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Abstract

In this paper we utilize variants of shortest paths algorithms in discrete, directed
graphs to calculate the dominant paths between the centers of almost invariant sets
in dynamical systems.

1 Introduction

The core macroscopic behavior of a dynamical system can be exhibited by the almost
invariant sets of the system. An almost invariant set is a subset of the state space
for which the system, once it enters the set, stays in the set, on average, for a long
time. With other words, the probability to stay within the set for the following time
period is very high and to move out of the set in the following time period is very
low.

The use of set-oriented methods [DFJ01] features a discretization of the state
space. The result is a Markov Chain which can also be viewed as a graph with
directed edges. Thus, graph theoretic concepts and algorithms can be applied to
calculate the almost invariant sets. The calculation of the almost invariant sets has
recently been a focus in the context of the approximation of chemical conformations
for molecules [DDJS98, DHFS00, FSDC01, DP03, FD03].

In this paper we go one step beyond the calculation of the almost invariant
sets. The almost invariant sets provide some information about the number and
position of the sets. Additionally, some characteristics of the sets and the quantity
of transitions between the sets are monitored with the partition. However, there is
still a lack of information about the almost invariants sets:

• Where and how large is the center region of each almost invariant set?

• By definition, a transition between two sets is of comparably low probability.
However, when it occurs, which section of the boundary between them shows
most transitions from one set to another?
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• The dominant paths between the centers of two sets will cross along the part
of the boundary with most transitions, but what are the complete dominant
paths from one center of a set to the center of another set?

For all molecular dynamics models usually applied it has in fact been demon-
strated that transitions between almost invariant sets are typically located close to
some transition pathways [BCDG02b]. In the well known large deviation analysis
of diffusive systems it even has been shown rigorously that for any two centers of
almost invariant sets there is a connecting continuous path close to which almost
all transitions occur [FW84]. Available algorithmic techniques for approximation
of transition pathways for real-world molecular systems include, e. g., transition
path sampling [BCDG02a], long-stepsize boundary value approximation [OE96], or
the so-called string method [WWVE02]. All these approaches try to construct dis-
cretizations of the transition path starting from trajectories of the dynamical system
directly. In addition these approaches require that initial and final state of the paths
in state space are known in advance.

In contrast, in this paper we use the notion of shortest paths on directed, edge-
weighted graphs to identify transition pathways. We will present an approach with
which we can simultaneously compute almost invariant sets, their centers and the
transition pathways between them.

Our experiments are based on the tools GADS, GAIO and PARTY. GAIO
[DFJ01] is a tool for the analysis of dynamical systems using set-oriented numer-
ical methods. PARTY [Pre00] is a tool for efficient graph partitioning, i. e. for
partitioning the vertices of a graph into a number of parts such that the weight of
the edges connecting the different parts is minimized. GADS is a toolbox of graph
algorithms for the analysis of dynamical systems [Pre04]. It is based on the tools
GAIO and PARTY and has interfaces to both tools. The set-oriented methods from
GAIO are used to construct a discretized graph of the system. Some methods from
PARTY are used to calculate partitions of a graph. Further on, GADS includes
implementations of further graph based algorithms. As one example, the imple-
mentation of shortest path algorithms of this paper are added to GADS. Overall,
the combination of GADS with GAIO and PARTY is a suitable setting to derive
the key characteristics of dynamical systems.

The outline of this paper is the following. Section 2 introduces the background.
Section 3 describes the shortest path algorithms with its problem adapted general-
izations. Section 4 describes the main concept of this paper. Finally, in Section 5 we
present the results of some experiments showing the usefulness of our new approach.

2 Background

In this section we present the basic definitions.

Dynamical System: Let T : X → X be a continuous map on a compact man-
ifold X ⊂ R

n. Then the transformation T defines a discrete time dynamical system
of the form

xk+1 = T (xk), k = 0, 1, 2, . . .

on X. In typical applications T is an explicit numerical discretization scheme for
an ordinary differential equation on a subset of Rn.
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Measure: In the following we assume that µ is an invariant measure for the
transformation T describing the statistics of long term simulations of the dynamical
system. That is, the probability measure µ satisfies

µ(A) = µ(T−1(A)) for all measurable A ⊂ X.

Moreover we assume that µ is a unique so-called SRB-measure in the sense that
this is the only invariant measure which is robust under small random perturbations.
In other words µ is the only physically relevant invariant measure for the dynamical
system T . For a precise definition of SRB-measures and their theoretical relevance
in our set oriented approach see e.g. [DJ99].

Transition Probability: For two sets A1, A2 ⊂ X we define the transition
probability ρ from A1 to A2 as

ρ(A1, A2) :=
µ(A1 ∩ T

−1A2)

µ(A1)

whenever µ(A1) 6= 0.

Almost Invariance: The transition probability ρ(A,A) from a set A ⊂ X into
itself is called the invariant ratio of A. Heuristically speaking a set A is almost
invariant if ρ(A,A) is close to one, that is, if almost all preimages of the points in
A are in A itself. Using this observation we state the optimization problem for the
identification of almost invariant sets as follows.

Problem 1 (Almost Invariant) Let p ∈ N, p > 1. Find p pairwise disjoint sets

A1, . . . , Ap ⊂ X with
⋃

1≤i≤p Ai = X such that

1

p

p
∑

j=1

ρ(Aj , Aj) = max!

Box Collection: In general the infinite dimensional optimization problem 1 can-
not be solved directly. Therefore we have to discretize the problem. Following
[FD03] we suppose that we have a (fine) box covering of X consisting of d boxes
B1, . . . , Bd such that

X =
d
⋃

i=1

Bi.

In practice this box covering can be created by using a subdivision scheme as de-
scribed in [DH97]. The optimization problem 1 is now reduced to all subsets which
are finite unions of boxes, that is, on subsets of

Cd =

{

A ⊂ X : A =
⋃

i∈I

Bi, I ⊂ {1, . . . , d}

}

.

Box Transition Probability: For two sets Ad
1
, Ad

2
∈ Cd the box transition

probability ρd from Ad
1
to Ad

2
is nothing else but

ρd(A
d
1
, Ad

2
) := ρ(Ad

1
, Ad

2
) =

µ(Ad
1
∩ T−1Ad

2
)

µ(Ad
1
)

assuming that µ(Ad
1
) 6= 0.
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Transition Matrix: The box collection Cd can be used to define a weighted
transition matrix for our dynamical system. This is easily accomplished by defining
the transition matrix P ∈ R

d×d with Pij = ρd(Bj , Bi), 1 ≤ i, j ≤ d. By this
procedure we have constructed an approximation of our dynamical system via a
finite state Markov chain: the boxes are the vertices and two vertices i and j

are connected by an edge if the image of box i under the transformation T has
a nontrivial intersection with box j. The transition probability is given by Pij .

By construction the matrix P is stochastic, that is
∑

1≤i≤n Pij = 1, and by
our assumption on the SRB-measure µ it is reasonable to assume that P is also
irreducible. Denote by µd ∈ Rd the corresponding unique stationary distribution
of P .

Weighted, Directed Graph: The transition matrix P of a Markov chain can
be viewed as a weighted, directed graph G = (V,E). The vertex set is V =
{v1, . . . , vd} with vertex weight vw : V → R

+ as vw(vi) = µd
i . The edge set

is E ⊂ V × V with edge weights ew : E → R
+ as ew((vi, vj)) = µd

iPji. It is
(vi, vj) ∈ E if and only if µd

iPji > 0.

Internal Costs of a Partition: Let p ∈ N, p > 1. Let π : V → {1, . . . p} be
a partition of a graph G = (V,E) into the sets V1, . . . Vp with V =

⋃
1≤i≤p Vi. The

internal cost of π is defined as

Cint(π) =
1

p

p∑

i=1

∑
(v,w)∈E;v,w∈Vi

ew((v, w))
∑

v∈Vi
vw(v)

The optimization problem for the discretized problem for the identification of almost
invariant sets is as follows.

Problem 2 (Internal Cost) Let p ∈ N, p > 1. Find a partition of V into p

pairwise disjoint sets V1, . . . , Vp ⊂ V with
⋃

1≤i≤p Vi = V such that

Cint(π) = max!

Paths in a Graph: A sequence path = ((v1, v2), (v2, v3), . . . (vi, vi+1)) of con-
necting edges (vj , vj+1) ∈ E, 1 ≤ j ≤ i, is called a path of size i and of length
l(path) =

∑i
j=1 ew((vj , vj+1)) from vertex v1 to vertex vi+1. A shortest path

from a vertex vs to vertex vd is a path of minimum length from vs to vd. The
distance dist(vs, vd) from vs to vd is the length of a shortest path from vs to vd.

3 Shortest Path Algorithms

3.1 The Dijkstra Algorithm for Shortest Paths

The Dijkstra algorithm is the standard algorithm for calculating shortest paths in
graphs. It can be used to solve the so called Single Source Shortest Path Problem

where the shortest paths from one source vertex vs ∈ V to all other vertices v ∈ V

have to be determined. The Single Source, Single Destination Shortest Path Problem
is a special case in which only one path from vs to a designated destination vertex
vd has to be determined. In both cases the runtime of the Dijkstra algorithm is
O(|V | log(|V |) + |E|). For a deeper discussion we refer to e. g. [CLR90].

The outline of the Dijkstra algorithm is the following. It assigns an initial
distance of infinity to all vertices, i.e. there are currently no known paths from the
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source to each vertex. Then, the distance of the source vertex vs is set to 0 and the
distances of all neighbors of vs are set to the weight of the edge connecting them
to vs. These vertices form the initial halo set, i.e. they are the vertices for which
one path from vs is known but it is not known whether this path is a shortest path.
The main loop of the Dijkstra algorithm starts with removing a vertex from the
halo set with the minimum known distance, say vmin. For vmin it holds that the
known distance is also the distance of a shortest path. The loop continues with
some operations on the neighbors {v ∈ V ; (vmin, v) ∈ E} of vmin. If a neighbor is
also in the halo set, it is checked whether a path through vmin is shorter than the
current known distance. Otherwise, if a neighbor still has a distance of infinity, it
is added to the halo set with a distance being the sum of the distance of vmin and
the weight of the edge connecting the neighbor to vmin. The algorithm terminates
when the halo set becomes empty. If there are vertices not reachable from vs,
e.g. if the graph is not strongly connected, these vertices will have a distance of
infinity after termination of the algorithm. If a destination vertex is supplied, the
algorithm terminates as soon as this vertex is removed from the halo set. Besides
the distances dist(vs, v) for all vertices v ∈ V , the algorithm also outputs for each
vertex v a neighboring vertex which is the previous station along one shortest path
from vs to v. Thus, one can easily construct all shortest paths from vs with this
information.

The runtime of the Dijkstra algorithm depends on how the halo set is stored and
manipulated. Fibonacci heaps are (theoretically) the best data structure for these
manipulations. They guarantee a runtime of O(|V | log(|V |) + |E|).

3.2 Shortest Path between Sets of Vertices

The Dijkstra algorithm can easily be generalized to find a shortest path from any
vertex of a source set Vs ⊂ V to any vertex of a destination set Vd ⊂ V .

There are just two modifications. Firstly, in the initialization step all vertices of
Vs get the distance value 0 and all neighbors of the vertices from Vs form the initial
halo set. Secondly, every time a vertex v is removed from the halo set, it is checked
whether v ∈ Vd.

This generalization does not increase the runtime of the Dijkstra algorithm
asymptotically. Thus, its runtime still is O(|V | log(|V |) + |E|).

3.3 Several Short Paths

A shortest path between two vertices vs and vd is not necessarily unique. Fur-
thermore, we are not only interested in one or all shortest paths, but we are also
interested in all paths which are only slightly longer than the shortest path.

In more detail, we want to calculate all paths from a vertex vs to a vertex vd

which have a length of at most (1 + eps) times the distance between vs and vd.
In order to do so, we need to apply the Dijkstra algorithm two times. Firstly,
we calculate all distances from vs to all other vertices. Denote these distances by
dist1(v) for all vertices v ∈ V . Among all distances this also includes the distance
between vs and vd. Secondly, we generate a new graph Gr = (V, F ) by F being the
same set of edges as E, but in reversed direction. Then, we calculate all distances
from vd to all other vertices in Gr. Denote these distances by dist2(v) for all vertices
v ∈ V . Note that dist2(v) is also the distance from v to vd in G for any vertex v ∈ V .

We can now decide whether or not an edge (vi, vj) lies on a path between vs

and vd of length at most dist(vs, vd)(1 + eps). Such a path has to consist of three
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parts: a path from vs to vi, the edge (vi, vj) itself and a path from vj to vd. The
shortest length for the first part is dist1(vi) and the shortest length of the last part
is dist2(vj). Thus, an edge (vi, vj) lies on a path between vs and vd of length at
most dist(vs, vd)(1 + eps) if and only if

dist1(vi) + ew((vi, vj)) + dist2(vj) ≤ dist(vs, vd)(1 + eps) .

The result is a subset Esp ⊂ E of edges belonging to the short paths.
The asymptotic runtime of this algorithm is the same as the runtime of the

Dijkstra algorithm, i. e. it runs in time O(|V | log(|V |) + |E|).

4 Dominant Paths between the Centers of Al-

most Invariant Sets

As already outlined in the introduction, in the following we will present a graph
approach to transition pathway computation which in contrast to all other available
techniques is based on a set-oriented description of the underlying dynamics and
not on trajectory-oriented concepts.

Our aim is to calculate the dominant paths between almost invariant sets as
the shortest paths of the associated graph with respect to a dynamically relevant
distance measure. Therefore, we use the algorithms described in Section 3 and
follow the following strategy:

1. Calculate the almost invariant sets.

2. Generate a weight of the edges reflecting dynamically relevant distances be-
tween vertices/boxes.

3. Calculate the center of each set.

4. Calculate the paths between all pairs of centers.

We describe each step in the following.

4.1 Partitioning into Almost Invariant Sets

We use graph based methods to calculate the almost invariant sets of the system. Al-
though there are several graph partitioning tools available like e.g. the tool PARTY
[Pre00], they are generally not designed to partition with respect to the internal cost
of problem 2. Thus, the work in [FD03, DP03] exhibits algorithms which extend
the graph partitioning algorithms and take the internal cost into account. The algo-
rithms from [DP03] are integrated in the toolbox GADS [Pre04] which is also used
for the experiments in this paper. Furthermore, the work in [DP03] describes how
to derive a natural number p of almost invariant sets during the calculation. Finally,
the work in [PPD04] describes the interlock between the standard multilevel graph
partitioning paradigm and the hierarchical set-oriented approach for the analysis of
dynamical systems.

4.2 Weight of the Edges

In Section 2 we have set the edge weight of an edge (vi, vj) ∈ E as ew((vi, vj)) =
µd

iPji. This weighting is appropriate for graph partitioning algorithms due to the
minimization of the internal cost of a partition. However, it is not appropriate for
shortest path algorithms.
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Instead, we want to install an edge weight such that the length of a path path =
((v1, v2), (v2, v3), . . . , (vi, vi+1)) from a vertex v1 to a vertex vi+1 is reflected by the
product of the probabilities to choose the next edge along the path, i.e.

∏i
j=1

Pj+1,j .
Thus, a high probability to go along this path should be reflected by a short path
and vice versa.

We can do this by using shortest paths algorithms on the graph with edge weights

ew(vi, vj) :=
1

log(Pji)
= − log(Pji) .

Then the length of path = ((v1, v2), (v2, v3), . . . , (vi, vi+1)) is

l(path) =

i∑

j=1

ew((vj , vj+1)) = − log(

i∏

j=1

Pj+1,j) .

4.3 Center Regions of Sets

We want to compute the center region of each almost invariant set. There are many
ways to define such a center. We choose a center based on the length of shortest
paths from each member of the set to the center.

We define the center distance of a vertex v ∈ S of a set S ⊂ V as

cdist(v) :=
∑

w∈S

dist(w, v) .

We call a set Sc ⊂ V the center of the set S iff cdist(vc) ≤ cdist(v) for all vc ∈ Sc
and v ∈ S.

The center distance of a vertex can be calculated by one pass of the Dijkstra
algorithm. Thus, the runtime is O(|S| log(|S|) + |ES |). where ES = {(u, v) ∈
E;u, v ∈ S}. The calculation of the center distance for all vertices of the set takes
time O(|S|(|S| log(|S|) + |ES |)). Thus, the calculation of all centers takes no more
time than O(|V |(|V | log(|V |) + |E|)).

However, we do not calculate the center distance for all vertices of the set.
Instead, we choose an arbitrary vertex and calculate its center distance. Then, we
calculate the center distance of all neighbors of this vertex and progress with the
neighbor with the smallest center distance and its neighbors. We terminate when
no neighbor of the current vertex has a smaller center distance. This way we only
compute the center distance of a small number of vertices.

4.4 Paths between Centers

We calculate the paths between all pairs of centers by using the generalized Dijkstra
algorithm of Section 3. There are p centers and a total of p ∗ (p− 1) shortest paths.
By applying the Dijkstra algorithm for each pair of centers results in a runtime of
O(p2(|V | log(|V |) + |E|)).

5 Numerical Experiments

We implemented the described shortest path algorithms into the tool Graph Al-

gorithms for Dynamical Systems (GADS). It has interfaces to the tools GAIO and
PARTY and makes use of their fundamental procedures. Thus, GADS is like a layer
around GAIO and PARTY with some own implementations of graph algorithms.
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Our Implementation of Dijkstra The runtime of the Dijkstra algorithm
depends on how the halo set is stored and manipulated. Our implementation of the
Dijkstra algorithm uses binary heaps. Therefore, the running time of the algorithm
is O(|E| log(|V |)). This can asymptotically be improved to O(|V | log(|V |)+ |E|) by
the use of Fibonacci heaps. However, the operations on Fibonacci heaps involve
larger constants and an implementation is more complex than an implementation
of binary heaps. Furthermore, experiments usually show a similar runtime behavior
for both realizations.

5.1 Examples

We now illustrate the meaning of shortest paths in the context of dynamical systems.

Pentane For the first example we use data from [DHFS00] in which a reversible
stochastic matrix has been generated by simulations of an ODE-based model of the
n-pentane molecule. Those computations made use of two dihedral angles as the
essential variables. The boxes are lying in the plane defined by the two dihedral
angles. This example has already been used in [DP03, FD03]. Figure 1 shows the
transitions/edges between the boxes (left) and a shortest path between two boxes
(right).

Figure 1: Left: All transitions between the boxes. Right: A shortest path between two

boxes.

In Figure 2 we illustrate the generalizations of shortest paths on this example.
The left picture shows a shortest path between two sets of boxes. The center picture
shows all paths which are up to 10% longer than a shortest path and the right picture
shows all paths which are up to 20% longer.

In Figure 3 we illustrate the calculation of the dominant paths between almost
invariant sets. We first computed a partition into 7 almost invariant sets. The
left picture shows the partition by different colors for different parts. The partition
has a cost value of 0.963, i.e. at each time step the probability that the pentane
molecule will remain in the current almost invariant set is 0.963. After calculating
the weight of the edges, we then calculated the centers of these sets. The centers
are marked with a black box. The center picture shows the shortest paths between
all pairs of centers, i.e. a total of 42 paths. Obviously, several of those paths go
along the same transitions. Finally, the right picture additionally shows all paths
between the centers which are up to 10% longer than the shortest path.
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Figure 2: Left: A shortest path between two sets of boxes. Center: All paths which are

up to 10% longer than a shortest path. Right: All paths which are up to 20% longer than

a shortest path.

Figure 3: Almost shortest paths in the pentane-example. The colors illustrate a partition

into 7 parts. Left: The centers of the sets. Center: The shortest paths between all pairs

of centers. Right: All paths which are within 10% of the length of a shortest path.

Trialanine Figure 5 illustrates similar results on a simulation of a model of the
trialanine molecule. The simulation was generated in vacuum using the Hybrid
Monte Carlo method [BPCR93] with 550.000 steps with the GROMACS force field
[BvdSvD95, LHvdS01] at a temperature of 750K. The integration of the subtra-
jectories of the HMC proposal step were realized with 1 fs timesteps of the Verlet
integration scheme. This yielded an acceptance rate of about 99 %.

We used the high temperature of 750 K for the following reason: Simulation
for 300 K in vacuum would lead to data whose conformation issues are perfectly
described by the two central peptide angles Φ and Ψ. Instead, the time series
from 750 K simulations show an additional feature: We observe transitions between
substates of the torsion angle Ω (see Fig. 4) that we do not observe in 300 K
simulations of this length. As one can see in Fig. 4, these transitions introduce
additional features of metastability and thus result in a richer effective dynamics.
We thus have three essential variables, the peptide backbone torsion angles Φ, Ψ
and Ω; this fact can also be confirmed by means of successive PCCA [CWSE02].
The torsion angle Ω is separating two regions in the 3-dimensional state space by
switching orientation from 0o to 180o, cf. again Fig. 4.

The metastable partitioning of the state space results in a partition into 5 sets
as shown in Figure 5 (left). The calculation of the centers of the parts and of
the dominant paths between the centers in Figure 5 (right) clearly shows that the
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Figure 4: Simulation of the trialanine molecule. Left: The trialanine molecule shown in

ball-and-stick representation and the three torsion angles Φ, Ψ and Ω. Right: A projec-

tion of the simulation data on the torsion angles Φ, Ψ and Ω clearly reveals metastable

behavior.

transitions between the centers coincide with physical expectation. More precisely,
the border between the sets S2 and S3 is playing a central role in bridging the
energy barrier separating the different orientations of Ω. Note that the set S3

allows transitions from the lower/left to the lower/right via periodicity.

Figure 5: Analysis of trialanine. Left: The 3-dimensional state space is partitioned into

5 almost invariant sets. Right: Shortest path between all pairs of centers. Note that

we are in a periodic scenario such that transitions from S1 and S2 to S4 and S5 are also

integrated through S3.

Again, we also computed paths which are only slightly longer than the shortest
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paths. Figure 6 (left) shows all paths which are up to 5% (left), and 10% (right),
longer. Location and aggregation of these paths again coincides nicely with physical
intuition.

Figure 6: Analysis of trialanine (cont.). Left: All paths which are up to 5% longer than
the shortest paths. Right: All paths which are up to 10% longer than the shortest paths.

Finally, the authors want to emphasize that the transition paths computed herein
can only be discrete approximation of the potentially smooth optimal transition
pathways. Obviously, they will be the coarser approximations the coarser the un-
derlying box partition of state space is. However, there are several techniques that
are optimized for computing the optimal smooth pathway if good enough coarse
approximations are already known. Thus, the technique presented herein can be
very helpful to compute good initial pathways for iterative pathway refinement up
to high accuracy. In addition, our method will yield immediate information about
the width of the pathways by computing more than only the shortest paths.

Fast–Slow Dynamics in a Double Well Potential As another example
we consider the dynamics of the SDE

ẋ = −DxV (x, y) + σẆ1

εẏ = −DyV (x, y) +
√

εσẆ2

with a potential function V (x, y), standard Brownian motions W1 and W2 and a
scaling parameter 0 < ε << 1 that introduces a time scale separation between
the x and the y variable. This system has been considered in detail in [SWHH04].
The system has an invariant measure with density proportional to exp(−βV (x, y)),
and the almost invariant sets of this system are determined by the prominent local
minima of the potential function, independent from ε. However, it seems reason-
able to expect that transition paths between the minima do depend on the scaling
parameter.

To explore the behavior of transition paths with varying ε, we made experiments
with ε = 0.005 (Figure 7), ε = 0.05 (Figure 8) and ε = 0.5 (Figure 9). Using sample
paths of the SDE, we derived the transition matrix based on a box collection with
box size adapted to the average potential in each box.

The left pictures in the figures show a partition of the resulting state space into
2 parts each. For all three values of ε the partitions look almost identical and reflect
the two almost invariant sets given by the potential. However, by computing the
dominant transition paths we find that the paths are very different. Therefore, we
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Figure 7: Example of fast–slow dynamics in a double well potential with ε = 0.005.

Figure 8: Example of fast–slow dynamics in a double well potential with ε = 0.05.

also included the shortest paths between the centers of the two sets into the pictures.

The paths clearly show that the transition between the almost invariant sets depend

on the amount of time scale separation. The right pictures in those figures show

the invariant measure together with all paths which are at most 2% longer than the

shortest paths.

Figure 9: Example of fast–slow dynamics in a double well potential with ε = 0.5.
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6 Conclusion

We presented a novel approach to transition pathway approximation between almost
invariant sets of molecular dynamical systems based on graph techniques. This
approach allows to extract transition pathways from a set oriented description of the
dynamical system. Therefore, a transition graph based on a decomposition of state
space which requires an exploration of the entire state space has to be computed.
This disadvantage is counterbalanced by the possibility to compute almost invariant
sets, their centers and the transition pathways simultaneously from the same data.
In contrast, other available techniques have to know about possible initial and target
centers in advance.

It should be obvious that the shortest path in the graph crucially depends on
some small number, i. e., on the small transition probabilities on the critical edges
in the graph. Since these numbers will have to be approximated numerically we will
have to face the problem of sensitivity of the shortest path on numerical precision.
This is one of the main reasons for the approximation of all (1+ ε)-shortest paths in
the graph. If ε could be adjusted to numerical precision then the family of almost
shortest paths will include all possible shortest paths indistinguishable by numerical
precision. This is an aspect of further investigation.

It will also be a subject of further exploration whether the proposed algorithm
can be integrated into other techniques in order to compute good initial guesses for
smooth optimal transition pathways to be identified by further optimization.
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154 M. Dellnitz, R. Preis, Ch. Schütte, Dominant Paths Between Almost Invariant

Sets of Dynamical Systems, 2004

To get these preprints, please visit

http://www.mathematik.uni-stuttgart.de/∼mehrskalen/


