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Motivation
• In the incompressible limit of the flow equations the

velocity field has to satisfy a divergence constraint. For
this reason, projection methods are widely used for the
numerical simulation of such problems.

• Little is known about the stability and convergence
properties of these methods. Here, a projection method
for the zero Froude number shallow water equations
(SWE) is presented. The stability of the projection step
is proved by reformulating it as a saddle point problem.

•Real applications often arise from conservation laws for
mass, momentum and energy. Therefore, the presented
method is formulated in conservation form.

Governing Equations

The SWE are a hyperbolic system of conservation laws. In
their nondimensional form, they are characterized by the
Froude number

Fr =
vref√
ghref

=̂
typical flow velocity

gravity wave speed

As the Froude number goes to zero spatial height variations
vanish, but they do affect the velocity field at leading order.
The limit equations are given by

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) + h∇h(2) = 0

where the leading order height h = h0(t) is given through the
boundary conditions. The spatial homogeneity of h implies
an elliptic divergence constraint for the velocity field:

∫

∂V
(hv) · n dσ = −|V |dh0

dt
for V ⊂ Ω

The unknown h(2) represents the second order height per-
turbation and can be interpreted as a Lagrange multiplier,
which ensures compliance with the divergence constraint.
The zero Froude number SWE are of mixed elliptic-
hyperbolic type. Thus, classical methods for the solution
of hyperbolic conservation laws cannot be used in this case.

Stability of the Second Projection

By using the momentum update and the divergence constraint:

(hv)n+1 + δt (h0∇h(2)) = (hv)∗∗

∇ · (hv)n+1 = −∇ · (hv)n − 2 dh0

dt

the projection step (i.e. Poisson-type problem) can be reformu-
lated as a generalized saddle-point problem. A variational for-
mulation is obtained by multiplication with test functions ϕ and
ψ and integration over Ω.
The finite element discretization uses

• piecewise linear trial functions for the momentum and piece-
wise bilinear trial functions for h(2)

• piecewise linear vector and piecewise constant scalar test func-
tions

Figure 1: Piecewise bilinear basis function (right) and
piecewise linear functions for the velocity (left).

Generalized Saddle-Point Problems

Nicoläıdes [1982]: Find (u, p) ∈ (X2 ×M1), s.th.




a(u, v) + b1(v, p) = 〈f, v〉 ∀ v ∈ X1

b2(u, q) = 〈g, q〉 ∀ q ∈ M2

(1)

If:

inf
q∈Mi

sup
v∈Xi

bi(v, q)

‖v‖Xi
‖q‖Mi

≥ βi,

inf
u∈Kb2

sup
v∈Kb1

a(u,v)

‖u‖ ‖v‖ ≥ α, sup
u∈Kb2

a(u,v) > 0 ∀v ∈ Kb1

Then, (1) has a unique solution for all f and g.

Existence & Uniqueness of the continuous problem are an-
alyzed for the following case:

• Find
(
(hv)n+1, h(2)

)
∈

(
H0(div; Ω) ×H1(Ω)/R

)

such that (1) holds for all ϕ ∈ (L2(Ω))2 and ψ ∈ L2(Ω),

•The bilinear forms are given by:

a(u,v) := (u,v)0 b1(v, q) := δt h0 (v,∇q)0

b2(v, q) := (q,∇ · v)0

Theorem [V. 2005]: The continuous generalized saddle point
problem has a unique solution ((hv)n+1, h(2)).

Stability of the discrete problem

The piecewise linear vector functions for the momentum are not
in H(div; Ω) in general (nonconforming finite elements), and
common (e.g. Raviart-Thomas) elements do not match with
the piecewise linear, discontinuous ansatz functions from the
Godunov-Type method.
Thus, the theory developed by Angermann [2003] for non-
conforming mixed methods is applied to the described discretiza-
tion.

Theorem: The mixed problem is stable.

Outline of the proof:

•By definition of a one-to-one mapping between the kernels of
the b1 and b2 forms the inf-sup condition for the a form is
shown.

•The inf-sup condition for the b1 form is proved similarly to the
continuous case and relies on the choice of the velocity space.

•The proof of the inf-sup condition for the b2 form is done by
the definition of an auxiliary mapping from the test space of
the second equation to the velocity space.

Open Questions

•Convergence of the projection step?

• Stability of the whole projection method?

The Numerical Scheme

For the construction of the method, a finite volume scheme
in conservation form is considered, i.e.

U
n+1
V = U

n
V − δt

|V |
∑

I∈I∂V
|I| FI

The numerical fluxes FI := F
∗
I + F

MAC
I + F

P2
I , which are

second order accurate, are computed in three steps:

• advective fluxes F
∗
I from a standard explicit finite volume

scheme (applied to an auxiliary system)

• a (MAC) projection, which corrects the advection velocity
divergence

• a second (exact) projection, which adjusts the new time
level divergence of the cell-centered velocities

The MAC projection corrects the convective fluxes on
the boundaries I ∈ I∂V of the control volumes:

(hv)I = (hv)∗I −
δt

2
h0(∇h(2))MAC

I

The divergence constraint is imposed on each grid cell (Fig-
ure 2) at a half time level tn+1/2.

The second projection adjusts momentum at new time
level to obtain correct divergence for the new velocity field:

(hv)n+1 = (hv)∗,MAC − δt(h0∇h(2))P2

The divergence constraint is imposed on a dual discretization
(Figure 2).

Figure 2: Application of the divergence constraint
in the MAC and the second projection.

Approximate and Exact Projection

The new discrete divergence is affected by the mean values
and the partial derivatives uy and vx of the velocity field.
The scheme can be implemented as an

• approximate projection method by using only the mean
values to correct the momentum

(hv)n+1
V = (hv)∗,MAC

V − δt h0 ∇h(2)P2

to obtain ∇ · vn+1 = O
(
δt δx2

)
; or an

• exact projection method by an additional correction of the
derivatives of the momentum within one cell and their em-
ployment in the reconstruction of the next predictor step.

Discretization of the Projection
For the solution of

δt∇ · (h0∇h(2))
P2

= ∇ · (hv)∗,MAC + ∇ · (hv)n

a Petrov-Galerkin finite element discretization is consid-
ered with [Süli, 1991]:

• piecewise bilinear trial functions for h(2) (Figure 1),

• piecewise constant test functions on a dual grid.

Figure 3: Stencil of the discrete Laplacian.

Integration over Ω and using the divergence theorem leads
to a finite volume method with properties:

•The discrete velocity space consists of piecewise linear
functions (Figure 1) to fit with the gradient of h(2).

•The velocity components at the boundary of the dual
cells are piecewise linear and the discrete divergence
D(v) := 1

|V̄ |
∫
∂V̄ v · n dσ can be exactly calculated.

•The discrete operators satisfy L = D(G) and the dis-
crete Laplacian has compact stencil (Figure 3).


