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Summary A well-known quantum-classical model for molecular
dynamics is investigated from a numerical point of view. In this model
a classical Newtonian equation of motion is coupled to a Schrodinger
equation in order to describe the quantum behaviour of the elec-
trons. This makes an efficient numerical treatment difficult because
the oscillating solution of the Schrodinger equation evolves on a much
faster time scale than the classical variables. Traditional methods
cannot avoid resolving these oscillations by many tiny time steps and
with huge computational effort. In this article it is shown how the
same accuracy can be obtained with a much larger step size. After a
transformation of the problem to a numerically more suitable set of
equations we construct a new integrator that takes into account the
two-scale nature of the system by using an averaging technique for
the oscillatory degrees of freedom. We prove that the method remains
stable when a large step size is used and show error bounds for the
approximations. The efficiency of the integrator is demonstrated in a
simple test example.
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1 Introduction

In quantum mechanics the state of a molecular system at time ¢
is represented by a wave function ¥ = ¥(t,z,y) that depends on
the coordinates of the electrons and nuclei denoted by x € R™ and
y € R%, respectively. The time evolution of ¥ follows the molecular
Schrodinger equation

2
ieBtW(t,:v,y) = <—%Ay +Hel(y)> W(t,x,y), (1)

where He(y) = —2 Ay + V(z,y) is the electronic Hamilton operator
with potential V' acting on ¥ as a multiplicator. The parameter ¢ > 0
is the square root of the mass ratio: Let m¢; be the mass of an electron
and suppose, in order to simplify matters, that all nuclei have the
same mass' myyk; then ¢ is defined by € = \/me;/mpuk. Throughout
this paper it is assumed that me; < My, and consequently that € is
a small parameter (0 < € < 1).

Unfortunately, even rather simple molecules contain so many de-
grees of freedom that solving (1) exceeds the capacity of any com-
puter. For this reason most simulations of molecular dynamics are
entirely based on classical Hamilton systems instead of Schrédinger
equations, but this inevitably leads to wrong results whenever quan-
tum effects within the molecule cannot be neglected. In order to in-
clude the essential quantum behaviour into classical molecular dy-
namics several mixed quantum-classical models have been proposed
in the literature. One of these approaches, known as mean field,
Ehrenfest or QCMD (quantum-classical molecular dynamics), reads:

i = (¥ Hw)v) 2)
(QCMD)

=~ Hy)y 9

In this model the nuclei are considered as classical particles moving
along a trajectory ¢t — y(t) according to a Newtonian equation of
motion. The electrons, however, remain quantum particles. They are
still represented by a wave function 1(t) and a Schrodinger equation.
Here, H(y) corresponds to the operator H¢(y), but we will assume
that an appropriate discretisation of space has already been accom-
plished. Hence, H(y) € RV*V is a real matrix and y(t) € R% and
(t) € CN are time dependent vectors (d, N € N). As before &2
stands for the mass ratio.

! This assumption can be avoided at the cost of more complicated equations;
cf. [12].
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Computing the solutions of (QCMD) numerically is not an easy
task because the system is composed of two coupled differential equa-
tions with solutions evolving on two different time scales. Due to the
large factor 1/e in the right-hand side of (3), the wave function (t)
oscillates on a fast time scale ~ ¢ while the classical positions y(t)
only change on a comparatively slow time scale ~ 1. Solving the
Schroédinger equation (3) with a traditional scheme demands a time
step size h substantially smaller than the frequency of oscillation
(h < €). The Newtonian equation (2) allows for much larger values
of h, but even if one is merely interested in the motion of the nuclei
it is unavoidable to approximate the wave function, too, because the
right-hand side of (2) depends on ).

In [4,7,8,13-16] several methods have already been constructed
for (QCMD), but in neither of these papers the problem of a small
mass ratio is addressed. These schemes still have to resolve the oscil-
lations of the wave function by means of a small step size h < € and
a large number of time steps. In real-life applications, however, this
amounts to huge computational costs because evaluations of H(y)
are typically very expensive [12]. Thus, the overall computing time
could be vastly reduced by an integrator which attains the desired
accuracy with a larger step size h = ¢ or even h > . Some progress
in this direction was made in [9,11] where efficient integrators for the
electronic Schrodinger equation

ip(t) = ~H () (4)

were proposed. With similar techniques we will develop and analyze
a long-time-step method for (QCMD) in this article. Since now the
Schrodinger equation is coupled to a second differential equation,
additional difficulties arise both in the numerics and in its analysis.
The article is organized as follows. In Section 2 the problem is
transformed in order to replace the highly oscillatory solution of (3)
by a smoother variable 7(t). Under certain conditions 7(¢) turns out
to be an adiabatic invariant of the quantum part, a result known as
the quantum adiabatic theorem. Moreover, the transformed variant
of (QCMD) is uniformly well posed with respect to €, which is a
considerable advantage over the original system. Section 3 is devoted
to the construction of a time-symmetric integrator. Its performance
is demonstrated in comparison to a traditional benchmark scheme.
The second half of the paper, comprising Section 4 - 6, investigates
the error behaviour of the numerics. As a discrete counterpart of the
quantum adiabatic theorem, we show in Section 4 that not only the
exact solution of the quantum part but also its numerical approxima-
tion is an adiabatic invariant. This serves as an important tool for the
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proof of global error bounds in Section 5. We prove that even with a
large step size h > ¢ our method yields an accuracy of O(h) in the
classical variable y(t) and an accuracy of O(¢) in the quantum vector
n(t). The main difficulty is to verify that the method is uniformly
stable in spite of the large step size. This part of the proof is deferred
to Section 6. The results of the paper are summarized and discussed
in the last section.

This article focuses on the analysis of numerical methods, nei-
ther on questions related to modelling nor on applications to realistic
molecules. In the past, (QCMD) was applied successfully to a num-
ber of chemical problems (cf. [5,12,15] and references therein), yet
it is known to fail in various situations. Since the pros and cons of
this model have been pointed out in [2,3,6,12,15] these issues are
not addressed without questioning their importance. Here, (QCMD)
is merely considered as a typical example for a coupled system of
differential equations with solutions on different time scales, and the
author believes that the ideas can be extended to a broader range of
problems.

2 Transformation and analysis of the model
2.1 Assumptions

Let H(y) be a real matrix with the following properties:

(A1) For all y € R, H(y) € RV*¥ is symmetric (d, N € N).
(A2) Evaluations of H(y) and VyH(y) are computationally costly,
but the diagonalization

H(y) = Q) Ay)Qy)T, A(y) = diag(\x(y))

with an orthogonal matrix Q(y) can be obtained with little
additional effort.

(A3) The eigenvalues Ax(y) of H(y) remain separated: There is a
lower bound dmin > /€ > 0 such that for any pair A\x(y) and
Ai(y) with k #1

Ak (y) — M(y)] > dmin (5)

holds for all y € U where U C R? denotes an appropriate neigh-
borhood of the solution trajectory {y(t) | t € [to,tend] }-

(A4) The eigendecomposition is smooth: The matrices Q(y) and A(y)
are twice continously differentiable with respect to y € U with
uniformly bounded derivatives.
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Discussion. The assumption (A1) is somewhat reasonable because
the symmetry of H(y) is inherited from the operator H;(y). Evalu-
ations of H(y) are costly since each time H;(y) has to be projected
to a suitable subspace of finite dimension. Typically the size of N is
rather moderate because only a limited number of electronic states
is considered in quantum-classical models; cf. [15]. Therefore the di-
agonalization of H(y) is much less expensive than its evaluation.

If the third and fourth assumption are true this is called the adi-
abatic situation. In this case the absolute values of the coefficients
of the wave function with respect to the eigenbasis remain almost
invariant as will be shown in Section 2.4. Though typically the sys-
tem evolves adiabatically in most parts of phase space, (A3) and
(A4) cannot be taken for granted everywhere: Along some trajec-
tories t — y(t) two different eigenvalues of H(y) may come very
close or even intersect while the corresponding eigenvectors suddenly
change in a nonsmooth way. This phenomenon is referred to as the
nonadiabatic situation. Its implications on the behaviour of the solu-
tion will be discussed in Section 3.5.

2.2 Transformation

The factor 1/e in the Schrodinger equation (3) makes its direct nu-
merical treatment difficult because any approximation error would be
amplified by 1/e. In [11] the Schrédinger equation was transformed
to a more favourable equation prior to any numerical treatment. The
same step shall be carried out now for (QCMD).

Let y(t) and 9(t) be the (unknown) solutions of (QCMD). Using
the eigendecomposition of H(y) a new function 7(t) can be defined
by the unitary transformation

o) = e (L20)) )T ()

where &(t) is the diagonal matrix containing the integrals over the
eigenvalues along the solution trajectory t — y(t):

t
(1) = / Aly(s)) ds, & = diag(d).
to
Up to an oscillating phase, 7(t) is the coefficient vector of ¥(t) with
respect to the eigenbasis Q(y). Inserting the above transformation
into (QCMD) gives rise to a new pair of coupled differential equations.
Using the abbreviations

K(y) = Q)" (VH(y))Q(y),
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W)= (e0) @6 = (%e0)5) oW
we obtain
j= —rexp (L8 ) K(y)exp (8 )n, (1)
() om(e)

i=ew (Lo Wapew (<Lo)n. )

Unfortunately, the factor 1 /¢ is still present in the transformed system
(tQCMD), but now it only appears in the argument of the exponential
functions. As a consequence the system oscillates faster and faster
for ¢ — 0, but since ||exp(:|: @(t)/e)” = 1 the derivative of 7(t) is
uniformly bounded with respect to €. From this point of view 7(t) is
smoother than 1 (t).

Before other advantages of (tQCMD) can be discussed we have to
go through some technicalities.

2.8 Notation

It is helpful to introduce the symbol e for entrywise multiplication
of matrices: If A = (ajk)j,k € CVN*N and B = (bjk)j,k € (CNXN, then
AeB = (ajkbjk)j,k € CNXN_ This is motivated by the observation
that, e.g., computing exp(i®/e) K (y) exp(—i®/e) in (7) is equivalent
to multiplying the (j, k)-th entry of K (y) with exp(i(¢; — ¢x)/¢). Let
E(®) € CN*N denote the matrix defined by

E(®) = (ekl@))kl . ew(®) = exp (é(@c - ¢l)> ifk #1,

’ 0 else.
Then (7) and (8) can be restated as
j= - ([B(@) + e K(y))n, (9)
(tQCMD)
i = (B(@) e W(y,9))n. (10)

The matrix-tensor-matrix product in K(y) has to be understood in
such a way that the k-th entry of eqution (9) reads

ik =—n" ([E(Sﬁ) +1]e (Q(y)T ( o H(:t/)) Q(y)) )77-

dyk
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In the definition of E(®) the diagonal was set to zero for technical
reasons. This is corrected by adding an identity matrix to E(®) in
(9). In the second equation (10) this is not necessary because W (y, 9)
is skew-symmetric and therefore has only zeros as diagonal entries.
Finally, we define matrices D(A) € RN*N and D7(A) € RV*N by

D) = (du(®) o duld) = X=X,

> 1 .
D(A) = (d;cl(/l))k’l o dy(4) = {(Ak _OAI) iflff '

This serves the purpose that many of the calculations carried out
entrywise can be written in a more compact form. Two basic rules
are

Lp@w) - io(e)epo). o)
D(A)eD(A)e M =M (12)

for every matrix M € CNXV with zero diagonal. The definitions of
E(-), D(-) and D () are adapted in the obvious way if ¢ or A are
replaced by any other diagonal matrix.

2.4 The quantum adiabatic theorem

Since the oscillatory behaviour of the quantum part originates from
the small parameter ¢ it is natural to ask what happens to the solu-
tions of (1), (4), or (QCMD) in the so-called adiabatic limit e —» 0.
This question has found considerable interest; cf. [17]. The limit dy-
namics of (QCMD) was derived in [3]. This result can be seen as an
extension of the quantum adiabatic theorem of Born and Fock [1] for
the Schrodinger equation.

Theorem 1 (Quantum adiabatic theorem) Under the assump-
tions (A1), (A8), and (A4) there is a constant C > 0 such that

In(t) —moll < Ce
holds uniformly on compact time intervals [to, tenq)-

For convenience of the reader we restate the short proof given in [11].

Proof. Integrating (3) from ¢y to ¢ yields

) =n(0) + [ (B(#) @ W (02 3(5) (o) ds.

0
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According to (12) we insert
W ="'D(A) e SD(A) e W
€ i

and, using (11), integrate by parts:
¢

() = n(0) + - [(E (®(s)) o D(A(5)) ® W(y<s),y(s)))n<s)] 0
- /Ot (E(gs(s)) . %(D'(A(s)) . W(y(s),y(s)))) n(s) ds
_% /Ot (E(@(s)) . D'(A(s)) . W(y(s), y(s)))n(s) ds
This yields the assertion. [ |

The quantum adiabatic theorem provides yet another good reason
why the transformation from subsection 2.2 is useful: The new quan-
tum function 7(t) only varies in a range of O(e). For ¢ — 0 the
oscillations frequency increases whereas the amplitude decreases such
that n(t) converges to a constant vector. This is a great advantage
over the wave function 1 (t). However, the proof reveals that the adia-
batic approximation breaks down if the norm of W (y(t),y(t)) and/or
its derivative gets large or if two different eigenvalues almost coincide.

2.5 Well-posedness of the transformed system

One more benefit of the transformation is related to the question of
well-posedness. Though it was proven in [3] that a unique solution
(y,7) of (QCMD) exists on compact time intervals, one cannot ex-
pect (QCMD) to be uniformly well-posed because small errors in the
initial value 1 (t9) = 1y are multiplied by 1/e and lead to completely
different solutions. The transformed system (tQCMD), however, is
not afflicted with this undesirable property as the following theorem
states.

Theorem 2 (Uniform well-posedness of (tQCMD)) Under the
assumptions (A1), (A8), and (A4) the transformed system (tQCMD)
is uniformly well-posed with respect to €. Let

y(tay()a'g()anO)a y(tayOaQOa’OO)a ’r’(tayo’yOanO)

be the solution vectors of (tQCMD) that correspond to the initial val-
ues Yo, Yo, and 1y and denote the derivative of the solution wvectors
with respect to these initial values by

0

Vv=——"7-—.
’ a(y03y07770)
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Then there is a constant C > 0 such that the bounds

||V0y(t’y059057”0)” < Ca
||Voy(tay07?)07770)” S 07
||Vo7l(tay0a?)07770)|| < 07

hold for all t € [to,tend) and all € > 0. The constant C only depends
on Omin from (A8), on the bounds of the derivatives in (A4), and on
the length tenq — to of the time interval.

The proof can be found in [10].

3 A numerical method for (tQCMD)

Taking into account the oscillatory behaviour of E(®) we construct
a numerical method for (tQCMD) in this section. Let ¢, = to +
nh with a fixed step size h > ¢. Since the equations are coupled,
approximations y, =~ y(t,) and 7, = 7(t,) have to be computed in
an alternating sequence: yp,—1 — Mp—1 = Yn = M — Yn+1 — Mntl
and so on. The algorithm is organized in such a way that y;, is already
available when 7y is approximated whereas 7y is still unknown when
yi, is calculated. Of course, evaluations of H(y) and V, H (y) are only
possible at positions where y(¢) has already been approximated. In
particular, no additional evaluations “between” y; and yi; can be
made.

3.1 Classical part

3.1.1 Stormer- Verlet. 'The most popular scheme for Newtonian equa-
tions of motion is probably the Stérmer-Verlet method. The under-
lying idea is, on the one hand, to approximate ¢j(¢) by the symmetric
difference quotient

y(tn) ~ y(tn + h) - 2?/}5271) + y(tn - h’) (13)

and, on the other hand, to replace 4(t¢) by the differential equation
(9). This yields the scheme

Yns1 = 2 + W1 = 0205 ([E@n) + T 0 K(ga) )i (14)

From (14) a new value y,t1 = y(tp+1) can be obtained if y, 1, yn
and 7),, are known from previous steps and &,, = &(y,) is computed
by the trapezoidal rule

Dpy1 = Pp + g(/l(yk-l—l) + A(y)). (15)
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The Stormer-Verlet has been used with great success in classical
molecular dynamics as well as in other application areas, but when
applied to an oscillatory problem like (tQCMD) its performance is
rather poor: In (14) the rapidly oscillating exponential functions con-
tained in E(®) are kept fixed at the midpoint, which does not yield
any reasonable approximation unless the step size is significantly
smaller than the oscillation frequency (h < ¢€); cf. [8].

3.1.2 Averaging Stormer-Verlet. In our situation it is more appro-
priate to use the equation

1

Yt + h) — 2(tn) + y(tn — h) = 1 /_ (A= 10D+ 0m) do (16

instead of the difference quotient (13) as proposed in [8]. After sub-
stituting (¢, + 6h) by the differential equation (9) the phase matrix
E(®(t + 0h)) is approximated using the Taylor expansion

®(ty, + Oh) = D(tn) + OhA(y(tn)) (17)

and the trapezoidal rule (15) whereas 7(t, + 6h) and K (y(t, + 6h))
are frozen at the midpoint #,, as before. This results in a method that
from now on will be named averaging Stérmer-Verlet (aSV):

Yn+1 = h2fn + 2Yn — Yn—1,

asv fn= —"?Z<[B(yn)°E(@n) +I]°K(yn))nn,

1
Blw) = [ (1= DEORAw) .
The efficiency of the method is closely related to the fact that the
oscillatory variables contained in the force f, are integrated. This is
advantageous because the average of an oscillating function contains
“more” information than its rather arbitrary value at a single point.
Since the entries of E(-) are exponential functions, the integral can
be calculated analytically using integration by parts (cf. Section 3.3).

3.1.8 Reformulation as a one-step method. It is well known that the
Stormer-Verlet scheme can be rewritten as a one-step-method. An
analogous reformulation may be derived for aSV. By means of the
auxiliary variables

1
_ 3 _ Yn+1 —Yn-1
Up = = )

Yn+1 — YUn
’ 2 2h

h

u

n+

D=
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aSV can be restated in equivalent form:

h
Upyl = Un + Efna Ynt+l = Yn + hum_%, Un+1 = Upy 1 + §fn+1-

In case of a smooth function y(¢), ., 1 and u, could have been re-
n+3

garded as approximations to the derivatives §(t,) and 9(t, 1). Tt
2

can be seen from (7), however, that {j(¢) and higher derivatives oscil-
late. Hence, the difference quotient gives a reasonable approximation
to the derivative only if the step size is smaller than the oscillation
frequency (h < ¢).

3.1.4 Computing the velocities. If required the velocities y(t,) can
be computed separately by substituting

30+ 00 ~ 0 (B(@a + 0040+ 7) # Klon) 19

in the formula

1

G+ B) = gt — ) +h/ ii(t + Oh) do. (19)

As before, the integral is calculated analytically and one obtains

Un+1 = Un—1 + hgn,

) (20
o= ([ (B 00A) 1) 0 K1) )

3.2 Quantum part

The simplest way to approximate 7(t,) is to do nothing at all and
just keep n, = mp constant at the initial value. At first sight, this
“method” may look somewhat crude, but according to the quantum
adiabatic theorem it yields an approximation of O(¢) in the adiabatic
situation. In the nonadiabatic case, however, the quantum motion
can diverge considerably from its adiabatic limit, and a more sophis-
ticated approximation of n(¢) is demanded. This is provided by the
integrators presented in [11]. The simplest of these methods is con-
structed as follows. We integrate (10) from ¢, — h to t, + h and freeze
the intermediate values W (y(t, + 6h),§(t, + 0h)) and n(t, + 6h) at
tn:

1
) =t =0+ [ (B(@(t+ 00) (21)

o W (y(ta), 5(tn) ) 48 n(tn) + O (k).
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The matrix W is approximated by

- (Qart) ~ QUi 1)) Q).

W(y(ta)9(ta)) ~ Wa = o

and with (17) and (15) this leads to the averaging midpoint rule?
(amp) from [11]:

1

amp  fpi1 = o1 +h (E@n) °/ E(6hA(yy)) do e Wn> M-

-1

Again, the integral can be computed analytically (cf. Section 3.3).

3.8 Algorithm of aSV/amp

The method obtained from combining the two integrators aSV and
amp for the two coupled differential equations (9) and (10) will be
referred to as aSV/amp. Its algorithm reads:

1. Let yp, ’U,n_%, Yn—1s My Mn—1, Q(yn), Q(yn—l), A(yn)a Dy, K(yn)
be given from the previous steps.

2. Put B(y,) = (bkl(yn))kl with by, = 1 and

3

coszy — 1
briyn) = —2——5—  (k#1)
Tkt
where x5 = h(/\k(yn) - )\l(yn))/e and k,l € {1,...,N}.

3. Compute the classical force:

fo = =1 ([Blun) « B(@a) + 1)  K(yn)) -

4. Update the positions:

u 1 =u__1+ hf,,
2

n+l = Uy
Ynt+l = Yn + h“n+§-
5. Evaluate H(y,+1) and diagonalize:
H(yn+1) = QWn+1)AWYn+1)Q(Yn+1)"
Evaluate VH (y,+1) and put

K(?Jn-i—l) = Q(yn+1)T (VH(yn-f-l)) Q(yn—l—l)

2 Tn [11] this scheme was simply called “Method 17.
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6. Compute Wp,:
1
Wy = %(Q(ynﬂ—l) - Q(yn—l))TQ(yn)-
7. Update the phase:

h
Dy =P, + 5 (A(yn—H) + A(yn))'

8. Put A(y,) = (akl(yn))kl with agr = 0 and

’

sin zy;

aki(yn) = 2 (k #1)

Tkl
with zy; from step 2 and k,l € {1,...,N}.
9. Update the quantum vector:

N+l = Tn—1 + h (A(yn) b E(@n) o Wn)nn-

10. Update the wave function:

7
PYn+1 = Q(Yn+1) exp <—g¢n+1) Mn+1- (22)
11. Optionally: Compute the velocities:

gn = — 7752( [E(®) e A(yy) +21] o Kn)nn ,
?)n—l—l = gn—l + hgn-

Remarks.

1. Care should be taken that the ordering of the eigenvalues in A
remains the same in all time steps and that the diagonalizations of H
do not produce artificial sign changes of the eigenvectors (the columns
of Q).

2. It can be seen from the algorithm that our methods are extensions
of the traditional Stormer-Verlet scheme and the explicit midpoint
rule: These methods are recovered if we put B(y,) = E(0) + I and
A(yn) = 2E(0) in step 3 and 9, respectively. Note that in the limit
(h/e) — 0 we have z; — 0 and obtain indeed

. . cosTy — 1

lim bg(y,) = —2 lim + =1,
T —0 T —0 .’L‘kl

. . sinz

lim ag(yn,) =2 lim Moo
iEkl—)O iEkl—)O .’,Ekl

for the off-diagonal elements of B(y,) and A(y,).
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3.4 Starting step for aSV/amp

For the starting step the equations (16) and (21) are replaced by
1
() = ylto) + hitte) + 17 [ (1= O)i(to + O1)
0

1
) = ntto) + 1 [ (B(@(t0-+0m)

« W (y(to), §(to)) ) d8 n(to) + O (h?)

and all operations are carried out mutatis mutandis. Since @3 = 0 in
the very first step, y1 and 71 are approximated by

Y1 =yo + huy, up = Yo + hfo,
f——%(() K (yo) ) o,

m=mnoth (A (%o) Wo)ﬂoa

Wo = 3 (Qlur) — Qo) ")

The entries bgi(yo) and ag;(yo) of the matrices B(yg) and A(yy), re
spectively, are now

_eXp(Z$kl)2_ exp(0) + kAL

bri(yo) = Ty Tk
b = 1/2 ik =1,
exp(izg) — exp(0) oy
aki(yo) = 1T ’
0 k=1,

where = h(Ak(yO) - )\l(yo))/f-

3.5 Numerical example

In real-life problems the dynamics of the quantum subsystem is char-
acterized by long periods of adiabatic motion of 7(t) interrupted by
sudden nonadiabatic transitions on a scale of O(1). This behaviour
can be exemplified by means of a rather simple test problem where
the position vector y(t) € R? is only a scalar valued function (i.e.
d = 1). We consider the symmetric matrix

Ty?—1) 5 0

H(y) = § exp(l-y)—1 y—1
0 y—1 -3(2y—-3)2-3
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with a parameter 6 > 0 that allows to switch easily between the
adiabatic (0 = 1) and the nonadiabatic (6 = 0.1) situation as we
will see. In fact, this particular choice of H(y) is an extension of the
Landau-Zener-matrix [18].

For ¢ = 0.01 solutions of the transformed system (tQCMD) cor-
responding to H(y) are to be computed on the time interval [0, 2].
As initial values we choose yg = 0, y = 0.5, and 7y = (11 — 24,3 +
56, —7 + )T /v/209.

Our method aSV/amp is compared to a benchmark scheme con-
sisting of a traditional Stormer-Verlet method and the exponential
midpoint rule for the classical and the quantum part, respectively:

Yn+1 — 2Yn + Yn—1 = _hQQ/J:VH(yn)'lpna

. (23)
2ih
Pni1 = exp (_TH(yn)) (A
Note that (23) does not use the transformation from Section 2.2 and
therefore solves (QCMD) instead of (tQCMD). This means in partic-
ular that 7(¢) is not approximated.
In addition we try what happens if 7, is not computed with
amp but replaced by the adiabatic limit. This method is denoted by
aSV/adia:

Compute ¥, with aSV,
aSV/adia < keep 7, = no fixed,

compute ¥, = Q(yn) exp (—i®n/€) no-

Technical aside. For lack of space only the real parts of the com-
plex vectors 7(t) € C* and v(t) € C* can be shown. The omitted
plots of the imaginary parts “look very similar”; i.e., the real and the
imaginary parts do not differ in their qualitative behaviour.

3.5.1 Adiabatic case. In a first example let 6 = 1. The two plots
on the left-hand side of Figure 1 show that for this value of § the
eigenvalues A (y) remain separated along the exact solution y(¢) and
the norm of the coupling matrix W (y(t),y(t)) is rather moderate.
According to the quantum adiabatic theorem we expect the quantum
vector to vary only within a very small range. This is confirmed by
Figure 2 where the real part of the entries of 7(¢) is shown. The
small boxes in the pictures on the left-hand side are magnified on
the right-hand side. Here, the approximations computed with time
step h = 0.05 = 5¢ are included. We observe an absolute error of
order (’)(10*3) which is a quite rough approximation since the range
of n(t) is of the same magnitude. In fact, aSV/amp does not produce
considerably better approximations than aSV/adia. This may seem
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Eigenvalues of H(y(t)) for 6=1 Eigenvalues of H(y(t)) for 6=0.1
0 o =
-2 -2
-4 /\ -4 ﬂ
0 1 2 0 1 2
time t time t
[l W(y(t),dy(t)/dt) || for 6=1 [ W(y(t),dy(t)/dt) || for 5=0.1
6 6
4 4
2 2
L T
0 0
0 1 2 0 1 2
time t time t

Fig. 1. Eigenvalues Ax(y(t)) and norm of the coupling matrix along the exact
solution y(t) in the adiabatic case (§ = 1, left-hand side) and in the nonadiabatic
case (6 = 0.1, right-hand side).

disappointing at first. Yet, the low precision with respect to n suffices
to obtain very satisfying results for ¢ as can be seen from Figure 3. In
spite of the large step size aSV/amp gives excellent approximations to
the wave function. This cannot be said about the benchmark scheme
(23): Tt generates more or less “random numbers” with an error of
O(1).

Figure 4 shows the position y(¢) and the velocity y(¢) of the
classical degree of freedom. Evidently the benchmark scheme (23)
fails when applied with a large step size whereas both aSV/amp and
aSV/adia work with high precision as we observe from the magnifi-
cations on the right-hand side.

In the three graphs of Figure 5 the maximum errors on the entire
time interval are displayed in logarithmic scale as functions of the
step size. For h — 0 aSV/amp exhibits second order convergence in
all three components, but the error in 7(¢) only starts to decrease
for h < ¢ = 1072 and remains almost constant for larger step sizes.
Therefore, in all three diagrams aSV/amp is only slightly better than
aSV/adia as long as h > ¢. However, both methods clearly achieve
a higher accuracy than the benchmark scheme (23) with the same
number of matrix evaluations. The difference varies between one and
two orders of magnitude (cf. the second and third graph of Figure 5).

In the first example our method definitely outperformed the tra-
ditional scheme (23). However, one may ask why the averaging mid-
point rule (amp) has to be used for the quantum part since for large
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—~
-

real(n

—~
&

real(n

—
)

real(n

Fig. 2. Left-hand side: Real parts of the exact quantum vector 7(t) for ¢ = 0.01
and § = 1. Right-hand side: Magnification of the areas marked by the boxes.

Real parts of n

0.78 0.762
exact
0.77 x x x x aSV/amp
0.761 + aSVl/adia
0.75 0.76
0 0.5 1 15 1.9 1.95 2
time t time t
0.22 0.209
exact
0.21 0.208 M/V\ x aSV/amp
bt A At ¥ + aSV/adia
0.2 0.207
0.19 0.206
0 0.5 1 15 1.9 1.95 2
time t time t
-0.47 -0.483
exact
-0.48 N x aSV/amp
_0_484m + aSV/adia
-0.49
-0.5 -0.485
0 0.5 1 15 2 1.9 1.95 2
time t time t

Exact solution and approximations computed with A = 0.05.

real(y 2)

Fig. 3. Left-hand side: Real parts of ¢(t) for ¢ = 0.01 and § = 1.

Real parts of Y

— exact
X x aSV/amp
0 ol A + aSV/adia
- benchm.
-1 -1
0 0.5 1 15 1.9 1.95 2
time t time t
1 1
. — exact
. x aSV/amp
0 0 + aSV/adia
. benchm.
-1 -1
0 0.5 1 1.5 1.9 1.95 2
time t time t
1 1
— exact
. x aSV/amp
ol 0 + aSV/adia
benchm.
-1 -1
0 0.5 1 15 19 1.95 2
time t time t

17

Right-hand side:

Zoom to end of the time interval. Exact solution and approximations computed
with h = 0.05.

step sizes it does not yield significantly better approximations than
the simple aSV/adia approximation. This question is answered in the
second example.
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Classical variables

25 T T T 2.1
— exact
2 . ‘Il x aSViamp
] . + aSV/adia
ol % 1.9 +_benchm.
7
et 18 /
/
1.5 , / q 17
/ 1.9 2
o= time t
/ v 7~ 1
1t )y , N — exact
/ J 09l x aSV/amp
4 dy(t)/dt ’ . . + aSV/adia
4 - .
05 / 1 0.8 benchm.
¥ 07T T
0 - - - 0.6
0 0.5 1 1.5 2 1.9 2
time t time t

Fig. 4. Classical position and velocity for ¢ = 0.01 and § = 1. Exact solution and
benchmark scheme (dashed). Right-hand side: Magnification of the areas marked
by the boxes. Exact solution and approximations computed with A = 0.05.

Error wrt. n Error wrt. Error wrt. y

-3 ‘—z -1 10 -3
10 10 10 10

step size h step size h step size h

107 @
1

107 10" 107 107 10

Fig. 5. Maximum error in 7, and y as a function of the step size for ¢ = 0.01
and § = 1. Logarithmic scale.

3.5.2 Nonadiabatic case. For § = 0.1 the whole situations changes
dramatically. The pictures on the right-hand side of Figure 1 show
that the gap between the first two eigenvalues of H (y(t)) becomes
very small around ¢ & 1 and that the norm of W (y(t), y(t)) increases
suddenly at the same time. This situation is called avoided energy
level crossing or conical intersection in the literature and is of partic-
ular interest in applications. Near an avoided crossing the adiabatic
approximation breaks down (cf. the remarks after the proof of The-
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Real parts of n

0.8 0.555
******** exact
’;H X X X X XX x aSV/amp
= 06 0.55
3 —
0.4 0.545
0 0.5 1 15 2 19 1.95 2
time t time t
0.4 0.295
exact
~ x aSV/amp
S go——AF-—--— -1 0.29
0 0.285
0 0.5 1 15 2 1.9 1.95 2
time t time t
-0.475 -0.48
exact
~, -0.48 x__aSV/amp
c PO A N s
= —0.485W -0.485
£ 049
-0.495 -0.49
0 0.5 1 15 2 1.9 1.95 2
time t time t

Fig. 6. Left-hand side: Real parts of the exact quantum vector 7(t) for ¢ = 0.01
and 6 = 0.1. Right-hand side: Magnification of the areas marked by the boxes.
Exact solution and approximations computed with A = 0.01.

orem 1). Figure 6 shows that around ¢ =~ 1 the first two entries of 7
leave the range of O(e) where they have been oscillating so far and
jump to a completely new level. Of course, the multiscale behaviour
of the quantum part — small-scale oscillations and a large-scale jump
— poses additional difficulties for the numerics. The analysis in [11]
reasons that we cannot expect our integrator to give precise results
unless we decrease the step size such that h < 4. This can be done
either by a restart or by an adaptive strategy [11], but in our ex-
ample we simply choose a fixed step size from the very beginning.
For h = 0.01 = ¢ = §? aSV/amp reproduces the nonadiabatic transi-
tion (i.e. the jump on the large scale) quite well though the numerical
method ends up on a slightly different level after the avoided crossing
than the true solution (cf. right-hand side of Figure 6). The dashed
line indicates the constant approximation used in aSV/adia which is
evidently completely wrong now.

In Figure 7 the entries of 9(¢) are shown. The output of aSV/adia
is hopelessly bad since it is based on the defective values for 7(t).
The benchmark scheme (23) works a bit better but still suffers from
large errors. The best approximation is clearly given by aSV/amp. The
same holds for the approximation of the classical degrees of freedom
(cf. Figure 8).

Figure 9 again shows the relation between the maximum error and
the step size. All error curves are smoother than in the previous ex-
ample since now the main error source is the nonadiabatic transition
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Real parts of Y

— exact
= x aSV/amp
2 0 + aSVl/adia
@ - benchm.

-1 -1
0 0.5 1 15 2 1.9 1.95 2
time t time t
1 1

— exact
= % x aSV/amp
2 0 0 ++++ + aSV/adia
@ AV - benchm.

_1 -
0 0.5 1 1.5 2
time t

1

— exact
= x aSV/amp
2 of + aSV/adia
g benchm.

-1 -1
0 0.5 1 1.5 2 1.9 1.95 2
time t time t

Fig. 7. Left-hand side: Real parts of (t) for ¢ = 0.01 and § = 0.1. Right-
hand side: Zoom to end of the time interval. Exact solution and approximations
computed with A = 0.01.

Classical variables
25 T T T 2.3

— exact
M x aSV/amp
22 e + aSV/adia
ol ) ,x/x/xw - benchm.
2 21
g
7/
/ P
o 7 l'91 95 2
dy(t/dt YA . time t
AN X i
N \\
1r AN 1 — exact
N . .. x  aSV/amp
AN P—%—x— || *+ aSV/adia
05 N 0.8 - _benchm.
y(t)
061F + + + 4
0 . . .
0 0.5 1 1.5 2 1.95 2

time t time t

Fig. 8. Classical position and velocity for £ = 0.01 and § = 0.1. Exact solution
and benchmark scheme (dashed). Right-hand side: Magnification of the areas
marked by the boxes. Exact solution and approximations computed with A = 0.01.

rather than the oscillatory behaviour. For the same reason the error
of aSV/amp in the n-component starts to decrease even for large step
sizes. The improvement achieved with aSV/amp in comparison to the
benchmark scheme is smaller than in the adiabatic situation and the
accuracy is lower than before.
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Error wrt. n Error wrt. Error wrt. y

(b)

(b)

10 10
10° 10°F 10°
10°¢ 10° 10°
-7 L 7 L -7 L
10 -3 -2 -1 10 -3 -2 -1 10 -3 -2 -1
10 10 10 10 10 10 10 10 10
step size h step size h step size h

Fig. 9. Maximum error in 7,% and y as a function of the step size for ¢ = 0.01
and § = 0.1. Logarithmic scale.

As a summary of the above examples we find that only the new
integrator aSV/amp provides good approximations in spite of a rela-
tively large time step. Traditional schemes like (23) fail in the adi-
abatic situation where the main error is caused by the oscillations
of the solution and methods like aSV/adia cannot be used whenever
nonadiabatic effects occur.

4 A discrete quantum adiabatic theorem

According to the quantum adiabatic theorem 7(t) stays in a neigh-
borhood of O(e) of the initial value as long as the eigendecomposition
of H(t) is smooth and the eigenvalues remain well separated. In this
section we prove that this also holds for the approximations 7,.

Proposition 1 (Discrete quantum adiabatic theorem)
Let 0 < e € 1 and fiz h < /e. Under the assumptions (A1)-(A4)
from Section 2.1 there is a constant C > 0 such that

H"?n - 770“ < Ce Vn= 1’ -y Nend

holds for the approzimations n, given by aSV/amp. Here and below
we put Nepg = max{n € N | t, € [to, tend]}-

A remark on notation. For the sake of clearness the abbreviations
K, = K(yn), Qn = Q(yn) and A, = A(y,) will be used. Note,
however, that &, # ®&(y,,) because ¥,, is defined by the trapezoidal
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rule, and that

W = 2 (QUuns1) - Q1)) Qun)

Wi # W (Yn, In) = (VynQ(yn) ?)n)TQ(yn)a

d T
W W (), 5(6) = (Q((6)) Qu(e):

Both the diagonal matrix @ € RY*Y and the vector (¢11, ..., dnN) €
RY containing its diagonal entries are denoted by the same symbol
. Since differences of successive A occur quite often in the formulas
below, we put Ay = Ay — Ag_1. Finally, C' stands for constants which
are not distinguished.

Lemma 1 Under the assumpions of Proposition 1 the auziliary vari-
ables and the quantum vectors stay bounded, i.e. there is a constant
C > 0 such that

Il <C, w1l <G5 lyn = ynoall = hllu, 1| < Ch
foralln=1,...,nepq-

Proof of Lemma 1. Rewriting the algorithm as a one-step method
yields the recursion

( T ) :’i—f h (A(yj) o B(®)) .Wj) I (m)
Th—1 . I 0 Tlo
and hence the bound

G ) < Towen |G < e )

for the quantum variables. The boundedness of the auxiliary variables
follows from

(tend_to)

n
= U, 1 +hfy = U%‘f‘hka

k=1

un+

=

and the fact that the f; are uniformly bounded. [

Lemma 2 If M : R* — RVYXN is a matriz-valued C?-function with
max ||[VM(y)|| < C and max ||V2M(y)|| < C, then
y y

| M (Yn+1) — 2M (yn) + M (yn—1)[| < Ch®. (24)
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Proof of Lemma 2. Let p be the interpolation polynomial through
p(1) = Yn+1, p(0) = yn and p(—1) = yp—1:
1
P(s) = Ynt1 + (5 = D¥nr1 = yn) + 55(s = D(Un+1 = 2yn + Yn—1),
1

P'(8) = 5 Wnt1 = Yn-1) + 8(nt1 = 2 + Yn1);

P"(8) = Ynt1 = 2Un + Yn-1-
The bound (24) follows from the equation

1

M) = 2M(0) + Mlyat) = [ (1= [s) 35 M (p()) ds

-1

by applying the chain rule, because

’ < Ch ! < Ch2
ﬁl@llp (s)ll < Ch, ﬁ%}fllp ()l <

according to Lemma, 1 and by construction of aSV, respectively. =

Proof of Proposition 1. It is sufficient to consider an even number
n € 2N and prove the estimates
7041 —mll < Ce, |l —moll < Ce, |l —moll < Ce. (25)
The 7y, follow the recursion
n/2

il =M = hAnn +Nac1 =m0 = hY Asgna (26)
k=1

with the matrix
Aoi, = A(yar) @ E(Pax) @ Wy

= E(Py) » (%D-(A%)) o [E(hAsy) — B(~hAg)] e War. (27)

Since the P9 are obtained from the trapezoidal rule (15) we can
rearrange

h
Do, + hAgy, = Do 1 — §A2k+1a

3 (28)
Do, — hAgy = DPop_1 — §A2k,

where A; = A; — A;_;. In terms of the exponential matrices, this
means that

E(®oy) @ (E(hAQk) — E(—hAQk))

h h
= E (Dop11) o E (—§A2k+1> —E(Pop—1) o E (_§A2k) .
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We substitute this via (27) in (26) and reorder the sum with respect
to the indices of E (Py):

n/2
Tl — T = %Z (D_(A%) . [E (Pok41) @ B (—gﬂgkﬂ)
k=1
—F (@Qk_l) o K (_gA2k> :| b W2k>772k
n/2
=% Z [(D_(A2k2) o E(Pyp_1) @ E(_gA2k1> J W2k2) Nok—2
k=1
(29)
- (D_(AZk) ® E(Po—1) e E <—gﬂzk> . WQk) 772k]
+ ; (D'(An) o E(Ppi1)o E <_gAn+1) ° Wn) Tn (30)
€ - h
- (D (Ag) @ E(P1) o E (—§A1) J Wo) 7o- (31)

Since (30) and (31) are of order O(g), it remains to show that in
(29) the sum stays bounded. This is the case if each of the differences
under the sum behave like O(h). With Lemma 1 and 2 we obtain

| D™ (Agg) — D (Agg—2)|| < Ch,
2k — nek—2|| = h||Aok—1m2k-1| < Ch,

o chon) ()

h
< O || A2k = 24551 + Aok ||

3
< ch; < Ch,

because h < /e by assumption. The estimate Wor, — Wor o = O(h)
follows from

1
Wop — Wog—o = o (Qar+1 — Qap—1)T (Qar — Qok—2)
1
+ton (Qart+1 — 2Qok—1 + Qo—3) " Qop—2

and the preceding lemmata. This proves the first of the three asser-
tions (25). The second and third one can be shown analogously. =
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5 Error analysis

For h < ¢ it is not very difficult to verify the error bounds
B\ 2
It ~ml <0 (2)
B\ 2
o) -l <0 (2)

&
it a1 < (4)]

for the approximations given by our method. The same estimates
can be shown for the classical Stormer-Verlet method and the ex-
plicit midpoint rule, respectively. These bounds explain why second
order convergence can be observed in Figure 5 as soon as h < 10 2.
However, they are useless if the step size h is larger than . Thus, in
this section we study how the error of our method behaves for h > ¢.
Only the adiabatic situation will be considered. The main result is
the following theorem.

Theorem 3 Let 0 < € < 1 and fiz h such that \/e > h > €. Under
the assumptions (A1)-(A4) from Section 2.1 the error of the approz-
imations n, and y, given by aSV/amp is bounded by

” n(tn) —Mn || <Cie, - . (32)
| y(tn) —yn || < C2h. 7=+ Thend, (33)

The constants Cy and Cy depend on Omin in (A3), on the bounds of the
derivatives in (A4), and on the length of the time interval [to, tend],
but are independent of € and h.

Remarks. 1. A corresponding estimate for the velocities is presented
in Corollary 1.

2. Though Theorem 3 predicts only y(t,) — y, = O(h) for h > €, in
Figure 5 the error seems to be of second order. The author believes,
however, that this behaviour is artificial and will not persist in more
complicated examples.

Proof. The first estimate (32) follows immediately from the quantum
adiabatic theorem (Theorem 1) and its discrete counterpart (Propo-
sition 1) because

”nn_n(tn)” < Hnn _770H+”710_77(tn)” < Ce. (34)



26 Tobias Jahnke

In order to prove (33) we have to study how the error y(t,) — yn is
affected by errors in 1 and @. Therefore, we introduce the vectors

y(tn) Yn
y(tnfl) Yn—1
v(tn) = |nta) |, vy = |mn | €R¥ x C?N x RY,
7Ktn71) TIn—1
D(ty, &,

and reformulate the coupled two-step methods aSV/amp and the trape-
zoidal rule (15) as one single one-step “meta method” F(v,) = vp41
with an abstract function F representing the algorithm from sec-
tion 3.3. In order to study stability, however, it is unavoidable to
consider approximations as functions with respect to the initial val-
ues:

Definition 1 Let

Yn
Yn—1
FPw) = |m | e R xC* xRY,

Mn—1
P,

denote the vector consisting of approrimations obtained by starting
at time t; with initial value v = vy and executing n — k steps with the
algorithm outlined in Section 3.3.

By this definition we have FJ*(v) = FF (F,g'(u)) and F”(v) = v. The

error accumulation can be written as

)
)
= FL) = B (o(0)) + X (R (0000)) - P (o00:))
k=1
= F'(v1) — F{' (v(t1)) (35)
30 (R (R (000)) ~ B (o01.0) ).
k=1

Now we have to show that the method is stable and that the local
error is of second order.
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Proposition 2 (Stability) Under the assumptions of Theorem 3
there is a constant C' independent of € and h such that

| P (FE (080))) = Fin (vte0))|| < O||FEF (0(0) = w(t41) |
177 (1) = FF* (o(0))]| < Clor —o(t1)]
for all 1 <k <n < nepg-

To verify stability in spite of large time steps is the most laborious
part of the error analysis. Therefore, we postpone the proof of Propo-
sition 2 to Section 6 and proceed with an investigation of the local
€error.

Proposition 3 (Local error and starting step) Under the as-
sumptions of Theorem 3 the local error and the error of the starting
step are bounded by

|7 (o)) = wta)|| < C2,
||’U1 - 'U(tl)H S Ch
with a constant C independent of € and h.

Proof of Proposition 3. For exact values 7, = n(ts), nn—1 =

N(tn-1), Yn = Y(tn), Yn—1 = yY(tn—1) und &, = &(t,) equations (16)
and aSV show that y,+1—y(tn+1) = (’)(h2) . The error in the quantum
part can be estimated as in [11]: From

W (y(tn + 0h), (tn + 0h)) = W(y(tn),y(tn))+0(h)

W (y(tn). (1)) = ﬁ(@( )~ Qe D)) Qu(ta)
/ / dt2Q y(tn +ah)) do dT,
Wa = 35 (Quner) ~ Qultas) ) Qu(tn)

and yYp41 = y(tns+1) + O(hQ) we obtain

M(tnst) — Mgt = h (E(@(tn+0h))oWn)n(tn) do

—h/ ( tn) + 0hA(y(t ))) oWn>n(tn) o + O(n?)

with an error depending on no higher derivatives than g. Inserting
the Taylor expansion

B(ty, + Oh) = B(t,) + OhA(y(t,)) + (0R)*R(t,,y, 0h)
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and integrating by parts gives

/11 E(D(t, +6h)) do — /1 E(qﬁ(tn) + 9h/1(y(tn))) do

_ B(@(ty)) / B(0n4(y(t))) » (B (00 Rtn, v, 01)) ~ B(0))do
— B((ty)) % [D'(A(y(tn))) . E(Hh/l(y(tn)))
o (E((6R)*R(tn,y,0m)) - E(O))] 1_1
—E((t,)) e % /_11 D'(A(y(tn))) . E("M(y(t")))
. % (E((Gh)QR(tn,y,Hh)) - E(O)) o

= O(h), because

E((6h)?R(ty,y,0h)) — E(0) = 0(%2) ,

i(E((eh)QR(tn,y,Gh)) ~B() = O(hj) '

do €
This yields as desired ||n(tn41) — g1l < CR2.
It is well-known that the error of the trapezoidal rule after one
step is

|#tn12) = 8(00) = 5 (A(0tene) + A0 | < €2

2
if exact positions y are used. Replacing y(¢,+1) by the approximated
value yn41 = y(tnt1) + O(h?) only causes another error of O(h3),
and thus ||®(t, 1) — Pry1|| < Ch3. The error bounds for the starting
step can be derived analogously. [ |

Together with (35) the Propositions 2 and 3 yield |[v, — v(ty)|| <
Ch and in particular (33). Hence, up to Proposition 2, the proof of
Theorem 3 is completed. O

Remark. The estimate an—v(tn) ” < Ch implies ||nn —n(tn) H < Ch,
but as long as ¢ < h the bound (34) is more precise. The reader
may wonder why 7, and n,_1 had to be included in the definition
of v, although an error estimate is immediately available from the
two quantum adiabatic theorems. The reason is that the technical
difficulties caused by the coupling between classical and quantum
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variables can be handled more easily if all approximated vectors are
contained in v,.

Once Theorem 3 has been proven it is not very difficult to show a
corresponding error estimate for the velocities ¥,.

Corollary 1 Under the assumptions of Theorem 8 the error of the
approzimation 1y, is bounded by

“ y(tn) —Yn || <Ch Vn e {1, anend}-

The constant C is independent of € and h and only depends on Omin
in (A3), on the bounds of the derivatives in (A4), and on the length
of the time interval [to, tenq)-

Proof. The velocities are computed additionally in the sense that
neither of the values of 7, y,, or @, depends on g,,. Hence, no com-
plicated recursion has to be considered. It sufficies to show that the
approximation (18) only causes an error of O(h) if 5, = n(t,) + O(¢)
and yn, = y(tn) + O(h) . This can be done by adapting the techniques
used above. [

6 Stability: Proof of Proposition 2
6.1 Introduction

We have to prove that VFJ!(v) is uniformly bounded in e. Because of

Fr(v) - FI'(w) = /01 %Fj" (sv+ (1~ o)) ds

1
= / VF} (sv +(1— s)w) ds (v —w)
0
this yields
|E5(v) = Fj*(w)]| < C |lv — w]

and the assertion of Proposition 2 follows. For the proof it has to
be assumed that the “subvectors” y;,vy;_1,n;j,7;—1 of the initial data
v = v; satisfy the conditions

yj —yj-1 = O(h), nj —nj-1 = O(h). (36)

This makes sense because stability cannot be expected if the start-
ing values are not consistent. In our situation, (36) may be assumed
without loss of generality because the difference of approximations
after one step or after the starting step is obviously of order O(h).
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Moreover, we can set 7 = 1 by an appropriate renumbering.

Aim for the remainder of this section: For any 1 < n < ng,q—1,
prove the inequality

1Noyn+1ll + [Nt + [[Vo@rgr|

n+1 (37)

< C+ 0 (Il + 1N6mell + %62
k=1

where \, = a0 o as in Section 2.5, denotes the derivative with

%0,90,70) ’
respect to the initial values. The uniform boundedness of VF]'(v)

follows from (37) via a discrete Gronwall lemma. The main difficulty
arises wherever terms of the type E(®) are derived because this brings
about a factor of 1/ which has to be equalised somehow. This can
be done by partial summation, the discrete counterpart of integration
by parts.

6.2 Stability of the classical part

We first prove a Gronwall inequality for the auxiliary variables u,, , 1
2

and then deduce the desired equality for the positions y,. Since

Upyl = Uy 1 + hfy, holds by definition we can represent

k=1
fie = =i ([Bw) « B@y) + 1) o K (i) ) i
1
Bl = [ (1= I0)B(ohAw) do

_ (%D-(Ak))'2 . (E(h/lk) —2E(0) + E(—h/lk)) (39)

By operations similar to (28) the force can be split into three parts
fr= 10+ 12+ 1Y with

£ = —np (T o Ki) i,
1 ==t (500)” e [B @ (B(-5au) - 20)

+ E(Py-1) o (E (_gAk> - E(0)>] . ch) Mk

’53) = ((%D'(Ak))ﬂo [E (Pr+1) — 2E(Pk) + E (fpk—l)] ‘Kk> Mk -



A long-time-step method for quantum-classical molecular dynamics 31

The derivative of f,gl) is bounded by ||Vof,51)|| < CI%mell+ ClINyk |-
For Y, f,gQ) we obtain

2| < c1veni+ 1%
+C (%)2 VO[E (Bi1) (E ( gAkH) . E(O))] H
+C (%)2 VO[E (Bp_1) ® (E (—%Ak) - E’(O))] H .
The product rule gives
Sfri(s( 4a) )
— 19E @l | (7 (-5 ) - 70)) |

i@ & (2 () -50)|

C h h
< —||V9T’1c+1|| Akl + Ol Apall

(40)

< ||V¢k+1|| + C (||Voyk+1|| + 1%kl

because by Lemma, 1

||Ak+1|| = ||Ak+1 Ak“ CHyk—H_ka Ch.

A corresponding inequality can be derived for the other term in (40).
This yields the desired bound for ||V0 f,gQ) ||

Next, the sum hd p_, V, f,g3) is to be estimated. Before taking the
derivative the sum is rearranged with respect to the indices of E (®)
as in the proof of Proposition 1:

= %Z ( 2o [E (Pri1) —E((pk)] 'Kk) Nk
k=1
6h_2 3 (D (Ak) ° [E (Pp—1) — E (@k)] . Kk) Nk
k=
— % [771:—1( (Ap_1)*? @ E (D) @ qu)ﬂkq

k=1 (41)
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—nk( (Ag)*? ¢ E (By) @ Kk)nk]

+ %277;2 (D (A,)*? @« E (@11) @ Ky,) 11 (42)

_ %27,3 (D™ (40)*? o E (@1) » Ko) 11 (43)
+ 2—2 3 [m’2+1 (D7(Ak41)** @ E (B1) @ Kpi1) es1

= — 1 (D™(Ag)* @ E () © Ky) nk] 44

+ %277; (D (A1)*2 o E (@) » K1) 1 (45)

gilan+1 (D (Ap+1)"2 @ E (D,) @ K1) Thns1- (46)

Bounds for the derivative of (42), (43), (45), or (46) can be derived
easily. For example, one obtains for (42)

82

(7 (D7(40) 0 B (@001 & Ko) )

2
< C(IIVonnII +115ynll + 1% @nt1l/e)

< C5(||Vo77n|| + Hvoyn”) + C||Vo¢n+1||-
In order to estimate the first sum (41) we apply the product rule

[nk 1 (D7(Ag=1)" @ E(Dy) @ Ki—1) mi—1

— 7 (D7(4)"2 0 B (@) ¢ Ko) 1]

n

6
<HO: (10l + 111+ 56mell + 11 %1 1)
=1
n

+ %Cz
k=1

My (D (Ag=1)"* @ LE (B1,) @ K1) 1—1

(47)
— 1 (D7 (Ag)*? ¢ GE (P) ® Ky,) n |-

Again we have to cope with the factor 1/e caused by L E ($), but
since according to Proposition 1 and Lemma 1

e — k-1 = O(e),
D™ (Ag)* — D (A—1)"* = O(h),
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the difference under the sum (47) is of O(h/e) . Hence, the first sum
(41) is bounded by

n
eC Y (Il + 1wl + [5Gl + Gl + 5024 ]).
k=1

A similar bound can be obtained for the (44), and together this yields
the inequality

n+1
1%t 11 < C+Ch S (Il + 1%l + %24
k=1

for the auxiliary variables. The Gronwall inequality

n+1
I%pall < €+ Ch S (INwell + 5ol + I%62]) — (48)
k=1

for the positions is an immediate consequence thanks to the repre-
sentation

n
Ynt1l = Y1 +hZuk+%.
k=1

The stability inequality for @ follows from the trapezoidal rule:

n+1 n+1
[9@ncill < %81+ 23" %4k < C+ChY [Nl (49)
k=1 k=1

6.3 Stability of the quantum part

The discrete quantum adiabatic theorem does not give any informa-
tion about stability, for its assertion is based on fixed initial values yg
and 79. However, the arguments of its proof can be reused to prove
stability of the quantum part. Without loss of generality let n € 2N
be an even number. We return to the equations (29), (30) and (31)
and apply the derivative V, to all terms. In case of (30) this leads to

. M

AVA (D_(An) o & (dsn—kl) o I (_gAn—H) L4 Wn) Tin

1
< <C (ISl + 1%l + 2%

h
2 (Gl + [al) + 13721
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In order to derive a bound for |\,Wy,|| we find that
1 (14 T
W= g [ 5@ + (1= )T ds Qo)
1 [t T
=on VQ(sYnt1+ (1 = 8)yn—1)" ds (Ynt1 — Yn—1) Q(yn)
0
1 1
=5 | V@sunsr + (1= pnor)T ds (. + 0,_y) Q)
0
and, with %(ynﬂ —Yp-1) = Up .1 + Up_1 obtain from the chain rule

I%Wal < O | max V@) | (%6111l + [ Sowni)
+ Ol |+ Ol |+ Ol

The stability of the auxiliary variables and (49) now yield

h
%Vo (D_(An) o F (¢n+1) o F <_§(An+1 - An)) b Wn) Tin
n+1
< C+0nY (1I%uell + %)
k=1

for the derivative of (30). The derivative of (31) can be estimated
without any difficulty. Finally, an appropriate bound for the deriva-
tive of (29) has to be shown by equalizing the factors 1/e originat-
ing from V,E(Py_1) by verifying that the differences between other
terms are of O(h) as it was done in the proof of the discrete adiabatic
theorem. In total, this yields the inequality

n+1

[l < € +Ch Y (ISl + %l + I%8])  (50)
k=1

for the quantum part. The three inequalities (48), (50) and (49) prove
the assertion (37). This completes the proof of Proposition 2. |

7 Summary and discussion

In this article a long-time-step method for quantum-classical molecu-
lar dynamics was proposed. It was shown to be advantageous to trans-
form the underlying system of differential equations, but the prize
to pay consists in a diagonalization of the Hamiltonian. The time-
reversible method constructed for the transformed problem takes into
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account the oscillatory behaviour of the system and attains the accu-
racy of traditional second order schemes with a much larger step size
h. This results in a considerable speedup whenever evaluations of the
Hamiltonian dominate the computational costs. It was proven that
in the adiabatic case the method is uniformly stable with respect to
¢. Even when used with a large time step ¢ < h < /e its error is
bounded by const - h in the classical positions and const - € in the
quantum part. For smaller step sizes second order convergence can
be shown.

Unfortunately, some problems could not be solved. The whole sta-
bility and error analysis is based on the discrete quantum adiabatic
theorem. This theorem is not valid near avoided crossings where nona-
diabatic transitions occur due to a non-smooth eigenbasis and a small
eigenvalue gap. Therefore, no error estimate for the nonadiabatic sit-
uation can be given in this paper. Such an estimate would require
a more profound understanding of “what actually happens” near an
avoided crossing.

Another problem concerns the rather moderate accuracy in the
quantum variable. In Figure 5 the error in 7 only starts to decrease
when h < e. This observation is confirmed by Theorem 3 which states
that 7n(t,) — 7, = O(e) as long as h > e. Of course this is still
better than what most traditional schemes have to offer, but a method
converging already for h > ¢ would be even more desirable. In [9]
several integrators with this property were devised for the decoupled
quantum equation

i(t) = (E(() s W (1) )n() (51)

which arises from a transformation of the Schriodinger equation (4).
These integrators are much more accurate than amp when applied to
(51), but in case of the coupled system (tQCMD) they would only
provide an improvement if at the same time aSV was replaced by a
more accurate method. How to construct such a method for (9) is at
present an open question.
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