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In mixed quantum-classical molecular dynamics few but important degrees of freedom of a
dynamical system are modeled quantum-mechanically while the remaining ones are treated within
the classical approximation. Rothe methods established in the theory of partial differential equations
are used to control both temporal and spatial discretization errors on grounds of a global tolerance
criterion. The TRAIL~trapezoidal rule for adaptive integration of Liouville dynamics! scheme@I.
Horenko and M. Weiser, J. Comput. Chem.24, 1921 ~2003!# has been extended to account for
nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation.
In the context of particle methods, the quality of the spatial approximation of the phase-space
distributions is maximized while the numerical condition of the least-squares problem for the
parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous
propagation of moving particles~Gaussian and Dirac deltalike trajectories! in phase space
employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa,
downgrading Gaussians to Dirac-type trajectories. This allows for the combination of
Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional
problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the
application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects
occurring at conical intersections are treated in the diabatic representation. By decreasing the global
tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards
exact results. ©2004 American Institute of Physics.@DOI: 10.1063/1.1691015#

I. INTRODUCTION

Quantum-classical models in molecular dynamics treat
only few important degrees of freedom quantum-
mechanically, while the remaining ones are approximated as
classical many-body systems. In this waynonadiabatic ef-
fects, which are known to be of great importance for the
correct description of many photochemical, photophysical,
and biochemical applications, can be accounted for.1–3 For
the case of interaction between heavy~classical! and light
~quantum! particles, such models have been mathematically
justified by thepartial Wigner-transformtechnique4 in the
context of the quantum-classical Liouville equation
~QCLE!.5–10 The main advantage of such an approach is the
mathematicallyconsistent couplingof few decisive quantum
degrees of freedom with the remaining classical ones.

In order to solve this equation for a realistic problem,
one should apply a numerical method that can handlemulti-
dimensional dynamics. Such numerical approaches are based
on the application ofsparse grids11,12 or on particle
methods.13,14 In contrast to frequently used conventional grid
methods, they both scale reasonably well for medium dimen-
sional problems. Sparse grids work best for smooth aniso-

tropic densities with the grid beingalignedto the propagated
objects. In the context of molecular dynamics this grid align-
ment can be violated which drastically decreases efficiency.
In the context ofparticle methods, the molecular system un-
der consideration is represented as an ensemble of localized,
moving basis functions, e.g., Dirac or Gaussian trajectories.
Particle methodsare especially convenient in this respect
because:~1! they represent multidimensional objectsstatisti-
cally by ensembles of particles,~2! the spatio-temporaldy-
namicsof these objects can be described by a collective mo-
tion of an ensemble of particles. Particle methods are
especially useful for the simulation ofalmost adiabaticpro-
cesses, where the molecular system is evolving adiabatically
most of the time except for rare nonadiabatic transitions in
the form ofstochastic hopswhich are localized in time and
space. Previous applications tackle either the time-dependent
Schrödinger equation directly,15–18 or hybrid quantum-
classical models, such as quantum-classical molecular dy-
namics~QCMD!.19–27

The simplest class of particle approaches fornonadia-
batic molecular dynamicswas first proposed by Tully: the
empirically based surface-hopping trajectory technique
(SHT) in which the propagated objects are modeled by an
ensemble of classical Dirac-type trajectories.28–30 In the
course of the dynamical simulation, the particles may un-
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dergo ‘‘hops’’ between different eigenstates of the quantum
subsystem in order to model nonadiabatic transitions in a
stochastic manner. Many applications of this method are re-
ported in the field of molecular dynamics, even for very large
systems, e.g., vibronic processes31,32 or reactions in
enzymes.19,33–36

Particle methods based on a superposition of Gaussian
wave packets foradiabatic quantum dynamicsas first intro-
duced by Heller16,37–40have become popular and inspired a
variety of methods for the description ofnonadiabatic ef-
fects, e.g., the multiple spawning method41–43and the multi-
threads method.44–46 Quite often, the proposed algorithms
rely on two simplifying assumptions:~1! the independent
particle approximation ~IPA, also known as IGA—
independent Gaussians approximation!, which assumes that
the particles can be propagated independently, and~2! the
locally harmonic approximation~LHA !, which assumes that
the ‘‘width’’ of each particle is smaller than the length over
which the potential deviates significantly from a quadratic
shape. Note that Dirac function representations as commonly
realized in classical molecular dynamics codes propagate tra-
jectories independently and so far rely on the IPA assump-
tion. Both assumptions are sufficiently valid in a number of
practically relevant situations for short simulation times.

There are, however, several situations where neither IPA
nor LHA are valid, e.g., nonadiabatic effects and reduced
models violate the IPA, whereas the LHA is in general vio-
lated for realistic potentials and propagation times. This mo-
tivated the development of algorithms which do not depend
on these assumptions. The strategy proposed by Walkup
et al.47 and Prezhdoet al.48 employs higher-order derivatives
of the potential for propagating the distribution function.
However, in the case of realistic multidimensional applica-
tions the problem of calculating these derivatives becomes
intractable. Alternatively, Sawadaet al. suggested a least
squares particle approximation of the underlying dynamics in
terms of the minimum error method~MEM!.17 These con-
cepts were further developed resulting inmulticonfigura-
tional Gaussian methods.49–51 A similar concept was also
proposed by Billing,52,53 where products of a Gaussian and
orthogonal polynomials, e.g., eigenfunctions of a harmonic
oscillator, were used for the space discretization of the PDE
in a moving grid fashion. Heuristic strategies for adapting
the number of particles based on monitoring eigenvalues of
the overlap matrix were described in the literature,17,18,41–43

but are not numerically justified. In all those approaches
there is no possibility to control the spatial approximation
error during the integration which can have two conse-
quences: First, the equations of motion can become ill-
conditioned and hence intractable in the course of the propa-
gation. Second, the number and position of particles needed
for a reliable representation of solution is changing in time.

All of the existing particle methods can be divided into
two groups depending on the discretization scheme for par-
tial differential equation~Schrödinger, QCLE, etc.!.54 The
first group is known under the namemethods of linesand all
of the above-mentioned approaches belong to that class. The
common idea is that equations of motion are derived in the
form of a system of ordinary differential equations~ODEs!

by, e.g., a least squares approximation to the continuous evo-
lution given by the partial differential equation~PDE!. The
resulting ODEs can then be solved best with the help of
explicit symplectic ODE-integrators which allow stable
propagation for long simulation times. However, the method
of lines is hampered by a crucial shortcoming: It does not
allow to control the space-discretization error once the spa-
tial particle discretization has been fixed at the initial time
step.

This problem is circumvented in the second group of
numerical methods for dynamical PDEs, also known as
Rothe methods. It presumes a primal time-discretization of
the PDE followed by a solution of stationary PDEs at each
time step. This concept provides a possibility of controlling
both space- and time-discretization errors and allows for a
fully adaptive integrationof the respective dynamics. In the
context of adiabatic molecular dynamics this was first
achieved in the TRAIL method~trapezoidal rule for adaptive
integration of Liouville dynamics!.55 In the current paper we
present an extension of the TRAIL-framework to the numeri-
cal solution of the quantum-classical Liouville equation thus
allowing to include nonadiabatic effects.

In most molecular dynamics simulations, an adiabatic
representation of the electronic problem is chosen. However,
the presence ofconical intersectionsinduces numerical prob-
lems in particle methods due to the singularity in the nona-
diabatic coupling. In contrast, the diabatic coupling is not
localized in time and space. Hence, diabatic propagations are
numerically more demanding and are not particularly ame-
nable for the surface-hopping schemes. Although most quan-
tum chemical methods provide PESs and couplings in adia-
batic representation, there are ways of diabatization recently
presented in the literature.56,57

The remainder of the paper is organized as follows: Sec-
tion I is devoted to the description of the QCLE model and
the comparison of different representations from a numerical
point of view. In Sec. II, the principles of the TRAIL-method
and its application to QCLE are discussed. Finally, Sec. III
contains numerical examples, describing the application of
the method to prototypical model systems.

II. QUANTUM-CLASSICAL LIOUVILLE EQUATION

Consider a bi-component physical or chemical quantum
system composed of a heavy particle with massM, position
R̂, momentumP̂, and a light particle characterized bym, r̂ ,
p̂. Typically, in molecular problems, heavy and light par-
ticles are nuclei and electrons, respectively. Alternatively,
they can be also interpreted as slow and fast nuclear degrees
of freedom, e.g., in the case of proton transfer
processes.33,58,59The corresponding Hamiltonian contains an
interaction potentialÛ as well as kinetic energy associated
with the two particles

Ĥ~ r̂ ,R̂,p̂,P̂!5Û~ r̂ ,R̂!1
1

2m
p̂21

1

2M
P̂2, ~1!

where generalization to the case of several heavy and/or sev-
eral light particles and/or to the use of non-Cartesian coordi-
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nates is straightforward. Casting this Hamiltonian into coor-
dinate representation and adopting the scaling procedure
introduced in earlier work20 results in

Ĥ~ r̂ ,R̂,2 i¹r ,2 i e¹R!5U~r ,R!1
1

2
D r1

e2

2
DR , ~2!

where the dimensionless smallness parameter

e5Am

M
!1 ~3!

shall be used throughout the rest of this work to indicate the
deviation from adiabatic behavior.

The diabatic representation of the total Hamiltonian is
obtained by using an orthonormal, complete basis set to rep-
resent the light-particle states

Hd~R,¹R!5V~R!2
e2

2
DR , ~4!

whereV(R) stands for a matrix representation of the light-
particle Hamiltonian, i.e., the first two terms on the r.h.s. of
Eq. ~2!. Alternatively, an adiabatic representation is obtained
by diagonalizingV(R) yielding the following expression for
the Hamiltonian:

Ha~R,¹R!5E~R!2
e2

2
~DR12C~R!•¹R1T~R!!, ~5!

where the eigenvaluesE(R) are the adiabatic potential en-
ergy ~hyper-!surfaces and where nonadiabatic coupling is
due to the parametricR-dependence of the adiabatic light-
particle statesuf i(R)&. In particular, the matrix elements of
the first and second order nonadiabaticity operators are given
by

Ci j ~R!5^f i~R!u¹Ruf j~R!&,

Ti j ~R!5^f i~R!uDRuf j~R!&, ~6!

where the first tensor is anti-Hermitian while no symmetry
relation holds for the second one. Note, that both in the di-
abatic~4! and adiabatic case~5!, the expansion in terms of
light-particle states results in matrix valued operators acting
on the heavy-particle degrees of freedom. The density opera-
tor r̂ can be treated in an analogous way.60 We restrict our-
selves to the treatment of pure states, but generalization to
mixed states is possible.8,61

The full quantum dynamics is governed by the
Liouville–von Neumann equation

] tr̂~ t !52
i

e
@Ĥ,r̂~ t !#. ~7!

For a one-component system it is well known that the clas-
sical Liouville equation can be derived as the\→0 limit of
the quantum Liouville equation by means of the Wigner
transform.4,62 In close analogy, a partial Wigner transform for
a bi-component system can be defined which acts only on the
heavy-particle degrees of freedom while leaving the light-
particle dynamics unchanged.6 Application to the quantum
Liouville equation~7! readily yields theQuantum-Classical
Liouville Equation~QCLE!,

] trW52
i

e
~~Hr!W2~rH !W!

52
i

e
@HW ,rW#22

1

2
~$HW ,rW%2$rW ,HW%!1O~e!,

~8!

where all higher-order terms in the expansion of the Wigner
transform of a commutator have been neglected.62 The struc-
ture of the equation already suggests the existence of a
purely quantum-mechanical~commutator! evolution as well
as classical or quantum-classical connected with the Poisson
brackets which are defined in the usual way,$A,B%5¹PA
•¹RB2¹RA•¹PB. Inserting the diabatic representation~4!
into ~8!, we obtain thediabatic QCLEfor the dynamics of
the Wigner-transformed density matrixXd5rW ,

] tXd~R,P,t !52
i

e
@V~R!,Xd~R,P,t !#22P•¹RXd~R,P,t !

1 1
2@¹RV~R!,¹PXd~R,P,t !#11O~e!. ~9!

Alternatively, by inserting Eq.~5! into Eq. ~8! the adiabatic
QCLE is derived

] tXa~R,P,t !52
i

e
@E~R!2 i eP•C~R!,Xa~R,P,t !#2

1 1
2@E~R!,@C~R!,¹PXa~R,P,t !#1#2

2P•¹RXa~R,P,t !

1 1
2@¹RE~R!,¹PXa~R,P,t !#11O~e!.

~10!

As discussed in detail in other work,5,60 the first term on the
r.h.s. describes the purely quantum mechanical evolution
giving rise to phase oscillations of the coherences@off-
diagonal elements of density matrix,X(R,P)] only. In con-
trast, the last two terms describe purely classical evolution of
the densities and coherences along the adiabatic potential
energy surfaces or arithmetic means there of respectively.
The remaining two terms involving the coupling function,
C(R), are of genuinely quantum-classical nature and de-
scribe the nonadiabatic exchange of densities and coher-
ences. Using existing particle methods, e.g., stochastically
surface hopping trajectories28 or Gaussian packets,60 the
adiabatic formulation of the QCLE is more amenable to nu-
merical solution than the diabatic one. This is because typi-
cally the nonadiabatic coupling,C(R), is large only for a
limited part of coordinate space, i.e., near avoided intersec-
tions while non-adiabatic effects may become negligible out-
side these regions.

In the present work, however, the quantum-classical dy-
namics in the presence of conical intersections is to be in-
vestigated. A consistent numerical treatment using the adia-
batic formulation is not possible because of singularities of
the nonadiabatic coupling,C(R), as well as discontinuities
of the classical forces,2¹E(R), at the intersections. Hence,
there is a strong motivation for developing efficient and ac-
curate integrators for the diabatic QCLE~9!. In particular,
the ~typically nonlocalized! coupling through the off-
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diagonal elements ofV(R) are expected to render the evolu-
tion strongly nonclassical. Consequently, there is a need for
development of adaptive methods which can dynamically
create or annihilate particles according to preset accuracy
criteria.

III. APPLICATION OF THE TRAIL-SCHEME TO QCLE

A number of approaches can be applied in order to inte-
grate the QCLE. The standardmethod of linesparticle strat-
egy implies some initial space discretization of such an equa-
tion in terms of some basis functions, such as Dirac
trajectories10 ~frozen! Gaussian particles41–43,60,63or frozen
Gaussian multiplied with some orthogonal polynomials.53

This produces a system of ordinary differential equations for
the parameters of basis functions~such as amplitudes, cen-
ters, etc.! which can be integrated with the help of standard
ODE tools for a long propagation times. A major drawback
of such a methodology is that the quality of a space-
discretization and the exactness of the expectation values cal-
culated remains uncontrolled. In order to construct a fully
adaptive method we follow another strategy and employ the
Rothe method64 of implicit semidiscretization in time. This
leaves us with a stationary PDE to be solved in each time
step and allows for the control of the global error, which
consists of space and time discretization errors.

A. Adaptive time discretization

Let us denote the operator in the r.h.s. of Eq.~9! or ~10!
asL. In order to select a proper time discretization scheme
one should take into account the two following facts:~1! The
predominantly imaginary spectrum of the QCLE operatorL
will cause instability using explicit time-discretization
schemes.~2! Evaluation of the QCLE operator can become
expensive for multidimensional problems~each evaluation of
L will mean a solution of the multidimensional variation
problem connected with the electronic structure calculation!.
That is why we consider here the simplest implicit scheme
demanding only one evaluation of the operatorL for a given
X per time step, the well-known trapezoidal rule

S I 2
t

2
LD X̄~ t1t!5S I 1

t

2
LDX~ t !, ~11!

whereX̄ is the value obtained by the discrete evolution, start-
ing from the~exactly available! initial value X and whereI
denotes the identity operator. Moreover, the trapezoidal inte-
grator conserves first integrals, which implies conservation
of volume and energy for the QCLE setting.

For adaptivity in time we need three essential ingredi-
ents: an error estimator, a step size selection scheme, and a
desired tolerance. We briefly recollect this ingredients of the
TRAIL-scheme~cf. Ref. 55!.

1. Error estimator

Denoting the exact evolution of Eq.~9! or ~10! by F, we
estimate the unknown error

e tªiX̄~ t1t!2FtX~ t !i ~12!

by the difference between the trapezoidal rule and some eas-
ily computable comparison propagatorĈt of lower order,
e.g., the explicit Euler method,

@ ē t#ªiX̄~ t1t!2ĈtX~ t !i . ~13!

The step is accepted if@ ē t# is sufficiently small, i.e.,@ ē t#
<TOLt , where TOLt is a user-prescribed accuracy require-
ment. Otherwise we reduce the step size and repeat the step.
Note that@ ē t# necessarily estimates the errorê t of the less
accurate comparison propagatorĈt instead of the computa-
tionally unavailable error of the trapezoidal rule.

A tempting idea would be to chooseĈt from efficient
explicit particle propagators, which have been developed un-
der the LHA and IPA assumptions for locally harmonic
potentials.37,60However, in the case of strongly nonharmonic
potentials and GPPs with nonvanishing width, these propa-
gators are of order zero and do not represent the dynamics
adequately. Although being a reasonable approximation to
the exact evolutionFt , such propagators provide worse er-
ror estimates than the explicit Euler scheme.

2. Step size selection scheme

We assume the comparison propagatorĈ t is of order
one, such that

ê t8Ct2 ~14!

holds locally for some slowly varying constantC. Substitut-
ing @ ē t# for e t and aiming at an error ofsTOLt with some
safety factors,1, we obtain an optimal step size

topt5AsTOLt

@ ē t#
t, ~15!

which is used for the next step or recomputing the current
time step, respectively.54

B. Adaptive phase-space discretization

Consider arbitraryparticles g(R̄n
i , j (t),P̄n

i , j (t),Ḡn
i , j (t)) in

phase space. We will distinguish betweenparticles ~being
some smooth moving basis functions! and sample points
~Dirac delta-trajectories!. For approximating the (i , j ) ele-
ment of matrixX to be propagated, we use a linear combi-
nation of such particlesg,

Xi , j~ t !5 (
n51

Ni , j

yn
i , j~ t !g~R̄n

i , j~ t !,P̄n
i , j~ t !,Ḡn

i , j~ t !! ~16!

centered at (R̄n
i , j ,P̄n

i , j )(t) in phase space, scaled by the am-
plitudesyn

i , j (t) being real-valued functions fori 5 j ~densi-
ties! and complex-valued foriÞ j ~coherences!. Additionally,
the shape of the particles is allowed to depend on a set of
shape parametersḠn

i , j (t).
The Rothe methodfor propagation of the partially

Wigner transformed densityX by the implicit trapezoidal
rule ~11! leads to a stationary PDE-problem to be solved in
each time step. Spatial dicretization of this PDE turns Eq.
~11! into the approximation problem of finding a new density
X̄(t1t) representable by particles such that
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ex5 I S I 2
t

2
LD X̄~ t1t!2S I 1

t

2
LDX~ t !I

L2

<TOLx . ~17!

Here, TOLx is a tolerance which now has to be matched with
the user-prescribed accuracy requirement TOLt—for details
see below. By introducingKN test points (Rn

i , j ,Pn
i , j ), we re-

duce Eq.~17! to a computationally tractable approximation
problem

@ex#5 I S I 2
t

2
LDX~ t1t!2S I 1

t

2
LDX~ t !I

$Ri ,Pi %

<TOLx ,

~18!

wherei•i $Ri ,Pi %
denotes the discretizedL2-norm taken at the

test points$Ri ,Pi%. In view of computational efficiency we
aim at a representation with a minimal number of particles,
and hence derive the particles’ parameters from the minimi-
zation problem@ex#→min. Depending on which parameters
in Eq. ~16! are to be chosen@either only the amplitudesAn

i , j ,
or both amplitudes and phase space positions (R̄n

i , j ,P̄n
i , j ) of

the particles’ centers#, we arrive at a linear or nonlinear least
squares problem. In the linear version, the system hasKN

equations and #dof(N)5N unknownsAn
i , j for the particles’

amplitudes definingX(t1t), and can be solved by a single
QR decomposition of the influence matrix,65

A5
]

]y F S I 2
t

2
LDX~ t1t!G . ~19!

In the nonlinear variant, the system hasKN equations
and #dof(N)5(112ndim)N degrees of freedomAn

i , j , R̄n
i , j ,

and P̄n
i , j defining X(t1t). Due to the better approximation

capability offered by also adjusting the particles’ centers, the
number of particles necessary to satisfy the accuracy require-
ment ~18! can be expected to be considerably smaller than
for the linear approach. However, this does not necessarily
translate into fewer degrees of freedom, or fewer sample
points. For solving the nonlinear least squares problem, a
Gauss–Newton method should be used, which may require
multiple QR decompositions of the influence matrix

A5
]

]~y,R̄,P̄!
F S I 2

t

2
LD X~ t1t!G . ~20!

Whether this is compensated by the better approximation
capability is not cleara priori.

There are several possibilities to choose the particle col-
lection used to representX(t1t) in the beginning of the
time step. Selecting particles in unsuitable regions of the
phase space will prevent the linear least squares approach
from meeting the accuracy requirement~18!, thus triggering
the discretization refinement developed below. For the non-
linear least squares approach, it will increase the number of
Gauss–Newton steps and hence decrease the computational
efficiency. A sufficiently good initial guess for the solution of
the least squares problem is therefore necessary for compu-
tational efficiency in both variants.

Another question which has to be addressed is the choice
of sample points (Ri ,Pi), i 51,...,KN . For the least squares
problem~18! not to be underdetermined, we require at least

KN>#dof(N) sample points, preferably distributed in accor-
dance with the quasiprobability densityX(t). KN should be
significantly larger than #dof(N) in order to improve the
robustness of the least squares approximation and to provide
a local error estimator for spatial adaptivity~see below!.
Since performing a Monte Carlo sampling at every time step
is prohibitively expensive, we suggest to select the sampling
points according to the following scheme: For the first step
at t50 we take the sample points from the initial particle
approximation. For subsequent steps, we suggest to take
again the centers of the particles i.e., (Ri(t1t),Pi(t1t))
5(R̄i(t1t),P̄i(t1t)), i 51,...,N, and additionally the re-
maining sampling points from the previous step propagated
independently of each other in time along classical trajecto-
ries, i.e., (Ri(t1t),Pi(t1t))5Ft(Ri(t),Pi(t)), i 5N
11,...,KN . This implies two types of basis functions, namely
Dirac trajectories and smooth particles being propagate si-
multaneously.

It may happen that the numberN of particles chosen to
fit the initial state X(0) becomes inadequate during the
propagation, for three different reasons:~a! A more compli-
cated distributionX(t) turns up later in time, such that more
particles are needed to represent the distributionX̄(t) with
the required accuracy.~b! Two or more particles can come
close to each other, such that the least squares problem~18!
becomes ill-conditioned.~c! The distribution may develop a
simpler structure, such that it is advisable to reduce the num-
ber of particles for computational efficiency. The first situa-
tion requires the upgrade of new smooth particles from Dirac
trajectories, whereas the latter ones require the downgrading
of particles to trajectories.

Let us first consider the case that the number of particles
is too small, such that the accuracy requirement~18! cannot
be satisfied. In this case, as few as possible additional par-
ticles have to be created in order to reduce the approximation
error sufficiently. Fortunately, the local residuals

ek5US I 2
t

2
LDX~Rk ,Pk ,t1t!2S I 1

t

2
LDX~Rk ,Pk ,t !U

~21!

provide a useful local error indicator suitable for extending
the particle set. A similar error indicator has been proposed
by Iske and Levesley66 in the context of scattered data ap-
proximation. The following scheme is intended to insert the
new particles at positions in phase-space, where the approxi-
mation error is largest, and hence to improve the approxima-
tion at a small cost.

Assume the sample points (Rk
i , j ,Pk

i , j ) ~which are not also
centers of existing particles! with correspondingstatistical
weights vk

i , j , k5N11,...,KN , are sorted descendingly by
their local residualvk

i , jek . Let j .N be minimal such that

(
k5 j 11

KN

vk
i , jek<TOLx ~22!
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holds, or j 5KN if Eq. ~22! cannot be satisfied. We then
suggest to upgrade the sample pointsN11,...,j to particles
with centers (Rk

i , j ,Pk
i , j ), k5N11,...,j , amplitude zero, and

shape matrixlI , and create at least 2ndim(KN2 j ) new
sample points in the vicinity of the newly created particles
by some Monte Carlo method.N andKN should be increased
accordingly toj andKN12ndim(KN2 j ), respectively.

With the enlarged particle set at hand, the least squares
problem is solved again in order to meet the requirement
~18!. If necessary, the adaptive refinement is repeated until
finally ~18! is met.

Related greedy algorithms for spatial adaptivity in dif-
ferent contexts have been proposed by Schabacket al.67,68

Let us now turn to the case that the least squares prob-
lem ~18! becomes ill-conditioned due to similarly shaped
particles being too close to each other. Sawadaet al.17 sug-
gest to drop an arbitrary Gaussian and do a refitting of the
remaining ones whenever one eigenvalue of the overlap ma-
trix becomes small. While this criterion is reported to work,
neither does it take the approximation error into account nor
does it indicate which Gaussian to drop or how small an
eigenvalue must become. Wanet al.44 suggest removing
Gaussians with an amplitude below 10212 and to collapse
any two Gaussians which are too close to each other. While
this can indeed cure the numerical stability problems, no
indication is given about how close two Gaussians must be
or how the cutoff value of the amplitude was chosen.

As a pruning method oriented at the numerical stability
and the approximation error, we propose to use a column
permutation strategy69 for the QR decomposition together
with a numerical rank decision based on the subcondition
number65 in order to identify and remove exactly those col-
umns and downgrade their associated particles which make
Eq. ~18! numerically singular to sample points. Moreover, a
careful examination of the least squares residual enables the
identification of even more particles which are not necessary
to obtain the requested accuracy, and thus can be removed.
Pruning of the particles collection should be realized by
downgrading unnecessary particles to sample points.

To be more precise, in the linear least squares setting,
assume the columns ofA and correspondingly the rows ofx
of the linear least squares problemiAx2bi5min have been
sorted such that for the QR decompositionA5QR the rela-
tions

uRi i u>uRi 11,i 11u for i 51,...,#dof~N!21

hold. Construct a partition

R5S R1 S1 S2

R2 S3

R3

0

D , x5S x1

x2

x3

D , QTb5S b1

b2

b3

b4

D ,

~23!

such that the following conditions are satisfied:

max
i

u~R3! i i u<
1

k
u~R1!11u

,min
i

u~R2! i i uAib2i21ib3i21ib4i2<sTOLx

for k being the maximal accepted least squares condition
~somewhere aroundk5108) and 0,s,1 some safety fac-
tor which can be adjusted to balance pruning and spawning.
A default value ofs50.9 is suggested. Note thatib4i is the
smallest possible approximation error that can be achieved at
all with the present collection of particles, and similarly
Aib3i21ib4i2 is the minimal error that can be obtained in a
numerically stable way.

The columns ofA and the particles corresponding to the
degrees of freedom inx3 can be removed on the observation
that they are numerically linearly dependent on the columns
corresponding tox1 andx2 , and hence are redundant.

Furthermore, the degrees of freedom inx2 contribute
least to the approximation capability of the remaining par-
ticle collection. Sacrificing some accuracy while still satisfy-
ing the accuracy requirement~18! allows us to improve the
computational efficiency.

In case no such partition can be found, i.e.,sTOLx

,Aib3i21ib4i2<TOLx , just the numerically linearly de-
pendent degrees of freedom are cancelled. If the accuracy
requirement ~18! cannot be fulfilled at all, i.e.,
Aib3i21ib4i2.TOLx , the spawning procedure described
above has to be performed.

In the setting of the nonlinear least squares fitting, the
correspondence of columns inA to particles is no longer one
to one, such that the pruning procedure described above has
to be modified. Numerical stability even in the case of lin-
early dependent columns can be maintained by settingx3

50 without removing the corresponding degrees of freedom.
We suggest performing the last Gauss–Newton step, when
the particles’ centers are already close to the solution, in a
reduced fashion by fitting only the amplitudes. In this way,
the pruning scheme developed for the linear least squares
case can be transferred to the nonlinear case as well.

Unfortunately, the time error estimator@ ē t#5iX̄(t1t)
2ĈtX(t)i is still computationally unavailable. Its canonical
substitute@e t#ªiX(t1t)2ĈtX(t)i $Ri ,Pi %

depends on the
spatial discretization errorex , which should not destroy the
overall quality of the error estimate. In view of@ ē t#8Ct2

and e t8Ct3, and in order not to destroy the second order
convergence of the trapezoidal rule, we aim atex8e t and
hence impose the accuracy matching TOLx5tTOLt .

C. Gaussian phase-space packets

We suggest to use Gaussian phase-space packets~GPPs!
~Refs. 70, 71! as smooth particles in the TRAIL method,

gn~R,P!5expF2S R2Rn

P2Pn
D T

GnS R2Rn

P2Pn
D G , ~24!

where Gn is the real, symmetric, positively definite 2D
32D matrix defining the elliptic phase-space contour of
GPP. The simplest choice of the starting point for the Gauss–
Newton method is the current GPP collectionX(t). How-
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ever, the time stept is limited by the requirement that the
initial guess should be sufficiently good such that the local
Gauss–Newton iteration converges quickly and reliably to
the nearest local solution. Similarly, if only the amplitudesyn

are fitted by a linear least squares approach, a good initial
guess yields a particle set which is well suited to represent
the solution. Thus, the accuracy requirement~18! can be sat-
isfied with fewer GPPs.

For these reasons, the employment of a cheaply comput-
able predictor providing a better initial guess can be expected
to improve the performance of the propagation considerably,
by allowing larger time steps~in the Gauss–Newton case!
and by decreasing the number of necessary GPPs~in the
linear least squares case!.

As a predictor for the QCLE considered here one on can
use any kind of explicit surface-hopping algorithm or even a
classical transport process of GPPs realized by the modified
leapfrog propagator.63 In the simple case of both LHA and
IPA holding, the Gauss-particles in the ensemble can be
propagated independently with evolution equations for the
parametersRn , Pn , andGn of Eq. ~16!,

] tR̄n5M 21P̄n , ~25!

] t P̄n52¹RV~R̄n!, ~26!

] tḠn5C~R̄n!Ḡn1ḠnCT~R̄n!, ~27!

where

C~R̄n!5S 0 V~2!~R̄n!

2M 21 0
D ,

whereV(2)(R̄n) denotes the Hesse-matrix of the potentialV.
This scheme works well for low to medium dimensional

problems, but requires the second derivative of the potential
to be evaluated. This evaluation can become expensive for
higher dimensional problems. Another problem is connected
to the validity of LHA and IPA for anharmonic potentials.
For sufficiently narrow GPPs, the LHA holds at least ap-
proximately even for nonharmonic potentials, such that the
predictor solution can be expected to provide a good ap-
proximation of the classical part of the QCLE. It is desirable
to choose the shape matrixesGn in such a way that the
position space width of GPPs does not exceed some thresh-
old. As it can be seen from Fig. 1, even when the initial

GPPs are narrow in position space, they become increasingly
wide and oscillate around thefixed pointof Eq. ~27! ~which
in the case of*XdRdP51 describes the evolution of a
squeezed state, i.e., a displaced quantum-mechanical ground
state in phase-space72!. This produces phase-space errors and
can be avoided in the case when all shapesGn of GPPs are
selected as

Ginv5S a inv 0

0 g inv
D ~28!

and botha inv and g inv are diagonal matrixes derived as so-
lutions of the following system:

a inv5M 21^V~2!&g inv,

Adet~g inv!det~a inv!5
pdn

*XdRdP
,

$g inv% i ,i5g, ~29!

wheren is a number of GPPs in the representation ofX, d is
a spatial dimension of the problem,g is some positive real
number, and̂V(2)&5*XV(2)dR is a mean Hesse matrix. The
first of above equations gives the fix point solution of Eq.
~27!, whereas the second imposes a fixed volume of GPP
being equal ton21*XdRdP.

This allows us to apply the classically transportedfrozen
GPPs as a predictor for QCLE integration, i.e., GPP’s centers
are propagated accordingly to Newtonian equations of mo-
tion while fixed shapes are chosen from Eq.~29!. This strat-
egy can represent only the adiabatic transport of densities. In
such a case the nonadiabatic effects of the QCLE are repro-
duced by the corrector part of the TRAIL-method alone. This
does not impair the quality of the solution, but may affect the
efficiency of the algorithm.

D. Volume and energy conservation

An advantage of the trapezoidal rule is its property of
conserving first integrals of linear dynamics exactly. This
encloses conservation of volume and energy of the Wigner
densities. In connection with a straightforward least-squares
approximation as a spatial discretization of the quasidensi-
ties, however, this favorable property is lost for finite spatial
tolerances, and only recovered in the limit TOLx→0. Such a
significant reduction of the spatial tolerance, however, in-
creases the computational complexity substantially and is in
general not feasible.

In view of the conservation property of the exact trap-
ezoidal rule, the minimization of the approximation error
may be constrained to the affine subspace of discretized
quasidensities with exactly the same volume and energy,

minI S I 2
t

2
LDX~ t1t!2S I 1

t

2
LDX~ t !I

$Ri ,Pi %

~30!

subject to

V~X~ t1t!!5V~X~ t !! ~31!

and

E~X~ t1t!!5E~X~ t !!. ~32!

FIG. 1. Position uncertainties as functions of time for GPPs in anharmonic
potential V(R)5R210.1R3. Narrow GPPs expand their position width
much faster than GPPs of invariant position widtha inv from Eq. ~29!.
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An efficient and numerically stable algorithm for solving
such equality constrained least squares problems results from
a slight modification of the usual QR decomposition.73 The
restriction of the discretized quasidensities to the affine sub-
space of constant volume and energy is consistent with the
time discretization and allows for exact conservation even
for moderate spatial tolerances.

IV. NUMERICAL EXAMPLE

In this section we want to investigate the performance of
the TRAIL approach for the numerical treatment of
quantum-classical dynamics in a fully adaptive manner. The
prototypical one- or higher-dimensional systems chosen here
are characterized by crossings or conical intersections of po-
tential energy surfaces, respectively, are known to play a key
role in many photochemical processes.1–3 Moreover, the
strongly nonadiabatic dynamics encountered at the singulari-
ties necessitates a propagation of the QCLE~9! in the diaba-
tic representation thus providing a much more demanding
test for the numerical integration scheme. Finally, note that—
except for the single crossing case—all systems studied here
are spin boson systems, which are widely used as a simple
model for open quantum systems. In a diabatic picture, they
are described as linearly coupled harmonic oscillators. For
these class of systems, the diabatic quantum-classical dy-
namics exactly coincides with fully quantum dynamics.10

This facilitates a comparison of the TRAIL/QCLE results
with numerically exact solutions of the Schrdinger equation
using FFT methods.74

A. One-dimensional examples

1. Single crossing

As a first test for the QCLE-based implementation of the
adaptive strategy we choose theadiabatic representation of
thesingle crossingexample described in Ref. 60. The propa-
gated objectX(t) is a matrix-valued quasidistribution func-
tion ~elements of the matrix can become negative or
complex-valued!. As it follows from the structure of the
adiabatic QCLE, in the regions where the nonadiabatic cou-
pling is small, the dynamics of diagonal elements of the ma-
trix X(t) is governed by a classical transport along the cor-
responding adiabatic surfaces. The nondiagonal elements
acquire oscillations with a frequency depending on the en-
ergy gap between the surfaces. In thecrossing regionthe
nonadiabatic transitions can occur, transferring density be-
tween different diagonal elements ofX(t). Each of the
density-matrix elements is represented as a linear combina-
tion of GPPs, which can be updated during the propagation
according to the tolerance criterion as described above. As it
can be seen from Fig. 2, the adaptive implicit integrator con-
verges towards the exact solution with reduction of tolerance
and reproducing correctly the weak Stueckelberg oscillation.
In the crossing region the number of GPPs is growing due to
the strongnonadiabatic couplingbetween the two adiabatic
levels and geometric complexity of the densities and coher-
ences in this region. After the passage through the crossing
region GPPs are dynamically eliminated because of decreas-
ing coherences~and so far vanishing correlations between
populations at different energy levels!.

2. Double crossing

As it was shown in Ref. 60, the potential involving two
consequentavoided crossingsis the more demanding test for
a numerical method. This is due to the importance of the
correct description of interference effects. As we have al-
ready seen, appropriate transport of coherence plays a deci-
sive role in propagation. Moreover, oscillatory behavior of
the solution makes it difficult to represent a complex spatio-
temporal structure of densities in terms of conventional par-
ticle sets. During the passage through the crossing region the
maximal numerically feasible number of GPPs~1000! had
been reached and the correlation between populations at dif-
ferent energy levels is not vanishing after the second cross-
ing up to the end of integration. In general, as it was already
demonstrated for the case of the classical Liouville
equation,55 the computational cost of the method is increas-
ing whenever the geometric complexity of the solutions is
growing with propagation time. Nevertheless, as it follows
from Fig. 3, even for theclosed dynamical systempresented
here there is a convergence of the implicit adaptive scheme
towards the exact solution for the considered integration
times. Due to the adaptivity, the method is able to reliably
represent sophisticated spatio-temporal details of the dynam-
ics under consideration.

FIG. 2. ~Top! Population of upper adiabatic state as function of time for
single crossingpotential. Solid line represents almost exact solution pro-
duced with the help of grid-based split-operator approach to corresponding
Schrödinger equation. Two other lines show adaptive GPP solutions for two
different tolerances (e5Am/M50.01; TOL5TOLx1TOLt51). ~Bottom!
Number of GPPs in representation of different matrix elements as function
of time.
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B. Multidimensional examples

1. Pure quantum dynamics

In order to test the performance of the method in multi-
dimensional cases we will first apply TRAIL to a coupled
two-level system, with diabatic potential of the form

V~R!5S V11~R! c

c V22~R!
D , ~33!

where V11(R)5R1
21R2

21R3
2, V22(R)5V111E0 are three-

dimensional harmonic oscillators andc is a constant cou-
pling. Because the diabatic PESs are parallel, the exact popu-
lation dynamics of such a system is given by a well-known
Rabi formula.71

Figure 4 shows the population dynamics of the system as
predicted from the diabatic variant of the TRAIL-scheme for
two different global tolerances compared with analytically
known result from the Rabi formula. The initial ground state
density is represented by a single GPP and a set of Dirac-
functions ~being stochastically sampled according to the
ground state distribution function!. While the classical com-
ponent of the QCLE-dynamics in this case is described sim-
ply by the Heller’s formulas and can thus be exactly inte-
grated by the predictor part of the TRAIL, the nonadiabatic
exchange can only be reproduced in the corrector part of the
scheme with the help of the adaptive creation/annihilation of
the GPPs. Numerical solutions are converging towards the
analytically known one with the reduction of the global tol-
erance.

The phase-space density in the analytical case is repre-
sented by four Gaussian densities: one for each of the diag-
onal elements of a density matrix, one for real and one for
imaginary part of the off-diagonal element. Figure 5~top!
shows the adaptive time steps generated by TRAIL. As it can
be seen, time steps get minimal values at the points where
the population transfer curve achieves its extremal values.
Adaptive phase-space discretization of the TRAIL-algorithm
represents these perfectly well by choosing one GPP per den-
sity independently of the tolerance@see Fig. 5~bottom!#. The
minima of the curves~by 3 GPPs! are located where the

FIG. 3. ~Top! Population of upper adiabatic state as function of time for the
dual crossingpotential. As in the case of the single crossing, the solid line
represents the almost exact solution produced with the help of a grid-based
split-operator approach to the corresponding Schro¨dinger equation. Three
other lines show adaptive GPP solutions for three different tolerances (e
5Am/M50.01; TOL51). ~Bottom! Number of GPP’s in representation of
different matrix elements as function of time.

FIG. 4. Population of the lower diabatic state as a function of time fore
50.05, E050.1, c50.1. The solid line represents the analytically known
solution. Two other lines show adaptive GPP solutions for two different
tolerances: TOL50.02 ~dashed! and TOL50.01 ~circles!.

FIG. 5. Top: Time steps generated with TRAIL as functions of time fore
50.05, E050.1, c50.1 for two different tolerances: TOL50.02 ~dashed!
and TOL50.01~dot-dashed!. Bottom: Number of GPPs needed to afford the
tolerances TOL50.02 ~dashed! and TOL50.01 ~dotted!.
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population is concentrated almost only in the lower diabatic
state, so the GPP in the upper state can be adaptively can-
celled.

Figure 6 shows the values of the population of the upper
harmonic oscillator at a fixed timet51 for different values
of the smallness parametere5Am/M . For decreasinge the
frequency of Rabi-oscillations increases which leads to a re-
duction of the adaptively chosen time steps. In this case the
error is dominated by the nonadiabatic term of the QCLE,
whereas for increasing values ofe the classical transport part
will play a major role in accumulation of the error. As we can
see TRAIL can reliably simulate both scenarios.

2. Quantum-classical dynamics: Conical intersection
example

As a more demanding test for a QCLE-based implemen-
tation of the adaptive strategy we choose the two-state ex-
ample of three-dimensional harmonic oscillators coupled lin-
early with the diabatic potential energy matrix of the form,

V~R!5S V11~R! c~R!

c~R! V22~R!
D , ~34!

where V11(R)5a(R1
21R2

21R3
2)1aR1 , V22(R)5a(R1

21R2
2

1R3
2)2aR1 andc(R)5bR2 . This is a typical Hamiltonian

for vibronic dynamics and spectroscopy.1,2 This model can,
for example, describe the photoexcitation process in Floquet
representation75 with continuous light and a dipole moment
in linear approximation. In adiabatic representation two po-
tential energy surfaces exhibit aconical intersectionat R
5(0;0;0) which leads to numerical problems with conven-
tional particle methods. The diabatic representation, in con-
trast, is more favorable in this respect. However, the practical
stochastic implementation in the form of conventional
surface-hoppingparticle methods seems to be more demand-
ing in the diabatic case where the coupling~off-diagonal el-
ement ofV) is typically not localized in space and time~in
adiabatic case nonadiabatic effects occur only in the vicinity
of the crossingof two potentials!.

Figure 7 demonstrates the application of a diabatic vari-
ant of the TRAIL-method withfixed maximal numberof al-
lowed GPPs. This means that the space-discretization error is
used to minimize the global tolerance with the number of
GPPs kept constant. We start with Glauber state density of

the right diabatic state with momentumP05(20.5;0;0),
i.e., in the direction of the conical intersection. The curves
show the population transfer during two passages of the den-
sity through the crossing region for two different numbers of
maximally allowed GPPs. The curves produced by the
TRAIL-approach are converging towards the grid-based so-
lution ~on a 64364364 grid, derived with the help of the
split-operator method! with increasing numbers of GPPs
through the overall reduction of resulting global tolerance.

V. CONCLUSION

We presented a fully adaptive strategy for numerical
simulation of nonadiabatic effects in molecular dynamics.
This concept provides a possibility of controlling both space
and time discretization errors and allows for a formulation of
the particle method based on global tolerance criteria. A local
error indicator is employed for creating new particles where
needed, and the subcondition number of the influence matrix
is exploited for removing particles which are no longer nec-
essary for representing the distribution with a given global
tolerance. In particular, this method is capable to treat nona-
diabatic effects around conical intersections of PESs. Its per-
formance is demonstrated for a spin-boson model in different
dimensionality.

As it was shown for the one-dimensional numerical ex-
amples, the performance of the TRAIL-scheme with afixed

FIG. 6. Population of the upper harmonic oscillator at the timet51.0 as the
function of e.

FIG. 7. ~Top! Population of the left diabatic state as a function of time for
P05(20.5; 0; 0),a51, b50.3, e50.1. The solid line represents the grid-
based solution. Two other lines show adaptive GPP solutions for two differ-
ent maximally allowed numbers of GPPs:N5300 ~dotted! and N5500
~dashed!. Bottom: Phase-space tolerance as function of time for different
numbers of maximally allowed GPPs.
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global tolerancedepends on the geometric complexity of
solutions. In the case of thedouble crossingthe actual phase-
space densities and coherences acquire complex oscillatory
structures which are expensive to resolve with small toler-
ances. Hence, a reliable representation of complex structures
requires a large number of Gaussian particles. This problem
can become crucial in multidimensional applications. As was
shown for a conical intersection case in three dimensions, a
computationally feasible alternative is the TRAIL-scheme
with a fixed maximally allowed number of GPPs, which are
optimally situated in phase-space according to the minimiza-
tion of the global tolerance. In cases where phase-space
structures are not too complex and can be represented with a
moderate number of GPPs, the TRAIL-scheme allows for
highly accurate integration of quantum-classical dynamics
even for multidimensional systems.
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