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In mixed quantum-classical molecular dynamics few but important degrees of freedom of a
dynamical system are modeled quantum-mechanically while the remaining ones are treated within
the classical approximation. Rothe methods established in the theory of partial differential equations
are used to control both temporal and spatial discretization errors on grounds of a global tolerance
criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamisshemd.
Horenko and M. Weiser, J. Comput. Cheg, 1921 (2003 ] has been extended to account for
nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation.
In the context of particle methods, the quality of the spatial approximation of the phase-space
distributions is maximized while the numerical condition of the least-squares problem for the
parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous
propagation of moving particlesGaussian and Dirac deltalike trajectojieim phase space
employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa,
downgrading Gaussians to Dirac-type trajectories. This allows for the combination of
Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional
problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the
application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects
occurring at conical intersections are treated in the diabatic representation. By decreasing the global
tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards
exact results. ©2004 American Institute of Physic§DOI: 10.1063/1.1691015

I. INTRODUCTION tropic densities with the grid beirglignedto the propagated

Quantum-classical models in molecular dynamics treanjeCtS' In the context of molecular dynamics this grid align-
only few important degrees of freedom quantum_ment can be violated which drastically decreases efficiency.

mechanically, while the remaining ones are approximated ag' the coptext .ofpa.rtlcle methodsthe molecular system un-
classical many-body systems. In this wagnadiabatic ef- der consideration is represented as an ensemble of localized,

fects which are known to be of great importance for the movjng basis functions, e.g, Dirac or Qauss_:ian 'Frajectories.
correct description of many photochemical, photophysicalpa”'de methodsare espemallyl gonveryent in .thIS r.es-pect
and biochemical applications, can be accounted foEor because(1) they represent multidimensional objestatisti-

the case of interaction between heajassical and light ~ cally by ensembles of particles?) the spatio-temporadly-
(quantum particles, such models have been mathematicall;ﬂamiCSOf these objects can be described by a collective mo-
justified by thepartial Wigner-transformtechniqué in the ~ tion of an ensemble of particles. Particle methods are
context of the quantum-classical Liouville equationespecially useful for the simulation afmost adiabatigro-
(QCLE).>~°The main advantage of such an approach is th&esses, where the molecular system is evolving adiabatically
mathematicallyconsistent couplingf few decisive quantum most of the time except for rare nonadiabatic transitions in

degrees of freedom with the remaining classical ones. the form of stochastic hopsvhich are localized in time and
In order to solve this equation for a realistic problem, space. Previous applications tackle either the time-dependent
one should apply a numerical method that can hantii-  Schradinger equation direct§;™*® or hybrid quantum-

dimensional dynamicsSuch numerical approaches are basedlassical models, such as quantum-classical molecular dy-
on the application ofsparse grids"'? or on particle  namics(QCMD).1%%’

methods>14In contrast to frequently used conventional grid The simplest class of particle approaches rionadia-
methods, they both scale reasonably well for medium dimenbatic molecular dynamicsvas first proposed by Tully: the
sional problems. Sparse grids work best for smooth aniscempirically based surface-hopping trajectory technique
(SHT) in which the propagated objects are modeled by an

. . . -30
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dergo “hops” between different eigenstates of the quantunby, e.g., a least squares approximation to the continuous evo-
subsystem in order to model nonadiabatic transitions in dution given by the partial differential equatiqgf?DE). The
stochastic manner. Many applications of this method are reresulting ODEs can then be solved best with the help of
ported in the field of molecular dynamics, even for very largeexplicit symplectic ODE-integrators which allow stable
systems, e.g., vibronic proces$e¥ or reactions in propagation for long simulation times. However, the method
enzymes>33-3¢ of lines is hampered by a crucial shortcoming: It does not
Particle methods based on a superposition of Gaussiamlow to control the space-discretization error once the spa-
wave packets foadiabatic quantum dynamiass first intro-  tial particle discretization has been fixed at the initial time
duced by Helle®*"~*°have become popular and inspired a step.
variety of methods for the description obnadiabatic ef- This problem is circumvented in the second group of
fects e.g., the multiple spawning metHd*3and the multi-  numerical methods for dynamical PDEs, also known as
threads methof'~® Quite often, the proposed algorithms Rothe methodsit presumes a primal time-discretization of
rely on two simplifying assumptions:l) the independent the PDE followed by a solution of stationary PDEs at each
particle approximation (IPA, also known as IGA— time step. This concept provides a possibility of controlling
independent Gaussians approximatjonhich assumes that both space- and time-discretization errors and allows for a
the particles can be propagated independently, @ndhe  fully adaptive integratiorof the respective dynamics. In the
locally harmonic approximatiofLHA), which assumes that context of adiabatic molecular dynamics this was first
the “width” of each particle is smaller than the length over achieved in the TRAIL metho@rapezoidal rule for adaptive
which the potential deviates significantly from a quadraticintegration of Liouville dynamics™ In the current paper we
shape. Note that Dirac function representations as commonlgresent an extension of the TRAIL-framework to the numeri-
realized in classical molecular dynamics codes propagate tr&2l solution of the quantum-classical Liouville equation thus
jectories independently and so far rely on the IPA assumpallowing to include nonadiabatic effects.
tion. Both assumptions are sufficiently valid in a number of ~ In most molecular dynamics simulations, an adiabatic
practically relevant situations for short simulation times. ~ representation of the electronic problem is chosen. However,
There are, however, several situations where neither |PAe presence afonical intersectiongnduces numerical prob-
nor LHA are valid, e.g., nonadiabatic effects and reducedems in particle methods due to the singularity in the nona-
models violate the IPA, whereas the LHA is in general vio-diabatic coupling. In contrast, the diabatic coupling is not
lated for realistic potentials and propagation times. This molocalized in time and space. Hence, diabatic propagations are
tivated the development of algorithms which do not depend’umerically more demanding and are not particularly ame-

on these assumptions. The strategy proposed by Walkupable for the surface-hopping schemes. Although most quan-
et al*” and Prezhdet al*® employs higher-order derivatives {Um chemical methods provide PESs and couplings in adia-
of the potential for propagating the distribution function. Patic repre;entatign, there are ways of diabatization recently
However, in the case of realistic multidimensional applica-Presented in the literatuf8”" _

tions the problem of calculating these derivatives becomes 1he remainder of the paper is organized as follows: Sec-
intractable. Alternatively, Sawadat al. suggested a least tion |'is devoted to the description of the QCLE model and
squares particle approximation of the underlying dynamics iﬁh"j comparison of different representations from a numerical
terms of the minimum error methodEM).Y” These con- PoInt of view. In Sec. I, the pr|nC|pI_es of the TRAIL-method
cepts were further developed resulting fnulticonfigura- and its appllcaulon to QCLE are dlsc_u§sed. Fmally_, Sec. Il
tional Gaussian method$~5! A similar concept was also Ccontains numerical examples, describing the application of

proposed by Billing2%3 where products of a Gaussian and the method to prototypical model systems.
orthogonal polynomials, e.g., eigenfunctions of a harmonic

oscillator, were used for the space discretization of the PDE

in a moving grid fashion. Heuristic strategies for adaptingll. QUANTUM-CLASSICAL LIOUVILLE EQUATION

the number of particles based on monitoring eigenvalues of . . . .
the overlap matrix were described in the literathfr&d41-43 Consider a bi-component physical or chemical quantum

but are not numerically justified. In all those approaches§yStem compo§ed of a heavy particle with miisposition
there is no possibility to control the spatial approximationR, momentumP, and a light particle characterized by 7,
error during the integration which can have two conse-?- Typically, in molecular problems, heavy and light par-
quences: First, the equations of motion can become jficles are nuclei _and electrons, respectively. Alternatively,
conditioned and hence intractable in the course of the propdl'€y can be also interpreted as slow and fast nuclear degrees
gation. Second, the number and position of particles needef freedosrr;é oo g N the case of proton transfer
for a reliable representation of solution is changing in time_Processed>***The corresponding Hamiltonian contains an
All of the existing particle methods can be divided into interaction potentiall as well as kinetic energy associated
two groups depending on the discretization scheme for pawith the two particles
tial differential equation(Schralinger, QCLE, etd.>* The 1 1
first group is known under the nameethods of linesind all H(,R,p,P)=0(F,R) + o—p?+ =— P?, 1)
of the above-mentioned approaches belong to that class. The
common idea is that equations of motion are derived in thevhere generalization to the case of several heavy and/or sev-
form of a system of ordinary differential equatiof@@DE9 eral light particles and/or to the use of non-Cartesian coordi-
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nates is straightforward. Casting this Hamiltonian into coor- i
dinate representation and adopting the scaling procedur&Pw=—((Hp)w=(pH)w)
introduced in earlier worR results in

2

[ 1
ﬂ(f,ﬁ,—in,—ieVR)ZU(r,R)+%Aﬂr%AR, ) == _[Hw.pwl-— 5 {Hw,pw} —{pw,Hw) + O(e),

: . 8
where the dimensionless smallness parameter ) ) ) )
where all higher-order terms in the expansion of the Wigner

\ﬁ transform of a commutator have been negleétethe struc-
€= M<1 3 ture of the equation already suggests the existence of a
. . purely quantum-mechanicatommutatoy evolution as well
shall be used throughout the rest of this work to indicate theq ¢|assical or quantum-classical connected with the Poisson
deviation from adiabatic behavior. .. brackets which are defined in the usual wgg,B}= VoA
The diabatic representation of the total Hamiltonian 'S~VRB—VRA-VPB. Inserting the diabatic representatiof)
obtained by_ using an orthonormal, complete basis set to reRhto (8), we obtain thediabatic QCLEfor the dynamics of
resent the light-particle states the Wigner-transformed density matikg= pyy,
€ ;
Ha(R V) =V(R)~ 5 Ag, (4) &th(R,P,t)z—IZ[V(R),Xd(R,P,t)]_—P~VRXd(R,P,t)
whereV(R) stands for a matrix representation of the light-
particle Hamiltonian, i.e., the first two terms on the r.h.s. of
Eq. (2). Alternatively, an adiabatic representation is obtainedAlternatively, by inserting Eq(5) into Eq. (8) the adiabatic
by diagonalizingV(R) yielding the following expression for QCLE is derived
the Hamiltonian:

+ 2 RV(R), VpX4(R,P,1) ] + O(e). 9

2 OX(RP.1)=— “[E(R)—i€eP-C(R).X(RP.0].
Ha(R, Vo) =E(R) — 5 (Ar+2C(R)- Ve + T(R)), ) €

+ 3 E(R),[C(R), VeXa(R,P,H]4]-
where the eigenvalues(R) are the adiabatic potential en-
ergy (hyperysurfaces and where nonadiabatic coupling is —P-VrXa(R.P.1)
due to the parametri®-dependence of the adiabatic light- + 3 VRE(R), Ve Xa(R,P,) 1. + O(e).
particle state$e;(R)). In particular, the matrix elements of
the first and second order nonadiabaticity operators are given (10
by As discussed in detail in other work? the first term on the
_ r.h.s. describes the purely quantum mechanical evolution
Cij(R)=( (R Wl 4;(R)), giving rise to phase oscillations of the coherengef-
T (R =(#i(R)|Ar|¢;(R)), (6) diagonal elements of density matriX(R,P)] only. In con-
] ) ) N ) trast, the last two terms describe purely classical evolution of
where the first tensor is anti-Hermitian while no symmetryyhe gensities and coherences along the adiabatic potential

relation holds for the second one. Note, that both in the di'energy surfaces or arithmetic means there of respectively.

abatic(4) and adiabatic case5), the expansion in terms of 1hg remaining two terms involving the coupling function,
light-particle states results in matrix valued operators actmg:(R)’ are of genuinely quantum-classical nature and de-
on the heavy-particle degrees of freedom. The density 0Operggyihe the nonadiabatic exchange of densities and coher-
tor p can be treated in an analogous Wayve restrict our-  ances. Using existing particle methods, e.g., stochastically
se_lves to the_treatmgnt (l)f pure states, but generalization g t5ce hopping trajectori®s or Gaussian packefg, the
mixed states is possibfe’ S adiabatic formulation of the QCLE is more amenable to nu-
~ The full quantum dynamics is governed Dby the nerical solution than the diabatic one. This is because typi-
Liouville-von Neumann equation cally the nonadiabatic coupling;(R), is large only for a
i limited part of coordinate space, i.e., hear avoided intersec-
ap(t)=— ;[H o] (7)  tions while non-adiabatic effects may become negligible out-
side these regions.
For a one-component system it is well known that the clas- In the present work, however, the quantum-classical dy-
sical Liouville equation can be derived as the-0 limit of namics in the presence of conical intersections is to be in-
the quantum Liouville equation by means of the Wignervestigated. A consistent numerical treatment using the adia-
transform*®2n close analogy, a partial Wigner transform for batic formulation is not possible because of singularities of
a bi-component system can be defined which acts only on thine nonadiabatic coupling;(R), as well as discontinuities
heavy-particle degrees of freedom while leaving the light-of the classical forces; VE(R), at the intersections. Hence,
particle dynamics unchang@dipplication to the quantum there is a strong motivation for developing efficient and ac-
Liouville equation(7) readily yields theQuantum-Classical curate integrators for the diabatic QCLE). In particular,
Liouville Equation(QCLE), the (typically nonlocalized coupling through the off-
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diagonal elements of (R) are expected to render the evolu- by the difference between the trapezoidal rule and some eas-
tion strongly nonclassical. Consequently, there is a need fafy computable comparison propagatdt, of lower order,
development of adaptive methods which can dynamicallye.g., the explicit Euler method,
create or annihilate particles according to preset accuracy _ .
criteria. [ed:=[X(t+7) =W X(1)|. (13
The step is accepted [fe;] is sufficiently small, i.e.[e]
<TOL,, where TOL is a user-prescribed accuracy require-

ll. APPLICATION OF THE TRAIL-SCHEME TO QCLE ment. Otherwise we reduce the step size and repeat the step.

A number of approaches can be applied in order to inte—NOte that[ ] ne(.:essarily eStinjat?S the errgrof the less
grate the QCLE. The standandethod of lineparticle strat- accurate comparison propagatr. instead of the computa-
egy implies some initial space discretization of such an equaionally unavailable error of the trapezoidal rule.
tion in terms of some basis functions, such as Dirac A tempting idea would be to choosg, from efficient
trajectories’ (frozen Gaussian particlés*3%3or frozen  explicit particle propagators, which have been developed un-
Gaussian multiplied with some orthogonal polynomidls. der the LHA and IPA assumptions for locally harmonic
This produces a system of ordinary differential equations fopotentials’”**However, in the case of strongly nonharmonic
the parameters of basis functiofmich as amplitudes, cen- potentials and GPPs with nonvanishing width, these propa-
ters, eto. which can be integrated with the help of standardgators are of order zero and do not represent the dynamics
ODE tools for a long propagation times. A major drawbackadequately. Although being a reasonable approximation to
of such a methodology is that the quality of a spacethe exact evolutiorb ., such propagators provide worse er-
discretization and the exactness of the expectation values cdPr estimates than the explicit Euler scheme.
culated remains uncontrolled. In order to construct a fully
adaptive method we follow another strategy and employ the. step size selection scheme
Rothe methd of implicit semidiscretization in time. This
leaves us with a stationary PDE to be solved in each time
step and allows for the control of the global error, which©"€: such that
consists of space and time discretization errors. &=Cr? (14)

We assume the comparison propagaiqr is of order

A. Adaptive time discretization holds locally for some slowly varying consta@t Substitut-
Let us denote the operator in the r.h.s. of E).or (10) ing [ ] for & and aiming ‘T"t an error o TOL, V,Vith some

as L. In order to select a proper time discretization schemesafety factoro <1, we obtain an optimal step size

one should take into account the two following fad¢ts: The \/FOLt

predominantly imaginary spectrum of the QCLE operaior Topt— ﬁf,

will cause instability using explicit time-discretization !

schemes(2) Evaluation of the QCLE operator can becomeWhich is used for the next step or recomputing the current

expensive for multidimensional problerfeach evaluation of ~time step, respectiveRy.

L will mean a solution of the multidimensional variation

problem connected with the electronic structure calculation B. Adaptive phase-space discretization

That is why we consider here the simplest implicit scheme

(15

demanding only one evaluation of the operafdior a given Consider arbitraryarticles gR;'(t),Py'(1),G'(1)) in
X per time step, the well-known trapezoidal rule phase space. We will distinguish betwegarticles (being
some smooth moving basis functignand sample points
(I—Zﬁ X(t+7)= |+Z£ X(1), (11) (Dirac delta—t.rajectorie)s For approximating thgi(j) ele- '
2 2 ment of matrixX to be propagated, we use a linear combi-
whereX is the value obtained by the discrete evolution, start-natIon of such. particles,
ing from the (exactly availablginitial value X and wherel N NS L
denotes the identity operator. Moreover, the trapezoidal inte- X"/(t)= > Yy (DR (1),P(1),GL (1)) (16)
grator conserves first integrals, which implies conservation n=1
of volume and energy for the QCLE setting. centered _a_t@n'j ,En'j)(t) in phase space, scaled by the am-

For adaptivity' in time we negd three gssential ingredi-plitudesy’:I(t) being real-valued functions fdr=j (densi-
ents: an error estimator, a step size selection scheme, andjas) and complex-valued fdr#j (coherencesAdditionally,
desired tolerance. We briefly recollect this ingredients of thehe shape of the particles is allowed to depend on a set of
TRAIL-scheme(cf. Ref. 55. shape paramete@:(t).

The Rothe methodfor propagation of the partially
1. Error estimator Wigner transformed densitX by the implicit trapezoidal
rule (11) leads to a stationary PDE-problem to be solved in
each time step. Spatial dicretization of this PDE turns Eq.
(12) into the approximation problem of finding a new density

e=|X(t+7)—® X(1)]| (120  X(t+7) representable by particles such that

Denoting the exact evolution of E(P) or (10) by ®, we
estimate the unknown error
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Kny=#dof(N) sample points, preferably distributed in accor-
dance with the quasiprobability densi¥(t). Ky should be
significantly larger than #dol) in order to improve the
Here, TOL, is a tolerance which now has to be matched withrobustness of the least squares approximation and to provide
the user-prescribed accuracy requirement FOlor details @ local error estimator for spatial adaptivitgee below

see below. By introduciny test points R/ ,P1)), we re- ~ Since performing a Monte Carlo sampling at every time step
duce Eq.(17) to a computationally tractable approximation is prohibitively expensive, we suggest to select the sampling

X(t+7)— |+%z: Xt =ToL,. (17

(-3¢
&=[l1-%
2
)

problem points according to the following scheme: For the first step
att=0 we take the sample points from the initial particle
[EX]:H<|_Z£ X(t+7')—(|+I£)X(t) <TOL,, approximation. For subseque_nt st(_aps, we suggest to take
2 2 (R P} again the centers of the particles i.eR;(t+ 7),P;(t+ 7))
(18 =(Ri(t+7),P;(t+7)), i=1,..N, and additionally the re-

maining sampling points from the previous step propagated

where|| - notes the discretize@,-norm taken at the . . . ;

© e||_ ”{RiF'zPi}Pde (I) es_ © dfsc N eﬁz_ © | faf _e atine independently of each other in time along classical trajecto-
test points{R; ,Pi}. In V'e"".‘r’] Comp.utatl'ona s 'C"?”Cy ‘,’V‘f fies, ie., R(t+7),P,(t+n)=® (R(t),P(t), i=N
aim at a repregentatlon W',t a'mlmma number o part!c_es_,+ 1,...Ky - This implies two types of basis functions, namely
and hence derive the particles’ parameters from the minimig,

zation probleni €,]— min. Depending on which parameters multaneousl
in Eq. (16) are to be chosefeither only the amplitudea!’ y ,
N E£q. no It may happen that the numbBk of particles chosen to

or both amplitudes and phase space positidRlg (P;') of it the initial state X(0) becomes inadequate during the
the particles’ centelswe arrive at a linear or nonlinear least propagation, for three different reasoriax A more compli-
squares problem. In the linear versu?r]), the systemKWs cated distributiorX(t) turns up later in time, such that more
equayons and .#_ddf{):N unknownsA," for the paruclgs particles are needed to represent the distribud@t) with
amplitudes defining(t + 7), and can be solved by a single the required accuracyb) Two or more particles can come

QR decomposition of the influence matff, close to each other, such that the least squares prold&m
T becomes ill-conditionedc) The distribution may develop a
(l - EE : (19 simpler structure, such that it is advisable to reduce the num-
ber of particles for computational efficiency. The first situa-
In the nonlinear variant, the system hiig equations  tion requires the upgrade of new smooth particles from Dirac
and #dof(N) =(1+2ngn)N degrees of freedom;', R},  trajectories, whereas the latter ones require the downgrading
and P-J definingX(t+ 7). Due to the better approximation Of particles to trajectories.
capability offered by also adjusting the particles’ centers, the  Let us first consider the case that the number of particles
number of particles necessary to satisfy the accuracy requirés too small, such that the accuracy requiremé@a) cannot
ment (18) can be expected to be considerably smaller tharpe satisfied. In this case, as few as possible additional par-
for the linear approach. However, this does not necessaril{icles have to be created in order to reduce the approximation
translate into fewer degrees of freedom, or fewer samplérror sufficiently. Fortunately, the local residuals
points. For solving the nonlinear least squares problem, a

Gauss—Newton method should be used, which may require
multiple QR decompositions of the influence matrix

-
E— (|——ﬁ
ay,R,P)

Whether this is compensated by the better approximation, ige a useful local error indicator suitable for extending

capability is not cleaa priori. _ the particle set. A similar error indicator has been proposed
There are several possibilities to choose the particle colby Iske and Leveslé§ in the context of scattered data ap-
lection used to represent(t+7) in the beginning of the proximation. The following scheme is intended to insert the

time step. Sele_ctlng particles in unsuitable regions of the,., particles at positions in phase-space, where the approxi-
phase space will prevent the linear least squares approaghasion error is largest, and hence to improve the approxima-
from meeting the accuracy requiremém8), thus triggering tion at a small cost

the discretization refinement developed below. For the non- Assume the sample pointR{(j 'P:(,j) (which are not also

linear least squares approach, it will increase the number. Henters of existing particlgswvith correspondingstatistical
Gauss—Newton steps and hence decrease the computanowaéights w:(,j k=N+1,..Ky, are sorted descendingly by

efficiency. A sufficiently good initial guess for the solution of . |ocal residuaty "/ e. . Let >N be minimal such that
the least squares problem is therefore necessary for compu- k Tk

tational efficiency in both variants.

Another question which has to be addressed is the choice
of sample pointsR; ,P;), i=1,..Ky . For the Ieast_ squares E wL’jek$TOLX (22)
problem(18) not to be underdetermined, we require at least  k=j+1

rac trajectories and smooth particles being propagate si-

d
A= —

3y X(t+17)

ek=‘(l—%£>X(Rk,Pk,t+T)— X(Ri, P )

. (20) (21)

+—r
2

A= X(t+7)
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holds, orj=Ky if Eq. (22) cannot be satisfied. We then 1
suggest to upgrade the sample poiNts 1,...J to particles fTTfi>4(733)ii|$ ;|(R1)11|
with centers R;!,P.)), k=N+1,...j, amplitude zero, and '
shape matrixAl, and create at leastng, (Ky—]j) new <min|(Ry);i| b2+ [ba]Z+[[baP< o TOL,
sample points in the vicinity of the newly created particles [
by some Monte Carlo methobtll andKy, should be increased
accordingly toj andKy+2ngim(Kn—1]), respectively.

With the enlarged particle set at hand, the least squar

for « being the maximal accepted least squares condition
e(Ssomewhere aroung=10%) and 0<o<1 some safety fac-

problem is solved again in order to meet the requiremen or which can be adjusted to balance pruning and spawning.

(18). If necessary, the adaptive refinement is repeated until default valug 0fr=0.9 IS sqggested. Note thdt| is t.he
finally (18) is met. smallest possible approximation error that can be achieved at

Related greedy algorithms for spatial adaptivity in dif- all with_the p_resent (_:o_llection of particles, and .Sim”f'"”y
ferent contexts have been proposed by Schakak®” ¢ JIbsl[?+b,|]? is the minimal error that can be obtained in a

Let us now tur to the case that the least squares proglumTer:gilgusntwarl]bslivavzﬁd the particles corresponding to the
lem (18) becomes ill-conditioned due to similarly shaped degrees of freedom ir; can b(re) removed on tf?e obsgrvation
particles being too close to each other. Sawetall’ sug- Y s

gest to drop an arbitrary Gaussian and do a refitting of théhat they are numerically linearly dependent on the columns
corresponding tox; andx,, and hence are redundant.

remaining ones whenever one eigenvalue of the overlap ma- . .
9 g P Furthermore, the degrees of freedom xp contribute

trix becomes small. While this criterion is reported to work, N . o
least to the approximation capability of the remaining par-

neither does it take the approximation error into account no{icle collection. Sacrificing some accuracy while still satisfy-
does it indicate which Gaussian to drop or how small an : 9 y

eigenvalue must become. Waat al# suggest removing Lnfnjhjt;?grl:;?z%sigggememg) allows us to improve the
Gaussians with an amplitude below 18 and to collapse P Y-

any two Gaussians which are too close to each other. Whilg IIIE ||Caf(|Tbn||o :#ghL pa_rt|t|to?h can be f ou"nd,l_ |.e.T|OLé
this can indeed cure the numerical stability problems, no 3 4l = x» Just the numerically linéarly de-

endent degrees of freedom are cancelled. If the accuracy
requirement (18) cannot be fulfiled at all, i.e.,
VIbgl[?+]b,[>>TOL,, the spawning procedure described
bove has to be performed.
In the setting of the nonlinear least squares fitting, the
ﬁ:orrespondence of columns Anto particles is no longer one
to one, such that the pruning procedure described above has

umns and downgrade their associated particles which mak® be modified. Numerical stability even in the case of lin-

Eq. (18) numerically singular to sample points. Moreover, a(iaély (tjr? petndent <_:o|utnr:ns can be gjam:jamed by fsfebtg?jg
careful examination of the least squares residual enables the without removing the corrésponding degrees ot freedom.

identification of even more particles which are not necessar?ﬁe suggest performing the last Gauss—Newton step, when

to obtain the requested accuracy, and thus can be remove .3 parélcflesh.cenlt)er?_t?re alr?acti%/ closelltto dthe S|O|E[th]'.on’ n a
Pruning of the particles collection should be realized byre uced fashion by fiting only the ampiitudes. In nis way,

downgrading unnecessary particles to sample points. the pruning scheme developed for. the linear least squares
To be more precise, in the linear least squares settingc,"’lse can be transferred to the nonlinear cise aiwell.

assume the columns @ and correspondingly the rows &f _Unfortunately, the time error estimatge,]=|[X(t+ 7)

of the linear least squares probléix— b||=min have been —W¥ X(t)| is still computationally unavailable. Its canonical

sorted such that for the QR decompositidbr QR the rela-  substitute[ €,]:=||X(t+ 7-)—\ifTX(t)||{Ri -y depends on the

indication is given about how close two Gaussians must b
or how the cutoff value of the amplitude was chosen.

As a pruning method oriented at the numerical stability
and the approximation error, we propose to use a columft
permutation strate§y for the QR decomposition together
with a numerical rank decision based on the subconditio
numbef® in order to identify and remove exactly those col-

tions spatial discretization erro, , which should not destroy the
overall quality of the error estimate. In view pg;]=Cr?
IRi|=|R | for i=1,.. #dofN)—1 and =C7°, and in order not to destroy the second order
il =1 Riv1i+1 =1..,

convergence of the trapezoidal rule, we aimeat ¢; and
hence impose the accuracy matching T©lzTOL,.

hold. Construct a partition ]
C. Gaussian phase-space packets

We suggest to use Gaussian phase-space packes

Ri S S « by (Refs. 70, 71 as smooth particles in the TRAIL method,
R, $S3 ! b
R= ? Cox=[ x|, Qb= 2], (RP)—ex _(R—Rn T (R-R, o
R3 X3 o 9n(R,F)= P—P,) “n\P-P,/]
4
0 (23 where G, is the real, symmetric, positively definite 2D
X 2D matrix defining the elliptic phase-space contour of
GPP. The simplest choice of the starting point for the Gauss—
such that the following conditions are satisfied: Newton method is the current GPP collecti®t). How-
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GPPs are narrow in position space, they become increasingly

% ;"’"- i gi'éVSa i wide and oscillate around thixed pointof Eqg. (27) (which
24 il . H _ 0:75(;"" in the case offXdRdP=1 describes the evolution of a
Zal i ; % P S '""i squeezed state, i.e., a displaced quantum-mechanical ground
=T I S H : H : state in phase-spac This produces phase-space errors and
got! VoV b ! can be avoided in the case when all sha@esof GPPs are
Sliyry & Vv iN ! selected as
-‘§ 1 _ - '
a | apy 0

% 4 6 8 10 Gine ( 0 yim,) 28

6.1 Posi o - time for GPPS in anh ~and bothe;,, and y;,, are diagonal matrixes derived as so-
. 1. Position uncertainties as functions of time for s in anharmonig, .- ; .

potential V(R)=R?+0.1R%. Narrow GPPs expand their position width futions of the following system:

much faster than GPPs of invariant position width, from Eq. (29). @iy =M *1<V(2)>%nv

9N

ever, the time step is limited by the requirement that the Vel yip,) del aip) = TXdRAP

initial guess should be sufficiently good such that the local

Gauss—Newton iteration converges quickly and reliably to  {¥in}i.i=7, (29
the nearest local solution. Similarly, if only the amplituggs heren is a number of GPPs in the representatioiXofl is
are fitted by a linear least squares approach, a good initi spatial dimension of the probleny,is some positive real
guess yields a particle set which is well suited to represer“umber, andV®) = [XV(dRis a m’ean Hesse matrix. The
the solution. Thus, the accuracy requiremé®) can be sat- first of above equations gives the fix point solution of Eq.

isfied with fewer GPPs. 27), whereas the second imposes a fixed volume of GPP
For these reasons, the employment of a cheaply compué—eing equal ta L[ XdRdP
able predictor providing a better initial guess can be expecte This allows us to apply the classically transporteten
to improye the perfqrmance O.f the propagation COnSideranyGPPs as a predictor for QCLE integration, i.e., GPP’s centers
by allowing Iarggr time stepéin the Gauss—Newton case are propagated accordingly to Newtonian equations of mo-
ﬁ‘:ga?)llegsetcgeiirneqs 'E:haesenumber of necessary GiiPshe tion while fixed shapes are chosen from E2). This strat-
A dq' tor for the OCLE idered h egy can represent only the adiabatic transport of densities. In
S a predictorfor the Q considered here one on can, ., 5 case the nonadiabatic effects of the QCLE are repro-
use any kind of explicit surface-hopping algorithm or even 8juced by the corrector part of the TRAIL-method alone. This
classical transport process of GPPs realized by the modifie bes not impair the quality of the solution, but may affect the
leapfrog propagatdt In the simple case of both LHA and efficiency of the algorithm '
IPA holding, the Gauss-particles in the ensemble can be '
propagated independently with evolution equations for the

parameterR,,, P,, andG, of Eq. (16), D. Volume and energy conservation
B _M-1p An advantage of the trapezoidal rule is its property of
HRy=M""Pp, (25) e oY . ) :
conserving first integrals of linear dynamics exactly. This
P,=—VaV(R,), (26)  encloses conservation of volume and energy of the Wigner
_ - _ densities. In connection with a straightforward least-squares
3Gp=C(Ry)Gy+GnCT(Ry), (27)  approximation as a spatial discretization of the quasidensi-

ties, however, this favorable property is lost for finite spatial

where
o tolerances, and only recovered in the limit TEL0. Such a
— [ 0 VAR significant reduction of the spatial tolerance, however, in-
C(Rn)= VRS 0 ' creases the computational complexity substantially and is in

o general not feasible.

whereV®)(R,) denotes the Hesse-matrix of the potential In view of the conservation property of the exact trap-
This scheme works well for low to medium dimensional ezoidal rule, the minimization of the approximation error

problems, but requires the second derivative of the potentiahay be constrained to the affine subspace of discretized

to be evaluated. This evaluation can become expensive fejuasidensities with exactly the same volume and energy,

higher dimensional problems. Another problem is connected

to the validity of LHA and IPA for anharmonic potentials. min

For sufficiently narrow GPPs, the LHA holds at least ap-

proximately even for nonharmonic potentials, such that the .

predictor solution can be expected to provide a good ap§lJbJeCt to

proximation of the classical part of the QCLE. It is desirable  V(X(t+ 7)) =V(X(t)) (31)

to choose the shape matrix€, in such a way that the

position space width of GPPs does not exceed some thresﬁ‘pd

old. As it can be seen from Fig. 1, even when the initial E(X(t+ 7)) =E(X(1)). (32

|+ %z: X(t) (30)

(| TE)X(H—)
T o
2 {R; P}
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An efficient and numerically stable algorithm for solving 1 — o

such equality constrained least squares problems results from i b
a slight modification of the usual QR decompositiéihe 09 1
restriction of the discretized quasidensities to the affine sub- .
space of constant volume and energy is consistent with the £ 08
time discretization and allows for exact conservation even EDT
for moderate spatial tolerances.
0.8

IV. NUMERICAL EXAMPLE

In this section we want to investigate the performance of 05 0 a0 0 a0
the TRAIL approach for the numerical treatment of Tirne/a.u
guantum-classical dynamics in a fully adaptive manner. The = o )

. . . . 1

prototypical one- or higher-dimensional systems chosen here a00l | — zﬁfx ——

are characterized by crossings or conical intersections of po- -
tential energy surfaces, respectively, are known to play a key B |
role in many photochemical processes.Moreover, the 5 fo——\ 1
strongly nonadiabatic dynamics encountered at the singulari- %

ties necessitates a propagation of the QQ®Ein the diaba- z

tic representation thus providing a much more demanding 50 / ]
test for the numerical integration scheme. Finally, note that— — //—/—\
except for the single crossing case—all systems studied here o o1 ; ;

o 20 4?1ma &0 B0

are spin boson systems, which are widely used as a simple
model for open quantum systems. In a diabatic picture, they
are described as linearly coupled harmonic oscillators. FoFIG. 2. (Top) Population of upper adiabatic state as function of time for

these class of systems the diabatic quantum-classical dgi_ngle crossingpotential. Solid line represents almost exact solution pro-
' uced with the help of grid-based split-operator approach to corresponding

namics .e.)(aCtly COinCideS_ with fully gquantum dynanﬁﬁs. Schralinger equation. Two other lines show adaptive GPP solutions for two
This facilitates a comparison of the TRAIL/QCLE results giferent tolerances = ym/M=0.01; TOL=TOL,+TOL,=1). (Bottom)
with numerically exact solutions of the Schrdinger equationNumber of GPPs in representation of different matrix elements as function
using FFT method§' of time.

A. One-dimensional examples
1. Single crossing

As a first test for the QCLE-based implementation of they poyple crossing

adaptive strategy we choose thdiabatic representation of

thesingle crossingxample described in Ref. 60. The propa-  As it was shown in Ref. 60, the potential involving two

gated objec(t) is a matrix-valued quasidistribution func- consequenavoided crossingis the more demanding test for

tion (elements of the matrix can become negative ory nymerical method. This is due to the importance of the

compleg—valueid AS It fOHO,WS from the structurg of .the correct description of interference effects. As we have al-

adiabatic QCLE, in the regions where the nonadiabatic cou- . .
ready seen, appropriate transport of coherence plays a deci-

pling is small, the dynamics of diagonal elements of the ma-

trix X(t) is governed by a classical transport along the cor-Sive role in propagation. Moreover, oscillatory behavior of

responding adiabatic surfaces. The nondiagonal element8€ solution makes it difficult to represent a complex spatio-
acquire oscillations with a frequency depending on the enteémporal structure of densities in terms of conventional par-
ergy gap between the surfaces. In ttressing regionthe ticle sets. During the passage through the crossing region the
nonadiabatic transitions can occur, transferring density bemaximal numerically feasible number of GPBE00 had
tween different diagonal elements of(t). Each of the been reached and the correlation between populations at dif-
density-matrix elements is represented as a linear combingerent energy levels is not vanishing after the second cross-
tion of GPPs, which can be updated during the propagatiofhg up to the end of integration. In general, as it was already
according to the tolerance criterion as described above. As femonstrated for the case of the classical Liouville
can be seen from Fig. 2, the adaptive implicit integrator cony

equatiorr’ the computational cost of the method is increas-

verges towards the exact solution with reduction of toleranc?ng whenever the geometric complexity of the solutions is

and reproducing correctly the weak Stueckelberg oscillation, . . . : .
. . ; . rowing with propagation time. Nevertheless, as it follows
In the crossing region the number of GPPs is growing due t ; .
rom Fig. 3, even for thelosed dynamical systepresented

the strongnonadiabatic couplindbetween the two adiabatic i R i
levels and geometric complexity of the densities and coher€re there is a convergence of the implicit adaptive scheme

ences in this region. After the passage through the crossin@WﬁrdS the exact solution for the considered integration

region GPPs are dynamically eliminated because of decreaimes. Due to the adaptivity, the method is able to reliably

ing coherencegand so far vanishing correlations betweenrepresent sophisticated spatio-temporal details of the dynam-
populations at different energy levils ics under consideration.
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FIG. 4. Population of the lower diabatic state as a function of timeefor
=0.05,E;=0.1, c=0.1. The solid line represents the analytically known
solution. Two other lines show adaptive GPP solutions for two different
tolerances: TOE 0.02 (dashedland TOL=0.01 (circles.

The phase-space density in the analytical case is repre-
sented by four Gaussian densities: one for each of the diag-
onal elements of a density matrix, one for real and one for
imaginary part of the off-diagonal element. Figure(tbp)
shows the adaptive time steps generated by TRAIL. As it can

FIG. 3. (Top) Population of upper adiabatic state as function of time for the P& Seen, time steps get minimal \{alues_at the points where
dual crossingpotential. As in the case of the single crossing, the solid linethe population transfer curve achieves its extremal values.

represents the almost exact solution produced with the help of a grid-basefldaptive phase-space discretization of the TRAIL-algorithm

split-operator approach to the corresponding Sdimger equation. Three
other lines show adaptive GPP solutions for three different tolerances (
={m/M=0.01; TOL=1). (Bottom) Number of GPP’s in representation of

different matrix elements as function of time.

B. Multidimensional examples

1. Pure quantum dynamics

In order to test the performance of the method in multi-
dimensional cases we will first apply TRAIL to a coupled
two-level system, with diabatic potential of the form

V11(R) c )

V(R):( ¢ VR

where V;;(R)=R3+R3+R3, V,(R)=Vy;+E, are three-
dimensional harmonic oscillators ardis a constant cou- . . .
pling. Because the diabatic PESs are parallel, the exact popu- 0 2 4 6 8
lation dynamics of such a system is given by a well-known

Rabi formula’*

Figure 4 shows the population dynamics of the system as
predicted from the diabatic variant of the TRAIL-scheme for
two different global tolerances compared with analytically
known result from the Rabi formula. The initial ground state
density is represented by a single GPP and a set of Dirac-
functions (being stochastically sampled according to the
ground state distribution functiopnWhile the classical com-
ponent of the QCLE-dynamics in this case is described sim-
ply by the Heller's formulas and can thus be exactly inte-
grated by the predictor part of the TRAIL, the nonadiabatic

represents these perfectly well by choosing one GPP per den-
sity independently of the tolerangsee Fig. 5bottom)]. The
minima of the curvegby 3 GPP§ are located where the

0.1
i --- TOL=0.05
! -= TOL=0.01
0.08 i
! /"‘ ,'\ l\\l [ I\‘ll ‘\ :’ ‘\.I"'\ I‘\ ! r"\
[ v 4
0.06f
a b
@ 1
B ]
o [
E 004 E
Z
R R T P N T AL W N
H . . » P .
{
0.02f
L]
]
t

Time

w

.. o i g e s g e e
by £ bR 1,
t = 3l 1,
Y g EN I
3 N £ at EX
] 1, 5 Tl El
1 3, ' B E)
Iy i B W

------ TOL=0.01
--- TOL=0.05

Number of GPPs
(53]

N
Of e

2 4 6 8

exchange can only be reproduced in the corrector part of the Time

scheme with the help of the adaptive creation/annihilation of
the GPPs. Numerical solutions are converging towards the

FIG. 5. Top: Time steps generated with TRAIL as functions of timeefor
=0.05,E;=0.1,c=0.1 for two different tolerances: TGt0.02 (dashed

analytically known one with the reduction of the global tol- ang ToL=0.01(dot-dashel Bottom: Number of GPPs needed to afford the

erance.

tolerances TOE 0.02 (dashed and TOL=0.01 (dotted.
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FIG. 6. Population of the upper harmonic oscillator at the timé.0 as the a1
function of e.
g 0.08
population is concentrated almost only in the lower diabatic = - W
state, so the GPP in the upper state can be adaptively can- 5 n.06f . ;
celled. 2 R F et
Figure 6 shows the values of the population of the upper & 0.04} - ‘.‘ faad
harmonic oscillator at a fixed time=1 for different values o ) N =300
. B E v mae
of the smallness parameter= ym/M. For decreasing the @ gozf vee N__ =500
. . . . . o
frequency of Rabi-oscillations increases which leads to a re- ]
duction of the adaptively chosen time steps. In this case the 0

error is dominated by the nonadiabatic term of the QCLE, 0 2 i & 8
whereas for increasing values othe classical transport part
will play a major role in accumulation of the error. As we can FIG. 7. (Top) Population of the left diabatic state as a function of time for

see TRAIL can reliably simulate both scenarios. Po=(-0.5; 0;0),a=1,b=0.3,¢=0.1. The solid line represents the grid-

based solution. Two other lines show adaptive GPP solutions for two differ-
ent maximally allowed numbers of GPPN:=300 (dotted and N=500
(dashegl Bottom: Phase-space tolerance as function of time for different
numbers of maximally allowed GPPs.

2. Quantum-classical dynamics: Conical intersection
example

As a more demanding test for a QCLE-based implemen-
tation of the adaptive strategy we choose the two-state e riaht diabatic state with momentu Po=(—0.5:0:0)
ample of three-dimensional harmonic oscillators coupled lin- 9 oo

. . . . . i.e., in the direction of the conical intersection. The curves
early with the diabatic potential energy matrix of the form, . .
show the population transfer during two passages of the den-
Vii(R)  ¢(R) )

sity through the crossing region for two different numbers of
c(R)  Vyu(R) (34) maximally allowed GPPs. The curves produced by the
where Vyy(R)=a(R2+ R3+R3) +aR;, V,i(R)=a(R{+R3

TRAIL-approach are converging towards the grid-based so-
lution (on a 64x 64X 64 grid, derived with the help of the
+R3)—aR; andc(R)=bR,. This is a typical Hamiltonian  gpiit-operator methodwith increasing numbers of GPPs
for vibronic dynamics and spectroscopy/This model can,  through the overall reduction of resulting global tolerance.
for example,7describe the photoexcitation process in Floquet
.rep.resentatloﬁ vy|th _contmuoug Ilght and a d|polg moment V. CONCLUSION
in linear approximation. In adiabatic representation two po-
tential energy surfaces exhibit @nical intersectionat R We presented a fully adaptive strategy for numerical
=(0;0;0) which leads to numerical problems with conven- simulation of nonadiabatic effects in molecular dynamics.
tional particle methods. The diabatic representation, in conThis concept provides a possibility of controlling both space
trast, is more favorable in this respect. However, the practicand time discretization errors and allows for a formulation of
stochastic implementation in the form of conventional the particle method based on global tolerance criteria. A local
surface-hoppingparticle methods seems to be more demanderror indicator is employed for creating new particles where
ing in the diabatic case where the couplifgf-diagonal el- needed, and the subcondition number of the influence matrix
ement ofV) is typically not localized in space and tinfe is exploited for removing particles which are no longer nec-
adiabatic case nonadiabatic effects occur only in the vicinityessary for representing the distribution with a given global
of the crossingof two potentials. tolerance. In particular, this method is capable to treat nona-
Figure 7 demonstrates the application of a diabatic varidiabatic effects around conical intersections of PESs. Its per-
ant of the TRAIL-method witHfixed maximal numbeof al-  formance is demonstrated for a spin-boson model in different
lowed GPPs. This means that the space-discretization error @imensionality.
used to minimize the global tolerance with the number of  As it was shown for the one-dimensional numerical ex-
GPPs kept constant. We start with Glauber state density aimples, the performance of the TRAIL-scheme witfixad

V(R)z(
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