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A simple and numerically efficient approach to Wigner transforms and classical Liouville dynamics
in phase space is presentét) The Wigner transform can be obtained with a given accuracy by
optimal decomposition of an initial quantum-mechanical wave function in terms of a minimal set of
Gaussian wave packet&) The solution of the classical Liouville equation within the locally
quadratic approximation of the potential energy function requires a representation of the density in
terms of an ensemble of narrow Gaussian phase-space packets. The corresponding equations of
motion can be efficiently solved by a modified leap-frog integrator. For both problems the use of
Monte Carlo based techniques allows numerical calculation in multidimensional cases where
grid-based methods such as fast Fourier transforms are prohibitive. In total, the proposed strategy
provides a practical and efficient tool for classical Liouville dynamics with quantum-mechanical
initial states. ©2002 American Institute of Physic§DOI: 10.1063/1.14984G7

I. INTRODUCTION The solution of the CLE for multidimensional problems
such as typically encountered in molecular dynamics pre-
The classical Liouville equatiofiCLE) represents the sents a formidable challenge. There are two principle diffi-
conceptually most straightforward approach to the classicatulties which shall be dealt with in the present work. First of
approximation of quantum dynamics. Usually the time evo-all, the classical propagation in time requires a solution of a
lution of the wave function or density matrix of a quantum- partial differential equation for a continuous distribution
mechanical system is expressed in terms of the timefunction in classical phase space. A direct numerical solution
dependent Schdinger equation or the quantum Liouville employing, e.g., fast Fourier transforms is prohibitive for
equation(QLE), respectively. Employing the technique of increasing dimensionality. Instead, the ubiquituous trajectory
Wigner transforms, these equations can be cast into phasgproach employs Monte Carlo sampling of the phase-space
space. Then th#— 0 limit of the corresponding equation of distribution by deltalike points and propagation of the corre-
motion directly yields the CLE describing the dynamical be-sponding trajectories. However, the discrete sampling may
havior of a classicalquasij distribution function at constant have severe limitations where faithful, i.e., smooth represen-
energy in phase space! If, in addition, the distribution is tations are required. This is of crucial importance, e.g., for
approximated by deltalike points in phase space, the dynamhe nonadiabatic population exchange in QCLE dynarfics.
ics is governed by Newton’s or Hamilton’s equations of mo-Other examples are found in statistical mechanics if multidi-
tion which are routinely solved in classical molecular dy- mensional potential energy surfaces with high barriers are to
namics simulations. be sampled efficientl}? Yet another application is the evalu-
Recently, the interest in the numerical treatment of theation of nonclassical forces occurring in the “Bohmian” for-
CLE has been renewed in the context of a mixed quantummulation of quantum mechaniés.
classical approach to molecular dynamics. The quantum- The second major problem in CLE dynamics stems from
classical Liouville equatiofQCLE) has been derived as a the generation of the initial conditions. Even though the dy-
first order approximation to the partial Wigner transform of namics may be treated within the classical approximation,
full quantum dynamic&-*° This equation describes the evo- there is a wide class of applications where the quantum na-
lution of the multistate dynamics of a molecular system in-ture of the initial state is of importance. A typical numerical
cluding nonadiabatic transitions. In particular, when therealization of classical molecular dynamics with quantum
QCLE is solved by a Trotter splitting of the quantum- initial conditions is the quasiclassical trajectdigr Wigner
classical Liouville operator, one of the propagators repretrajectory method where the initial conditions of a classical
sents purely classical Liouville dynamics along each of therajectory simulation are chosen according to an initial quan-
adiabatic potential energy surfaces of the quantumum density. Such an approach is frequently used to describe
subsystent!~*4 (reactiveé molecular collisiond! Other applications are in
the field of photoinduced processes, e.g., molecular photodis-
aAuthor to whom correspondence should be addressed. Electronic maiOciation dynamics®*°In such cases the initial distribution
burkhard@math.fu-berlin.de function has to be calculated as a Wigner transform of the
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initial guantum-mechanical wave function or density. Again, i

a direct numerical implementation of the Wigner transform  #j(R) =A, ex;{ —(R-R))Taj(R-R))+ %P}F(R_ R))

employing Fourier transforms is computationally not feasible (1)

for higher dimensionality. The alternative of calculating the

Wigner distribution function directly appears to be numeri-with real amplitudesA; e R and where the expectation val-

cally even more cumbersom&.?2Hence, the vast majority uesR;,P;e RP give the centers of the wave packets in po-

of existing quasiclassical numerical studies (@hotoin-  sition and momentum space, respectively. The symmetric,

duced reaction dynamics has been limited to the casepositively definite matriceajeRDXD specify the shape of

of initial states of Gaussian shape thus excluding interestinthe wave packet. Without loss of generality it is also possible

guantum effects connected with delocalized initial molecularto restrict the above ansatz to the use of diagonal matrices

states, e.g., of vibrationally or rotationally excited statesa;, i.e., to represent the wave function in terms of spheri-

In such cases the quantum-mechanical nature of theally symmetric GWPs. The error functional

initial state is reflected in negative values of the Wigner

(quasiy distribution function in certain regions of phase

spacé® d)(N;t//j):fRDdR
The present work aims at developing efficient numerical

schemes for use in classical Liouville dynamics with quancharacterizes the deviation of the initial wave functib(R)

tum initial conditions that are not limited to low dimension- from a linear superposition of GWPs. It has to be minimized

ality. Both problems mentioned above can be solved in anvith respect to the numbeX of GWPs and the parameters

efficient way by the use of Gaussian bell functions. SuctR;,P; A, a;. In practice, the minimization is based on a

basis sets have been successfully applied to a variety of proldonte Carlo technique to solve the multidimensional inte-

lems in theoretical chemistry or molecular physics. For exgral in Eq.(2). For a givene as an upper limit ofP, the

ample, Gaussian basis sets are routinely used for quite sonfigllowing algorithm is suggested:

time to compute the electronic structure of molecular sys-

tems even though they do not even constitute a natural basﬁ

for such problem$&* Furthermore, Gaussian wave packets

(GWP39 have been used for the numerical solution of the

Schralinger equation for the nuclear motion of molecules.

This includes both the calculation of stationary vibrational

wave function®?° and the description of wave pacgkéeet@ dy-

namics of photochemical or photophysical processes.

The phase-space equivalent to GWPs are Gaussian phase- our case we used the Ne!der—Mead scheme due to good

space packet§GPP$ which are obtained as Wigner trans- convergence characteristits. . .

forms of GWPs. Indeed, there are first indications that GPPgA') If the rgsultlng value for the errap still remains greater

can be used to efficiently solve the CEES! Moreover, thane, increase the numbét by one. The_ initial value

GPPs were recently demonstrated by the present authors to for the position of the newly added GWP is chosen to be

serve as a convenient representation of densities and coher- ﬂ;eGR/(\)/ISt (;f ma>t<r|]malbdewat|on t(')f thz Imtiarfc'\(;mkingm?
ences evolving under the QCLE. 0 s from the above-mentioned set of Monte Carlo

The remainder of the paper is organized as follows: | points sampling the exact wave function, see $iHp

n o2 ) ;
Sec. Il we propose a Monte Carlo based technique to decorr@ Redo the .m|n|m|§at|oristeps(3)—(4)] until the desired
pose a wave function in terms of a minimal set of multidi- accuracy is reachedi(<e).

mensional GWPs. The resulting initial Wigner d|str|but|on' We demonstrate the use of the decomposition of wave

functions are expressed in_ terms of GPPS' Subsequentl_y, E]nctions in terms of GWPs for two standard examples, a
Sec. Il we present equations OT mot!on _and a NUMErCat 4 rmonic oscillator and a Morse oscillator supporting 16 vi-
prop_aga_tor for GPP—_base_d (_:Iassmal L'_OUV_'”e dynamics. Arbrational states resembling the potential energy function of
application to photod|ssomat_|on dynamics |Ilustre_1tes the US@ olecular hydrogen. Figure 1 shows the number of GWPs
of the proposed schemes. Finally, Sec. IV contains our COMreeded to represent bound state wave functions with an error
clusions. ®<e=0.01. Itis found that—apart from fluctuations due to
the Monte Carlo procedure—the numbénf GWPs grows
1. INITIAL QUANTUM CONDITIONS linearly with the vibrational quantum number even for the
strongly anharmonic wave functions of the Morse oscillator
near the dissociation limit. The decomposition itself is illus-
As a prerequisite to the Wigner transformation, the ini-trated in Fig. 2 for they =4 state of the harmonic and Morse
tial wave function has to cast into a suitable representatioroscillator. Note that in general there is no simple one—to—one
Hence, the first step of the proposed strategy consists of ficorrespondence between the numbenf GWPs and the
ting a minimal number of multidimensional GWPs to the number of lobesy +1, of the wave function. For example,
initial quantum-mechanical wave function. We use the stanwe find N=v for the harmonic wave function in the upper
dard definition for complex-valued GWPs ih dimensional  panel of Fig. 2. It is emphasized that the above algorithm
position space represents the wave function using a minimal number of

2

2

N
YR~ 2 4(R)

%) Randomly choose a set of points in coordinate space
where the wave function significantly differs from zero.
(2) N=1: Pick the initial valueR; for the position of the
center of the first GWP from the above-mentioned set.
(3) Minimize the error® with respect to the parameters
R;.Pj.Aj,a; for j=1,... N. In principle this can be
done by means of any standard minimization routine. In

A. GWP representation of wave function
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FIG. 2. Decomposition of =4 bound state wave functiqdashedin terms

of N Gaussian wave packefsolid). Upper: Harmonic oscillator withN

=4. Lower: Morse oscillator witiN=5.

FIG. 1. Number of Gaussian wave packets in decomposi&orof bound
state wave function vs vibrational quantum numbes 0.01). Upper: Har-
monic oscillator. Lower: Morse oscillator.

A7 T
GWPs which is instrumental for the calculation of the Wj(R'P):(\/Eh)D\/mex —2(R=Rj)'aj(R-R)
Wigner transform described in the following. !

i(ILPJ-)TEJfl(lLPj)

 2n2 ! @

B. Wigner transform of wave function . . - .
whereE; stands for a diagonal matrix containing the eigen-

In the following we assume that a decomposition of avalues ofa; . Note that these are known to be the only cases
wave functionW(R) in terms of a sum of GWPs, i.e., a set of positive definite Wigner distributiorfs. In contrast, the
of parametersR;,P;,A;,a;,j=1...N) such thatb<ein  terms in the double sum are due to the coherence of different
Eqg. (2) is given. Then the Wigner distribution corresponding GWPs,
to the original wave functioV (R) can be approximated by

the Wigner distribution obtained from the linear superposi- Wi (R,P) = 2AA
tion of GWPs, JAT (\/ﬂﬁ)D‘/detij
14T -1 1,.Tq-1
W(R,P)= ! f dSv¥*| R+ § \II(R— S) X XML bjet 2 i 2 i il
(2mwh)PJrP 2 2 x cog — ¢+ di e, (5)
[ PTS whereJ;, is the diagonal matrix containing the eigenvalues
xexpy - % of (a;+a)/2 and where the following abbreviations have
been used:

1
The terms in the single sum stand for the Wigner transforms Cjk:%(PjT(R_ R;)—Pr(R—Ry),
of the individual GWPs of Eq(1) which simply result in

products of Gaussians R andP, dik=—a;(R=Rj) +a(R=Ry), ©
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FIG. 3. Upper: Wigner-transform of the Gauss-decompased vibrational eigenfunction for harmonigeft) and Morse(right) oscillator usingN=4 or
N=5 Gaussian wave packets, respectivi@ge also Figs. 1 and).2Lower: Corresponding local quadratical differences from known analytical results for
harmonic(left) and Morse(right) oscillator.

1 Pi— Py cal Liouville equationCLE) as described in the next section.
ejk:h( P- 2 ) In the same spirit as the decomposition of the wave function
in terms of GWPs described above, we use Gaussian phase-
Note that the cos function if6) can take negative values space packetéGPP$ similar to those in Eq(4) to express
thug indicating the nonclassical nqtqre of the cohergnces. e Wigner distribution function. However, the strategy has
particular, Eq/(3) reduces toa “Schiinger cat state” inthe ;¢ slightly different. While we are trying to minimize the
case of only wo GWPs which can be thought of as a phaseﬁumber of GWPs in the representation of the initial wave

space analogue for a c_ohe_rent superposition state of a tW?l]nction in order to reduce the computational effort to evalu-
level system. The contribution of the coherence to the corre-

; e . i . ate the double sum in E@3), it is desirable to express the
sponding quasidistribution function is a third Gaussian at th?Nigner distribution function in terms of relatively narrow
midpoint of the line joining the centersR¢,P;) and

(R,.P,) but with a cos-type modulation in the direction per- GPPs. Naturally this goes at the price of a relatively large
pea’diéular to that lind33 number of packets. The requirement of spatial confinement

Wigner distribution functions for the two examples in- of the pgclfets is for two differ_ent_reas_ons. First of all, we
troduced abovetharmonic and Morse oscillatpare illus- want to limit the number of derivatives in the Taylor expan-

trated in Fig. 3. Despite of the relatively complex shape ofSion of the pqtential energy function in a CLE_propagatioq of
the distributionW(R, P), the analytically known Wigner dis- GPPs. As will be shown below, the numerical integration

tributions of the harmonic and Morse oscillah?® can be  Will be most convenient if the potential is locally quadratic
reproduced with a local error of less than #Qsing only 10 within the extension of each GPP. Furthermore, one of the

or 15 terms in the double sum of E), respectively. key quantities to be determined in a quantum-—classical

(QCLE) propagation is the nonadiabatic transition probabil-

ity. This quantity varies rapidly in the vicinity of avoided

crossings of adiabatic potential energy surfaces which neces-
Once the analytical expressi¢8) for the initial Wigner  sitates a relatively dense sampling.

distribution function is available, the next step is to express it  Our ansatzfor Gaussian phase-space packets can be

in a way that is suitable for numerical solution of the classi-written ag®3*

C. GPP representation of Wigner function



J. Chem. Phys., Vol. 117, No. 10, 8 September 2002 Classical Liouville dynamics 4647

R,P)=B R=Rn) ' (R 7 - e
W(RPI=B R Tl p_p | Crlp_p, " Q1O
whereB,, is the (positive or negativeamplitude of thenth ol I
GPP and where the real, symmetric, positively definiiz 2 E llllll ’
X 2D matrix G, is given by g4 e
a, B Fw2~ """" e : A YK M ‘: N
G”:( ) ® A b
b ‘g
The elliptic phase-space contour is determined by the real ‘-ﬁ'u‘o“\ 20
symmetric matricesy,,,,,v,- In order to fit the linear su- 1
perposition of the GPPs as closely as possible to the original R 0 -20 P

Wigner distribution(3), we proceed as follows: Similar to
the procedure for the GWP decomposition of the initial waveriG. 4. Deviation of the Monte Carlo sampled Wigner distribution gor
function described above, the centers of the GPPs are olx4 eigenstate of the Morse oscillatdr000 Gaussian phase-space packets,
tained by a Monte Carlo sampling of the regions of phasé’ptimiZEd fore=0.01 in(9)] from known analytic results.

space where the absolute value of the quasiprobability den-

sity exceeds a certain threshold. Subsequently, the mean

square deviation between the Wigner distribution and a sushowing a decomposition of the Wigner distribution for the
perposition of GPPs, v=4 state of the Morse oscillator. Using 1000 GPPs the

< N ) local error could be reduced #<0.01.

EMiwy) = > [W(R,P) = X Wy(Ry,Py) )
k=1 n=1 Ill. CLASSICAL LIOUVILLE DYNAMICS
has to be minimized for a set &f sampling pointsRy,Py). A, Equations of motion
When only the amplitudeB,, of the GPPs are to be fitted, ) ] o o
the minimization of the erro¢ reduces to a problem of linear Once a suitable representation of the initial density is

optimization which is equivalent to the solution of the fol- vailable, we now intend to develop a numerical scheme for
lowing system of linear equations the dynamical problem. In the following we consider a con-

servative classical Hamiltonian
SB=W, 10
(19 H=3:P"™M P+V(R), (12)

where M is a DX D matrix containing the masses on the
diagonal. Then the phase-space density is transported accord-
ing to the classical Liouville equation

FW(R,P,t)=—M 1PTVRW(R,P,t)
(11 +(VRV(R)TVoW(R,P,1). (13)

where vectoWV contains the valued/(R, ,P,) of the Wigner
distribution at the sampling points, vectBrcontains the un-
known amplitudes3,,, and the elements of matr® can be
written as

Rk— Ry T

= - G

Scn=ex Py —P. n

If we choose the set of sampling points identical to the Cenjnserting the definition of GPPE) into the above equation

ters of the GPPs, the matrix elements are equal to the oveP-f motion (13)’ the evolut!on of the GPP parameters is
laps of the GPPs. In general, this matrix is expected to b&éadily obtained by collecting equal powers R-R, and

sparse and a variety of special algorithms can be used for tfe~Pn.

Rk_ Rn
PP,

efficient solution of sparse linear systefidt is noted that HR,=M"1P,, (143
the linear problem10) may become numerically ill condi- )

tioned for a large number of wide GPRSY, whenever the 9iPn=—=V(Ry), (14D
function to be approximated significantly oscillates on length 3Gn=C(R,)G,+G,CT(Ry), (149

scales comparable to the width of the GPPs. However, this ) ) o ]
does not pose a severe problem sifieit can be monitored where the DX 2D dimensional matri>xC is defined as
by computing the condition number of mati$ and(2) we 0 VA(R,)
can avoid the problem by reducing the widths of the GPPs. C(Rn)=< M-t 0 )
In principle, one may consider to optimize the width
parametersy,,,,vn, 100. However, this would lead to a Note that a locally quadratic potential energy function has
nonlinear system of equations. We anticipate that in practicabeen assumed, i.e., within the spatial extension of the packet,
simulations it is advisable to circumvent this difficulty even the potential can be represented by its gradight and the
when the reduced flexibility of the individual GPPs will have Hessian matrixvV(® only. Obviously, the evolutior{14g—
to be compensated by an increased number of them. It i€l4b) of the vectorsR,P is equivalent to Hamilton’s equa-
noted that the present representation correctly reproduces thiens of motion while the evolutiorfl4c) of the matrices
Wigner distribution also in regions where it is negative indi- «, 3,y determining the shape of the GPPs is governed by the
cating a nonclassical behavior. An example is given in Fig. 4Hessian of the potential energy function. Hence, for a

(15
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D-dimensional configuration space, we have to deal with and the diagonal matriceB,,, containing the eigenvalues of
system of D+ 3(D—1)D/2 coupled linear, ordinary differ- the shape parameter matrid8s. The corresponding eigen-
ential equation$>3! vectors are arranged in a blockwise manner
Since classical and quantum-mechanical propagation co- U Y@

incide for harmonic potentials, the above GPP dynartiids _|n n )
represents a direct phase-space analogue to Heller's cel- " ( '
ebrated “thawed” GWP dynamic¥. A generalization to
overcome the restriction to locally quadratic potentials is in

principle possible, e.g., by including higher order terms in'for the expectation valued7) and (18) are converging to-

side the exponential of7) fand/ or co.nS|d.e.r|ng polynomial wards those obtained from an ensemble of classical trajecto-
prefactors. Apart from losing the simplicity of the above i

equations of motion, such approaches always involve higher

derivatives of the potential energy function and, hence, a o

combinatorial growth of the effort to calculate all mixed de- C. Numerical integrator

rivatives. Instead, a practical alternative would be to monitor Next, a fast and efficient integrator for classical Liou-

the widths of the wave packets during propagation. If one ofjjjie gynamics shall be constructed. We proceed in analogy
them exceeds a certain threshold given by a typical length, the derivation of integrators in classical molecular dynam-

scale of the potential, it may be advisable to suspend thg.s iy terms of Lie generators. First we rewrite the above set
propagation and to refit the current distribution by a new sepy coupled equationé&ld) as

of GPPs by minimizing(9). Thus, the extra width can be L
compensated by an increased amplitude of neighboring GPPs z=i~Lz, (22

and the locally quadratic approximation of the potential €N herezis a generalized vector containilRyP,G and where

ergy surface can always be fulfilled with desired precision. 7 is the Lie-generator corresponding to the right-hand side of

evolution(14). Then a formal solution is simply given by

u® Y@ (21)
In the limit of infinitely narrow GPPs the reciprocal eigen-
valuesF ~! are converging towards zero and the expressions

B. Expectation values z(7)=expli7L)z(0). (23

The most elementary expectation value to be considereés a next step, the Lie generat6rcan be decomposed into
is the “volume” of the individual GPPs in phase space,  L£=7,+L, where L, is the Lie generator describing the
evolution (149 of the GPP centers in configuration space,
(16) R,, while Z, is the Lie generator for Eqg14b) and (14¢)
VdetG, describing the evolution oP,, andG,. Under these condi-
tions one can use a Strang-splittthgesulting in

B, 7"

zn=f fwn(R,P)dR dp=

which is invariant under the above evolutiti¥). Hence, the i o )
total volume,Z=X,Z,, remains unity for all times thus en- e't= gl 2L1gi Lol 201 4 o (£3) (24)
suring conservation of probability. Other important formulas
are the expressions for the expectation values of kinetic an
potential energy. After some tedious manipulations one ob-
tains the following expressions:

hich results in the following numerical schenf@mitting
PP indexn)

Rty =R(to)+ M *P(ty),

_ 1pThg -1
(M=2 f f 2P M P wn(R.PYdR dP P(t2) = P(to) — VO(R(typ),

)
= (1PIM P+ tr(F; K ) Zy, an G(ty) = e R G( 1) e Rt
n

-
R(ty)=R(ty) + EM_lp(tl)n (29
(Vy=2, f JV(R) w,(R,P)dR dP
n wheret,, t1», andt, indicate the beginning, the middle, and
the end of a timestep, respectively. Clearly this is a modi-
= (VO(R,) +tr(F, L)) Z,, (18)  fication of the well-known leap-frogor Verlet algorithm
n frequently used in conventional molecular dynamics which is
where the first term on the right-hand side stands for théymplectic with respect &, andPy,. In addition, it can be
kinetic or potential energy calculated at the cent®s,P,) shovyn that the phase space volume of GPPs as defined in
of the GPPs in momentum or position space, respectivelyi16) is conserved, too.
The influence of the finite width of the packets is reflected in
the second term characterized by th2:22D matrices D. Example: Photodissociation

Knp=3UPU@)TM-HuPu @), (19 As an example for the application of the proposed dy-
L@ ANT) @) 1(4) namical scheme we consider a one-dimensional model of
Ly=32(Up"Up") V(R (U ULY), (20 direct photodissociation of a diatomic molecule upon instan-
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taneous excitation to a repulsive state. Typically, the excited 15
state dynamics is very fast such that classical Liouville dy-
namics represent a good approximation to quantum
dynamicst® However, there may be important quantum ef-

fects connected with the initial vibrational state. Such quan-
tum effects are especially pronounced if the ground state is !
very shallow and/or if the molecule is initially vibrationally

N=45
10

excited. In particular, the reflection principle states that the A ]
shape of the initial guantum-mechanical ground state density 9
is reflected in the kinetic energy distributigkKED) of the I I
photofragments® _s5}
In our simulations we choose the first vibrationally ex- . : . . . .
cited state of a harmonic ground state potential with 0.15 02 025 E 0.3 035 04 045

=0.01 centered aR=2.5 for a (reduced mass of M
=1836 (all numbers in atomic unijs Upon instantaneous
excitation of the electronic system by an ultrashort light
pulse the nuclear dynamics is governed by a steeply repul-
sive excited state potenti®(R)=1/R leading to fast sepa-
ration of the photofragments. Three different approaches to
the numerical solution of the CLEL3) are compared: The
traditional approach usingweighted classical trajectories
represents the limit of infinitely narrow GPP distributions in
phase space where the trajectory results have been sorted
into 20 equally spaced biriparg. This is contrasted with the
finite width GPPs as described above where the KED can be
calculated analyticallycircles. In either case, the equations 0.15 0.2 025 E 03 035 04 045
of motion are solved by thémodified leap-frog integrator ki
given in (25) for 45, 100, and 400 trajectories or GPPs. For 15
comparison we also calculated a KED using a grid-based N=400
method (51X 512 points, curvewhere the partial deriva- 10
tives are evaluated by means of fast Fourier transforms and
where the time propagation is performed by means of a split 5
operator scheme.

Figure 5 illustrates the kinetic energy distributid¢ED)
at an arbitrarily chosen time € 400) during the dissociation
process. The GPP-based solution practically coincides with
the (numerically exadt grid-based solution, even for rela-
tively few GPPs N=45). The trajectory based solution,
however, shows severe deviations. First of all, the high en- 05 02 025 03 035 04 045
ergy tail of the spectrum is missing foi=45,100 because Eiin
there are no trajectories in the Monte Carlo set which sample o o o o
the nial densites at the very largest valuesPoiAlthough 19, K1l sneroy dsttuton upon tetadisocaton of a vbratonal
the GPP centers are based on the same pseudorandom NW\ration by propagation diveighted “delta” trajectories (barg and by
bers, the finite widths of the GPPs serve to correctly repropropagation of Gaussian phase-space padkatsles for three number$\
duce the tail of the spectrum. Second, the trajectory base®f trajectorigs or packgts. For comparison, the solid curve shows a grid-
solution produces negative values near the minimum of th83ed solution of the Liouville equation.
KED. This artifact persists also for a relatively large number
of tra}jectories N=100) while it barc_aly exigtg for _the GPP end, a novel scheme for the decomposition of a wave func-
splutlon. In summary, .the propagation .Of finite W'd.th GF.)PStion into Gaussian wave packets has been proposed as an
gives a much more faithful representation of classical Liou

. ; . ) . efficient means of performing a numerical Wigner transform.
ville dynamics than the conventional propagation of r3JeC-rhe Monte Carlo based technique is especially suitable for
tories.

highly-dimensional problems where grid-based FFT methods
are prohibitive because of the exponential scaling of the nu-
merical effort. In contrast to most previous numerical studies
The present work mainly addresses two open questionsf photoinduced dynamics, this technique is not restricted to
in the methodology of classical Liouville dynamics of mul- the special case of a multidimensional Gaussian wave func-
tidimensional systems. The first part of the paper deals withion where the Wigner distribution function is known to be
the proper incorporation of quantum initial conditions in positive. Consequently, we expect the future potential of the
terms of an initial Wigner quasidistribution function. To this proposed method, e.g., for strongly anharmonic and corre-

15

IV. CONCLUSION
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