
JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 10 8 SEPTEMBER 2002
ARTICLES

Multidimensional classical Liouville dynamics with quantum
initial conditions

Illia Horenko, Burkhard Schmidt,a) and Christof Schütte
Freie Universität Berlin, Institute for Mathematics II, Arnimallee 2–6, D–14195 Berlin, Germany

~Received 18 April 2002; accepted 13 June 2002!

A simple and numerically efficient approach to Wigner transforms and classical Liouville dynamics
in phase space is presented.~1! The Wigner transform can be obtained with a given accuracy by
optimal decomposition of an initial quantum-mechanical wave function in terms of a minimal set of
Gaussian wave packets.~2! The solution of the classical Liouville equation within the locally
quadratic approximation of the potential energy function requires a representation of the density in
terms of an ensemble of narrow Gaussian phase-space packets. The corresponding equations of
motion can be efficiently solved by a modified leap-frog integrator. For both problems the use of
Monte Carlo based techniques allows numerical calculation in multidimensional cases where
grid-based methods such as fast Fourier transforms are prohibitive. In total, the proposed strategy
provides a practical and efficient tool for classical Liouville dynamics with quantum-mechanical
initial states. ©2002 American Institute of Physics.@DOI: 10.1063/1.1498467#
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I. INTRODUCTION

The classical Liouville equation~CLE! represents the
conceptually most straightforward approach to the class
approximation of quantum dynamics. Usually the time ev
lution of the wave function or density matrix of a quantum
mechanical system is expressed in terms of the tim
dependent Schro¨dinger equation or the quantum Liouvill
equation~QLE!, respectively. Employing the technique
Wigner transforms, these equations can be cast into p
space. Then the\→0 limit of the corresponding equation o
motion directly yields the CLE describing the dynamical b
havior of a classical~quasi-! distribution function at constan
energy in phase space.1–4 If, in addition, the distribution is
approximated by deltalike points in phase space, the dyn
ics is governed by Newton’s or Hamilton’s equations of m
tion which are routinely solved in classical molecular d
namics simulations.

Recently, the interest in the numerical treatment of
CLE has been renewed in the context of a mixed quant
classical approach to molecular dynamics. The quant
classical Liouville equation~QCLE! has been derived as
first order approximation to the partial Wigner transform
full quantum dynamics.5–10 This equation describes the ev
lution of the multistate dynamics of a molecular system
cluding nonadiabatic transitions. In particular, when t
QCLE is solved by a Trotter splitting of the quantum
classical Liouville operator, one of the propagators rep
sents purely classical Liouville dynamics along each of
adiabatic potential energy surfaces of the quant
subsystem.11–14

a!Author to whom correspondence should be addressed. Electronic
burkhard@math.fu-berlin.de
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The solution of the CLE for multidimensional problem
such as typically encountered in molecular dynamics p
sents a formidable challenge. There are two principle di
culties which shall be dealt with in the present work. First
all, the classical propagation in time requires a solution o
partial differential equation for a continuous distributio
function in classical phase space. A direct numerical solut
employing, e.g., fast Fourier transforms is prohibitive f
increasing dimensionality. Instead, the ubiquituous traject
approach employs Monte Carlo sampling of the phase-sp
distribution by deltalike points and propagation of the cor
sponding trajectories. However, the discrete sampling m
have severe limitations where faithful, i.e., smooth repres
tations are required. This is of crucial importance, e.g.,
the nonadiabatic population exchange in QCLE dynamic13

Other examples are found in statistical mechanics if mult
mensional potential energy surfaces with high barriers ar
be sampled efficiently.15 Yet another application is the evalu
ation of nonclassical forces occurring in the ‘‘Bohmian’’ fo
mulation of quantum mechanics.16

The second major problem in CLE dynamics stems fr
the generation of the initial conditions. Even though the d
namics may be treated within the classical approximati
there is a wide class of applications where the quantum
ture of the initial state is of importance. A typical numeric
realization of classical molecular dynamics with quantu
initial conditions is the quasiclassical trajectory~or Wigner
trajectory! method where the initial conditions of a classic
trajectory simulation are chosen according to an initial qu
tum density. Such an approach is frequently used to desc
~reactive! molecular collisions.17 Other applications are in
the field of photoinduced processes, e.g., molecular photo
sociation dynamics.18,19 In such cases the initial distributio
function has to be calculated as a Wigner transform of
il:
3 © 2002 American Institute of Physics
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initial quantum-mechanical wave function or density. Aga
a direct numerical implementation of the Wigner transfo
employing Fourier transforms is computationally not feasi
for higher dimensionality. The alternative of calculating t
Wigner distribution function directly appears to be nume
cally even more cumbersome.20–22 Hence, the vast majority
of existing quasiclassical numerical studies of~photoin-
duced! reaction dynamics has been limited to the ca
of initial states of Gaussian shape thus excluding interes
quantum effects connected with delocalized initial molecu
states, e.g., of vibrationally or rotationally excited stat
In such cases the quantum-mechanical nature of
initial state is reflected in negative values of the Wign
~quasi-! distribution function in certain regions of phas
space.23

The present work aims at developing efficient numeri
schemes for use in classical Liouville dynamics with qua
tum initial conditions that are not limited to low dimensio
ality. Both problems mentioned above can be solved in
efficient way by the use of Gaussian bell functions. Su
basis sets have been successfully applied to a variety of p
lems in theoretical chemistry or molecular physics. For
ample, Gaussian basis sets are routinely used for quite s
time to compute the electronic structure of molecular s
tems even though they do not even constitute a natural b
for such problems.24 Furthermore, Gaussian wave packe
~GWPs! have been used for the numerical solution of t
Schrödinger equation for the nuclear motion of molecule
This includes both the calculation of stationary vibration
wave functions25,26 and the description of wave packet d
namics of photochemical or photophysical processes.27–30

The phase-space equivalent to GWPs are Gaussian p
space packets~GPPs! which are obtained as Wigner tran
forms of GWPs. Indeed, there are first indications that GP
can be used to efficiently solve the CLE.15,31 Moreover,
GPPs were recently demonstrated by the present autho
serve as a convenient representation of densities and co
ences evolving under the QCLE.13

The remainder of the paper is organized as follows:
Sec. II we propose a Monte Carlo based technique to dec
pose a wave function in terms of a minimal set of multid
mensional GWPs. The resulting initial Wigner distributio
functions are expressed in terms of GPPs. Subsequentl
Sec. III we present equations of motion and a numer
propagator for GPP–based classical Liouville dynamics.
application to photodissociation dynamics illustrates the
of the proposed schemes. Finally, Sec. IV contains our c
clusions.

II. INITIAL QUANTUM CONDITIONS

A. GWP representation of wave function

As a prerequisite to the Wigner transformation, the i
tial wave function has to cast into a suitable representat
Hence, the first step of the proposed strategy consists o
ting a minimal number of multidimensional GWPs to th
initial quantum-mechanical wave function. We use the st
dard definition for complex-valued GWPs inD dimensional
position space
,
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c j~R!5Aj expF2~R2Rj !
Taj~R2Rj !1

i

\
Pj

T~R2Rj !G
~1!

with real amplitudesAjPR and where the expectation va
uesRj ,PjPR D give the centers of the wave packets in p
sition and momentum space, respectively. The symme
positively definite matricesajPR D3D specify the shape o
the wave packet. Without loss of generality it is also possi
to restrict the above ansatz to the use of diagonal matr
aj , i.e., to represent the wave function in terms of sphe
cally symmetric GWPs. The error functional

F~N;c j !5E
R D

dRUC~R!2(
j 51

N

c j~R!U2

~2!

characterizes the deviation of the initial wave functionC(R)
from a linear superposition of GWPs. It has to be minimiz
with respect to the numberN of GWPs and the parameter
Rj ,Pj ,Aj ,aj . In practice, the minimization is based on
Monte Carlo technique to solve the multidimensional in
gral in Eq. ~2!. For a givene as an upper limit ofF, the
following algorithm is suggested:

~1! Randomly choose a set of points in coordinate sp
where the wave function significantly differs from zer

~2! N51: Pick the initial valueR1 for the position of the
center of the first GWP from the above-mentioned se

~3! Minimize the errorF with respect to the parameter
Rj ,Pj ,Aj ,aj for j 51, . . . ,N. In principle this can be
done by means of any standard minimization routine.
our case we used the Nelder–Mead scheme due to g
convergence characteristics.32

~4! If the resulting value for the errorF still remains greater
thane, increase the numberN by one. The initial value
for the position of the newly added GWP is chosen to
the point of maximal deviation of the linear combinatio
of GWPs from the above-mentioned set of Monte Ca
points sampling the exact wave function, see step~1!.

~5! Redo the minimization@steps~3!–~4!# until the desired
accuracy is reached (F,e).

We demonstrate the use of the decomposition of w
functions in terms of GWPs for two standard examples
harmonic oscillator and a Morse oscillator supporting 16
brational states resembling the potential energy function
molecular hydrogen. Figure 1 shows the number of GW
needed to represent bound state wave functions with an e
F,e50.01. It is found that—apart from fluctuations due
the Monte Carlo procedure—the numberN of GWPs grows
linearly with the vibrational quantum numberv, even for the
strongly anharmonic wave functions of the Morse oscilla
near the dissociation limit. The decomposition itself is illu
trated in Fig. 2 for thev54 state of the harmonic and Mors
oscillator. Note that in general there is no simple one–to–
correspondence between the numberN of GWPs and the
number of lobes,v11, of the wave function. For example
we find N5v for the harmonic wave function in the uppe
panel of Fig. 2. It is emphasized that the above algorit
represents the wave function using a minimal number
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GWPs which is instrumental for the calculation of th
Wigner transform described in the following.

B. Wigner transform of wave function

In the following we assume that a decomposition o
wave functionC(R) in terms of a sum of GWPs, i.e., a s
of parameters (Rj ,Pj ,Aj ,aj , j 51 . . .N) such thatF,e in
Eq. ~2! is given. Then the Wigner distribution correspondi
to the original wave functionC(R) can be approximated b
the Wigner distribution obtained from the linear superpo
tion of GWPs,

W~R,P!5
1

~2p\!DER D
dSC* S R1

S

2DCS R2
S

2D
3expS 2

i

\
PTSD

5(
j

Wj~R,P!1(
j ,k

Wjk~R,P!1O~e!. ~3!

The terms in the single sum stand for the Wigner transfo
of the individual GWPs of Eq.~1! which simply result in
products of Gaussians inR andP,

FIG. 1. Number of Gaussian wave packets in decomposition~2! of bound
state wave function vs vibrational quantum number (e50.01). Upper: Har-
monic oscillator. Lower: Morse oscillator.
-

s

Wj~R,P!5
uAj u2

~A2p\!DAdetEj

expF22~R2Rj !
Taj~R2Rj !

2
1

2\2
~P2Pj !

TEj
21~P2Pj !G , ~4!

whereEj stands for a diagonal matrix containing the eige
values ofaj . Note that these are known to be the only cas
of positive definite Wigner distributions.23 In contrast, the
terms in the double sum are due to the coherence of diffe
GWPs,

Wjk~R,P!5
2AjAk

~A2p\!DAdetJjk

3exp@2bjk1 1
2 djk

T Jjk
21djk2 1

2 ejk
T Jjk

21ejk#

3cos@2cjk1djk
T Jjk

21ejk], ~5!

whereJjk is the diagonal matrix containing the eigenvalu
of (aj1ak)/2 and where the following abbreviations hav
been used:

bjk5~R2Rj !
Taj~R2Rj !1~R2Rk!

Tak~R2Rk!,

cjk5
1

\
~Pj

T~R2Rj !2Pk
T~R2Rk!!,

~6!
djk52aj~R2Rj !1ak~R2Rk!,

FIG. 2. Decomposition ofv54 bound state wave function~dashed! in terms
of N Gaussian wave packets~solid!. Upper: Harmonic oscillator withN
54. Lower: Morse oscillator withN55.
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FIG. 3. Upper: Wigner-transform of the Gauss-decomposedv54 vibrational eigenfunction for harmonic~left! and Morse~right! oscillator usingN54 or
N55 Gaussian wave packets, respectively~see also Figs. 1 and 2!. Lower: Corresponding local quadratical differences from known analytical results
harmonic~left! and Morse~right! oscillator.
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Note that the cos function in~5! can take negative value
thus indicating the nonclassical nature of the coherences
particular, Eq.~3! reduces to a ‘‘Schro¨dinger cat state’’ in the
case of only two GWPs which can be thought of as a pha
space analogue for a coherent superposition state of a
level system. The contribution of the coherence to the co
sponding quasidistribution function is a third Gaussian at
midpoint of the line joining the centers (R1 ,P1) and
(R2 ,P2) but with a cos-type modulation in the direction pe
pendicular to that line.4,33

Wigner distribution functions for the two examples i
troduced above~harmonic and Morse oscillator! are illus-
trated in Fig. 3. Despite of the relatively complex shape
the distributionW(R,P), the analytically known Wigner dis
tributions of the harmonic and Morse oscillator34,35 can be
reproduced with a local error of less than 1023 using only 10
or 15 terms in the double sum of Eq.~3!, respectively.

C. GPP representation of Wigner function

Once the analytical expression~3! for the initial Wigner
distribution function is available, the next step is to expres
in a way that is suitable for numerical solution of the clas
In

e-
o-

e-
e

f

it
-

cal Liouville equation~CLE! as described in the next sectio
In the same spirit as the decomposition of the wave funct
in terms of GWPs described above, we use Gaussian ph
space packets~GPPs! similar to those in Eq.~4! to express
the Wigner distribution function. However, the strategy h
to be slightly different. While we are trying to minimize th
number of GWPs in the representation of the initial wa
function in order to reduce the computational effort to eva
ate the double sum in Eq.~3!, it is desirable to express th
Wigner distribution function in terms of relatively narrow
GPPs. Naturally this goes at the price of a relatively la
number of packets. The requirement of spatial confinem
of the packets is for two different reasons. First of all, w
want to limit the number of derivatives in the Taylor expa
sion of the potential energy function in a CLE propagation
GPPs. As will be shown below, the numerical integrati
will be most convenient if the potential is locally quadrat
within the extension of each GPP. Furthermore, one of
key quantities to be determined in a quantum–class
~QCLE! propagation is the nonadiabatic transition probab
ity. This quantity varies rapidly in the vicinity of avoide
crossings of adiabatic potential energy surfaces which ne
sitates a relatively dense sampling.

Our ansatz for Gaussian phase-space packets can
written as15,31
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wn~R,P!5Bn expF2S R2Rn

P2Pn
D T

GnS R2Rn

P2Pn
D G ~7!

whereBn is the ~positive or negative! amplitude of thenth
GPP and where the real, symmetric, positively definiteD
32D matrix Gn is given by

Gn5S an bn

bn gn
D . ~8!

The elliptic phase-space contour is determined by the
symmetric matricesan ,bn ,gn . In order to fit the linear su-
perposition of the GPPs as closely as possible to the orig
Wigner distribution~3!, we proceed as follows: Similar to
the procedure for the GWP decomposition of the initial wa
function described above, the centers of the GPPs are
tained by a Monte Carlo sampling of the regions of pha
space where the absolute value of the quasiprobability d
sity exceeds a certain threshold. Subsequently, the m
square deviation between the Wigner distribution and a
perposition of GPPs,

j~M ;wn!5 (
k51

K UW~Rk ,Pk!2 (
n51

N

wn~Rk ,Pk!U2

~9!

has to be minimized for a set ofK sampling points (Rk ,Pk).
When only the amplitudesBn of the GPPs are to be fitted
the minimization of the errorj reduces to a problem of linea
optimization which is equivalent to the solution of the fo
lowing system of linear equations

SB5W, ~10!

where vectorW contains the valuesW(Rk ,Pk) of the Wigner
distribution at the sampling points, vectorB contains the un-
known amplitudesBn , and the elements of matrixS can be
written as

Skn5expF2S Rk2Rn

Pk2Pn
D T

GnS Rk2Rn

Pk2Pn
D G . ~11!

If we choose the set of sampling points identical to the c
ters of the GPPs, the matrix elements are equal to the o
laps of the GPPs. In general, this matrix is expected to
sparse and a variety of special algorithms can be used fo
efficient solution of sparse linear systems.32 It is noted that
the linear problem~10! may become numerically ill condi
tioned for a large number of wide GPPs,N, whenever the
function to be approximated significantly oscillates on len
scales comparable to the width of the GPPs. However,
does not pose a severe problem since~1! it can be monitored
by computing the condition number of matrixS, and~2! we
can avoid the problem by reducing the widths of the GP

In principle, one may consider to optimize the wid
parametersan ,bn ,gn , too. However, this would lead to
nonlinear system of equations. We anticipate that in pract
simulations it is advisable to circumvent this difficulty eve
when the reduced flexibility of the individual GPPs will hav
to be compensated by an increased number of them.
noted that the present representation correctly reproduce
Wigner distribution also in regions where it is negative in
cating a nonclassical behavior. An example is given in Fig
al
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showing a decomposition of the Wigner distribution for t
v54 state of the Morse oscillator. Using 1000 GPPs
local error could be reduced toj,0.01.

III. CLASSICAL LIOUVILLE DYNAMICS

A. Equations of motion

Once a suitable representation of the initial density
available, we now intend to develop a numerical scheme
the dynamical problem. In the following we consider a co
servative classical Hamiltonian

H5 1
2P

TM 21P1V~R!, ~12!

where M is a D3D matrix containing the masses on th
diagonal. Then the phase-space density is transported ac
ing to the classical Liouville equation

] tW~R,P,t !52M 21PT
“RW~R,P,t !

1~“RV~R!!T
“PW~R,P,t !. ~13!

Inserting the definition of GPPs~7! into the above equation
of motion ~13!, the evolution of the GPP parameters
readily obtained by collecting equal powers ofR2Rn and
P2Pn ,

] tRn5M 21Pn , ~14a!

] tPn52V(1)~Rn!, ~14b!

] tGn5C~Rn!Gn1GnCT~Rn!, ~14c!

where the 2D32D dimensional matrixC is defined as

C~Rn!5S 0 V(2)~Rn!

2M 21 0 D . ~15!

Note that a locally quadratic potential energy function h
been assumed, i.e., within the spatial extension of the pac
the potential can be represented by its gradientV(1) and the
Hessian matrixV(2) only. Obviously, the evolution~14a!–
~14b! of the vectorsR,P is equivalent to Hamilton’s equa
tions of motion while the evolution~14c! of the matrices
a,b,g determining the shape of the GPPs is governed by
Hessian of the potential energy function. Hence, for

FIG. 4. Deviation of the Monte Carlo sampled Wigner distribution forv
54 eigenstate of the Morse oscillator@1000 Gaussian phase-space packe
optimized fore50.01 in ~9!# from known analytic results.
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D-dimensional configuration space, we have to deal wit
system of 2D13(D21)D/2 coupled linear, ordinary differ-
ential equations.15,31

Since classical and quantum-mechanical propagation
incide for harmonic potentials, the above GPP dynamics~14!
represents a direct phase-space analogue to Heller’s
ebrated ‘‘thawed’’ GWP dynamics.27 A generalization to
overcome the restriction to locally quadratic potentials is
principle possible, e.g., by including higher order terms
side the exponential of~7! and/or considering polynomia
prefactors. Apart from losing the simplicity of the abov
equations of motion, such approaches always involve hig
derivatives of the potential energy function and, hence
combinatorial growth of the effort to calculate all mixed d
rivatives. Instead, a practical alternative would be to mon
the widths of the wave packets during propagation. If one
them exceeds a certain threshold given by a typical len
scale of the potential, it may be advisable to suspend
propagation and to refit the current distribution by a new
of GPPs by minimizing~9!. Thus, the extra width can b
compensated by an increased amplitude of neighboring G
and the locally quadratic approximation of the potential e
ergy surface can always be fulfilled with desired precisio

B. Expectation values

The most elementary expectation value to be conside
is the ‘‘volume’’ of the individual GPPs in phase space,

Zn5E E wn~R,P!dR dP5
BnpD

AdetGn

~16!

which is invariant under the above evolution~14!. Hence, the
total volume,Z5(nZn , remains unity for all times thus en
suring conservation of probability. Other important formul
are the expressions for the expectation values of kinetic
potential energy. After some tedious manipulations one
tains the following expressions:

^T&5(
n
E E 1

2 PTM 21P wn~R,P!dR dP

5(
n

~ 1
2 Pn

TM 21Pn1tr~Fn
21Kn!!Zn , ~17!

^V&5(
n
E E V~R! wn~R,P!dR dP

5(
n

~V(0)~Rn!1tr~Fn
21Ln!!Zn , ~18!

where the first term on the right-hand side stands for
kinetic or potential energy calculated at the centers (Rn ,Pn)
of the GPPs in momentum or position space, respectiv
The influence of the finite width of the packets is reflected
the second term characterized by the 2D32D matrices

Kn5 1
2~Un

(1)Un
(2)!TM 21~Un

(1)Un
(2)!, ~19!

Ln5 1
4~Un

(3)Un
(4)!TV(2)~Rn!~Un

(3)Un
(4)!, ~20!
a

o-

el-

-

er
a

r
f
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e
t

Ps
-

d
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-

e
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and the diagonal matrices,Fn , containing the eigenvalues o
the shape parameter matricesGn . The corresponding eigen
vectors are arranged in a blockwise manner

Un5S Un
(1) Un

(2)

Un
(3) Un

(4)D . ~21!

In the limit of infinitely narrow GPPs the reciprocal eige
valuesF21 are converging towards zero and the expressi
for the expectation values~17! and ~18! are converging to-
wards those obtained from an ensemble of classical traje
ries.

C. Numerical integrator

Next, a fast and efficient integrator for classical Lio
ville dynamics shall be constructed. We proceed in analo
to the derivation of integrators in classical molecular dyna
ics in terms of Lie generators. First we rewrite the above
of coupled equations~14! as

ż5 i L̂z, ~22!

wherez is a generalized vector containingR,P,G and where
L̂ is the Lie-generator corresponding to the right-hand side
evolution ~14!. Then a formal solution is simply given by

z~t!5exp~ i tL̂!z~0!. ~23!

As a next step, the Lie generatorL̂ can be decomposed int
L̂5L̂11L̂2 where L̂1 is the Lie generator describing th
evolution ~14a! of the GPP centers in configuration spac
Rn , while L̂2 is the Lie generator for Eqs.~14b! and ~14c!
describing the evolution ofPn andGn . Under these condi-
tions one can use a Strang-splitting36 resulting in

ei tL̂5ei t/2L̂1ei tL̂2ei t/2L̂11o~t3! ~24!

which results in the following numerical scheme~omitting
GPP indexn!

R~ t1/2!5R~ t0!1
t

2
M 21P~ t0!,

P~ t1!5P~ t0!2tV(1)~R~ t1/2!!,

G~ t1!5etC(R(t1/2))G~ t0!etCT(R(t1/2)),

R~ t1!5R~ t1/2!1
t

2
M 21P~ t1!, ~25!

wheret0 , t1/2, andt1 indicate the beginning, the middle, an
the end of a timestept, respectively. Clearly this is a modi
fication of the well-known leap-frog~or Verlet! algorithm
frequently used in conventional molecular dynamics which
symplectic with respect toRm andPm . In addition, it can be
shown that the phase space volume of GPPs as define
~16! is conserved, too.

D. Example: Photodissociation

As an example for the application of the proposed d
namical scheme we consider a one-dimensional mode
direct photodissociation of a diatomic molecule upon inst
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taneous excitation to a repulsive state. Typically, the exc
state dynamics is very fast such that classical Liouville
namics represent a good approximation to quant
dynamics.19 However, there may be important quantum e
fects connected with the initial vibrational state. Such qu
tum effects are especially pronounced if the ground stat
very shallow and/or if the molecule is initially vibrationall
excited. In particular, the reflection principle states that
shape of the initial quantum-mechanical ground state den
is reflected in the kinetic energy distribution~KED! of the
photofragments.18

In our simulations we choose the first vibrationally e
cited state of a harmonic ground state potential withv
50.01 centered atR52.5 for a ~reduced! mass of M
51836 ~all numbers in atomic units!. Upon instantaneous
excitation of the electronic system by an ultrashort lig
pulse the nuclear dynamics is governed by a steeply re
sive excited state potentialV(R)51/R leading to fast sepa
ration of the photofragments. Three different approache
the numerical solution of the CLE~13! are compared: The
traditional approach using~weighted! classical trajectories
represents the limit of infinitely narrow GPP distributions
phase space where the trajectory results have been s
into 20 equally spaced bins~bars!. This is contrasted with the
finite width GPPs as described above where the KED can
calculated analytically~circles!. In either case, the equation
of motion are solved by the~modified! leap-frog integrator
given in ~25! for 45, 100, and 400 trajectories or GPPs. F
comparison we also calculated a KED using a grid-ba
method (5123512 points, curve! where the partial deriva
tives are evaluated by means of fast Fourier transforms
where the time propagation is performed by means of a s
operator scheme.

Figure 5 illustrates the kinetic energy distribution~KED!
at an arbitrarily chosen time (t5400) during the dissociation
process. The GPP-based solution practically coincides w
the ~numerically exact! grid-based solution, even for rela
tively few GPPs (N545). The trajectory based solution
however, shows severe deviations. First of all, the high
ergy tail of the spectrum is missing forN545,100 because
there are no trajectories in the Monte Carlo set which sam
the initial densities at the very largest values ofR. Although
the GPP centers are based on the same pseudorandom
bers, the finite widths of the GPPs serve to correctly rep
duce the tail of the spectrum. Second, the trajectory ba
solution produces negative values near the minimum of
KED. This artifact persists also for a relatively large numb
of trajectories (N5100) while it barely exists for the GPP
solution. In summary, the propagation of finite width GP
gives a much more faithful representation of classical Lio
ville dynamics than the conventional propagation of traj
tories.

IV. CONCLUSION

The present work mainly addresses two open quest
in the methodology of classical Liouville dynamics of mu
tidimensional systems. The first part of the paper deals w
the proper incorporation of quantum initial conditions
terms of an initial Wigner quasidistribution function. To th
d
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end, a novel scheme for the decomposition of a wave fu
tion into Gaussian wave packets has been proposed a
efficient means of performing a numerical Wigner transfor
The Monte Carlo based technique is especially suitable
highly-dimensional problems where grid-based FFT meth
are prohibitive because of the exponential scaling of the
merical effort. In contrast to most previous numerical stud
of photoinduced dynamics, this technique is not restricted
the special case of a multidimensional Gaussian wave fu
tion where the Wigner distribution function is known to b
positive. Consequently, we expect the future potential of
proposed method, e.g., for strongly anharmonic and co

FIG. 5. Kinetic energy distribution upon photodissociation of a vibrationa
excited diatomic molecule. Numerical solution of the classical Liouvi
equation by propagation of~weighted! ‘‘delta’’ trajectories ~bars! and by
propagation of Gaussian phase-space packets~circles! for three numbersN
of trajectories or packets. For comparison, the solid curve shows a g
based solution of the Liouville equation.
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lated vibrational molecular states. Apart from the use
variational calculations, stationary multidimensional wa
functions can be obtained from, e.g., quantum Monte Car37

or vibrational self-consistent-field simulations.38

The second part of the present work deals with class
Liouville dynamics. As an intermediate step, the Wigner q
sidistribution function is sampled by a number of relative
narrow Gaussian phase-space packets~GPPs! in a Monte
Carlo procedure. This allows a simple and efficient solut
of the classical Liouville equation within the approximatio
of locally quadratic potentials. In contrast to the usual rep
sentation in terms ofd-like particles~trajectories! and clas-
sical Hamiltonian transport, the novel scheme offers two m
jor advantages. First, it improves the sampling of ph
space, thus permitting to employ a relatively low number
packets. However, this goes at the expense of calcula
second derivatives of the potential energy surface. Sec
the GPP dynamics can be used where a faithful, i.e., a d
representation of phase-space functions is required. Th
the case, e.g., for the nonadiabatic dynamics of a system
light and heavy particles governed by the quantum-class
Liouville equation.13
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