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Abstract

This article is a survey of the present state of the transfer operator
approach to the effective dynamics of metastable complex systems, and the
variety of algorithms associated with it. We emphasize both conceptual
foundations, and concrete application to the conformation dynamics of a
biomolecular system. The algorithmic aspects are illustrated by means
of several examples of various degrees of complexity, culminating in their
application to a full-scale molecular dynamics simulation of a B-DNA
oligomer.
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1 Introduction

With the increasing availability of ever more powerful computational resources
there is a current interest in performing long numerical simulations of large non-
linear dynamical systems, for example biomolecules, and in examining rather
detailed properties of the results. For example there is a current effort to un-
derstand the sequence-dependent physical properties of B-form DNA via the
construction and analysis of a self-consistent data base of thirty nine compati-
ble simulations, each of a 15 base pair fragment or oligomer, with the oligomers
constructed in such a way that each of the 136 possible independent tetramer
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sequences is present at least twice [5]. The time series generated in this particu-
lar project comprise more than half a terabyte of data. It is accordingly evident
that there is an ever increasing need to analyze such time series efficiently, with
mathematical algorithms that are practical for data sets of this order of magni-
tude. In particular many nonlinear dynamical systems, including biomolecules
and specifically DNA, exhibit the phenomenon of metastability, i.e., the trajec-
tory is localized in one sub-region of phase space for comparatively long time
scales, before undergoing a rapid and rare transition to another region, where it
then stays for a comparatively long residency time before eventually undergoing
another rapid transition, and so on. Figure 1 illustrates this phenomenon via a
plot of a single, scalar dependent variable, in this case a certain torsional angle
in one of the DNA backbones between two particular base pairs in a simulation
of a poly(AT) oligomer. The time series is of length 105, being a sampling of
a 100 nanosecond simulation at every picosecond. The time series is evidently
multi-well and exhibits metastability with essentially instantaneous sharp tran-
sitions between wells that are separated by 180o or so, with rapid oscillations
within each well during the long residency times.

The purpose of this article is to survey existing, and introduce new, methods
for the identification of the metastable substates that are exhibited in a par-
ticular time series, and to estimate the transition probabilities between these
sets. The primary messages of the article are the following. First, that the
notion of the number of metastable states is a hierarchial concept–the appro-
priate number of metastable sets to be identified in a given time series depends
upon the phenomena to be modelled. Second and nevertheless, the numbers of
metastable states are not arbitrary; rather appropriate choices of the numbers of
metastable sets can be identified via various clustering techniques. For example
if the dimension of the time series is not too large a certain transfer operator
can be explicitly computed and the appropriate possible numbers of metastable
states can be associated with gaps in the spectrum of the operator via a Perron
cluster analysis, while the metastable sets themselves can be identified from the
associated eigenfunctions. Third, the usual methods for the computation of the
transfer operator suffer from the curse of dimensionality which means that the
methods are not practicable for large systems. However when the dimensionality
of the time series is too high one may be able to instead project the time series
onto a small dimension subspace via a technique such as Proper Orthogonal
Decomposition (or POD), and then use Hidden Markov Models (HMM) or the
new method of HMM Stochastic Differential Equations (HMMSDE) to identify
metastable substates and to make good estimates of the associated transition
probabilities.

The theory developed in the article is illustrated with two examples. First
there is an entirely tutorial and two-dimensional example involving the high fric-
tion or overdamped Brownian dynamics of a particle in a multi-well potential, in
which all the conclusions are entirely explicit. Second, the theory is applied to
the DNA simulation already mentioned above. That series is of length 105 and is
of high dimension (for details see next section). In this context the metastability
analysis plays an important role in identifying basins within which the base pair
level, structural shape and stiffness parameters of DNA can be approximated.
The DNA example lies within the class of problems that are too large for an
explicit computation of the transfer operator for the full system. However we
demonstrate that the essential dynamics of the system are encapsulated in a
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sufficiently low dimensional system such that the metastable sets can be cap-
tured via a HMMSDE analyis. We apply the analysis to two descriptions of the
system. In the first the coordinates are back-bone angles. In these coordinates
the transitions are very rapid and the states could also be identified via a more
standard HMM model. On the other hand the coordinates are periodic so that
the usual assumed Gaussian distributions must be replaced by the analogous but
periodic von Mises distribution. The structural parameters of DNA are more
traditionally described using an inter base pair description, and our analysis
reveals that in these coordinates the transitions between meta-stable sets are
not sharp. Rather the base pair variables are slaved to the backbone parame-
ters. Nevertheless the HMMSDE approach applied to the base pair parameters
can identify metastable states and the transition rates between them, as well as
the parameters of a stochastic model for the relaxation dynamics within each
metastable well.

2 Molecular Dynamics of DNA segments

2.1 Dynamics and Statistics

In classical molecular dynamics atoms are described as mass points subject to
forces that are generated by specified classical interaction potentials V . The
dynamical behavior is described by a deterministic Hamiltonian system of the
form

q̇ = M−1ξ, ξ̇ = −∇q V (q), (1)

defined on the state space X = R3N ×R3N with M denoting the diagonal mass
matrix. Eq. (1) models an energetically closed system, whose total energy, given
by the Hamiltonian

H(q, ξ) =
1
2

ξT M−1ξ + V (q), (2)

is preserved under the dynamics.
It is well known that for every smooth function F : R → R the probability

measure µ(dx) ∝ F(H)(x)dx is invariant wrt. the Markov process Xt given by
the solution of the Hamiltonian system (1). The most frequent choice is the
canonical density or canonical ensemble

f(x) ∝ exp(−βH(x))

for some constant β > 0 that can be interpreted as inverse temperature. The as-
sociated measure µ(dx) ∝ f(x)dx is called the canonical measure. The canonical
ensemble is often used in modeling experiments on molecular systems that are
performed under the conditions of constant volume and temperature T = 1

kBβ ,
where kB is Boltzmann’s constant. Obviously, a single solution of the Hamil-
tonian system (1) can never be ergodic wrt. the canonical measure, since it
conserves the internal energy H, as defined in (2). One traditional aspect of
molecular dynamics is the construction of (stochastic) dynamical systems that
allow sampling of the canonical ensemble by means of long-term simulation.
Several approaches have been discussed, most of them reducing to the construc-
tion of a Hamiltonian system in some slightly extended state space X̂, whose
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projection onto the lower dimensional state space X of positions and momenta
generates a sampling according to (2.1). One of the most prominent examples
is the Nosé-Hoover thermostat [7].

2.2 100 ns timeseries of GT (AT )6C DNA
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Figure 1: Timeseries of the 1st strand α-torsion angle for the junction 10. The dynamics
exhibits sharp transitions between the metastable sets.
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Figure 2: Time series of the inter base pair basepair coordinate for the junction 10. The
dynamics exhibits slow relaxational transitions (in a ns region) between the metastable sets.

Our primary objective is to analyse time series arising from biomolecular
simulations. In particular our largest data set was generated via a Molecular
Dynamics (MD) simulation of a 15 base pair fragment, or oligomer, using the
Amber package [9]. The detailed protocol was that of the ABC project as
described in detail in [5]. That simulation provided a 100 ns time series of
the oligomer with the sequence GT (AT )6C with explicit water and counter-
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ions. The MD delivers a time series of the cartesian coordinates of all atoms
(about 23.000 atoms, including solvent). The MD trajectory was sampled every
picosecond to obtain a series of length 105. The variables in the time series
that we work with are the physically motivated projections onto two different
sets of coarse-grained internal coordinates: either the torsion angle series of the
backbone data [36] or the inter base pair step parameters [20]. In either case the
dimension of the time series is 84 arising from the six degrees of freedom at each
of the fourteen junctions between fifteen base pairs. At each sampling time the
coarse grain variables were extracted from the full set of Cartesian coordinates
following standard conventions. Dependent upon the projection chosen, two
basic temporal patterns of dynamics were found: abrupt, almost instantaneous
change of the backbone torsion angles (see Fig. 1), but slow relaxations of the
inter base pair parameters with a relaxtion time on the order of 1-2 ns (cf.
Fig. 2).

Both the backbone angle and base pair parameter descriptions of the DNA
oligomer take standard, sequence-independent values on the idealized B-form
Watson-Crick double helix. One of the motivations for the development of the
time-series analysis developed here, is to extract and understand deviations from
these standard values both as a function of sequence and as a function of time.

3 Metastability

The evolution of a single microscopic system is assumed to be given by a ho-
mogeneous Markov process Xt = {Xt}t∈T in either continuous or discrete time.
We write X0 ∼ µ, if the Markov process Xt is initially distributed according to
the probability measure µ. The motion of Xt is given in terms of the stochastic
transition function

p(t, x, A) = P[Xt+s ∈ A |Xs = x], (3)

for every t, s ∈ T, x ∈ X and A ⊂ X that satisfies the well-known Chapman-
Kolmogoroff equation p(t + s, x,A) =

∫
X

p(t, x, dz) p(s, z, A) [15].
We say that the Markov process Xt admits an invariant probability measure

µ, or µ is invariant wrt. Xt, if
∫
X

p(t, x,A)µ(dx) = µ(A). In the following
we always assume that the invariant measure of the process under investigation
exists and is unique. A Markov process is called reversible wrt. an invariant
probability measure µ if

∫
A

p(t, x,B)µ(dx) =
∫

B
p(t, x,A)µ(dx) for every t ∈ T

and A, B ⊂ X.

3.1 Transition probabilities and Transfer Operators

Metastability of some subset of the state space is characterized by the property
that the dynamical system is likely to remain within the subset for a long period
of time, until it exits and a transition to some other region of the state space
occurs. There are in fact several related but different definitions of metastability
in literature (see, e.g., [8, 11, 40, 41]); we will focus on the so-called ensemble
concept introduced in (4), for a comparison with, e.g., the exit time concept,
see [39].

The objective is an identification of a decomposition of the state space into
metastable subsets and the corresponding “flipping dynamics” between these
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sub-states. In general, a decomposition D = {D1, . . . , Dm} of the state space X
is a collection of subsets Dk ⊂ X with the properties: (1) positivity µ(Dk) >
0 for every k, (2) disjointness up to null sets, and (3) the covering property
∪m

k=1Dk = X. In particular the appropriate number m of metastable subsets
must be identified. Within a transfer operator approach this can be achieved
via spectral analysis (see key idea on page 6).

We define the transition probability p(t, B,C) from B ⊂ X to C ⊂ X within
the time span t as the conditional probability

p(t, B, C) = Pµ[Xt ∈ C |X0 ∈ B] =
Pµ[Xt ∈ C and X0 ∈ B]

Pµ[X0 ∈ B]
, (4)

where Pµ indicates that initially X0 ∼ µ. Then (4) may be rewritten as

p(t, B, C) =
1

µ(B)

∫

B

p(t, x, C)µ(dx). (5)

In other words, the transition probability quantifies the dynamical fluctuations
within the stationary ensemble µ. Concomitant with our ensemble dynamics
approach to metastability, we call a subset B ⊂ X metastable on the time scale
τ > 0 if

p(τ,B,Bc) ≈ 0, or equivalently, p(τ, B, B) ≈ 1,

where Bc = X \B denotes the complement of B.

Transfer Operator. We define the semigroup of propagators or forward trans-
fer operators P t : Lr(µ) → Lr(µ) with t ∈ T and 1 ≤ r < ∞ as follows:

∫

A

P tv(y) µ(dy) =
∫

X

v(x)p(t, x, A)µ(dx) (6)

for A ⊂ X. As a consequence of the invariance of µ, the characteristic function
1X of the entire state space is an invariant density of P t, i.e., P t1X = 1X.
Furthermore, P t is a Markov operator, i.e., P t conserves both norm ‖P tv‖1 =
‖v‖1 and positivity P tv ≥ 0 if v ≥ 0, which is a simple consequence of the
definition. Due to (6), the semigroup of propagators mathematically models
the evolution of sub–ensembles in time.

The key idea of the transfer operator approach wrt. the identification of
metastable decompositions can be described as follows:

Metastable subsets can be detected via eigenvalues of the propaga-
tor P close to its maximal eigenvalue λ = 1; moreover they can
be identified by exploiting the corresponding eigenfunctions. In do-
ing so, the number of metastable subsets is equal to the number of
eigenvalues close to 1, including λ = 1 and counting multiplicity.

This strategy was first proposed by Dellnitz and Junge [12] for discrete dy-
namical systems with weak random perturbations, and has been successfully
applied to molecular dynamics in different contexts [37, 38, 39]. Its justifica-
tion is given below. The key idea requires the following two conditions on the
propagator P :

• (C1) The essential spectral radius of P is less than one, i.e., ress(P ) < 1.
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• (C2) The eigenvalue λ = 1 of P is simple and dominant, i.e., η ∈ σ(P )
with |η| = 1 implies η = 1.

In this article, two types of Markov process will be considered: (1) high-friction
Langevin processes, and (2) (Nose-Hoover) constant temperature molecular dy-
namics. For both cases the dynamics is reversible and the transfer operator
is self-adjoint. For type (1) examples, conditions (C1) and (C2) are known to
be satisfied under rather weak condition on the potential [39]. For type (2)
examples, it is unknown whether or not the conditions are satisfied; however, it
normally is assumed in molecular dynamics that they are valid for realistically
complex systems in solution.

We define the metastability of a decomposition D as the sum of the metasta-
bilities of its subsets. That is, suppose that the time scale τ of interest is fixed.
Then, for each arbitrary decomposition Dm = {A1, . . . , Am} of the state space
X into m sets we define its metastability measure by

meta(Dm) =
m∑

j=1

p(τ, Aj , Aj)/m.

For given m the optimal metastable decomposition into m sets can then be
defined as that decomposition into m sets which maximizes the functional meta.

The next result [28] justifies the above key idea:

Theorem 3.1 Let P τ : L2(µ) → L2(µ) denote a reversible propagator satisfying
(C1) and (C2). Then P τ is self–adjoint with spectrum of the form

σ(P τ ) ⊂ [a, b] ∪ {λm} ∪ . . . ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λm ≤ . . . ≤ λ1 = 1 and λi isolated, eigenvalues that
are counted according to their finite multiplicities. Denote by vm, . . . , v1 the
corresponding eigenfunctions, normalized to ‖vk‖2 = 1. Let Q be the orthogonal
projection of L2(µ) onto span{1A1 , . . . ,1Am}. Then the metastability of an
arbitrary decomposition Dm = {A1, . . . , Am} of the state space X can be bounded
from above by

p(τ,A1, A1) + . . . + p(τ,Am, Am) ≤ 1 + λ2 + . . . + λm,

while it is bounded from below according to

1 + κ2λ2 + . . . + κmλm + c ≤ p(τ,A1, A1) + . . . + p(τ,Am, Am),

where κj = ‖Qvj‖2L2(µ) and c = a ((1− κ2) + . . . + (1− κn)).

Theorem 3.1 highlights the strong relation between a decomposition of the state
space into metastable subsets and a Perron cluster of dominant eigenvalues close
to 1. It states that the metastability of an arbitrary decomposition Dm cannot
be larger than 1+λ2+. . .+λm, while it is at least 1+κ2λ2+. . .+κmλm+c, which
is close to the upper bound whenever the dominant eigenfunctions v2, . . . , vm

are almost constant on the metastable subsets A1, . . . , Am implying κj ≈ 1 and
c ≈ 0. The term c can be interpreted as a correction that is small whenever
a ≈ 0 or κj ≈ 1. It is demonstrated in [28] that the lower and upper bounds
are sharp and asymptotically exact.
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3.2 Metastability Analysis is Hierarchical

The last theorem and the illustrations and examples below contain one main
message about metastability analysis: it has to be hierarchical. Whenever we
approximate the optimal metastable decomposition D2 of state space into, say,
two sets, we should always be aware that there could be a decomposition D3

into three sets for which meta(D3) is almost as large as meta(D2). For example,
one or both of the two subsets in D2 could decompose into two or several
metastable subsets from which exit is comparably difficult for the system under
investigation.

However, whenever there is a gap in the spectrum of the transfer operator
after m dominant eigenvalues, then the results of, e.g., [27, 8] tell us that any
decomposition into more than m sets will be associated with a significantly
larger drop in metastability as measured by the function meta. In the context
of applications to molecular dynamics, however, one should always be aware that
particular aspects of interest may make it desirable to explore the hierarchy of
metastable decompositions up to a certain depth that is not necessarily selected
only on the values of the functional meta.

3.3 Discretization and PCCA

Let χ = {χ1, . . . , χn} ⊂ L2(µ) denote a set of non–negative functions that are a
partition of unity, i.e.,

∑n
k=1 χk = 1X. The Galerkin projection Πn : L2(µ) →

Sn onto the associated finite dimensional ansatz space Sn = span{χ1, . . . , χn}
is defined by

Πnv =
n∑

k=1

〈v, χk〉µ
〈χk, χk〉µ χk.

Application of the Galerkin projection to P τv = λv yields an eigenvalue problem
for the discretized propagator ΠnP τΠn acting on the finite-dimensional space
Sn. The matrix representation of this finite dimensional operator is given by
the n× n transition matrix T = (Tkl), whose entries are given by

Tkl =
〈P τχk, χl〉µ
〈χk, χk〉µ . (7)

The transition matrix inherits the main properties of the transfer operator: it
is a stochastic matrix with invariant measure given by the invariant measure
µ of P τ , it is reversible if P τ is self-adjoint, and (if the discretization is fine
enough) it also exhibits a Perron cluster of eigenvalues that approximates the
corresponding Perron cluster of P τ , and with eigenvectors that approximate the
dominant eigenvectors of P τ [39]. It thus allows to compute the metastable sets
of interest by computation of the dominant eigenvectors of T and by realization
of the identification strategy of page 6 based on these (discrete) eigenvectors.
This has led to the construction of an aggregation technique called “Perron
Cluster Cluster Analysis” (PCCA) [13, 14].

The entries of T can be computed from realizations of the underlying Markov
process Xt. We have

Tkl =
1

〈χk, χk〉µ

∫

X

χk(x)Ex[χl(Xτ )] µ(dx).
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If x0, . . . , xN denote a time series obtained from a realization of the Markov
process with time stepping τ , then the entries of T can be approximated from
the relative transition rates computed by means of this time series:

Tkl ≈ T (N)
kl =

∑N
j=1 χk(xj) · χl(xj+1)∑N

j=1 χk(xj)2
. (8)

For a time series of whatever length, but with a high dimensional configura-
tion variable, practical evaluation of the formula (8) may become problematic.
There are two main reasons for potential difficulties.

Trapping problem. The rate of convergence of T (N)
kl → Tkl depends on the

smoothness of the partition functions χk as well as on the mixing properties of
the Markov process [30]. The latter property is crucial here: The convergence
is geometric with a rate constant λ1−λ2 = 1−λ2 where λ2 denotes the second
largest eigenvalue (in modulus). In the case of metastability with λ2 being
very close to λ1 = 1, we will have dramatically slow convergence. This is
of no surprise because closeness of dominant eigenvalues is typically the main
difficulty in all approaches to biomolecular dynamics and statistics, and it is
also a bottleneck of the transfer operator approach. Much of the literature aims
to tackle this trapping problem [4, 17]. In our largest examples evaluation of
(8) is not practical. However we will not go into the depth of the discussion on
overcoming the trapping problem, because we propose alternative approaches.
We will simply assume in all of the following that we have already generated
or can directly generate a time series that is “long enough” in the sense that
it contains statistically significant information about more than one –if not all–
interesting metastable states of the system under consideration. We will discuss
later whether this is the case for our poly(AT) DNA time series.

Curse of Dimension. Any discretization of the transfer operator will suf-
fer from the curse of dimension whenever it is based on a uniform partition of
all of the hundreds or thousands of degrees of freedom in a typical biomolec-
ular system. Fortunately, chemical observations reveal that—even for larger
biomolecules—the curse of dimensionality can be circumvented by exploiting the
hierarchical structure of the dynamical and statistical properties of biomolecular
systems: only relatively few essential degrees of freedom are needed to describe
the conformational transitions (see next section); furthermore, the canonical
density has a rich spatial multiscale structure induced by the rich structure of
the potential energy landscape. This structure induces a hierarchical cluster
structure of the sampling data that can be identified and used to define a mul-
tilevel discretization adapted to the structures of the statistical data (see [39]
or subsequent examples).

3.4 Illustrative Example

For simplicity we consider the Markov process given by so-called high-friction
Langevin equation which is the limit of high friction of the famous Langevin
equation, see [35, 38]. The high-friction Langevin equation is stated in the
position space only and is given by the equation

ẋ = −∇xV (x) + σẆt, (9)

9



with x(t) ∈ Rd being the position vector of the system, Wt denoting d-dimensional
standard Brownian motion, and σ the noise intensity parameter. The stochastic
differential equation (9) defines a continuous time Markov process Xt with in-
variant probability measure µ(dx) ∝ exp(−βV (x))dx with β = 2/σ2 [35]. There
is a long history of using it as a simple toolkit for investigation of dynamical
behavior in complicated energy landscapes [10]. It is known that under weak
conditions on the potential function V the Markov process is reversible [25].

The associated semigroup (P t) of propagators admits a strong generator A
such that the semigroup can be written as P t = exp(tA), respectively. For
twice continuously differentiable u ∈ L2(µ) we have the identity

Au =
(

σ2

2
∆x −∇xV (x) · ∇x

)
u.

For details on A see the theory of Fokker-Planck equations and Kolmogoroff
forward and backward equations [35, 40]. Under appropriate conditions (the
Perron cluster is a discrete part of the spectrum) we can compute the dominant
eigenvectors of P t via those of A.
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Figure 3: Potential V used for illustrative example. We observe three wells in the potential
landscape (see colorbar). The tags indicate the minima and saddle points of the potential;
the numbers give the value of the potential at these points. We observe that the leftmost
minimum is the deepest well separated by the most pronounced energy barrier from the two
other ones.

For illustrative means we use the potential V illustrated in Fig. 3 (thus
setting d = 2). Fig. 4 shows typical realizations of the high friction Langevin
Markov process associated with this potential (setting σ = 0.131). We observe
that the vicinity of the wells in the potential energy landscape can approximately
be identified with the metastable sets of the process; it is well-known from large
deviation theory that in fact, for small enough noise intensity, the vicinity of the
wells of the potential energy landscape are the metastable sets of high-friction
Langevin processes (at least such wells that are separated from each other by
significant energy barriers) [27].
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Figure 4: Typical realization of the high-friction Langevin dynamics (both components
(left/right) of the state versus time) in the potential energy landscape V shown in Fig 3
for σ = 0.131.

Next, we discretized the transfer operator of the process (fine grid with
100 × 100 discretization boxes in discretization domain [−3, 3] × [−3, 3]) for
different values of τ which results in the dominant eigenvalues listed in Table 1.

σ(P τ ) λ1 λ2 λ3 λ4

τ = 0.01 1.000 0.999 0.997 0.959
τ = 0.10 1.000 0.994 0.975 0.656
τ = 1.00 1.000 0.937 0.776 0.015

Table 1: Leading four eigenvalues of transfer operator P τ for different values of τ for high-
friction Langevin motion with potential and parameters as described in the text.

While the eigenvector of the largest eigenvalue is constant, the corresponding
second and third eigenvector of P τ in L2(µ) are shown in Figs. 5 (they are
identical for all values of τ because of the semigroup property).
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Figure 5: Second and third eigenvectors of the transfer operator for high-friction Langevin
process in potential of Fig. 3 (details see text).

Having computed the dominant eigenvectors we can determine the optimal
metastable decomposition by means of PCCA as introduced above. The results
on the spectrum (see τ = 0.1 for example) exhibit a hierarchy of metastability
that is in perfect agreement with the general insight on metastability of high
friction Langevin motion: We can apply PCCA to the first two eigenvectors of
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the transfer operator; this results in the metastable decomposition that distin-
guishes between the vicinity of the deepest well and the remaining state space
(see Fig. 6, left). When applying PCCA to the first three eigenvectors, however,
the resulting metastable decomposition identifies the vicinities of all three well
as the metastable regions of the system (see Fig. 6, right). This outcome is
desirable and typical: metastable decomposition via spectral properties of the
transfer operator are hierarchical in the sense that the process of including more
and more leading eigenvalues uncovers finer and finer details of metastability
within the system, see [39, 27].

So, what happens if we take the first four eigenvectors? This we can im-
mediately understand by comparing the values of the functional meta for the
optimal metastable decompositions Dm into m = 1, 2, 3, 4 sets (τ = 1) as given
in Table 2: Between m = 3 and m = 4 there is a significant drop in metasta-
bility indicating that it makes no real sense to speak of four metastable sets for
the system under consideration.

m 1 2 3 4

meta(Dm) 1.000 0.967 0.899 0.613
1
k

Pm
k=1 λk 1.000 0.969 0.904 0.682

Table 2: Metastabilities of the optimal metastable decomposition Dm into m = 1, 2, 3, 4 sets
(as computed by PCCA from the dominant eigenvectors) and its theoretical upper bound as
of Theorem 3.1.
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Figure 6: Optimal metastable decomposition resulting from PCCA based on the first two (left)
and first three (right) eigenvectors of the transfer operator.
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4 Algorithms

As already mentioned we assume herein that some “long enough” time series
(xt)t=t0,...,tN

of states of the system under consideration is already given. We are
mainly interested in the case that the states xtl

are from some high-dimensional
state space Rd. In this section we will often consider time series of some ob-
servables (Ot)t=t0,...,tN

computed from the time series (xt), e.g., the time series
of torsion angles or inter base pair parameters. We now want to discuss the
question of dimension reduction. In the scope of this article this means the
question of how to find/design observables such that the time series (Ot) on the
one hand still allows to identify the main metastable states but on the other
hand is significantly lower dimensional than the original state space.

Even if this dimension reduction is successful, the resulting time series (Ot)
may not show clearly disjoint metastable states because of overlapping due to
dimension reduction. For an example visit Fig. 4 again: While the metastable
state of our illustrative example clearly are well disjoint in full state space (given
by the vicinity of the wells of the energy landscape), the two one-dimensional
time series shown in Fig. 4 clearly exhibit metastability but the metastable
states are now overlapping (not clearly disjoint).

In the rest of this section we will, first, discuss methods for dimension reduc-
tion and, second, methods for identifying metastability despite overlaps between
metastable states.

4.1 Essential Variables and Free Energy

One of the main ideas for dimension reduction is to find the essential degrees
of freedom or essential variables of the system under consideration. In the (low
dimensional) subspace of essential degrees of freedom most of the positional
fluctuations occur, while in the remaining degrees of freedom the motion can be
considered as “physically constrained”.

Based on the available time series, we may determine essential degrees of
freedom either in the position space according to Amadei et al. [1] or in the
space of internal degrees of freedom, e.g., dihedral angles, by statistical analysis
of circular data [26]. Either case is based on proper orthogonal decomposition
(POD), also known as principal component analysis (PCA), for details see next
paragraph. As shown in [26] and in Sec. 5 below, this procedure may results in
an enormous dimension reduction.

4.1.1 Proper Orthogonal Decomposition (POD)

Proper orthogonal decomposition (POD), also called principal component analy-
sis (PCA), provides a method for finding a best approximating subspace S ⊂ Rd

to a given set of data [22] but without taking into account its temporal order.
However, in our case the set of data always will be given by the time series
(y(t)) = (xt)t=t0,...,tN of states or some time series (y(t)) = (Ot)t=t0,...,tN of
observations.

We may characterize the subspace S by a projection operator Π mapping
Rd onto S. The task is to minimize

I(Π) =
N∑

l=1

‖y(tl)−Πy(tl)‖2R ,
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wrt. to a given Riemannian metric ‖ · ‖R with associated scalar product 〈·, ·〉R.
One then can easily show that the optimal m-dimensional subspace in Rd is
spanned by the dominant eigenvectors Φk, k = 1, . . . ,m, of the covariance
matrix C (for definition see below) of the data (yt). That is, the Φk are the
eigenvectors of the largest m eigenvalues νk of C (counting multiplicity), i.e.,
C Φk = νkΦk. The subspace S is optimal in the sense that the energy norm on
S

N∑

l=1

‖Πy(tl)‖R =
m∑

j=1

νj

is the maximum achieved by any m-plane in Rd (cf. [29]).
For the definition of the covariance matrix let us first consider the case that

(yt) is a time series in Euclidean space (i.e., no circular observables that may
introduce problems with periodicity). Then,

C =
N∑

l=1

(y(tl)− ȳ)⊗ (y(tl)− ȳ), (10)

where ⊗ denotes the tensor product wrt. 〈·, ·〉R, and ȳ the mean value of y along
the time series. Fig. 7 shows the spectrum of the covariance matrix of the time
series of inter base pair parameters of the DNA segment introduced in Sec. 2.
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Figure 7: Spectrum of the covariance matrix (left, in double logarithmic representation) of
the inter base pair parameter time series of the GT (AT )6C DNA segment and projection of
the overall dynamics on first three principal components (right). We clearly observe at least
two dominant POD modes (ν1 = 0.30, ν2 = 0.13, ν3 = 0.07, ν4 = 0.06).

Circular Observables. Whenever the observation time series (y(t)) contains
circular coordinates the covariance matrix has to be redefined on the respective
torus. Suppose the components of y(t) are denoted yi(t) and that all yi take
values on [0, 2π].

The covariance matrix C can be generalized as follows [18, 26]:

Ckl =
r(yk − yl)2 − r(yk + yl)2√

(1− r(yk)2)(1− r(yl)2)

√
4 log(r(yk)) log(r(yl)), (11)

where r(yk) is computed from the mean ēk =
∑N

l=1 exp(iyk(tl))/N via

r(yk) exp(iϕ(yk)) = ēk.
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4.1.2 Free Energy

In statistical physics the concept of free energy is based on an m-dimensional
manifold M in the configurational space of the system; this may, e.g., be the
manifold spanned by the dominant POD modes. Suppose that the level sets of
c = c(q) ∈ R3N−m define this manifold of reaction coordinates with q denoting
a configuration of the system in position space. The corresponding free energy
is defined by

F (c′) = − 1
β

log Z(c′), Z(c′) =
∫

exp(−βH(q, ξ))δ(c′ − c(q)) dqdξ.

Under very specific circumstances the free energy landscape is known to allow
for an identification of the metastable sets of the system with its main wells [32];
however, this means that the reaction coordinates c already are the “conforma-
tional degrees of freedom” of the system, that is, they would allow for a perfect
low-dimensional characterization of the metastable sets. This normally is not
the case which, in turn, may make interpretation of the free energy landscape
in terms of metastability and transitions misleading, or even wrong. We will
observe a situation like that in the section on DNA dynamics.

Next we will explain how to approximate the free energy landscape based on
given time series: Assume that we have access to a time series (Ot)t=1,...,N of
the coordinates Ot = c(q(t)), and that the underlying time series (q(t))t=1,...,T

is approximately distributed due to µ ∝ exp(−βH(q, ξ)) in state space. Fur-
thermore, let (Ot) be contained in B ⊂M, and (Bk)l=1,...,L be a partition of B
into ”small”, disjoint subsets (”bins”). The relative frequency of hits of box Bk

along the time series is

rBk
=

∑N
l=1 χBk

(Otl
)

N
.

Therefore, the histogramm of (Ot) wrt. (Bk) is
∑L

k=1 rBk
χBk

. Then, the
function Z can be approximated by the histogram of (Ot) wrt. (Bk), i.e., by
the step-function

Z(c′) ≈
L∑

k=1

∑N
l=1 χBk

(Otl
)

N
χBk

(c′).

Consequently, the approximate free energy landscape is given by

F (c′) ≈ F̂ (c′) = − 1
β

log
( L∑

k=1

∑N
l=1 χBk

(Otl
)

N
χBk

(c′)
)

(12)

There is a bunch of other (far better) approaches to the computation of the free
energy landscape [42, 16, 21]. However, most of them require an entirely different
approach to MD simulation such that these techniques are not applicable if some
time series resulting from standard MD simulation are already given.

4.2 Algorithms based on Hidden Markov Models

Suppose the system under consideration has a metastable decomposition. Then,
at any time t the system will be exactly in one of the associated metastable sets
Bq ⊂ X, q = 1, . . . ,m. Therefore, at each time t there is “metastable state” q(t)
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given by the number of the presently visited metastable set. Whenever a time
series of values of observables (or “observations”) O = (Ot)t=t0,...,tN

is given, we
want to identify the time series of metastable states q = (qt)t=t0,...,tN associated
with it. However, while the time series (Ot) is observed, i.e, known, the series
(qt) is hidden within the data.

Suppose that the observed data (Ot) is given with constant time stepping
τ , i.e., tk = tk−1 + τ for all k = 1, . . . , N . Setting t0 = 0 we have tk = kτ and
especially T = tN = Nτ . For the sake of simplicity of notation we thus may
simply write t = 0, ..., T .

The probability to go from one metastable/hidden state q to another one q′

is given by Tqq′ = p(τ, Bq, Bq′). That is, the sequence (qt) should be seen as the
realization of a Markov chain with M states with transition matrix T .

The observations Ot somehow result from the respective hidden state qt by
apriori unknown rules. For given time series of observations O = (Ot)t=t0,...,tN

one is interested in finding the most probable series of metastable/hidden states.
Models like the one coarsely described above are well-known as hidden Mar-

kov models (HMMs). A HMM is a stochastic process with hidden and observ-
able states; the hidden states of a HMM form Markov chain while the observable
states are understood as output that is distributed according to a certain con-
ditional distribution (conditioned to the hidden state).

To describe the whole system, we need to know the number M of hidden
states, the transition matrix T between them, an initial distribution, and for
each state a certain rule governing the probability distribution for the observa-
tion.

Stationary output. In standard HMMs the output distributions result from
iid random variables, i.e., consecutive output states are statistically indepen-
dent. That is, conditioned on the hidden state, the output is simply randomly
chosen from a stationary distribution. In application to the analysis of data pro-
duced in the context of molecular dynamics this means that the system reaches
the thermodynamical equilibrium distribution immediately after each transition
between metastable states; this then is related to abrupt jumps of some physical
observables.

The most popular choice for such stationary distributions are (multivariate)
normal distributions. However, in the case of circular data (like torsion angle
positions in a molecular dynamics simulation) the use of normal distribution
often induces crucial problems due to periodicity and thus have to be replace
by von Mises distributions [31].

The problem of the statistical analysis of the time series in this case will be
reduced to the identification of the Markov transition matrix and equilibrium
statistical distributions (often specified in a parameterized form) [3, 33, 34].
This approach was recently successfully applied to analysis of torsion angles
dynamics of trialanine molecule [19].

In case of the DNA time series described above the dynamics of the torsion
angle data is well-acquainted with main assumptions of the HMM–model (in-
stantaneous switches in the hidden Markov-chain, equilibrated statistical distri-
butions associated with each of the states, see Fig. 1), which may be explained
by the small mass of the involved fragments (torsion angel characterizes the
mutual positions of the four involved atoms).
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SDE Output. In contrast, the relaxation behavior of the base parameters
describing the dynamics of DNA-basepairs (consisting of 30 atoms) can not be
consistently described in terms of canonical HMMs (see Fig. 8). Instead of
assigning some predefined stationary distribution to each of the hidden states,
we can use a parameterized stochastic dynamical process Yt (e.g., given in form
of a SDE) with parameters depending on the actual state of the hidden Markov–
chain (metastable state) Yt. Herein, we consider processes of the form

Ẏt = −DV (q)(Yt) + σ(q)Ẇ , (13)
q(t) : R1 → {1, 2, ..., k}, (14)

where q(t) are the realizations of the hidden Markov chain, W is standard
”white noise”, and {V (q), σ(q)} is a set of the state-specific model parameters
with harmonic potential V (q) of the form

V (q)(Y ) =
1
2
(Y − µ(q))T D(q)(Y − µ(q)) + V

(q)
0 , (15)

where µ(q) and D(q) are equilibrium position and Hesse-matrix of the confor-
mation q, respectively. Each of the SDEs has a unique invariant Gaussian
distribution proportional to

exp
(
− (Y − µ(q))T D(q)(Y − µ(q))/σ(q)2

)
. (16)

In contrast to the standard HMM approach, such stochastic dynamical sys-
tems do not reach a new equilibrium distribution immediately after each jump
of the Markov chain but relaxes into the new equilibrium state and reaches the
invariant distribution ρi only after some characteristic relaxation time which
can help to estimate the unknown parameters of the SDEs (14). This idea was
recently exploited in the context of model reduction for complex systems ex-
hibiting metastable behavior [23]. We will often abbreviate “HMMs with SDE
output” by HmmSde .

Optimal Parametrization. Both types of HMMs, whether with stationary
output distribution or with SDE output, contain sets of parameters (the entries
of the transition matrix T , the initial output distribution v, as well as the
parameters of SDEs or output distributions, respectively), herein denoted by
θ. We now want to identify optimal parameters for given observation data
O = (Ot)t=1,...,T . We have to define the likelihood functional with respect to
which we then will have to determine the optimal parameters θ and the sequence
of hidden states q = (qt)t=1,...,T .

For given parameters θ, the likelihood L(θ|Ot, qt) has to be the probability
of output Ot under the condition of being in metastable state qtj for given
parameters θ:

L(θ|Ot, qt) = p(O, q|θ) = v(q0)ρ(O0|q0)
T∏

t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1),(17)

where ρ(·|q, Ot−1) denotes the output distribution at time t under the condition
that the system is in hidden state qt. In the case of SDE output this distribu-
tion also depends on the previous output state Ot−1 which is not the case for
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Figure 8: Fragment of one of the inter base pair parameter time series showing relaxation
behavior. Statistics of the time series in each of the states and relation (16) can be used to
calculate σ(i) =

p
2D(i)S(i).

stationary output distributions. Stationary output means that the formula for
the output distribution is explicitly given; as demonstrated in detail in [23, 24]
there also is an explicit formula for the output distribution ρ(·|q,Ot−1) for SDE
output as long as the potentials in (14) are harmonic.

The next task now will be to construct algorithms that

(1) determine the optimal parameters (T , µq, Dq, σq)q=1,...,M by maximizing
the likelihood L(θ|O, q); this is a nonlinear global optimization problem,

(2) determine the optimal sequence of hidden metastable states (qt) for given
optimal parameters, and

(3) determine the number of important metastable states; up to now we also
simply assumed that the number M of hidden states is a priori given -
how can we determine the appropriate number?

To solve problem (1) we will use the expectation-maximization (EM) algo-
rithm. The EM algorithm is a learning algorithm: it alternately iterates two
steps, the Expectation step and the Maximization step. Starting with some ini-
tial parameter set θ0 the steps iteratively refine the parameter set, i.e., in step k
the present parameter set θk is refined to θk+1. We will work out the details of
the EM algorithm for the problem under investigation by following the general
framework given in [6]:

The key object of the EM algorithm is the expectation

Q(θ, θk) = E
(

log p(O, q|θ) |O, θk

)
(18)

of the complete-data likelihood L(θ|O, q) = p(O, q|θ) (in our case given by (17))
wrt. the hidden sequence q given the observation sequence and the current
parameter estimate θk. One step of the EM algorithm then realizes the following
two steps:
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• Expectation-step: This step evaluates the expectation value Q based on
the given parameter estimate θk.

• Maximization-step: This step determines the refined parameter set θk+1

by maximizing the expectation:

θk+1 = argmax
θ

Q(θ, θk). (19)

The maximization guarantees that L(θk+1) ≥ L(θk).

Algorithmic realizations of these two steps are standard for stationary Gaussian
and von Mises output [19]; for SDE output the algorithmic details can be found
in [23, 24]. In both cases the necessary computational effort for one step of
the EM algorithm scales linearly in the length of the observation sequence and
quadratically in the number of hidden states.

Optimal sequence of hidden states. Based on the results of the EM algo-
rithm, Problem (2) from above can be solved by applying the standard Viterbi
algorithm [43]. For given θ and O this algorithm computes the most probable
hidden path q∗ = (q∗0 , . . . , q∗T ). This path is called the Viterbi path. For an
efficient computation we define the highest probability along a single path, for
the first t observations, ending in the hidden state Si at time t,

δt(i) = max
q0,q1,...qt−1

P (q0, q1 . . . qt = Si, O0, O1 . . . Ot|θ).

This quantity is given by induction as

δt(j) = max
1≤i≤M

[δt−1(i)Tij ]ρ(Ot|qt, Ot−1). (20)

In addition, the argument i that maximizes (20) is stored in ψ in order to
actually retrieve the hidden state sequence. These quantities are calculated for
each t and j, and then the Viterbi path will be given by the sequence of the
arguments in ψ obtained from backtracking. For more details see [19].

Number of metastable states. In the setup of all HMM techniques for a
given observation sequence one is confronted with the task to select in advance
the number M of hidden states. There are no general solutions to this problem,
and the best way to handle this problem often is a mixture of insight and
preliminary analysis. However, since our goal is to identify metastable states we
can proceed as suggested in [19]: Start the EM algorithm with some sufficient
number of hidden states, say M , that should be greater than the expected
number of metastable states. After termination of the EM algorithm, take the
resulting transition matrix A and aggregate the M hidden states into M≤ M
metastable states by means of PCCA. The resulting conformation states will
then allow an interpretation of the results in terms of metastable states.

In all numerical experiments in the following the initial parameter guesses are
based on the same procedure: The initial M ×M transition matrix is chosen to
be a stochastic matrix with offdiagonal entries 0.001 and identical diagonal en-
tries. The initial values of the model parameters were obtained by the respective
re-estimation formulas of the EM algorithm based on randomized determination
of the probabilities P (Ot|qt, Ot−1) (they were chosen uniformly distributed on
[0, 1]).
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Combination of results from different projections. Assume that we al-
ready applied HmmSde or some HMM-based method to several low-dimensional
observation time series of the system under consideration, but to each one in-
dependently. Suppose that the different time series simply are resulting from
different projections of the full time series in state space; for example, think of
the different time series given by each single torsion angle of system, or of the
time series given by each single of the leading POD modes. In this situation
one may be interested in combining the hidden states from each of the single
projections into “higher dimensional” metastable states of the system. This can
be done by analyzing the Viterbi paths derived from the single low-dimensional
observation time series: Suppose we are concerned with J low-dimensional time
series and therefore J Viterbi paths. The J Viterbi paths can be understood
as a J-dimensional discrete time series. Every state of this time series lies in
the discrete state space consisting of all possible combinations of the metastable
states of the single low-dimensional time series. We obviously can take this time
series, compute its transfer matrix by counting transitions between its discrete
states, determine the dominant eigenmodes of this transfer matrix, and again
apply PCCA to identify metastable decompositions of the discrete state space.
The sets in such a metastable decomposition have to be interpreted as aggre-
gates of the metastable states from the low-dimensional time series where the
aggregation is done based on additional insight coming from the combination
of all of the low-dimensional information. This concept leads to the following
algorithm:

1. Determine model parameters and Viterbi paths for each low-dimensional
observation time series;

2. combine the Viterbi paths and compute the transfer matrix in the discrete
state space of combined metastable states;

3. determine metastable decompositions via PCCA.

4.3 Illustrative Example Revisited

We now assume a time series (x(t))t=t0,...,tN
with tk − tk−1 = τ = 0.01 and

N = 105 being given of the test system introduced in Sec. 3.4. For given
t = t0, ..., tN let x(t) ∈ R2 be the full state of the system.

For this choice of τ the transfer operator P τ = exp(τA) of the high-friction
Langevin motion considered in Sec. 3.4 has the following dominant eigenvalues

σ(P t) = {1.000, 0.999, 0.997, 0.959, . . .}.

Let us consider the two observation time series (O(j)
t )t=t0,...,tN , j = 1, 2, with

O
(j)
t = xj(t) (the first and second components of the state of system).

We first apply HmmSde to observation time series (O(1)
t ) (see Fig. 9 for

illustration) and set M = 3. Eleven iterations of the EM algorithm result in the
following transition matrix

T =




0.9983 0.0013 0.0004
0.0017 0.9983 0.0000
0.0008 0.0000 0.9992


 .

20



0 2 4 6 8 10

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time step

x

2.2 2.4 2.6 2.8 3 3.2

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time step

x

Figure 9: Observation time series (O
(1)
t ). Left: Entire time axis. Right: Magnification clearly

exhibiting metastability and overlapping. Color/grey scale due to Viterbi path (see text
below).

that has the spectrum

σ(T ) = {1.000, 0.999, 0.997},
which perfectly agrees with the results of the transfer operator approach (that is
based on the full two-dimensional information instead of on the reduced observa-
tion time series). The HmmSde results for the parameters of the potential and
the noise intensities are given in the table below and are in very good agreement
with the results to be expected.

parameter j = 1 j = 2 j = 3
µ(j) 0.0552 1.0169 -0.9584
σ(j)2 0.1325 0.1321 0.1302
D(j) 0.5589 1.0507 0.9324

Table 3: Parameters of HmmSde for training with (O
(1)
t ).
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Figure 10: Observation time series (O
(2)
t ). Left: Entire time axis. Right: Magnification

clearly exhibiting metastability and overlapping. Color/grey scale due to Viterbi path (see
text below).

Next we apply HmmSde to observation time series (O(2)
t ) (see Fig. 9) and set

M = 3. Nine iterations of the EM algorithm result in the following transition
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matrix

T =




0.9987 0.0013 0.0000
0.0014 0.9981 0.0005
0.0000 0.0007 0.9993


 .

with spectrum
σ(P t) = {1.000, 0.999, 0.997}.

The HmmSde results now are again in good agreement with the results to be

parameter j = 1 j = 2 j = 3
µ(j) 1.5526 -0.0084 -0.6693
σ(j)2 0.1318 0.1347 0.1343
D(j) 1.0607 0.5018 1.1037

Table 4: Parameters of HmmSde for training with (O
(2)
t ).

expected.
Next we compute the Viterbi paths for the two HmmSde results based on

(O(1)
t ) and (O(2)

t ), respectively. This yields the assignment to metastable states
as illustrated in Figs. 9 and 10, and in a two-dimensional representation in
Fig. 11. We observe that the agreement of the assignment with the metastable
states resulting from the transfer operator approach (see Fig. 5) is good. How-
ever, as it can be seen from the picture, the assignment of the points in the
transition regions gets ambiguous. The algorithm for combining the results of
our two different projections (as of page 20) yields the results shown in Fig. 12,
where all points which are not clearly assigned to any of the metastable states
are identified as belonging to some ”transition state”.
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Figure 11: Visualization of the assignment of states to the three metastable states as resulting

from the Viterbi paths computed via HmmSde based on (O
(1)
t ) (left) and (O

(2)
t ) (right).

5 Numerical Results

In this section we will apply the techniques of Sec. 4 to different time series that
result from the 100 ns MD simulation of GT (AT )6C DNA described in Sec. 2.2.
We will particularly consider two differnet types of time series: the times series
of the backbone angles (O(1)

t )t=1,...,100000 with O
(1)
t ∈ R84, and the time series
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Figure 12: Visualization of the assignment of states to the three metastable states (points of
three different grey tones) and transition states (black crosses) as resulting from the clustering
of both one-dimensional Viterbi paths computed according to the transfer operator approach.

of the inter base pair parameters (O(2)
t )t=1,...,100000 with O

(2)
t ∈ R84. After a

detailed separate analysis of these families of data we will finally compare the
outcome.

5.1 Analysis of Backbone Torsion Angle Dynamics

Our first step is to apply POD to the time series (O(1)
t ). Fig. 13 shows the results

of the POD approach when using the Fisher covariance matrix. We immediately
observe that two eigenvalues dominate the spectrum, that some others may
have significant contributions, and that by far most of the eigenvalues exhibit
insignificant contributions (to the variance of the data).
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Figure 13: Spectrum of the torsion angles covariance matrix due to (11) (dominant eigenvalues
ν1 = 3.12, ν2 = 1.85, ν3 = 0.60, ν4 = 0.48)(left) and two dominant eignvectors as functions of
basepair torsion angles (right).

Suppose that uj ∈ R84, j = 1, . . . , 4, denote the associated four leading POD
eigenmodes, and that the uj are normalized, i.e., the Euclidean scalar product
of uj with itself is uT

j · uj = 1. We now can project the time series (O(1)
t ) onto
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the first POD components, i.e., we can compute the time series

O
(1,j)
t = uT

j ·O(1)
t , t = 1, . . . , 100000.

The first four time series are shown in Fig. 18 below, and obviously exhibit
metastability. But before going into details we will analyze the time series
O

(1,1)
t associated with the first POD mode. This time series is shown in Fig. 14

together with the approximate free energy landscape. We observe that this free
energy landscape exhibits at least six wells.
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Figure 14: Projection O
(1,1)
t of the overall DNA dynamics onto the first POD mode (top),

and the approximate free energy in terms of the first POD mode as computed from time series

O
(1,1)
t (bottom).

We therefore first apply HmmSde to the time series O
(1,1)
t with M = 8

hidden states (we could have chosen a larger number but this would make the
following illustrations much more difficult). The results are shown in Fig. 15. We
observe that the 8 different harmonic potentials identified by HmmSde approx-
imately coincide with the wells of the free energy landscape with one exception
in the region around POD mode 1 = −1.8. However, the associated Viterbi path
exhibits frequent flips between distinguished pairs of hidden states; it seems to
show that the metastable behavior should be expressed in terms of four states
only.
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Figure 15: Results of application of HmmSde to time series O
(1,1)
t with M = 8 hidden states.

Left: Associated free energy landscape with additional markers indicating the location of
equilibria µ(q) of the harmonic potentials resulting from HmmSde and bars indicating the

widths sq = σ(q)/
√

2D(q) of the invariant measures of the associated SDEs. Right: Viterbi
path in terms of the 8 hidden state.

24



In fact, when analyzing the associated HmmSde transition matrix we find
four clearly dominant eigenvalues, see Table 5, and some other eigenvalues that
seem to correspond to not-so-dominant metastable features.

k 1 2 3 4 5 6 7 8
λk 1.00000 .99997 .99994 .99992 .99361 .98290 .92211 .12896

Table 5: Eigenvalues of the HmmSde transition matrix for M = 8 hidden states as computed

from O
(1,1)
t .

The relation between the dominant and not-so-dominant features is exem-
plified in Fig. 16 which shows a fragment of the time series O

(1,1)
t between times

t = 59.5 ns and t = 62.3 ns and the HmmSde assignment of states to the hid-
den states within this fragment. We observe that HmmSde in fact identifies
metastable phases correctly, but that the time span of stability of the states
associated with the not-so-dominant features is of the order of 0.5 ns, while the
dominant features are stable for several nanoseconds.

In order to judge the robustness of our observations we now can apply
HmmSde to the time series O

(1,1)
t with less states, e.g., with M = 7 hidden

states. This results in a transition matrix with eigenvalues shown in table 6,
and the Viterbi path shown in Fig. 17 .

k 1 2 3 4 5 6 7
λk 1.00000 .99997 .99994 .99992 .98170 .95462 .77414

Table 6: Eigenvalues of the HmmSde transition matrix for M = 7 hidden states as computed

from O
(1,1)
t .

We observe that this again results in four dominant metastable states (which
due to the two Viterbi paths are identical for M = 7 and M = 8). The only
difference is that two (state 1 and 2) of the former 8 states obviously have been
aggregated into one (now state 1).

These results seems to indicate that we should apply HmmSde with M = 4
hidden states. The result is shown in Fig. 18.

This figure also illustrates the outcome of HmmSde if applied to each of
the four time series O

(1,j)
t , j = 1, . . . , 4. In each case we chose M = 4. After

computing the Viterbi path for each of the four time series (see Fig. 18, left),
we cluster these paths according to the algorithm introduced in Sec. 4.2, page
20. This results in m = 4 metastable states; the resulting global Viterbi path is
illustrated in Fig. 19.

Exploiting the time series of torsion angles we also can easily compute the
approximate free energy landscape in terms of the first two POD modes. The
result is illustrated in Fig. 20 together with a sketch of the Viterbi path projected
onto the first two POD modes.

5.2 Analysis of Inter Base Pair Parameter Dynamics

Our second step is to apply POD to the time series (O(2)
t ). Fig. 21 shows the

results of the POD approach. Again two eigenvalues dominate the spectrum,
some others may have significant contributions, and by far most of the eigen-
values exhibit insignificant contributions (to the variance of the data). Suppose
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Figure 16: Results of application of HmmSde to time series O
(1,1)
t with M = 8 hidden states.

Top: Fragment of the time series O
(1,1)
t between times t = 59.5 ns and t = 62.3 ns, and

coloring of states according to the assignment to hidden states due to HmmSde Viterbi path;
four hidden states are visible indicated by green/light grey triangles, black squares, blue/dark
grey diamonds, and magenta/grey stars. Bottom: Associated free energy landscape with
additional markers indicating the location of equilibria µ(q) of the harmonic potentials and
bars indicating the widths sk of the associated invariant measures for the four hidden states
visible in the fragment.
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Figure 17: Viterbi path resulting from application of HmmSde to time series O
(1,1)
t with M = 8

hidden states.
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Figure 18: Projection of the overall DNA dynamics on first four POD modes (left) and the
Viterbi paths resulting from HmmSde analysis of each of the projected time series.
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Figure 19: Viterbi-path of the dynamics in first four POD modes; 4 clusters were found
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that wj ∈ R84, j = 1, 2, 3, 4, denote the associated four leading POD normalized
eigenmodes. Projection of (O(2)

t ) onto the first POD components is shown in
Fig. 22.
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Figure 21: Spectrum of the inter base pair parameters covariance matrix (left) and eigenvectors
corresponding to the two dominant POD modes (ν1 = 0.30, ν2 = 0.13, ν3 = 0.07, ν4 =
0.06)(right).
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Figure 22: Projection of the overall DNA dynamics on first four POD modes (left) and the
Viterbi paths resulting from HmmSde analysis of each of the projected time series.

We initially applied HmmSde to the first POD mode with M = 8 hidden
states and observed again that the main features can be described in terms of
only four dominant metastable states. Therefore, we herein apply HmmSde to
each of the four time series O

(2,j)
t = wj · O(2)

t , j = 1, . . . , 4 with M = 4 in
each case, and cluster the Viterbi paths (see Fig. 22) of each of the time series
results in m = 4 metastable states; the resulting global Viterbi path exhibits 3
metastable sets and is illustrated in Fig. 23.

The approximate free energy landscape in terms of the first POD modes is
shown in Fig. 24; we computed the free energy in two different subspaces: mode
2 versus mode 1 and mode 4 versus mode 1.

In order to understand the effect of both sequence and metastability on shape
parameters we next consider the mean values along the time series within each
metastable state (as identified by the Viterbi path cf. Fig. 23) of two dominant
deformation parameters, namely twist and roll, for each of the TA and AT steps
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Figure 23: Viterbi-path of the dynamics in four first POD modes, 3 global clusters were found
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along the oligomer. In Fig. 25 these values are superposed on the mean free-
energy of the twist and roll for AT and TA steps computed via the average
over all AT, respectively all TA, steps of the free energy at each step computed
according to formula (12).

The first observation is that there is indeed a well-pronounced sequence
dependence as the TA and AT steps do indeed have significantly different aver-
ages. Further for TA steps the mean free energy is markedly multi-well, and the
mean values populating different wells are dependant upon their metastable set
as identified by the Viterbi path. In contrast for AT steps, while the average
values in each metastable set are still distinguishable and clustered, there is no
striking multi-welled character in the mean free energy surface.
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Figure 25: Plots of average values of AT and TA step twists and rolls evaluated at each
step and in each metastable state, and superposed on the mean free energies over all AT,
respectively TA, steps.

30



5.3 Comparison of Analysis based on Torsion Angles and
Inter base pair Parameters

As it can bee seen from Fig. 26, despite of the difference in the number of
identified metastable sets (four in the case of torsion angles and three for inter
base pair parameters), there are some apparent similarities.
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Figure 26: Comparison of inter base pair and torsional Viterbi-paths. Note the time-delays
( 1.5 ns) between the state changes in two representations.

First, the two switches between the states (at 42 and 75 ns) seem to happen
almost simultaneously in both representations. Second, the delay times between
torsional and inter base pair switches are both of around 1.5 ns. The possible
explanation of these facts is that both Viterbi paths describe the same process
of large-scale geometry change during the dynamics; while the inter base pair
process is in some sense effected by the switch in the backbone. Fig. 27 shows
the mean geometrical configurations (in terms of a string representation of the
backbone) that are associated with the metastable sets of the torsion angle
dynamics. The metastable states 2 and 4 (that are visited between 42 and
75 ns, see Fig. 26) of the torsion angle based analysis are geometrically close
to each other (the difference is a difference in the position of the end-groups of
the DNA helix). Closer inspection exhibits that they are not distinguishable in
inter base pair picture.

6 Conclusion

We have presented a variety of algorithmic concepts for the identification of
metastable states in dynamical systems. Possible strategies for application to
very complex metastable systems, and the performance of the resulting algo-
rithms have been demonstrated by analyzing a full-scale MD simulations of a
poly-(AT) B-DNA oligomer.

In regard to the algorithmic aspects our conclusion is that for realistically
large simulations of biomolecules it is not practical to compute explicitly the
full discretized transfer operator in cartesian coordinates. This is due to the
curse of dimensionality. Moreover it is still not practical to compute the full
transfer operator after reduction to coarse grain variables (to dimension 84 in
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Figure 27: 3D-geometry visualized with AMIRA-software [2] of the four mean configurations
defined by four metastable sets resulting from torsion angle based analysis. The 3D-geometry
is illustrated by a string-like representation of the backbone. Numbers denote the indexes of
metastable states as in Fig. 26

our DNA example), but now due to problems of slow convergence and overlap-
ping metastable states in the projection. In contrast, standard HMM methods
applied to a reduced time series with sharp transitions (the backbone time series
in the DNA example) can identify the metastable sets. And even in a projection
with less well-defined transitions (the base pair step parameter time series) the
new method of HmmSde can still identify the metastable sets.

Our results show that the backbone dynamics of B-DNA exhibit metastable
behavior (visible in both base pair and torsion angles representations of the
dynamics) on nano- to microsecond time scales, and that this metastability
might be sequence-dependent and of importance for macroscopic modelling of
B-DNA elasticity and dynamics. Most specifically the average values of AT and
TA base pair parameters are quantified and confirmed to be quite distinct. In
addition the values of these averages are shown to depend upon the particular
metastable set of the oligomer.

On a less positive note it is apparent that the simulation time scale of a few
hundred nanoseconds is much too short to compute transition probabilities for
the backbone accurately, i.e., to analyze quantitatively the possible sequence de-
pendence of backbone conformation transitions. Most specifically the trajectory
we have computed is demonstrably not ergodic.
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aggregates in reversible nearly uncoupled Markov chains. Lin. Alg. Appl., 315:39–59,
2000.

[14] P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation dynamics.
ZIB-Report 03-19, Zuse Institute Berlin, 2003.

[15] J.L. Doob, Stochastic Processes. Wiley, New York, 1953

[16] W. E and E. Vanden-Eijnden. Metastability, Conformation Dynamics, and Transition
Pathways in Complex Systems. Multiscale, Modelling, and Simulation. Part I, p. 35(34),
Springer, Berlin, 2004.

[17] D. M. Ferguson, J. I. Siepmann, and D. G. Truhlar, editors. Monte Carlo Methods in
Chemical Physics, volume 105 of Advances in Chemical Physics. Wiley, New York, 1999.
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