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Abstract

Photoinduced quantum molecular dynamics is numerically investigated using two different Schrödinger formulation
on adiabatic (“bare”) and Floquet (“dressed”) molecular state representations. Computer simulations for the two appro
compared in terms of numerical accuracy and efficiency where special emphasis is laid on the limit of very short and inte
laser pulses. The optical excitation of the HCl+ ion from theX2� to theA2�+ state near resonance frequency is investiga
as a model system. For a variety of pulse intensities and durations the final population transfer is reproduced accurately
model based on seven Floquet states only. Elimination of thehighly oscillatory terms from theresulting equations allows fo
the use of much longer time steps in the numerical integration. Even for extremely short pulses with durations down to
optical cycle, dressed states are still foundto be useful. Thus, the Floquet approach provides an efficient tool for the simulati
of molecules interacting with short and intense pulses beyond the perturbative regime.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the investigation of molecular d
namics in real time has benefited enormously fr
experimental progress in generating ever shorter
more intense laser pulses which has lead to novel
sibilities to observe and to control molecular dynamic
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on a picosecond to femtosecond timescale[1–3]. At
the same time, this has created a great challenge to th
oretical work which is indispensable for understand
the results of ultrafast molecular dynamics. In par
ular, the requirements for theoretical models of mo
cular dynamics interacting with ultrashort and inten
external fields are threefold: First of all, the dyna
ics of the molecular system under investigation ha
be modelled quantum-mechanically in order to sim
late wave-mechanical phenomena typically occurr
in photo-induced processes. Second, the interactio
.
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the molecule with the external field has to be mode
beyond the level of perturbation theory in order to
count for very intense fields and non-linear effects.
nally, the description should allow for extremely sh
pulses which are far from the limit of strictly period
fields. In order to comply with those requiremen
(coupled) time-dependent Schrödinger equations h
to be solved for a Hamiltonian including the coupli
to the external field, in most cases within the se
classical dipole approximation[4]. In particular for the
practical treatment of multidimensional problems,
numerical efficiency and accuracy can become a
point of the possible approach.

Based on the Floquet theorem for differential eq
tions with periodically oscillating terms[5], photo-
induced effects on quantum systems can be descr
in an extended Hilbert space spanned by “pho
dressed” states which are constructed as a direct p
uct of system and field states. For strictly time-perio
fields it allows to transform the original time d
pendent problem into a time-independent formu
tion yielding quasi-stationary eigenstates which c
be expressed in harmonics of the carrier freque
of the field [6–10]. In order to be more general
applicable, the original concept has undergone s
eral modification and extensions. Apart from the f
quent use for atomic systems[11], such technique
are also applied to electronic transitions of molecu
systems[12]. Multi-mode Floquet theories have be
developed which are instrumental in modelling mu
photon processes in polychromatic fields[8,13]. Com-
plex coordinate techniques have been added to
with non-Hermitian Hamiltonian operators used to d
scribe ionization and dissociation processes and hi
harmonic generation[14–18]. In other work, a gen
eralized Floquet formulation for time-dependent d
sity function theory has been developed allowing
a non-perturbative treatment of a multi-electron s
tem subjected to intense fields[19,20]. Finally, the
concept of “dressed” states plays an important rol
the field of light-induced control of quantum mol
cular dynamics. In particular, it represents the th
retical framework for the concept of stimulated rap
adiabatic passage[21–25] where the assumption o
molecular dynamics adiabatically following Floqu
“dressed states” allows for intuitive schemes to c
trol molecular dynamics. These ideas can be exten
towards the control of non-adiabatic transitions wh
-

l

the intersections of dressed states are manipulate
shaped laser pulses[26–30].

In order to describe interaction of quantum s
tems with pulsed light sources, Floquet theory m
be applied to fields with varying amplitude and/or fr
quency[27,31–35]. In the limit of infinitely slow vari-
ation of the field parameters, the dynamics of the s
tem adiabatically follows instantaneous Floquet sta
For more rapid variations of the field, the quantum
namics is subject to non-adiabatic effects which can
treated at various levels of approximation[18,27–30,
36,37]. In addition to providing a physically intuitiv
interpretation of photoinduced dynamics, the main
vantage of a Floquet-based description stems from
separation of time scales. The only time-depende
of the Floquet–Hamiltonian results from the (usual
slow time scale of the pulse modulation while t
fast time scale connected with the carrier freque
is eliminated from the resulting equations of motion

In the present work the performance of nume
cal simulations of photoinduced molecular dynam
driven by short laser pulses is investigated. We aim
a systematic comparison of the Floquet (dressed) s
representation versus molecular (bare) state repre
tation both in terms of accuracy and efficiency. In p
ticular, the question shall be addressed whether or
a Floquet based formulation offers numerical adv
tages over the bare state approach to solve the t
dependent Schrödinger equation: On the one hand
it is expected that elimination of the fast time sc
in the Floquet approach allows for larger time ste
which directly reduces the numerical effort. On t
other hand, the increased dimensionality of the
tended Hilbert space creates additional computatio
load. The latter aspect is directly related to the qu
tion of a suitable truncation scheme for the Floq
space where again a compromise between accu
and efficiency has to be found.

Finally, with the availability of increasingly shorte
and more intense laser pulses, the question of
limit of Floquet-based models arises. When go
to extremely short pulses comprising of only a fe
optical cycles, it is generally believed that—apart from
becoming physically less transparent—dressed s
lose their computational advantage. Instead, quan
dynamics is often expressed in terms of instantane
field-modified states that follow the oscillations of t
field [38–43]. However, there is evidence from a stu



M.V. Korolkov, B. Schmidt / Computer Physics Communications 161 (2004) 1–17 3

ches
ten
t
lar

ew
lly

the
n
e”

h
s of
of
are

e of
ong
t-
nce
om
en-
w
ics
the
nic,
i-
x-
ith
ion
the

ms
f
nd

to

can

le
e

ing
the
for

dy-
s vs.
di-
ned

nic
s to
in
the

a-
tric

tors
using super-adiabatic states that Floquet approa
can be usefully applied to pulses as short as
optical cycles[27]. In the present work the limi
of Floquet-based descriptions of quantum molecu
dynamics driven by extremely short pulses of a f
optical cycles down to a half-cycle pulse is critica
investigated.

The remainder of this paper is organized in
following way. Section 2presents the formulatio
of quantum molecular dynamics in terms of “bar
molecular and “dressed” Floquet states. InSection 3
we will introduce a diatomic model system for whic
the use of Floquet picture is investigated by mean
various numerical simulations for a large variety
pulse durations and intensities. Our conclusions
discussed inSection 4.

2. Quantum dynamical method

Considerable effort has been devoted to the us
Floquet states for molecular systems subject to str
fields [12]. The principle difference from the trea
ment of atomic systems results from the coexiste
of electronic and rovibrational degrees of freed
and the corresponding discrepancy of time and
ergy scales. In the following we shall shortly revie
two approaches to light-induced molecular dynam
driven by electronic transitions where the use of
Floquet picture is restricted to field-dressed electro
rather than vibronic, states. Hence, this approach is ta
lored to the theoretical description of electronic e
citation processes. Despite of many similarities w
the “dressed state” treatment of electronic excitat
of atoms, the nuclear degrees of freedom add to
complexity of the problem.

2.1. Hamiltonian operator

The quantum dynamics of a molecular syste
consisting of nuclei of massM and electrons o
massm can be described by two sets of position a
momentum operatorŝR, P̂ and r̂ , p̂, respectively.
Usually, the molecular Hamiltonian can be split in
potential and kinetic energy of the heavy particles

(2.1)Ĥ (r̂, p̂, R̂, P̂ , t) = V̂ (r̂, p̂, R̂, t) + P̂ 2

2M
.

In the absence of an external field, the former one
be written as

(2.2)V̂0(r̂, p̂, R̂) = p̂2

2m
+ Û(r̂, R̂).

Within the framework of the semi-classical dipo
approximation[44], the light-matter interaction can b
included

V̂ (r̂, p̂, R̂, t) = V̂0(r̂, p̂, R̂)

(2.3)+ 1

4πε0
µ̂(r̂, R̂) · F(t),

where the electric dipole momentµ̂ of the molecular
system interacts with the external electric field (us
SI units). Note that the dot product accounts for
vectorial nature of the two quantities and allows
the description of polarization effects.

2.2. Molecular eigenstate representation

The standard approach of quantum molecular
namics rests on the extreme mass ratio of electron
nuclei,m/M. In the absence of an external field, a
abatic eigenstates of the electronic system are defi
as

(2.4)V̂0(R)
∣∣n(R)

〉
r
= En(R)

∣∣n(R)
〉
r
, |n〉r ∈Hr ,

whereEn are adiabatic eigenenergies ofV̂0 and where
Hr is the Hilbert space spanned by the electro
degrees of freedom. This representation allows u
write the total Hamiltonian of the total system
matrix form using a coordinate representation of
heavy particle operatorŝR, P̂

H (R, t) = E(R) − h̄2

2M

(
�R + 2C(R) · ∇R + T (R)

)
(2.5)+ 1

4πε0
µ(R) · F(t)

whereE(R) is a diagonal matrix containing the adi
batic potential energy functions. Due to the parame
R-dependence of the adiabatic eigenstates(2.4), there
are first and second order non-adiabaticity opera
with matrix elements

Cn′n(R) = 〈
n′(R)

∣∣∇R

∣∣n(R)
〉
r
,

(2.6)Tn′n(R) = 〈
n′(R)

∣∣�R

∣∣n(R)
〉
r
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while the matrix elements of the dipole mome
operator are defined as

(2.7)µn′n(R) = 〈
n′(R)

∣∣µ̂(r̂,R)
∣∣n(R)

〉
r
.

The diagonal or off-diagonal elements are referred
as permanent or transition dipole moment functio
respectively. For symmetric molecules some eleme
of the matricesC, T , µ may vanish if the corre
sponding states|n〉, |n′〉 transform according to cer
tain irreducible representations of the molecular po
group[45].

2.3. Dressed state representation

While the approach described above works for
arbitrary time-dependence of the electric field,F(t),
we shall now discuss an approach that is specific
tailored to rapidly oscillating fields with a consta
carrier frequencyω and with a slowly modulated
amplitude

(2.8)F(t) = F0(t/τ )cos(ωt).

Normally, the optical periodT = 2π/ω is much
shorter than the typical timescaleτ imposed by the
variation of the shape function. In these cases it is
advantage to construct “photon dressed” states, or
quet states. Mathematically, this technique is equ
lent to a Fourier expansion of the time-dependenc
the Hamiltonian. As a first step we derive states of
field in the limit of an infinitely large number of pho
tons as eigenstates of the (relative) photon number
erator[10]

(2.9)N̂
∣∣m(ω)

〉
t
= mω

∣∣m(ω)
〉
t
, |m〉t ∈Ht .

Using a coordinate representation in time, the oper
N̂ maps to−ih̄d/dt and the corresponding Hilbe
spaceHt is the space of theT -periodic functions
[7]. “Dressed” states are then constructed as te
products of molecular states(2.4)and field states(2.9)∣∣n,m(R,ω)

〉〉 ≡ ∣∣n(R)
〉
r
⊗ ∣∣m(ω)

〉
t
,

(2.10)|n,m〉〉 ∈Hrt ≡Hr ⊗Ht

whereHrt is the extended Hilbert space, or Floqu
space, with the orthonormality of the extended sp
basis given by the respective scalar product〈〈
n′,m′(R,ω)

∣∣n,m(R,ω)
〉〉

(2.11)= 〈
n′(R)

∣∣n(R)
〉
r

〈
m′(ω)

∣∣m(ω)
〉
t
= δn′nδm′m.
The quasi-energy operator,V̂ , or Floquet Hamiltonian
is defined as the sum of the Hamiltonian,̂V , for
the electronic subsystem interacting with the fi
(2.3), and the photon number operator,̂N . Using
the “dressed state” basis defined inEq. (2.10), the
potential matrix is obtained as an expansion of
r-dependence in adiabatic molecular states comb
with a Fourier expansion of thet-dependence in
harmonics of the carrier frequencyω

Vn′m′,nm(R,ω, t)

= 〈〈
n′,m′(R,ω)

∣∣V̂ (R, t) + h̄N̂(ω)
∣∣n,m(R,ω)

〉〉
= (

En(R) + mh̄ω
)
δn′nδm′m

+ µn′n(R) · F0(t)

8πε0
(δm′,m−1 + δm′,m+1)

(2.12)+O(T /τ).

The structure of the Floquet matrix is readily und
stood in the following way: The diagonal entries a
the potential energy hypersurfaces “dressed” by
integer number of) photons. The offdiagonal entr
describe the coupling of states differing by one p
ton. Hence, it is straightforward to interpret transitio
with m′ = m±1 as absorption or emission of one ph
ton. The corresponding matrix representation of the
tal Hamiltonian is obtained as the sum of the mole
lar Hamiltonian(2.1)and the photon number operat
(2.9)

H(R,ω, t) = H(R, t) + h̄N(ω)

= V(R,ω, t)

(2.13)

− h̄2

2M

(
�R + 2C(R) · ∇R + T (R)

)
.

The above equations reflect the properties of
Floquetansatz for the description of photo-induce
quantum dynamics[7,46]. For a strictly time-periodic
Hamiltonian (F0(t) = const) the time-dependent Ham
iltonian V̂ of Eq. (2.5)is replaced by the (quasi-)st
tionary Floquet Hamiltonian̂V of Eq. (2.13)acting
in the extended Hilbert space spanned by “dress
states.

For the case of shaped light pulses, the main ad
tage of the Floquet approach(2.13)in comparison with
the representation in termsof molecular eigenstate
(2.5)is the elimination of the fast carrier oscillations
(2.8)rendering a Hamiltonian with a time-dependen
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on the slow timescale of the pulse envelope,F0(t),
only. The same applies for the corresponding eigen
ues (instantaneous Floquet states). The variation o
amplitude during an optical cycle gives rise to ad
tional offdiagonal matrix elements. However, the mo
ulation is typically much slower than the oscillatio
associated with the frequencyω and the additiona
matrix elements vanish asymptotically with order
O(T /τ), see Ref.[47]. One of the goals of this pa
per is to check the validity of this approximation f
shorter and shorter laser pulses down to a single o
cal cycle and below.

2.4. Coupled Schrödinger equations

In order to treat the photoinduced dynamics of
molecular system, the quantum-mechanical state
tor of the system is expanded in the set of molecu
or dressed states introduced in(2.4)or (2.10), respec-
tively,

(2.14)
∣∣ψ(R, t)

〉 = ∑
n

φn(R, t)
∣∣n(R)

〉
,

(2.15)
∣∣Ψ (R, t)

〉〉 = ∑
n

∑
m

ϕn,m(R,ω, t)
∣∣n,m(R,ω)

〉〉
where the expansion coefficientsφn(R, t) and
ϕnm(R, t) are readily identified as nuclear wavefun
tions. Inserting thisansatz into the time-dependen
Schrödinger equation (TDSE) leads to a set of coup
partial differential equations. In molecular state rep
sentation the vector of nuclear wavefunctions evol
under the influence of Hamiltonian(2.5) or, equiva-
lently, in “dressed state” representation under the
fluence of the Floquet Hamiltonian(2.13)

(2.16)ih̄
d

dt
φ(R, t) = H(R, t)φ(R, t),

(2.17)ih̄
d

dt
ϕ(R, t) =H(R,ω, t)ϕ(R,ω, t).

These equations are solved numerically using
Fourier transform (FFT) methods for the transform
tion between coordinateand momentum space. Th
corresponding wavefunctions are represented on
equidistant grid in coordinate space[48]. Propagation
in time is achieved by theO(�t3) Strang splitting
(“split-operator”) technique[49,50].
In a typical experimental situation, the molecule
initially prepared in a single electronic statei

(2.18)
∣∣ψ(R, t = 0)

〉 = φi(R, t = 0)
∣∣i(R)

〉
.

Then it interacts with (one or more) light pulse
and finally the state of the molecule is probed
a suitable mechanism. While a simulation using
molecular picture ofEq. (2.16) is straightforward,
the corresponding strategy in the Floquet pict
of Eq. (2.17) deserves some attention. First, t
initial molecular wavefunctions has to be lifted
the extended Hilbert space.Note that this procedur
is in principle ambiguous[27]. Here the simples
realization is chosen

(2.19)
∣∣Ψ (R, t = 0)

〉〉 = ϕi,0(R, t = 0)
∣∣i,0(R,ω)

〉〉
.

In order to monitor the population dynamics during
after the interaction of the molecular system with
external field, it is desirable to project extended sp
vectors back to molecular space again

(2.20)φn(R, t) =
∑
m

ϕn,m(R, t)

which allows, e.g., to calculate the population of t
nth electronic state

(2.21)Pn(t) =
∫ ∣∣φn(R, t)

∣∣2 dR

by integration over the nuclear degrees of freedom
The main purpose of this paper is to comp

the accuracy and efficiency of computer simulatio
of photoinduced quantum molecular dynamics in
molecular state picture(2.16) vs. the “dressed state
picture (2.17). In particular, the following question
shall be addressed:

(1) How accurate is the approximation of instan
neous Floquet states(2.12) for the simulation of
shorter and shorter pulses?

(2) Where can the expansion in harmonics ofω

(summation overm in Eq. (2.15)) be truncated
without significant loss of accuracy?

(3) Does the use of the Floquet picture lead to pr
tical advantages in computer simulations, or,
the advantage of a slowly time-dependent Ham
tonian compensated by the higher dimension
the extended Hilbert space?
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3. Simulation results

3.1. Model system

As a model system we investigate the photoindu
quantum molecular dynamics of the HCl+ ion. This
choice is motivated by the availability of extensi
theoretical[40,43,51–53]and experimental[54–56]
data. In particular, there are high quality data av
able for potential energy curves and transition dip
moments[57] as well as spin-orbit coupling elemen
[56]. Potential energy curves for the lowest five ele
tronic states of the HCl+ ion are shown inFig. 1. Both
the electronic ground state (X2�) and the first excited
state (A2�+) exhibit an attractive potential well. Not
that the two states are asymtotically connected to the
H(2S) + Cl+(3P) and H+ + Cl(2P 0) limit, respec-
tively, where the different charges allow for a re
tively simple experimental distinction. Moreover, w
consider three repulsive states,4�−, 2�−, and 4�,
which are coupled through spin–orbit interaction
the (A2�+) state leading to pre-dissociation on a
time scale for higher vibrational states[53,55,56]. In
the present work we consider the interaction of
HCl+ ion with perpendicularly polarized light in orde
to exclude the effects of permanent dipole mome
while transitions between states of equal multiplic
are dipole allowed, i.e., between the ground state
the two doublet statesA2�+ and 2�−, see also the
vertical arrows inFig. 1. Note that in a gas phase e
periment the molecules would have to be aligned
external fields before or during the excitation proce
see, e.g., Refs.[58,59]. Furthermore, due to the sym
metry of the linear molecule, the non-adiabatic c
pling (2.6) between any of the five electronic stat
considered vanishes. In particular, the crossings
tween the first excited state (A2�+) and any of the
three repulsive states are not avoided.

In order to further refine the model of photoinduc
molecular quantum dynamics of the HCl+ system, we
investigate the frequency dependence of the excita
probability after applying a laser pulse to the mo
cular ion which is initially in the electronic and v
brational ground state. For typical experiments w
pulsed lasers the time-dependence of the envelop
characterized by amplitudeF0 and durationτ

(3.1)F0(t/τ ) = F0 sin2(πt/τ ), 0 � t � τ.

This envelope is similar to a Gaussian pulse w
equivalent full width at half maximum (FWHM) of th
pulse intensity,tFWHM = 0.36τ , but the sin2-like pulse
shape offers the advantage of a well defined begin
and end.
Fig. 1. Potential energy curves for the lowest five electronic states of the HCl+ ion adapted from Ref.[57]. Dipole allowed transitions
(perpendicular polarization) are marked by vertical arrows.
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Fig. 2. Frequency dependence of excitation probability at the end of a pulse (τ = 30 fs) for three different field amplitudes: (a
F0 = 0.05Eh/(ea0), (b) F0 = 0.2Eh/(ea0), (c) F0 = 0.4Eh/(ea0). Thick solid curves: Total excitation probabilities. Thin solid curv
Populations ofA2�+ (labelledP2) and2�− (P4) state. Remaining curves: Populations ofindividual vibrational levels of the boundA2�+
state.
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Fig. 2shows results obtained for a numerically e
act solution of the TDSE(2.16), i.e., without using a
(truncated) Floquet approach. Simulations were c
ried out for a fixed pulse duration (τ = 30 fs) and for
frequencies ranging in the near UV (0.12< h̄ω/Eh <
0.18). For a field amplitude ofF0 = 0.05Eh/(ea0)

(intensity of 8.75 × 1013 W/cm2) one recognizes
broad absorption spectrum. The weak modulation
be traced to the excitation of individual vibration
states which are partially overlapping due to the la
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Fig. 2. Continued.
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spectral width of the ultrashort pulse. Note that pred
sociation due to the spin-orbit coupling between
(bound)A2�+ state and the three repulsive states
curs only forv � 8, see Refs.[55,56]. For all frequen-
cies below the respective threshold there is no pop
tion of any of the repulsive states although the frequ
cies are—within the spectral pulse width—close to the
two-photon resonance for direct excitation of the2�−
state which is dipole allowed for the perpendicular p
larization considered here. This situation prevails
even stronger fields, e.g., forF0 = 0.2Eh/(ea0) but
the vibrational state selectivity is practically lost. On
for extreme fields (F0 = 0.4Eh/(ea0)) there is notable
population of the repulsive2�− state, too.

Based on these considerations of the population
namics we can restrict the simulation model for the
vestigations presented in the remainder of this w
to an effective two-state model consisting of the el
tronic ground (X2�) and first excited (A2�+) state.
Furthermore, we chooseω = 0.1295Eh/h̄ (3.52 eV)
which is very close to the resonance frequency,ωR ,
for the 0–0 transition. The optical cycle correspond
T = 2π/ω = 48.5h̄/Eh (1.17 fs). In the following sec
tions, we shall compare simulation results of the or
inal TDSE(2.16)for those two molecular states wi
simulations using Floquet basis sets with varying tr
cation schemes. Assuming only the electronic gro
state to be populated initially, the simplest version c
sists of three “dressed states”,|1,0〉, |2,1〉, |2,−1〉,
where the values 1 and 2 of the first quantum nu
ber stand for ground (X2�) and excited state (A2�+),
respectively. The second and third state are cou
to the first one through emission or absorption of o
photon, respectively. In a five state basis, we addit
ally consider the|1,2〉 and|1,−2〉 state which corre
sponds to emission or absorption of a second pho
Finally, we augment the basis by the|2,3〉, |2,−3〉
states in order to account for interaction with a th
photon as well.

3.2. Validity of Floquet approach

In this section we shall compare population dyna
ics of the two lowest electronic states for a variety
laser pulses using two different approaches, i.e.,
numerically exact solution of the TDSE and the s
lution using a truncated basis set of 3 or 7 Floq
states. Results for a pulse duration ofτ = 300 fs are
presented inFig. 3(a). For a medium field amplitude
F0 = 0.004Eh/(ea0), we are still in the linear regim
with a monotonic increase of the excited state pop
tion reaching about 50% at the end of the laser pu
(300 fs); for strong fields,F0 = 0.1Eh/(ea0), we are
in the highly non-linear regime. The A state pop
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(a)

(b)

Fig. 3. Time dependence of population ofA2�+ state (together with relative laser intensity and field) for (a)τ = 300 fs and (b)τ = 30 fs pulse
duration. Note that the effect of truncation of the Floquet basis is visible only for the case ofτ = 30 fs,F0 = 0.1Eh/(ea0).
ar
ree
t.
ex-
50
ula-

se

re-
at
lation oscillates in time with maxima reaching ne
unity. In either case, the results obtained for the th
approaches are in very goodquantitative agreemen
As could be expected, the Floquet model is almost
act for a relatively long pulse covering more than 2
optical cycles. Results of an analogous set of sim
tions for a pulse duration ofτ = 30 fs are shown in
Fig. 3(b). Again, for medium field amplitude,F0 =
0.02Eh/(ea0), the truncated Floquet approach is clo
to exact. For a very strong field,F0 = 0.1Eh/(ea0),
the slow increase of the excited state population is
produced correctly. However, the fast oscillations
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center of laser pulse which are in phase with the c
rier frequency of the pulse, are washed out. They
sult from a complicated interplay of higher harmon
not included in the truncated basis set. Hence, even
pulses as short as 25 optical cycles the truncated
quet picture represents a near-quantitative descrip
of photo-induced quantum molecular dynamics.

Although the population of individual Floque
states,Pn,m(t) = ∫ |ϕn,m(R, t)|2 dR, does not corre
spond to a molecular observable, it can be instr
tive to inspect the corresponding population dyna
ics because it is intimately related to number of emit
ted or absorbed photons. Typical results for a pu
with τ = 30 fs andF0 = 0.1Eh/(ea0) are displayed
in Fig. 4. During the first half of the pulse, we ob
serve buildup of population according to the followi
scheme: The first states to be populated by the ma
light interaction are the|2,−1〉 and|2,1〉 state becaus
the Floquet matrix(2.12)directly couples those state
to the initially populated|1,0〉 state. At the center o
the pulse, the population of the former two states
fers by more than three orders of magnitude whic
due to the resonant (|2,−1〉) or strongly off-resonan
(|2,1〉) character of the excitation process. A sim
lar ratio is also found for the next two states be
populated by absorption/emission of one more p
ton: This gives rise to transitions from the|2,−1〉 state
to the |1,−2〉 state as well as from the|2,1〉 state to
the |1,2〉 state. Analogously, the next pair of stat
to be populated are|2,−3〉 state and|2,3〉. During
the second half of the laser pulse the population
the states which were populated by emission,|2,1〉,
|1,2〉, |2,3〉, is rapidly decreasing with time until the
practically vanish again (< 10−10). After the pulse,
the remaining population is found in the states|1,0〉,
|2,−1〉, |1,−2〉, |2,−3〉 which corresponds to absor
tion of zero, one, two, and, three photons. These
servations are instrumental in adjusting the size of
truncated Floquet basis. In the present example,
probability of absorption of three photons is belo
10−6 which gives an upper limit for the error ass
ciated with the truncation of the basis.

3.3. Time discretization

Having refined the size of the Floquet basis set,
now turn our attention to the numerical effort for
simulation of photoinduced dynamics. Let us consi
the case ofM coupled wavefunctions each of whic
is represented on a spatial grid consisting ofN points.
To leading order inN andM, the effort for a single
evaluation of the Hamiltonian scales with 2MN logN

which arises forM pairs of fast Fourier transform
(FFT) to switch forth and back between coordin
Fig. 4. Time dependence of population of individual Floquet states for a pulse withτ = 30 fs andF0 = 0.1Eh/(ea0). Note the logarithmic
scale of the ordinate.
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(a)

(b)

Fig. 5. (a) Field dependence of excitation probability at the end of a pulse (dashed:τ = 30 fs, solid:τ = 300 fs). (b) Absolute error for 30 f
pulse: Full calculation (solid curve) versus truncated Floquet approachfor 7 states (dash-dotted) and 3 states (dotted) and for a time st
�t = 1h̄/Eh (full circles),�t = 5h̄/Eh (empty circles), and�t = 10h̄/Eh (full triangles). (c) Absolute error for 300 fs pulse: Full calculation
(solid curve) versus truncated Floquet approach for 7 states (dash-dotted) and for a time step of�t = 1h̄/Eh (full circles),�t = 5h̄/Eh (empty
circles).
h
tion
lly
s

and momentum space representation. Note that the
diagonalization of theM-state Hamiltonian for eac
of theN grid points is negligible ifN � M. Including
one-, two-, three-photon processes in a simula
for two electronic states, with only one state initia
populated, leads toM = 3,5,7. On the one hand, thi
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(c)

Fig. 5. Continued.
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leads to a linearly increasing numerical effort per tim
step. On the other hand, including the effect of
fast oscillations of the field into the “dressed sta
basis leads to a Floquet Hamiltonian(2.13)which is
only slowly time-dependent through the modulation
the amplitudeF0(t) which should lead to a reduce
number of time steps.

In the following we shall investigate the effect
the time discretization.Fig. 5(a) shows the excited
state population at the end of a laser pulse for vary
field amplitude, 0.004< F0ea0/Eh < 0.1. For a pulse
duration ofτ = 30 fs there is only a single maximu
in the range of amplitudes under consideration wh
for τ = 300 fs there are several Rabi-type oscillatio
with amplitudes near unity. To quantify the error, w
shall compare simulation results of the excited s
population with solutions of the original TDSE(2.16)
for an extremely short time step,�t = 0.01h̄/Eh,
which is regarded to be numerically exact.

First, let us consider the solution of the TDS
(2.16), i.e., without using a Floquet basis, forτ = 30
fs, seeFig. 5(b). For a short time step of�t = 1h̄/Eh

(24.2 as), there is good agreement with the ex
solution within less than half a percent for all fiel
considered. The situation deteriorates rapidly wh
going to longer time steps, and for�t = 10h̄/Eh the
simulations reproduce the exact value within a mar
of one percent only for relatively weak fieldsF0 <

0.01Eh/(ea0). When comparing these data with t
optical period of the carrier,T = 2π/ω = 48.5h̄/Eh

(1.17 fs), this indicates a breakdown of the numer
scheme for less than 10 time steps per period
expected. As a next step, the three-state Floq
picture is discussed (dotted curves inFig. 5(b)): The
magnitude of the error for�t = 1h̄/Eh is similar as
for the solution of the original TDSE. However, th
error remains practically the same when reducing
time step down to 0.01. This indicates that the er
is rather due to the truncation of the Floquet ba
When considering larger time steps, the advantag
the Floquet approach becomes obvious. For exam
the stability for the�t = 10h̄/Eh is largely improved:
For field amplitudesF0 < 0.05Eh/(ea0) the results are
still within a one percent margin. As discussed abo
seven state are practically converged with respec
the size of the Floquet basis (dash-dotted curve
Fig. 5(b)). Accordingly, for �t = 1h̄/Eh there is
hardly any deviation from the numerically exact resu
Also for �t = 5h̄/Eh the error is smaller than fo
the three-state model. However, for�t = 10h̄/Eh the
numerical accuracy is not better than for the three-s
basis.
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(a)

(b)

Fig. 6. Time dependence ofA2�+ state population for different pulse durations, (a)τ = 3 fs, (b) τ = 1 fs, (c) τ = 0.5 fs, and for a field
amplitude ofF0 = 0.5Eh/(ea0) (together with relative laser intensity and field): Fullcalculation (solid curve) versus truncated Floquet appro
for 7 states (dash-dotted) and for 3 states (dotted). Additional curves show population of individual Floquet states.
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The numerical error for simulations of the 300
pulse is illustrated inFig. 5(c). In contrast to the previ
ous case, the solution of the original TDSE for a tim
step of 1̄h/Eh already deviates considerably from t
numerically exact one (�t = 0.01h̄/Eh) where the pe-
riodic behavior of the error correlates with the po
ulation as shown inFig. 5(a). However, the ampli-
tude is rapidly growing with the field amplitude whic
eventually leads to a divergence for the error. This i
remedied efficiently by the Floquet approach (7 sta
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Fig. 6. Continued.
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which is practically exact for the same choice of t
time step. When enlarging the time step by a facto
five, the results for both approaches show oscillati
with monotonically increasing results. While the err
of the Floquet result remains below 1% up to a fi
of F0 = 0.08Eh/(ea0), the TDSE result exceeds th
error margin already nearF0 = 0.02Eh/(ea0).

To summarize, the elimination of the fast time sc
allows for a larger time step in Floquet-based simu
tions than for numerical solution of the original TDS
However, the observed enhancement by a facto
approximately ten is considerably below the theo
ically expected factor which is of the order ofτ/T ,
i.e., approximately 25 or 250 for the pulse duratio
considered here. This points at a natural upper li
for the time step which is independent of the tim
dependence of the field. For a short-time integra
such as the split operator scheme employed here, th
time step is rather limited by the phase oscillations
the quantum-mechanical wave functions[50]. In prin-
ciple, this could be overcome by the use of long-ti
integrators such as the Chebychev scheme with its
ponential convergence[48,50,60]. In passing we also
note that the problem of phase oscillations does
occur for mixed quantum-classical simulations wh
indeed allow a large time step determined bytP [47].
3.4. Limit of ultrashort pulses

Finally, we would like to investigate the limit o
extremely short pulses of a single optical cycle a
below. Although in those cases there is no num
cal advantage of the Floquet approach, it is never
less interesting to explore the limit of a (truncate
Floquet representation of quantum molecular dyna
ics. The resulting population dynamics forτ = 3 fs
shown inFig. 6(a)is similar to that for longer pulses
see, e.g.,Fig. 3(b), but here the amplitude of oscilla
tions at intermediate times is more pronounced. N
ertheless, the final population is reproduced corre
by the Floquet approach. While three states are
ficient for F0 = 0.2Eh/(ea0), seven states are nece
sary to obtain converged results forF0 = 0.5Eh/(ea0).
Even for a pulse duration of 1 fs which is just belo
one optical cycle we observe only a very small d
crepancy between the final excitation probability o
tained by solution of the original TDSE(2.16)and that
calculated within the Floquet approach(2.17). How-
ever, this discrepancy becomes severe when cons
ing even shorter pulses: For a pulse duration of 0.
the excitation probability is underestimated by 40
when using the seven state Floquet model. Note
this shortcoming is not due to the incomplete basis
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but is rather connected with the concept of expand
the field in harmonics ofω which necessarily break
down for pulse lengths of less than one cycle.

4. Conclusions

Apart from the advantage of providing an intuitiv
physical picture of light-driven molecular quantum d
namics, the main attractiveness of Floquet based m
els stems from numerical reasons. In the present w
the properties of numerical simulations for a mole
lar excitation near resonance frequency have bee
vestigated in detail. It has been shown that an appro
based on relatively few Floquet “dressed states
valid even for extremely intense and short puls
The Floquet technique offers the important advant
of eliminating the highly oscillatory terms associat
with the carrier frequency of a light pulse. In mo
cases, much longer time steps can be used in a num
cal integration using dressed states than for bare m
cular states. This renders the Floquet representatio
efficient tool for the simulation of quantum molec
lar dynamics driven by light pulses beyond the pert
bative regime. Further improvements of the num
cal efficiency of Floquet based simulations can be
pected if the spatial representation is optimized an
-

other time propagators such as the Newton or Che
chev schemes are used[48]. This is especially impor
tant for multidimensional systems where the compu
tional effort is a critical issue.

One might ask in how far the results presen
here can be generalized to other molecules an
other light pulses. First of all, the potential ener
curves as well as the transition dipole moment for
ground (X2�) and excited (A2�+) state of the HCl+
ion are rather typical. Hence, similar scenarios ar
expected for electronic excitation of other molecules
Second, the variation of field amplitude and pu
duration investigated in this study is rather comple
Moreover, we note that the Floquet approach can
be generalized to cases of multi-color laser fields[8,
13] as well as to the case of frequency modula
(“chirped”) pulses[26,27].

However, the present study has been limited
a frequency close to the 0–0 resonance freque
ωR = 0.1295Eh/h̄, between the ground and excit
electronic state. In order to discuss the effect
different frequencies we consider the case ofω ≈
ωR/2, seeFig. 7. In that case we find that the ma
contribution to the final excitation probability resu
from the |2,−3〉 state. Since the two-photon 0–
transition is forbidden, this result is indicative for
Fig. 7. Population of individual Floquet states for a pulse withτ = 100 fs,F0 = 0.3Eh/(ea0), andω = ωR/2.



16 M.V. Korolkov, B. Schmidt / Computer Physics Communications 161 (2004) 1–17

igh
e.
ole-

-
he
w
us-

wer

lo-

is
is

ke
-
s-

s,

stry,

cs,

30

ic

s,

82.

118

70

ys.

113

00)

117

43.

-

9.

05

09

00)

99)

rd,

cs,

01)

82)

s-

t.

m.

2

)

.

three-photon process leading to population of h
lying vibrational levels of the excited electronic stat

The use of Floquet-based representations of m
cular dynamics is not restricted to fully quantum
mechanical simulations: While the solution of t
Schrödinger equation is currently limited to very fe
atoms, larger molecular systems can be simulated
ing mixed quantum-classical dynamics[61]. First at-
tempts based on instantaneous adiabatic states
restricted to the long wave-length limit[38–40]. How-
ever, this limitation can be overcome by the use of F
quet states as demonstrated in Ref.[47].
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