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Abstract

This article is concerned with averaging techniques for stochastic
differential equations with different temporal scales. We reformulate
one of the theorems of Kurtz [4] in the sense that some abstract con-
ditions of the theorem are replaced by others that allow for simpler
validation for specific applications. Furthermore, the reformulated the-
orem is applied to two different problems: first, to a stochastic dynam-
ical systems where a slow mode is alternately coupled to different fast
modes but a stochastic switching process controls to which one; and
second, to Langevin equations with different temporal scales as they
appear in molecular dynamics and materials science applications.

1 Introduction

In complex system modelling, one often finds mathematical models that
consist of differential equations with different temporal and spatial scales.
As a consequence, mathematical techniques for the elimination of some of
the smallest scales have achieved considerable attention in the last years;
the derivation of reduced models by means of averaging or homogenization
techniques, or keywords like multiscale modelling may serve as typical links
to this discussion.

This article is concerned with averaging techniques for stochastic differ-
ential equations with two different temporal scales. The papers of KURTZ
[4] and PAPANICOLAOU [7] belong to the classical texts on this subject. For
the more applied direction of the field, they still seem to be used as the main
references to the theory. However, from the perspective of applications in
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complex systems modelling the theorems in these papers contain rather ab-
stract conditions. In this article we will reformulate the main theorem of
Kurtz from [4] in the sense that we will eliminate the (perhaps) most ab-
stract conditions on ergodicity and on the range of the shifted generator of
the process under consideration. This will be achieved by reference to some
results of DAVIES [1] and LUMER & PHILLIPS [8].

Furthermore, we illustrate the possible usefulness of the reformulated
theorem by considering two different problems that, both, originate from
complex system modelling: In the first example, we consider a stochastic
process where a slow variable at each instance is coupled to one of two fast
variables but where a stochastic switching process controls the switches from
one fast variable to the other. Systems like this occur in situations where
some fast mode of a system rarely switches from one almost invariant set in
its state space to another one such that the time scale of the switching is
as slow as the slow modes of the system. This situation and its relations to
molecular dynamics has been discussed in [10].

The second example is concerned with averaging of Langevin equations with
different temporal scales as they are frequently used for modelling the dy-
namical behavior of large molecular systems [9, 11].

2 Kurtz Theorem Revisited

2.1 Background

We are given a time homogeneous Markov process {X;};cr+ on the state
space X via its transition kernel p : RT x X x B(X) — [0,1] with

p(t,a:,A) = P[Xt €A ‘Xt:() = ib']

With the Markov process we may associate the family of propagators P;,t >
0 acting on L!(X) according to the formula,

/ Pif(2)dz = / F@)pts Adz  all A€ BX). (1)
A X

By exploiting some properties of the transition kernel it is easily seen that
P, forms a semigroup wrt. time ¢, see e.g. [3]. The semigroup P; describes
the evolution of the distributions of the Markov process X;. Namely, if we
consider the process as beginning not at a given point Xy := Xy—y = z but
rather a random point Xy with distribution po(dz) = f(z)dz : P[Xo € A] =
po(A), the distribution at time ¢ will be P, f(z)dz.

The infinitesimal generator L of the semigroup is defined by the equality

. Pf—f
Lf = lim —=—,



the domain D(L) of £ being the set of f € L' (X) for which the limit exists.
It is evident that £ is a linear operator from D(L) into L' := L}(X). Tt is
not generally the case that D(L) equals L', but it is dense in the space

L = L': lim |P.f — f|| = 0}.
{feL': lim |IPf - Il =0}
We call P, a strongly continuous semigroup if

. _ 1
tl_l)r(ﬂ_Ptf = f forevery f e L.

Thus, if P, : L}(X) — LY(X) is strongly continuous in L' then D(L) is
dense in L'(X), i.e., D(L) = L.
For the systems we are interested in the infinitesimal generator of the

semigroup P; arises in connection with the Fokker-Planck equation

Ouft = Lft,

where the solution is
ft = PBifo.

A probability density f, is said to be invariant under the Markov process
X if Py fy = f«. In terms of the generator £ we can express the invariance
of a density f. € D(L) equivalently by Lf, = 0. Thus, every density from
the nullspace of £, denoted by N (L), gives rise to an invariant density of
the process X;. A Borel set £ C X is said to be invariant with respect to a
positive operator P on L!(X) if for f € L'(X) with Supp(f) C E we have
Supp(Pf) C E, where

Supp(f) = {z € X: f(=z) # 0}

and all statements about sets are taken modulo null sets. The semigroup P;
is said to be irreducible if the only sets which are invariant with respect to all
P, are () and X. As is shown in [1, Chapter 7], irreducibility of the semigroup
P, immediately implies dimA (£) < 1. Furthermore, if P; is assumed to be
irreducible with dimA(£) = 1 the unique invariant density f, is strictly
positive which means that

/Ef*(a:)d:c >0

for every Borel set E with positive Lebesgue-measure [1, Chapter 7).

2.2 Reformulation of Kurtz’s Theorem

Throughout the section we fix the o-finite measure space (Z,dz). Suppose
that Pf is a strongly continuous contraction semigroup acting on the space



L' := L'(Z) and depending on a smallness parameter . Our basic assump-
tion will be that its generator £¢ can be decomposed into the sum of two
generators:
1
L= =Ly + Lo (2)
€
We are interested in what happens to Pf as e — 0.
Suppose that the semigroup Pf corresponds to a Markov process

(X(t),Y(t) eX XY = Z

where X ¢ denotes the slow mode and Y the fast mode (the part £;/e of
the generator incorporates the forces acting on Y€ and the time scale of the
dynamical behavior of Y€ is assumed to scale with €). As an example for the
origin of such processes we may consider dynamical systems of the following
form:

d

—X¢ = f(XY€

= Fx Y5, (3
d € _ 1 € €

ay - Gg(X aY 777a6) (4)

where ¢ and 1 are time-dependent stochastic processes, and f and g are
chosen such that the solution is a Markov process with generator of form
(2) . If we freeze Y(t) = y on the RHS of (3) then the solution X(t) :=
(X€(t),y) of (3) is independent of € and can be considered as a Markov
process corresponding to the infinitesimal generator £Y := L. Here, the
index indicates the coordinate that can be considered fixed, i.e., for y fixed
LY acts on f(z,y) as a function of z alone. Thus, we have to distinguish
between D(Ly) C LY(X x Y) and D(LY) C L} (X x {y}). We will simply
identify X x {y} = X in the following. In the same way we relate the process
Y£(t) (given as the solution of (4) for frozen X¢ = x) to the generator (1/¢)L;
where £; is denoted by L{ if we want to say that it acts on f = f(z,y) as
a function of y alone. Thereby we get a family of operators L£{ acting on
the y-direction for fixed z. Again, the domain of L{ is seen as a subset
of L'(Y), whereas £; is considered as operator acting on functions f =
flz,y) € (X xY).

A basic demand for the convergence of Pf to a limiting semigroup P; as
e — 0 is that the process Y)¢ is ergodic in a sufficiently strong sense. This
is related to some requirements for the generator family £{. More precisely,
we have to demand that for every x € X there exists a strictly positive
density p; € L'(Y) such that £%u, = 0. For simplicity let us additionally
assume that the corresponding propagator semigroup S7 is irreducible!, thus

'A comment on the assumption of irreducibility is given in the next remark



dim N (L¥) = 1 for every z € X. Let us now define the projection operator
IIon LY(X xY) by

() (@) = paly) /Y f(@,y)dy. (5)

Thus, IT maps every function f € L'(X x Y) onto the space of functions
which can be written in the form

f(@y) = f(@) 1aly),

where f is an arbitrary function of L!'(X). Again, by fixing x the operator
I can be considered as acting on L'(Y). If this is meant we will write IT,
instead of TI, thus TT, : L}(Y) — N(L%). Now we are ready to present our
theorem. The range of an operator A is denoted by R(A).

Theorem 2.1 Let Pf,L¢, L1, and Lo be defined as above. Furthermore as-
sume that L1 and Lo are generators of strongly continuous contraction semi-
groups Sy and Uy, respectively. In addition, suppose that L1 is the closure
of Ly restricted to D(L2) N'D(Ly). For every xz € X suppose that S¥ is irre-
ducible and that there exists a strictly positive density . € L'(Y) such that
Lipgy = LTugz = 0. Let I denote the projection operator according to (5)
and let D = R(II) N D(Ls), and define L, by

L,f =TLyf for all f € D.

Suppose that the closure of L, is the infinitesimal generator of a strongly
continuous semigroup P, defined on D with D denoting the closure of D.
Then the following property holds:

lim Pff = Bf for all f € D.
e—0

Proof: The proof is based on a Theorem of Kurtz [4] and on results by
Davies [1], stated in the appendix as Theorem A.2 and Theorem A.3. In
order to apply Theorem A.2 we have to show the following conditions:

(i)

o0
lim A / e M8, fdt = IIf,
A—0 0

for all f € L}(X x Y) and II defined by (5).

(i)
DCRA-L,) for some A > 0.



(i) can be verified by using Theorem A.3 in the appendix which has to be
applied to the semigroup S¥ for every z € X: Take f = f(z,y) € L}(XxY)
and fix the variable z such that f, := f(z,:) € L'(Y). Now we apply
Theorem A.3 to S§ which is assumed to be irreducible with Sfu; = pgz. S7
obviously satisfies (22). Thus, we immediately get

o0
lim / ¢S (2.}t = lim X /0 eMSTfdt = Tfs,  (6)

A—0

where the limit is in the sense of strong convergence in L!(Y) for fixed .
Let us define Fy by

o0
F@y) = [ ¢ M1 (@)t - T (o).
0
We now have to show that Fy(z,y) converges to 0 in L'(X x Y), i.e

//|F,\(a:,y)|d:1:dy — 0, as A — 0. (7)
zJy

According to (6) we know that
() = / |Fy(z,p)ldy — 0
pointwise for every z € X as A — 0. Suppose that there exists an integrable
function F € L'(X) such that
Fy(z) < |F(z)] (8)

for every x € X. Then we are able to apply Lebesgue’s dominated conver-
gence theorem to get the desired convergence (7). Thus, we only have to
show (8):

o
/|Fx(x,y)|dy < ||/\/O e ST fodt| L yy + 1M fallr(y)
Y

< A / NS fall oyt + [ Mafallzr )

IA

A / N ey dt + Mefellzy
||f )HL1 + ||waz||L1

which is integrable in L!(X) as we have chosen f € Ll(X xY).

For (ii) we observe that for all A > 0 we have R(A — £,) = D since
we assumed that Zu is the infinitesimal generator of a strongly continuous
semigroup on D. This is due to the Theorem of Lumer-Phillips which can
be found in the appendix. O

IA



Remark 2.2 The reformulated theorem no longer contains the conditions
on ergodicity and on the range of the shifted generator. The new condi-
tions on irreducibility of the fast process and on the existence of a strictly
positive invariant measure are more easily checked, for example for systems
that originate from statistical mechanics, molecular dynamics, or materials
science.

It is possible to formulate the theorem even if we do not assume irre-
ducibility of the process but only the existence of a strictly positive invariant
measure.

Theorem 2.3 Let Pf, L, L1, and Lo be defined as above. Furthermore as-
sume that L1 and Lo are generators of strongly continuous contraction semi-
groups Sy and Uy, respectively. In addition, suppose that L1 is the closure of
Ly restricted to D(L2) N D(Ly). For every x € X suppose that there exists
a strictly positive density p, € L'(Y) such that Lipy = LSuy = 0. Let TI
denote the projection operator defined by

o
IIf := lim X / e MG, fdt
A—0 0

and let D = R(II) N D(Ls). Define L, by
L.f =TLyf for all f € D.

Suppose that the closure of L, is the infinitesimal generator of a strongly
continuous semigroup P; defined on D with D denoting the closure of D.
Then the following property holds:

lin(l)Pff = PBf for all f € D.
€E—>

Remark 2.4 Due to [1] the expression for the projection I1 in Theorem 2.3
1s equivalently given by the mean ergodic projection

1 T
IIf := lim — S;fdt  for each f € L'(X x Y).
0

T T
For example, these results enable us to apply the Theorem of Kurtz even
to the deterministic Hamiltonian system with slow and fast parts (result-
ing from so-called strong constraining potentials) which obviously is not

irreducible. This is investigated in another project and will be part of a
forthcoming paper



3 Example 1: SDE with Switching Process
Let us consider the following SDE with Markovian switching of the form

i(t) = g(z°(t),y°(t) + UW,_ (9)
e(t) = Oy (t) + Veo,uyWia, (10)

with z,y € R, € > 0 and W, W) denoting standard Brownian motions.
Let s(t) be a right-continuous Markov chain on a probability space taking
values in a finite state space S = {1,2,..., N} and §;,0; take values in R*
for all i € S. The generator S = (sj;)nxn of the Switching chain s(t) is
given by

sijdt + o(dt) ifi # 7,

Pls(t +dt) = jls(t) =1] = { 1+ sgdt +o(dt)  if i = j,

where d¢ > 0. Here s;; > 0 is the transition rate from 7 to j if 7 # j while

Sii = _Zsij' (11)
i£]
For € < 1, this system consists of a fast variable, ¢, and a slow one, z. For
fixed « € S we will denote the process in the fast variable y by y;. Each
process y5 is an Ornstein-Uhlenbeck process and consequently ergodic. In
the following we denote the stationary density of each y§ by u;, where y; is
given by

piy) = (1/03)\/6i/mexp(=8iy*/o?), (12)

which is the Gaussian density with mean zero and variance 07 /24;, and thus
independent of e.

Remark 3.1 [t is emphasized that one should not confuse the evolution of
a single trajectory y©(t) with the dynamics given by

T°(t) = Lisy=13¥i (1) + Lisy=21¥5(t) + - + Lisy=nyyiv(t)
where y5 is the solution process of
ei(t) = —dwy(t) + Ve, W;,  i=1,2,...N, (13)

The difference should be obvious: The trajectories yi(t), i =1,...,N, evolve
independently of each other and the dynamics of §¢ is governed by cutting
out time segments of ys(t),i € S, according to the switching process s(t),
respectively. However, the trajectory y*(t) due to (10) is given by changing
the dynamics due to the switching chain such that we do not get points of
discontinuity at the jumping times of s(t).



Systems like (9) & (10) occur in situations where some fast mode of a
system rarely switches from one almost invariant set in its state space to
another one such that the time scale of the switching is as slow as the slow
modes of the system. This situation and its relations to molecular dynamics
has been discussed in [10].

3.1 Propagator semigroup and Fokker-Planck equation

Let Z¢(t) denote the R? x S-valued process (z¢(t), y¢(t), s(t)). Then Z¢(t) is
a time homogeneous Markov process. Due to (1) the family of propagators
Pf,t > 0 acting on L'(R? x 8) is given by the formula

PO = 3 [ . dn i)z,

1€S

where p(t, Z,1,dz, {j}) denotes the transition function corresponding to the
Markov solution process Z¢(t) = (x(t),y*(t), s(t)) of (9)&(10) for given
initial condition (z¢(0),y(0)) = %, s(0) = i.

Using the notation of Section 2.2 we note that the processes X(t), Y(¢)
are given by X¢(t) = (z¢(t),s(t)), Y(t) = y°(¢t), thus X =R xS, Y = R.
The infinitesimal generator L£¢ of the semigroup Py is given for every f €
D(L€) by the operator L¢f : R? x S — R being defined by

1
Lf = E[hf + Laof

with
2
. o; . .
Llf(xayaz) = ?Ayf(x,y,z) + Vy(ézyf(a:,y,z))
2

Lof(z,y,0) = 5 Daf(@,y,8) = Valgle,y)f(@,9,9) + Y sjil@) (2, ,9).
j€ES

As L1 acts as a differential operator on the fast variable y only, it can be
considered in the space L'(Y) as well. If this is the case, i.e., if we consider
L1 as acting on functions of y only, we will denote it £. In accordance with
Section 2.2, the notation £} is used to indicate the coordinates that can be
considered fixed for the respective operation. As £; does not depend on
the variable z, we will write £} instead of £{”'. Analogously, for fixed y the
generator L3 := L, is defined for functions depending on z and i. Thus, it
should be clear that

D(L1), D(L2) C L'(XxY)=LY(R?x8),
D(L}) C LYY)=L'(R),
D(LY) c LYX)=L'Rx8)

Ne]



In order to assure strong continuity of the semigroup generated by Lo the

function g = g(z,y) from (9) has to be chosen appropriately. For example,
this is fulfilled for ¢ = 0 or ¢ = . Another example is discussed at the
end of Section 3.2. Thus, we make the following assumption on the drift
coefficient g = g(z, ).
Assumption 3.2 Suppose for eachy € Y that L3 generates a strongly con-
tinuous contraction semigroup UY on LY(X), i.e., D(LY) = LY(X). More-
over, assume that NyerD(LY) is dense in L'(X) and that the closure of
LS = L1/e+ Lo generates a strongly continuous contraction semigroup Pf.

The strong continuity of U{ for every y on L!(X) implies that U, is a strongly
continuous semigroup on L'(X x Y), where

(Utf)(xayaz) = (Utyfy)(xaz)7 fy = f(aya)

Note, that the density of N,D(L£Y) in L'(X) implies £1/e + L5 is densely
defined for all € > 0 and that £; is the closure of £; restricted to D(L2) N
D(L1). Thus, due to the Theorem of Lumer-Phillips the assumption that
R(A — (L1/e+ L2)) is dense in L}(X x Y) for some A > 0 would already
imply the strong continuity of Pf on L'(X x Y).

Let us now consider the generator £} of the Markov process defined
by (13) which is known as the Ornstein-Uhlenbeck process. The evolution
of densities is governed by the Fokker-Planck equation 8;f = Lif, (e = 1).
Due to Davies [2, Chapter 4.3], this defines a strongly continuous contraction
semigroup S; = exp(tL}) on L'(R). The following is known about the
semigroup S} (see e.g. [5, Chapter 11.7]):

(i) Si is irreducible;
(ii) the semigroup possesses a (unique) invariant density p; that is given
by (12).
3.2 Reduced System

We want to average with respect to the fast variable y and obtain an averaged
equation for the slow variable z alone. Thus, we would like to derive an
equation for the distribution function in z:

Z/ﬂﬁ(t,w,y,’i)dy
1€S

which should be valid in the limit ¢ — 0. To this end, we introduce the
density p¢ with

(t,2,0) = / p°(t, 2,9, )dy.

10



It is expected that an approximate solution of the full dynamics would be
obtained by multiplying each p¢(¢,z,4) by the stationary distribution u;(y)
of the SDE (13). We formalize this by defining the projection operator II
acting on functions f = f(z,y,4) € L'(R? x S) by

(L) (2, y,8) = paly) - / F(ay, i)dy. (14)

Under the Assumption 3.2 the results of Section 2.2 are applicable in
this situation. To this end, we calculate the 'reduced’ operator L_u defined
by L, := IIL; on the pre-set domain D = R(II) N D(L3). Now we observe
that D can be expressed by

A

D = {ui(y)- f(z,i): f€nyerD(LY}

Thus, for f(z,y,i) = pi(y) - f(z,4) simple calculations reveal

The operator £ is defined for f € NyD(LY) by

Liei) = T Baf(a,i) = Va(Gile) - fl0) + D sji(a)f(2,3),

Jj€eSs

where for i € S
Gitz) = [ gta) mily)dy.

Assumption 3.3 The functions G; imply that the closure of L generates a
strongly continuous semigroup e'* on L*(X) = L'(R x S).

Remark 3.4 Let us suppose that for every ¢ € S there is a y; € Y such
that
Gi(z) = g(z,y;), forallz € R.

Then Lf(z,i) = [,g’f(a:,z) such that the domain of L is given by
D(f,) = ﬂiesD(ﬁgi).

This implies that the closure of L generates a strongly continuous semigroup
et“ on L}(X) = L' (R x S) where its domain contains NyD(L}).

With Assumption 3.3 being valid, Theorem 2.1 is applicable where the lim-

iting semigroup P, is generated by the closure of £, on D and is strongly
continuous on

D = {pi(y)- f(z,i):  feL'®xS)}

11



Conclusively, the evolution of densities f = p;(y) f(z,i) € D is governed
by the semigroup e’* on L'(R x S) according to

(Pf)(@,y,4) = mily) - (€€ f)(x,9),

and Kurtz’s Theorem yields weak convergence, i.e., strong convergence of
densities:

lim Pff = Bif in D.

e—0

L is the infinitesimal generator associated with the SDE

i = Gs(t)(xo) +O'W,
Gi(z) = /ﬂ%@m@ﬁ%

with s(t) being the Markovian switching process with transition rates given
by (11).

Example. We briefly discuss the case where the drift term g is given by

9(z,y) = —z -9,

which is the case if we introduce the potential V(z,y) = % -x? -y ie.,

~V.V(z,y) = g(z,y). For fixed y # 0, it is known that £} generates a

strongly continuous semigroup where the domain contains Cy(R x S) with

Cy denoting continuous functions vanishing at infinity, see e.g. [2]. For y = 0,

the domain of Egzo is given by the Schwartz space. Thus, we observe that
NyD(LY) is dense in L' (X).

The averaged functions G; are given by

2

Gi(z) = —w-/ Yy pily)dy = —z 55 = 9(2, i)

R 1

with 02 /24; denoting the variance of the density u;, respectively, according

o (12), and y; = 1/0?/26;. The limiting generator £ corresponds to the

averaged system _
i = Gs(t)(.’EO) + oW,

and the domain of the generator is N;esD(LY'). Thus, Theorem 2.1 is ap-
plicable since Assumption 3.2 and Assumption 3.3 are fulfilled.

4 Example 2: Langevin equation

As a second example we consider the following SDE

i€ =p,  pF = —VoV -p+os (15)
f =15, e@f = —V,V — v+ eols. (16)

12



with € > 0, and V,V,V,V denote the derivatives of the potential V' =
V(z,y) wrt. z,y, respectively, and W}, j = 1,2 standard Brownian mo-
tions. For € <« 1, this system consists of fast variables (y,v), and slow
ones (z,p). By this example we illustrate the type of equations for which
the velocity of the fast motion depends on the slow variables. It is well-
known that the SDE (15)&(16) has an invariant measure p(dz,dy,dp,dv) =
pu(z,y, p,v)dzdydpdr with smooth density:

1 1 2
u(xayapa V) = EQXP(—,BV(CC,y)) exp(_ﬁi(pQ +V2))’ :8 = ?a
where Z denotes the normalization constant. The above SDE can also be

written in second order form as
i = —V,V — i 4+ oW, (17)
e = —V,V — e + eols, (18)
For abbreviation we will frequently use the notation:

x = (z,p), ¥y = (y,v).
Thus, x € X = R? denotes the slow variables and y € Y = R? the fast
degrees of freedom.
The Fokker-Planck forward equation associated with the SDEs (15)&(16)
reads

O = L° (19)

1 1
2
£ = %AU—I—I/-V,,—i—VyV(a:,-)-V,,—V-Vy—I-l

2
Ly = %AP +pVp+ VoV(y,) -V — p- Vg + 1

The indices of the operators £ and £} indicate the coordinate that can
be considered fixed for the respective operation, e.g., L7 can be considered
as a differential operator acting on y = (y,v), but depending on z via
the potential function V (z,-), where for y fixed £} acts on a function f €
L'(X x Y) as a function of x = (z, p) alone.

The Fokker-Planck equation (19) describes the evolution of the probabil-
ity density p¢ under the dynamics given by (15)&(16) and the semigroup of
propagators Py is generated by the closure of the operator £¢. For simplicity
we will assume the strong continuity of the semigroup generated by L€ on
L'(X x Y). Furthermore, we will make the following assumptions:

(A1) £; and Ly are generators of strongly continuous semigroups Sy, U,

respectively, where their domains are considered as dense subsets of
LY(X xY);

(A2) L; is the closure of £ restricted to D(Ls2) N D(L1).

13



4.1 Reduced System

By fixing the slow variable z € R we introduce the random process y,(t) =
(yz(t), 9z (t)), which is defined by the stochastic differential equation

Yo = —VyV(iE,-) — Yz + 0W2-

The solutions of this equation form a Markov process in Y = R?, depending
on z € R as a parameter. The evolution of densities is governed by the
strongly continuous semigroup Sy with infinitesimal operator £{. Let us
impose the following conditions on the potential V (z,-) for fixed z € R:

Proposition 4.1 The function V(z,-) € C* satisfies

1. V(z,y) >0 for ally € R;

2. V(z,-) is a polynomial growing at infinity like ||y||*, with | a positive

integer.
Then, the semigroup S is irreducible and possesses a (unique) invariant
density py given by
1 VB 14
pa(y,v) = 7@ exp (=B V(z,y)) \/2—7Texp( A5v°)
2@) = [ew(-pViny) dy

Proof: The statements can easily be verified by using Theorem 3.2 and
Lemma 3.4 of Mattingly et al. [6] O

Let us now return to the full system and define the projection operator
II for functions f = f(z,p,y,v) = f(x,y) € L' (X x Y) according to

If(x,y) = Nx(}’)'/Yf(an)dY-

For every z € R the density p; is normalized to 1, i.e., [|pzllp1(y) = 1.
Thus, it is obvious that the range of II is given by

~

RM) = {uwly)-fx): fel'X)})

It follows, that every f € D = D(L2) NR(II) can be written as f = pg(y) -
f(x), where we subsequently assume that f € N,D(Ly) C L'(X). Since
Ly contains derivatives wrt. x = (z,p) only, we immediately see that for

f=(y) - f(x)
Luf = (ML2f)(x,y) = paly) - £F(x),

14



where L is defined according to

L = 7Ap—I—p-Vp—I—/YVIV(:L',y)-uz(y)dy-Vp—p-Vm—i-l.
—1.

One easily computes that /. can again be expressed as the gradient of the
averaged potential, i.e.,

/Y VoV (2,y) - pe(y) dy = VoV ()

with
V() = —% log Z(x),

where Z(z) has been introduced before as the normalization constant of
the reduced invariant measure on the phase space fiber of the fast variable.
Therefore,

2
L = %Ap+p'vp+vmv'vp_p'v$+l’ (20)

which is the infinitesimal generator of the semigroup e'* corresponding to
the Langevin-equation

i = -V, V(% — % + oW.

The invariant measure p of the reduced dynamics in the slow degrees of
freedom is given by

fi(x) = / pu(x,y)dy,
Y
equivalently expressed by
1 1
(e.p) = +2(2) exp(—1")
with Z denoting the normalization constant.

Theorem 2.1 is applicable if the closure of f'u generates a strongly con-
tinuous semigroup P; on D, which is fulfilled whenever the closure of L
generates a strongly continuous semigroup on L'(X) denoted by e'*. Note
that every f € D is written as f = pg(y) - f(x) with f € L*(X) such that

(PS)Gey) = paly) - (¢ ) ().
Theorem 2.1 implies that for every f € D
im P f = P,

where the limit is considered in the sense of strong convergence in L.
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A Appendix

Theorem A.1 Let S: be a strongly continuous semigroup on L with infinitesimal operator
L1. Suppose

lim X [ e MSfdt = IIf (21)
A—0 0

exists for every f € L. Then
1. TI is a bounded linear projection, i.e., II* = II;
2. SSII=11S; =11 all t > 0;
3. R(II) = N'(L1) (the null space of L1);
4. R(L1) is dense in N (II);
5 Li\IIf=0all fe L, TIL:f =0 all f € D(L1).

Let U; and S; be strongly continuous semigroups of linear contractions on a Banach
space L with infinitesimal operators L2 and L1, respectively. Suppose that for each suf-
ficiently small €, the closure of (1/€)L1 + L2 is the infinitesimal operator of a strongly
continuous semigroup P on L. In addition, assume that £; is the closure of £; restricted
to D(L2) N D(L1). We are interested in what happens to Pf as e goes to zero.

Theorem A.2 (Kurtz) Let Uy, S; and Pf be defined as above. Suppose S; satisfies the
conditions of Theorem A.1. Let

D = {f € R(): f € D(L2)},

and deﬁne_[:f = ILof for f € D. Suppose R(A — L) D D for some A > 0. Then the
closure of L restricted so that Lf € D 1is the infinitesimal operator of a strongly continuous
contraction semigroup P; defined on D and lime_,o Pf f = Pif for all f € D.

Theorem A.3 Let S; be a strongly continuous semigroup of positive contractions on L =
L' (Y, dy) where (Y, dy) is a measure space. Suppose there exists a strictly positive fo € L1
such that L£1fo = 0 with L1 being the generator of St. Then

lim A [ e S fdt = IIf
A—0 0

exists for all f € L. If in addition Sy s trreducible and satisfies

/Y () (w)dy = /Y F(y)dy (22)

forall f € L andt >0, then
nf = fo [ fwdy
Y
for all f € L.

The next theorem gives a characterization of the infinitesimal generator of a strongly
continuous semigroup ([8, Chapter 1]). We need some preliminaries.

Let L be a Banach space and let L* be its dual. The value of g € L* at f € L is
denoted by (g, f} or (f,g). For every f € L the duality set F(f) C L* is defined by

F(f) ={ge L : {g.f) = IfI" = llgll*}.
From the Hahn-Banach theorem it follows that F(f) # @ for every f € L.
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Definition A.4 A linear operator A is dissipative if for every f € D(A) there is a g € L*
such that Re{Af, g) < 0.

Theorem A.5 (Lumer-Phillips) Let A be a linear operator with dense domain D(A)
in the Banach space L.

(i) If A is dissipative and there is a A > 0 such that the range, R(A — A), of A — A
is L, then A is the infinitesimal generator of a strongly continuous semigroup of
contractions on L.

(i) If A is the infinitesimal generator of a strongly continuous semigroup of contractions
on L then R(A— A) = L for all A\ > 0 and A is dissipative. Moreover, for every
f € D(A) and every g € F(f), Re{Af,g) <0.
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