684 0.0967
0.1435 0.5202 0.3363
0.1390 0.2317 0.6294


and the clustering and lift as given in Fig. 7. The inverse lift LW (P ) shows that the

FIGURE 7. Results for m = 3. Left: Clustering W (·, i), i = 1, 2, 3.
Right: Lift P̃ resulting form P̂ as given in the text.

second and third clusters are not as stable as the first one: this is why the only appear when
εsep = 0.1 (weaker cluster separation) and not when εsep = 0.05 (strong cluster separation).
The clustering W (·, i), i = 1, 2, 3, and the lift P̃ show that the additional clusters uncover
some additional hidden block structure in the lower left dominant block. In fact, this can
also be made visible by some permutation Π̃ of P which is different from the one used in
Fig. 4 but now uncovers more of the block structure hidden in P , see Fig. 8.

FIGURE 8. Reordering Π̃P Π̃T as explained in the text.
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5.3. Diffusion in potential energy landscape. In our second example we consider the
one-dimensional continuous stochastic process (Xt)t∈R governed by the following sto-
chastic differential equation

(43) γdXt = −∇V (Xt)dt+ σdBt

where σ > 0 is a parameter,Bt denotes a standard Brownian motion, and V is the potential
illustrated in Fig.9.

FIGURE 9. The potential V .

Equation (43) is used as follows to to construct a transition network. First, we discretize
space by decomposing the real line into uniform boxes Bj , j ∈ Z with box size h = 0.1,
and centers bj = jh, j ∈ Z. Then we compute a realization {xk} of the process Xt in the
time interval [0, 10000] by discretizing it in time using with the Euler-Maruyama scheme
with time step ∆t = 0.002, and performing N = 5 million time steps. In the specific
realization that we studied, the time series enters the 31 boxes Bi, i = −15, . . . , 15 only.
We take these these boxes as nodes of our transition network. From the time series we
then compute the transition probabilities between spatial discretization boxes with lag time
τ = 0.1, i.e. we compute the probability for going from box Bi to box Bj as

P (i, j) =
#{tk ∈ Ti : xk+τ/∆t ∈ Bj}

#Ti
, Ti = {tk : xk ∈ Bi, k = 1, . . . , N}.

where #A means the cardinality of the set A. The resulting 31× 31 transition matrix P of
the network is shown in Fig. 10. We observe two clear clusters centered around the boxes
belonging to the vicinity of the minima of the energy landscape and a clear transition
region between these clusters belonging to the vicinity of the saddle point in the energy
landscape. The metastability inherent in P is apparent from its dominant eigenvalues:
λ = 1.000, 0.980, 0.195.

We did apply our approach to the transition matrix P . First, Fig. 11 shows the a posteri-
ori estimator m̃ plotted against the number of clusters m used in optimization. The figure
indicates that m̃ = 2 and m̃ = 3 are the two possible choices for the number of clusters,
and so we re-applied our clustering procedure with m = 2 and m = 3.

Let us consider m = 2 first. The fuzzy affiliation functions for m = 2 are shown
in Fig. 12. They indicate two clear cluster centers around the vicinity of the minima of
the energy landscape where affiliations are close to deterministic and non-deterministic
affiliations in the transition region. As expected, the shape of the affiliations show close
similarity to the second eigenvector of the original matrix P .
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FIGURE 10. Left: Transition matrix P of diffusion-induced transition
network; details as explained in the text. Right: Eigenvector associated
with its second largest eigenvalue.

FIGURE 11. A posteriori estimator m̃ plotted against the number of
clusters used in optimization.

FIGURE 12. Results for m = 2. Top: potential energy landscape. Mid-
dle and bottom: W (·, 1) and W (·, 2).

Accordingly, the inverse lift LW (P ) shows strong metastability:

LW (P ) =
(

0.9875 0.0125
0.0581 0.9419

)
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The eigenvalues of the aggregated matrix P̂ are λ = 1.000, 0.989, which are pretty close
to the original dominant eigenvalues. This indicates that the original metastability is well
kept in the fuzzy clustering.

P̂ =
(

0.9983 0.0017
0.0086 0.9914

)
The results of clustering with m = 3 are illustrated in Fig. 13. We see that the third

cluster is only used in the transition region. The inverse lift is given by

FIGURE 13. Results for m = 3. Top: potential energy landscape. Mid-
dle and bottom: W (·, i), i = 1, 2, 3.

LW (P ) =

0.9178 0.0406 0.0417
0.0085 0.9767 0.0148
0.3482 0.5909 0.0609

 ,

and we observe immediately that just cluster 1 and 2 are metastable and cluster 3 consists
of transition states. This is backed up by the eigenvalues: λ = 1.000, 0.920, 0.036.

6. CONCLUSION

We considered optimal fuzzy aggregation of networks based on kinetic properties of the
Markov chain associated with the network. This was done by comparing a suitably defined
lifted transition matrix with the original one and minimizing the weighted Frobenius norm
‖ · ‖F of the difference between these matrices. The choice of this norm is natural since
it bounds from above the difference between the eigenvalues of the lifted transition matrix
and those of the original one. Thus optimal approximation in terms of ‖·‖F means optimal
approximation in a kinetic sense.

Our approach leads to a nonlinear, nonconvex, constrained minimization problem with
continuous levelset minimizers, and we showed how this nonuniqueness can be exploited
to determine a posteriori the number of clusters to be used. Specifically, we suggested
to pick this number as the maximal number of clusters which can be kinetically almost
separated. This also permits to determine a specific minimizer from that level set.

For the minimization itself, we proposed some adapted version of restricted line search
using projected gradient descent. The algorithm approximates the desired minimizer it-
eratively. The cost of each step is dominated by the evaluation of the functional and has
complexity O(n2m2). This in principle allows application to large networks; however, the
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number of iterations is known to be possibly quite large for gradient descent techniques
in application to non-convex constrained problems. The question of how the proposed
algorithm performs for large networks will thus be subject of further research.

Finally, we note that since our fuzzy aggregation methodology is tailored to the kinetic
properties of the Markov chain, we should expect that if the original Markov chain of the
network exhibits metastability the optimal affiliation functions will be closely related to
the dominant eigenvectors of the original transition matrix. This was indeed observed in
the numerical experiments on diffusion in potential energy landscapes reported in Sec. 5.3.
It would be interesting to give a more rigorous quantification of this property and this will
be left to future research.
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7. APPENDIX

7.1. The weighted Frobenius norm. Here we motivate the choice our choice for the
functional (21) from the viewpoint that we are concerned with optimal clustering of Markov
transition matrices. Consider some Markov process in discrete time with finite state space
Ω = {1, . . . , n} and transition matrix P . The transport of probability vectors induced by
P is given by the associated transfer operator T : Lp(Ω)→ Lp(Ω) with

Tu(x) =
n∑
y=1

u(y)P (y, x),

Assume that T has (unique) invariant measure µ > 0 (satisfying µTP = µT ), and that the
associated Markov chain is reversible, i.e., satisfies detailed balance

(44) µ(x)P (x, y) = µ(y)P (y, x).

Then, it is well-known that T is self-adjoint in the Hilbert space `2µ with respect to the
scalar product 〈u, v〉µ =

∑
x u(x)v(x)µ(x). `2µ is the natural space associated with all

Markov chains on Ω with (unique) invariant measure µ and, if they have to be compared,
it is then best to do so in this space. Thus considering T as an operator in `2µ, the transfer
operator has to transport probability as in the original space, only weighted with respect to
µ. Therefore Tµ : `2µ(Ω)→ `2µ(Ω) reads

Tµu(x) =
n∑
y=1

1
µ(x)

P (y, x)︸ ︷︷ ︸
=P∗(y,x)

u(y)µ(y),

Note that P ∗ is no longer a stochastic matrix. Furthermore, consider a second transfer
operator T̃µ with associated transition matrix P̃ and with the same invariant measure µ.
The natural measure for the difference between Tµ and T̃µ is the Frobenius norm in `2µ(Ω),
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namely

‖Tµ − T̃µ‖2F =
n∑

x,y=1

∣∣∣P ∗(y, x)− P̃ ∗(y, x)
∣∣∣2µ(x)µ(y)

=
n∑

x,y=1

∣∣∣P (y, x)− P̃ (y, x)
∣∣∣2 µ(y)
µ(x)

.

In this situation, Theorem 3 of [?] applies and yields:

Corollary 7.1. The above assumptions on Tµ, T̃µ imply that there exist enumerations {λi},
and {νi} of the eigenvalues of Tµ and T̃µ, in `2µ, or P and P̃ , in the original (unweighted)
space `2(Ω) respectively, such that

∞∑
i=1

|λi − νi|2 ≤ ‖Tµ − T̃µ‖2F .

7.2. Proof of (39).
We have

(45) S(x, y) =
m∑
i=1

W (x, i)W (y, i) = 0 ⇔ W (x, i)W (y, i) = 0 ∀i = 1, ..,m,

because W (x, i) ≥ 0 ∀x, i. Since

V (x, i)V (y, i) =

√
µ(x)µ(y)
µ̂(i)

W (x, i)W (y, i)

we have that WWT = 0 iff V V T = 0, and from (45) this implies that

S(x, y) = 0 ⇔ (V V T )(x, y) = 0.

On the other hand
V V T = V IdV T = V AATV T = VAV

T
A ,

which proves that S(x, y) = 0 iff SA(x, y) = 0.
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