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Abstract

We present a new numerical method for the identification of the most
important metastable states of a system with complicated dynamical
behavior from time series information. The approach is based on the
representation of the effective dynamics of the full system by a Markov
jump process between metastable states, and the dynamics within each of
these metastable states by rather simple stochastic differential equations
(SDEs). Its algorithmic realization exploits the concept of Hidden Markov
Models (HMMs) with output behavior given by SDEs. A first complete
algorithm including an explicit Euler-Murayama-based likelihood estima-
tor has already been presented in [14]. Herein, we present a semi-implicit
exponential estimator that, in contrast to the Euler-Murayama-based es-
timator, also allows for reliable parameter optimization for time series
where the time steps between single observations are large. The perfor-
mance of the resulting method is demonstrated for some generic examples,
in detail compared to the Euler-Murayama-based estimator, and finally
applied to time series originating from a 100 ns B-DNA molecular dynam-
ics simulation.

Keywords: HMM, Ohrnstein-Uhlenbeck process, maximum likelihood prin-
ciple,metastability

1 Introduction

The macroscopic dynamics of many complex systems is mainly characterized by
the existence of metastable large scale structures, i.e., configurations which are
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persistent for long periods of time. On the longest time scales the effective or
essential dynamics is a kind of flipping process between these structures [8, 12],
while on closer inspection it exhibits a rich temporal multiscale structure [17].
In other words, the effective or macroscopic dynamics of such systems is given
by a jump process that hops between the metastable sets while the dynamics
within these sets might be mixing on time scales that are smaller than the
typical waiting time between the hops. In many applications the Markovian
picture is an appropriate description of the dynamics since typical correlations
times inside of the metastable sets are sufficiently smaller than the waiting times
between hops (and thus much smaller than the timescale the effective description
is intended to cover).

There are several recently proposed set-oriented approaches to the algorith-
mic identification of metastable sets of a complex system, and to the computa-
tion of the transition probabilities between them [18, 5, 3, 4]. These approaches
are based on the construction of a transition matrix that describes transition
probabilities between sets in the state space of the system. The identification of
metastable sets then is based on analysis of this transition matrix [19, 6, 4]. For
higher dimensional systems this always requires a set coarse graining of state
space (a partition of state space in disjoint sets that avoids the curse of dimen-
sionality) that has to be designed carefully since the resulting metastable sets
are unions of the set from the partition.

Recently, the authors introduced an alternative concept [14] that is no longer
purely set-oriented and is not based on (traditional) coarse graining concepts.
The proposed approach aims at computing the optimal representation of the
observed stochastic dynamics as a combination of (few) rather simple stochas-
tic processes. In case of metastability the overall dynamical behavior of the
observed complex system can be understood as a Markov chain switching be-
tween such (hopefully simple) stochastic processes. The associated algorithmic
problem in such a case is: (1) to find an optimal decomposition of a given obser-
vation sequence into subsequences produced by simple stochastic processes, and
(2) to determine the optimal parameters of the processes. In [14] these steps
are realized based on the expectation maximization (EM) techniques combined
with the Euler-Murayama discretization of the underlying stochastic dynamics.
However, there are advantages but also serious disadvantages: On the one hand,
application of the Euler-Murayama discretization allows to construct an explicit
likelihood estimator and thus a fast and numerically efficient algorithm. On the
other hand, with respect to the estimation quality of the algorithm, this also
implies severe limitations on the observation stepsize (distance between the ob-
servations in the time series). In the present article we will discuss an extension
of the techniques presented in [14] avoiding the Euler-Murayama discretization
but still gaining an efficient algorithm, and investigate the possibilities of over-
coming the stepsize limitations.

We will proceed as follows: First, we will present the general concept. Then,
we will present the construction of the identification algorithm with special
emphasis on the distinction between the Euler-Marayama-based algorithm and
the extension presented herein (which will allow to avoid any discretization in
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time). Next, we will discuss the algorithmic realization of the two algorithmic
approaches. In the last section, we will illustrate the application of this two
techniques to suitable metastable time series, compare the two approaches in
detail, and demonstrate that the algorithm suggested herein in fact allows to
tackle rather coarsely spaced time series.

2 Metastable States with Internal Stochastic Dy-
namics

We suggest to approximate the effective dynamics by stochastic dynamical equa-
tions (SDEs) of the following type for the state x ∈ Rn of the system [14]:

dx(t) = −DxV (q(t))(x(t)) + σ(q(t)) dW (t) (1)
q(t) = Markov jump process with states 1, . . . , M, (2)

where W (t) denotes standard Brownian motion, Dx means differentiation wrt. x,
σ̄ = (σ(1), . . . , σ(M)) contains noise intensities, and V = (V (1), . . . , V (M)) inter-
action potentials. The jump process q(t) is intended to mimic the hopping of the
effective dynamics from one metastable set to another metastable set such that
its hopping rates have to be related to the transition rates between the sets. The
jump process thus can be represented by an M ×M rate matrix R. The SDEs
(1) then have to approximate the (more rapidly mixing) dynamics within the
metastable states, and thus have to have correlation times that are significantly
smaller than the typical waiting times between hops of the jump process. Con-
cluding, the model is completely characterized by the tuple (v, R,V, σ̄), where
v denotes the initial statistical distribution of x(0) .

In the following we assume that the potentials V (q) are of harmonic form:

V (q)(x) =
1
2
D(q)(x− µ(q))2 + V

(q)
0 . (3)

This assumption simplifies the derivation of the parametrization algorithms sig-
nificantly. We could allow for a larger class of potentials. For example, the entire
derivation presented herein analogously goes through if the potential is a linear
functional of its parameters. This, for example, is true for polynomial potentials;
for this case one can even find parameter estimation procedures in the literature
[20]. However, it is important to emphasize that the algorithmic concept advo-
cated herein tries to realize the so-to-say simplest reduced dynamical model for
metastable complex systems: Markov jump processes and stochastic diffusion
governed by harmonic potentials within each metastable state. As is illustrated
in [14], the potential dynamical substructure within each metastable state can
hierarchically be represented in this setting such that the use of nonharmonic
potentials may be obsolete.

Now, the whole stochastic dynamical process (1) is completely determined
by the parameters Θ = (D(q), µ(q), σ̄).
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Consequently, we have to find a procedure that can determine the optimal
model λ = (v,R, Θ) for the given time series resulting from long-term simulation
of the complex system under consideration. The information about which and
how many metastable sets are present in the time series is understood as being
hidden within the data. Then, metastability is identified in terms of metastable
states that are hidden states in the sense of Hidden Markov models (HMM), i.e.,
we try to assign to any state from the given time series the number of the hidden
metastable state to which it belongs. The metastable states then are represented
by aggregates containing those states that are assigned to the same metastable
state. We will present a procedure that solves this assignment problem and the
estimation problem for the parameters (v, R, Θ) simultaneously and iteratively.
This procedure will result from the maximum likelihood principle. We herein
present a semi-implicit likelihood estimator based on the exact solution of the
SDEs. This has to be contrasted to the algorithmic strategy based on the Euler-
Murayama discretization of the SDEs in (1) that has been presented in [14]. As it
will be demonstrated in Section 3 below, and in contrast to the Euler-Murayama-
based algorithm, the new strategy allows for reliable parameter optimization for
time series with large time steps between single observations.

2.1 HmmSde and EM algorithm

Our problem is parameter estimation for system (1)+(2), that is, we want to
fit the parameters to the given observation data (Otj )j=0,...,T . Fitting means
to identify a parameter configuration that maximizes the probability that the
observed data is produced by the model specified by the parameter set. Param-
eter estimation will be realized by means of the maximum likelihood principle,
i.e., the functional to be maximized will be given by a likelihood function L that
will be constructed in the following way: For given parameters λ, the likelihood
L(λ|Ot, qt) has to be the probability of output x(tj) = Otj , j = 0, . . . , T , as well
as of the associated sequence of hidden states (qt) (the state sequence of the
Markov jump process at times tj , j = 0, . . . , T ). Thus, in order to construct L
appropriately, we have to know the probability of output of x(tj) under the con-
dition of being in metastable state qtj and of the past observations Ot0 , . . . , Otj−1

for given parameters λ. We will see that we can determine this probability by
considering the propagation of probability densities by the SDE associated with
metastable state qtj .

Construction of the likelihood. The statistical model is composed of two
stochastic processes, from which one is assumed to be hidden. The hidden
process, i.e., the Markov jump process (2), is completely determined by the
rate matrix R and initial distribution v. In contrast to an ordinary HMM, the
observed process (1) herein does not consist of i.i.d. random variables, but of
few SDEs (1).

The observed process is assumed to be a continuous process observed at
discrete time points. Suppose that the observed data (Ot) is given with constant
time stepping τ , i.e., tk = tk−1 + τ for all k = 1, . . . , T , we simply write t =
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1, ..., T . The time-discrete transition matrix A of the Markov chain is obtained
from rate matrix R by

A = exp(τR).

A = (aij) contains the transition probability between hidden states within two
consecutive steps of the observations, i.e., aij is the transition probability from
hidden state i to hidden state j after time t + τ under the condition to be in i
at time t.

Therefore the likelihood function that has to be maximized over the param-
eters λ = (v, A, Θ) is just the joint probability distribution for the observation
and hidden state sequences

L(λ|O, q) = p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

aqt−1qt
ρ(Ot|qt, Ot−1, . . . , O0), (4)

where ρ(Ot|qt, Ot−1, . . . , O0) denotes the probability of output Ot under the
condition of being in hidden state qt, and past observation of O0, . . . , Ot−1.

Algorithmic Realization. The next task now will be to construct algorithms
that

(1) determine the optimal parameters (v, A, Θ) by maximizing the likelihood
L(λ|O, q); this is a nonlinear global optimization problem,

(2) determine the optimal sequence of hidden metastable states (qt) for given
optimal parameters, and

(3) determine the number of important metastable states; up to now we also
simply assumed that the number M of hidden states is a priori given.

Before we go into the details of maximizing the likelihood we will shortly
summarize the general framework of the algorithmic realization of steps (1)-(3);
details are to be found in [14].

Problem (1): Optimal parameters. To solve problem (1) we will use the
expectation-maximization (EM) algorithm. The EM algorithm is a learning
algorithm: it alternately iterates two steps, the Expectation step and the Max-
imization step. Starting with some initial parameter set λ0 the algorithm it-
eratively refines the parameter set, i.e., in step k the present parameter set λk

is refined to λk+1. We will work out the details of the EM algorithm for the
problem under investigation by following the general framework given in [2].

Since the data whose likelihood we want to maximize is not fully observable,
we have to average over the hidden part. The key object of the EM algorithm
is the expectation

Q(λ, λk) = E
(

log p(O, q|λ) |O, λk

)
(5)
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of the complete-data likelihood L(λ|O, q) = p(O, q|λ) (in our case given by
(4)) wrt. the hidden sequence q given the observation sequence and the current
parameter estimate λk. One step of the EM algorithm then realizes the following
two steps:

• Expectation-step: This step evaluates the expectation value Q based on
the given parameter estimate λk.

• Maximization-step: This step determines the refined parameter set λk+1

by maximizing the expectation:

λk+1 = argmax
λ

Q(λ, λk). (6)

The maximization guarantees that L(λk+1) ≥ L(λk).

According to [2] (Chap. 4.2) the expectation value Q as defined in (5) can
be rewritten as

Q(λ|λk) =
∑

q=(qt)∈ST+1

p(O, q|λk) log (p(O, q|λ)) , (7)

where S denotes the state space of the hidden states. As we will see below this
form will allow us to find very efficient maximizers. Due to Baum et al. [1]
the function Q(·|λk) exhibits an unique maximum such that the new parameter
iterate λk+1 is uniquely determined by (6).

Problem (2): Optimal sequence of hidden states. With the generaliza-
tion of the EM algorithm as discussed below, problem (2) from page 5 can be
solved by applying the standard Viterbi algorithm [22]. For given λ and O this
algorithm computes the most probable hidden path Q∗ = (q∗1 , . . . , q∗T ). This
path is called the Viterbi path. For an efficient computation see [14]; for more
details see [11].

Problem (3): Optimal number of metastable states. In the setup of
HmmSde for a given observation sequence one is confronted with the task to
select in advance the number M of hidden states. There are no general solutions
to this problem, and the best way to handle this problem often is a mixture of in-
sight and preliminary analysis. However, since our goal is to identify metastable
states we can proceed as suggested in [11]: Start the EM algorithm with some
sufficient number of hidden states, say M , that should be greater than the ex-
pected number of metastable states. After termination of the EM algorithm,
take the resulting transition matrix A and aggregate the M hidden states into
Mmeta ≤ M metastable states by means of an aggregation techniques that is
designed to detect metastability. Herein, we use an aggregation technique called
“Perron-cluster cluster analysis” (PCCA), see [5, 6]. The resulting aggregates
of hidden states will then allow an interpretation of the results in terms of
metastable states. Details can be found in [11, 14].
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2.2 Fokker-Planck Equation and Likelihood optimization

For the sake of simplicity, we will present the derivation for a one-dimensional
state space. As is pointed out in [14], this restriction is not necessary.

Propagation of probability density. Let us first assume that the jump
process in the HmmSde model (1) is fixed to one state, say q(t) = q for the times
t considered. Looking at a statistical density function ρ(x, t) of an ensemble of
SDE solutions (1) for different realizations of the stochastic process W we get
an equivalent representation of the dynamics in terms of the Fokker-Planck
operator:

∂tρ = 4xV (q)(x)ρ +∇xV (q)(x) · ∇xρ +
1
2
(σ2)(q)4xρ, (8)

where (σ2)(q) ∈ R1 denotes the variance of the white noise (for Rd it is the
trace of a positive definite selfadjoint matrix). In the case of harmonic poten-
tials this partial differential equation can be solved analytically whenever the
initial density function can be represented as a superposition of Gaussian dis-
tributions: the solution of the Fokker-Planck equation (8) remains to be a sum
of Gaussians whenever the initial probability function ρ(·, t = 0) is. Therefore,
let us apply the variational principle (Dirac-Frenkel-MacLachlan principle [9])
to (8) restricted to functions ρ of the form

ρ(x, t) = ν(t) exp
(−(x− y(t))T Σ(t)(x− y(t))

)
.

This leads to an explicit solution on the time-interval (t, t+τ) where the hidden
jump process q(t) is fixed in the state q [14]:

y(t + τ) = µ(q) + exp
(
−D(q)τ

)
(y(t)− µ(q)),

Σ(t + τ) =
(
D(q)−1

(σ2)(q) − exp
(
−2D(q)τ

)(
D(q)−1

(σ2)(q) − Σ(t)−1
))−1

,

ν(t + τ) =
1√
π

Σ(t + τ)1/2, (9)

In case of initial states that are sums of Gaussians, each Gaussian would move
independently according to (9) and we would get the solution of (8) by super-
position.

However, in the case considered herein, we are interested in the probability
of output O(tj+1) in metastable state qtj+1 under the condition that the system
has been in state Otj at time tj . For this, we can now use (9) with y(tj) = Otj

and Σ(tj)−1 = 0. Therefore, the output probability distribution results to be

ρ(Otj+1 |qtj , Otj ) = ν(tj+1) exp
(−(Otj+1 − y(tj+1))Σ(tj+1)(Otj+1 − y(tj+1))T

)
,
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with

y(tj+1) = µ(q) + exp
(
−D(q)τ

)
(O(tj)− µ(q)),

Σ(tj+1) =
(
D(q)−1

(σ2)(q) − exp
(
−2D(q)τ

)
D(q)−1

(σ2)(q)
)−1

=
(
1− exp

(
−2D(q)τ

))−1

D(q)(σ2)(q)
−1

,

ν(tj+1) =
1√
π

Σ(tj+1)1/2, (10)

for metastable state q = qtj+1 and with τ = tj+1 − tj .

Euler-Murayama discretization: explicit estimator. The formula (10)
for the parameters of the output distribution can be further simplified by the
assumption that we only want to know about the evolution of the system within
a short time interval [t, t + τ). We can then apply an Euler discretization
resulting in

y(t + τ) = Ot −D(q)(Ot − µ(q))τ (11)

Σ(t + τ) =
1
2τ

(σ2)(q)
−1

(12)

ν(t + τ) =
1√
π

Σ1/2(t + τ), (13)

which simplifies the following steps significantly.
Therefore for given model parameters λ we have the following joint proba-

bility distribution for the observation and hidden state sequences:

p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

aqt−1qtρ(Ot|qt, Ot−1)

= v(q0)ν(q0)(t) exp
(
−(O0 − y(q0)(0))Σ(q0)(0)(O0 − y(q0)(0))T

)

T∏
t=1

aqt−1qtν
(qt)(t) exp

(
−(Ot − y(qt)(t))Σ(qt)(t)(Ot − y(qt)(t))T

)
.

Due to (11) - (13) the Gaussian observation likelihood reduces to

ρ(Ot|qt, Ot−1, ..., O1) = ρ(Ot|qt, Ot−1) =

=
1

(4πτ2)1/4
((σ2)(qt))−1 exp

(
−(Ot − y(qt))

1
2τ

(σ(qt))−1(Ot − y(qt))T )
)

,

(14)

with
y(qt) = (Ot−1 −D(qt)(Ot−1 − µ(qt))τ).

and the parameter-tuple is λ = (v,A, µ, D, σ2).
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This now has to be inserted into formula (7) in order to get an explicit
formula for the functional Q that has to be maximized in each step of the EM
iteration. To simplify notation we will use the notation λ = (v,A, µ, D, σ2) = λk

and λ̂ = λk+1 for the old and new parameter iterate, respectively.
In order to identify λ̂ = (v̂, Â, µ̂, D̂, σ̂2) we have to find the zeros of the

partial derivatives of Q wrt. v̂, Â, µ̂, D̂, and σ̂2. Calculations and representation
of these derivatives can be found in [14] together with explicit formulas for the
optimal new parameter iterate λ̂ = (v̂, Â, µ̂, D̂, σ̂2).

Exponential discretization: semi-implicit estimator. The main advan-
tage of the Euler-based estimator is that given the observation sequence (Ot)t=0,...,T

and the corresponding sequence of the hidden Markov states qt, the formu-
las for the new parameter iterate allow direct, explicit estimation of the SDE-
parameters. The main assumption used in the derivation of these formulas was
that the time interval τ between distinct observations of the stochastic process is
short enough to validate the application of the Euler-Murayama discretization
of SDE-dynamics. However, this assumption may be violated in cases where
the observation sequence is coarsely spaced (i.e., τ is not small relative to the
fastest time scales of complex system).

Avoiding any discretization of the SDE dynamics and thus considering the
exact solution (9) of the Fokker-Planck equation (8), the log-likelihood function
is Q(O, q|λ) =

∑
q=(qt)∈ST+1 p(O, q|λk) log (p(O, q|λ)p(O, q|λ)) with p defined

as:

p(O, q|λ) = log(v(q0)ν(q0)(t))− (O0 − y(q0)(1))T Σ(q0)(0)(O0 − y(q0)(0))

+
T∑

t=1

log
(
aqt−1qtν

(qt)(t)
)

−
T∑

t=1

(
(Ot − y(qt)(t))T Σ(qt)(t)(Ot − y(qt)(t))

)
, (15)

where

y(q)(t + 1) = µ(q) + exp
(
−D(q)τ

)
(Ot − µ(q)),

Σ(q)(t + 1) =
(
1− exp

(
−2D(q)τ

))−1

D(q)(σ2)(q)
−1

,

ν(q)(t + 1) =
1√
π

Σ(q)(t + 1)1/2.

For fixed hidden sequence qt this can be re-written as a functional depending on
the SDE-parameters (µ,D, σ2) = (µ(q), D(q), (σ2)(q)). All of the second partial
derivatives of this functional wrt. these parameters are negative functions, which
implies that the likelihood function Q(O, q|µ,D, (σ2)) is a concave functional
and it has a unique maximum. In order to find this maximum, we have to find
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the solution of the following system of algebraic equations (see Appendix):

Qµ =
∂

∂µ
Q(O, q|µ,D, σ2) = 0 (16)

QD =
∂

∂D
Q(O, q|µ,D, σ2) = 0 (17)

Qσ2 =
∂

∂(σ2)
Q(O, q|µ,D, σ2) = 0 (18)

Furthermore, explicit evaluation of (16) exhibits that it is possible to express the
maximizer µ̂ of (16) as an explicit function of D. Substituting this expression
into (17) and (18) one can get the maximizers D̂ and σ̂2 just by solving the
resulting nonlinear system of two equations with two unknowns.

Numerically this can be efficiently done by an application of Newton’s method
with starting point determined by the explicit Euler-based estimator. The whole
procedure can be implemented in the form of a predictor-corrector scheme, i.e.,
the initial guess is predicted by the explicit Euler scheme and approved (cor-
rected) by a subsequent Newton iteration. Whenever the initial guess provided
by the explicit Euler-based estimator is good enough, the Newton method will
require only few iterations.

Direct comparison of estimators for a single SDE. In order to compare
the accuracy of the two estimators for the pure determination of SDE parameters
we should consider a model with only one hidden Markov state and given SDE
parameters, e.g., {µ,D, σ2} = {9, 50, 100}. We generate a typical realization
of this process for time step τ = 0.005 and total length T = 25 (see Fig. 1).
We then take this time series and produce two coarser spaced ones by only
taking each fourth point of the original one, and each tenth point, respectively.
By this, we generate two additional time series with observation stepsize τ =
0.02 and τ = 0.05, respectively. The results of parametrization via HmmSde
with M = 1 and our two estimators is displayed in Fig. 2. On one hand, we
observe that the shorter the observation stepsize, the smaller the error of the
parametrization with both estimators; here the error is the distance between
the estimated parameters and the exact value of the model parameters used
for a generation of the timeseries. On the other hand, the error of the explicit
Euler-based estimator increases much faster with increasing τ than the error
of the semi-implicit one (which stays relatively small). But since the result
from the explicit estimator enters the evaluation of the semi-implicit one as
initial value for the Newton iteration, we observe that the number of Newton
iterations increases with increasing τ : whereas for τ = 0.005 the Newton method
converges within two iterations, for τ = 0.04, e.g., the Newton method needs ten
iterations (see Fig. 2, right, and be aware of the steep gradients of the likelihood
landscape).

Complexity and Convergence. How does the numerical effort of the two
algorithmic realizations scale with the size of the problem, i.e., with the length of
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Figure 1: Realization of HmmSde model for one hidden state and SDE parameters {µ, D, σ2} =
{9, 50, 100} generated with time step τ = 0.005.
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Figure 2: Exponential likelihood landscape associated with the full time series (τ = 0.005)
of Fig. 1 as a function of parameters (D, σ2) (left) and the likelihood landscapes of the two
sub-sampled time series with τ = 0.02 and τ = 0.05 (middle and right; for details of their
construction, see text). Due to steep gradients all three sub-figures show contour lines of the
double logarithm log logL of the exact likelihood L due to (15). The marks in the three sub-
figures indicate the respective estimated parameters resulting from HmmSde with the explicit
estimator (circles) and semi-implicit estimator (triangles). The exact parameters used for
generation of the time series are indicated by crosses.

11



the observation sequence T , and the number M of hidden states? The literature
on the application of EM and Viterbi algorithms to the parametrization of
HMMs demonstrates that one step of EM and the entire Viterbi algorithm
scales linearly in T and quadratically in M ; this is still true for the specific
HmmSde procedure. Putting all terms together for the herein considered one-
dimensional cases one finds asymptotic estimates of the following form [14]: For
the explicit Euler-based estimator

O
(
M2T

)
· number of EM iterations.

For the semi-implicit exponential estimator

O
(
M2T

)
·

∑

#EMsteps

number of Newton iterations per EM step.

Here, the necessary number of iterations of the EM and Newton procedures
should be determined by an accuracy requirement on the error of the under-
lying optimization problems. In this article convergence is controlled by the
following termination criterions: (1) When the increase in likelihood in the last
EM iteration does not exceed a certain preset threshold level tolEM , the iter-
ation is stopped. (2) When the residuum of Newton’s iteration no longer is
larger than a certain preset threshold level tolNewton, the Newton iteration is
terminated. In the section on numerical experiments below the two threshold
values have been chosen to be identical: tolEM = tolNewton = 10−7.

3 Numerical Experiments

In order to test and compare the likelihood estimators, we first apply them
to time series generated from direct realizations of given models with known
parameters of SDEs, known rate matrix, and known hidden Viterbi path.

For the first test case we use direct realizations of models of type (1) (pa-
rameters (v,A, µ, D, σ2) known). For the second test case we consider a system
with two perturbed metastable states, and test our two estimators for different
amplitudes of perturbation. Based on the output sequence of such realizations
we re-identify the parameters by application of the different HmmSde identifi-
cation algorithms based on the results of the last section. The general aim is
to allow to compare both approaches (Euler-based explicit estimator and semi-
implicit exponential estimator). Finally, we demonstrate the application of both
estimators to a 100 ns B-DNA time series.

In all numerical experiments the initial parameter guesses are based on the
same procedure: The initial M×M transition matrix is chosen to be a stochastic
matrix with off-diagonal entries 0.001 and identical diagonal entries. The re-
maining part of the parameters is obtained by the re-estimation formulas, where
the probabilities P (Ot|qt, Ot−1) are chosen uniformly distributed on [0, 1], for
details see [14].

Each of the examples presented in the following needed 20-70 EM iterations
and 2-12 Newton steps (in case of the semi–implicit estimator).
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3.1 Case 1: Two coupled metastable sets.

For the first test case we compute a realization of (1)+(2) with harmonic SDE
potentials of the form (3) with M = 2 hidden states of the jump process with
rate matrix

R =
( −0.5 0.5

0.5 −0.5

)
.

The parameters (µ(q), D(q), (σ2)(q)) of the two associated SDEs can be found in
Table 1.

model First SDE Second SDE
µ 8 9
D 50 50
σ2 100 100

Table 1: Parameters of the SDEs for the first test case.
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Figure 3: Left: Realization of HmmSde for the first test system with two metastable sets with
parameters given in Table 1 against time. Right: Comparison of the original SDE potentials
V (solid) with the potentials estimated from the time series with help of the explicit Euler-
Murayama likelihood estimator (dotted) and the semi-implicit exponential estimator (dashed).

Fig. 3 shows a typical realization: we observe that from the given data one
cannot directly see metastability. Furthermore we observe that the SDE pa-
rameter estimation by means of the semi-implicit exponential estimator is sig-
nificantly more accurate than by means of the explicit Euler-based one. Fig. 4
displays the original (hidden) path of the Markov jump process and the two
paths computed via the Viterbi algorithm for the two types of estimator. Al-
though the jumps between hidden states are not obvious from the observation
sequence, the semi-implicit estimator almost perfectly identifies the hidden path
while for the explicit estimator certain differences can be seen.

Accuracy. Figs. 5 and 6 display the accuracy of HmmSde with the two dif-
ferent likelihood estimators in its dependence on the observation stepsize τ . We
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Figure 4: Comparison of the exact Viterbi path (solid) with the Viterbi path resulting from the
explicit Euler-based estimator (left, dashed) and with the one resulting from the semi-implicit
exponential estimator (right, dashed).

measure accuracy as follows: For each value of τ we calculate 1.000 realizations
of the original dynamics (always for the same total integration time span), and
compute the mean of the relative difference between the HmmSde results and
the exact parameters for each of these 1.000 realizations. In Fig. 5, it can be
seen clearly that, for increasing observation stepsizes τ the mean relative error
of the explicit Euler-based estimator significantly increases for parameters D
and σ2, while the relative error of the semi-implicit estimator shows a slight
increase in τ only.

In addition to the mean error we should also be interested in the decay of
variance of the error with increasing total length T (number of observations) of
the time series (for fixed observation stepsize τ , say τ = 0.02). Fig. 6 allows to
observe that, for the semi-implicit estimator, the variance of the relative error for
D and σ2 decreases with T (almost proportional to the inverse square root of T ).
For µ there is no improvement of accuracy with longer observation sequences;
this is not surpring since the parameter µ simply represents the statistical mean
of the distribution of data within the respective metastable state, therefore is
not directly related to any dynamical effect, and thus is already determined by
few observation points.

Comparison to standard SDE parametrization. Since we observed above
that both HmmSde estimators are able to uncover the hidden metastability in
the time series of case 1, we should ask whether parametrization of a single
SDE with a more complex, i.e., nonharmonic potential also allows to detect this
metastability. We therefore take the time series of case 1 (exactly the one that
we considered above with τ = 0.005), and follow [20] to directly estimate the
parameters of the following SDE:

dx = −DxU(x)dt + σdW

U(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0
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Figure 5: Mean of relative estimation errors of HmmSde results for time series of length
T = 10.000 for the explicit Euler estimator (crosses), and semi-implicit exponential estima-
tor (circles). The mean is computed by averaging of HmmSde results over 1.000 different
realizations of the model with parameters given in Table 1
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Figure 6: Variance in the relative estimation errors of HmmSde results for time series of
different numbers of observations T (always observation stepsize τ = 0.02) for the semi-
implicit exponential estimator. The variance is computed by averaging of HmmSde results
over 1.000 different realizations of the model with parameters given in Table 1
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The resulting potential U is shown in Fig. 7: The direct estimator fails to
uncover the hidden metastability but results in a simple quartic potential with
just one well instead of a double well landscape.
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Figure 7: Results of direct parametrization of a single SDE with nonharmonic potential based
on the time series (top) of case 1 as described in the text. Comparison of the exact potentials
(solid, lower plot) used for the generation of the time series with the one resulting from direct
parametrization (dashed, lower plot) [20].

3.2 Case 2: Two perturbed metastable subsets.

We now want to inspect the robustness of the detection of metastability by
HmmSde wrt. perturbations. Therefore, for our second test case we again take
the previous model but add perturbations to its harmonic SDE potentials in the
following form:

V (q)(x) =
1
2
D(q)(x− µ(q))2 + V

(q)
0 + ε(q) sin(ω(q)x). (19)

More precisely, the time series shown in Fig. 8 results for a model of type
(1)+(2) with potentials of the above form, parameters as given in Table 2, and
rate matrix

R =
( −0.5 0.5

0.5 −0.5

)
.

model First SDE Second SDE
µ 8 9
D 50 50
σ2 100 100
ε 5 5
ω 50 50

Table 2: Parameters of the SDEs for test case 2.
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Figs. 8 and 9 show that, although the model is perturbed, our two estima-
tor both succeed to detect the hidden metastability correctly, i.e., they both
yield reliable parameter estimations and Viterbi paths even for relatively short
observation sequences (see the right panel of Figure 8).
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Figure 8: Left: Time series for case 2 with two perturbed metastable states with parameters
given in Table 2 against time (length 1.000 with observation time step τ = 0.02). Right:
Comparison of the exact SDE potentials (solid) with the potentials estimated from this time
series by means of the explicit Euler-Murayama based likelihood estimator (dotted) and semi-
implicit exponential estimator (dashed).
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Figure 9: Comparison of the exact Viterbi path (solid) with the Viterbi path resulting from the
explicit Euler-based estimator (left, dashed) and with the one resulting from the semi-implicit
exponential estimator (right, dashed).

Finally, we want to compare the robustness of the two estimators for in-
creasing perturbation, i.e., for increasing value of the perturbation amplitudes
ε (all parameters as before, only ε(1) = ε(2) = ε are varied). We are mainly in-
terested in the following aspect: HmmSde approximates the effective dynamics
by fitting harmonic potentials. With increasing ε, the perturbed potential will
be a kind of “rugged” or “noisy” harmonic potential. When trying to find a fit-
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ting harmonic potential, then the dynamical effects, that this spatial ruggedness
introduces, should be represented as additional temporal noise, i.e., we should
expect to find that the optimal estimated noise intensity σest almost coincides
with the noise intensity σorg used for computing the time series for small ε but
increases with increasing ε.

Fig. 10 shows the results for our two estimators based on time series of equal
lengths and step size but with different values of ε. The deviation (∆µ, ∆D, ∆σ2)
of the estimated parameters is computed wrt. the parameters of the original
model used for computation of the time series. As it can be seen, the semi-
implicity exponential estimator determines the values of D with much less rel-
ative error, almost independently from spatial noise intensity ε. However, the
relative error of the σ2 estimation is increasing with increasing amplitude ε (as
expected). In addition, the explicit estimator clearly gets significantly wrong
estimates of the parameters for all values of ε considered.
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Figure 10: Mean of relative estimation errors of HmmSde results for time series of length
T = 2.000 and observation stepsize τ = 0.02 but different perturbation amplitudes ε for the
explicit Euler estimator (crosses), and semi-implicit exponential estimator (circles). The mean
is computed by averaging of HmmSde results over 1.000 different realizations of the model of
case 2.

3.3 Case 3: Torsion dynamics of a B-DNA oligomer

Finally we consider a time series originating from a long term molecular dy-
namics simulation of a 15-AT B-DNA oligonucleotide, see Fig. 11. The 100 ns
AMBER(parm96) force field simulation with explicit water and potassium ions
was conducted in the group of J. Maddocks (EPFL), for details visit [15]. The
raw data are given in the form of the backbone torsion angles time series with
an observation step size τ = 1 ps which is rather large compared to the fastest
time scales in the underlying dynamics.

Spectral analysis of the corresponding Fisher-matrix [10, 13] (which is the
analog of the covariance matrix for circular data on the torus) shows two domi-
nant modes (see Fig. 12). Due to [15] the essential dynamics of the system can
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Figure 11: Illustration of the 15-AT B-DNA oligonucleotide in atomic resolution. The attached
violett (grey) stings indicate the backbones. The molecular dynamics simulation referred to
herein includes solvent (water and counter-ions) which is not shown here.

be investigated by projecting the overall DNA dynamics onto these dominant
modes (the so-called principal modes).

In general, projection of the time series onto few principal modes allows for
approximating the so-called free energy landscape of the system in terms of these
modes, for details see [15, 21]. The resulting free energy landscape in terms of
the first principal mode is shown in Fig. 12. Whenever the effective dynamics
can be expressed correctly in terms of the principal modes then the wells in the
free energy landscape can roughly be identified with metastable states of the
system.

We now compare the results of HmmSde for each of our two estimators with
the structure of the free energy landscape. We therefore apply the two variants
of HmmSde , each with M = 7 hidden states, to the time series resulting from
projection of the DNA dynamics onto the first principal mode. As it can be
seen from Fig. 13, for both estimators the minima of the resulting harmonic
potentials can be found in the vicinity of the local minima of the free energy
surface. However, for the semi-implicit exponential estimator the correspon-
dence between minima of the harmonic potentials and wells in the free energy
landscape is much closer and much more reliable while the explicit estimator
seems to misplace at least one of its harmonic potentials.

Conclusion

This paper has been concerned with a novel approach to model reduction for
metastable systems that has first been presented in [14]. Its conceptual core is
to represent the dynamical behavior of a complex system (given via some suffi-
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Figure 12: Left: Spectrum of the torsion angles covariance matrix (Fisher matrix) (dominant
eigenvalues ν1 = 3.12, ν2 = 1.85, ν3 = 0.60, ν4 = 0.48). Right: projection of the overall DNA
dynamics onto the first principle mode (top) and free energy landscape computed from this
time series (bottom).
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Figure 13: Comparison of the free energy landscape in terms of the first principal mode
(solid) with the potentials identified by HmmSde with M = 7 hidden states. Left: with
explicit Euler-based estimator. Right: with semi-implicit exponential estimators. Note that
for the semi-implicit estimator the minima of the harmonic SDE potentials are much closer
to the local minima of the free energy than for the explicit one.
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ciently long time series) in terms of a Markov jump process between metastable
states with internal stochastic dynamics (SDEs). Its algorithmic core is the op-
timal estimation of the parameters of the jump process and of the internal SDEs
via likelihood maximization. We presented a novel algorithmic approach to this
parameter optimization problem that includes (a) the derivation of a likelihood
function that is not based on any discretization of the dynamics, and (b) a
semi-implicit Newton-based technique for the optimization of this functional in
the framework of the expectation-maximization algorithm. We presented sev-
eral examples that document that this novel semi-implicit estimator is more
accurate than the explicit estimator presented in [14], especially if applied to
coarsely-spaced time series.

The main algorithmic problem left open in this article is the problem of ex-
tending the presented technique to multi-dimensional time-series. This general-
ization is possible along the lines presented herein: the likelihood functional can
be constructed accordingly and the parameter optimization can also be based
on the EM algorithm and Newton’s method. However, there are several addi-
tional questions related to the essentially larger number of parameters involved,
and the convergence of Newton’s method in the therefore highly-dimensional
parameter space. A detailed investigation will be presented in [16].

However, even in highly-dimensional cases, it may surprisingly be sufficient
to have a reliable estimator for the one-dimensional case. As introduced in [7]
and illustrated in [15], one can take HmmSde to evaluate the Viterbi paths
for each single dimension of alone (successively), and then cluster the resulting
Viterbi paths in order to construct a global multi-dimensional Viterbi path.
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Appendix

Herein we derive the partial derivatives of the Log-Likelihood Q due to (7)+(15) wrt.
the parameters of SDE associated with the Markov state i. We get:

∂Q

∂µ(i)
=

TX
t=2

X

q∈ST

L(O, q1, ..., qt = i, ..., qT |λ̄)

| {z }
=αt(i)βt(i)

·2D(i)(e−D(i)τ − 1)((e−D(i)τ − 1)µ(i) − e−D(i)τOt−1 + Ot)

(1− e−D(i)τ )(σ2)(i)

∂Q

∂D(i)
=

TX
t=2

αt(i)βt(i)
h
− (D(i))−1 − 2e−2D(i)ττ

1− e−2D(i)τ

+
1

(e2D(i)τ − 1)2(σ(i))2

�
(Ot−1 − µ(i) + eD(i)τ (µ(i) −Ot))

·(µ(i) + e2D(i)τ (2D(i)τ − 1)(µ(i) −Ot−1))−Ot−1 + e3D(i)
(µ(i) −Ot)

−eD(i)τ (2D(i)τ + 1)(µ(i) −Ot−1))
�i

∂Q

∂(σ2)(i)
=

h TX
t=1

αt(i)βt(i)((σ
2)(i))−1

−
TX

t=2

αt(i)βt(i)
D(i)

�
(e−D(i)τ − 1)µ(i) − e−D(i)τOt−1 + Ot

�2

(1− e−2D(i)τ )(σ2)(i)

i

The maximum is computed via the zeros of this derivatives. From the first equation
we can express µ(i) as an explicit function of D(i). Substituting µ(i)(D(i)) into the
second and third equations we get a nonlinear system of two equations with two
unknowns D(i) and (σ2)(i).

∂Q

∂D(i)
|µ(i)=µ(i)(D(i)) = 0

∂Q

∂(σ2)(i)
|µ(i)=µ(i)(D(i)) = 0

(20)
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