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Abstract Traditional methods based on an element-
wise parameterization of the material distribution ap-
plied to the topology optimization of fluidic systems
often suffer from slow convergence of the optimiza-
tion process, as well as robustness issues at increased
Reynolds numbers. The local influence of the design
variables in the traditional approaches is seen as a
possible cause for the slow convergence. Non-smooth
material distributions are suspected to trigger prema-
ture onset of instationary flows which cannot be treated
by steady-state flow models. In the present work, we
study whether the convergence and the versatility of
topology optimization methods for fluidic systems can
be improved by employing a parametric level-set de-
scription. In general, level-set methods allow control-
ling the smoothness of boundaries, yield a non-local
influence of design variables, and decouple the mate-
rial description from the flow field discretization. The
parametric level-set method used in this study uti-
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lizes a material distribution approach to represent flow
boundaries, resulting in a non-trivial mapping between
design variables and local material properties. Using
a hydrodynamic lattice Boltzmann method, we study
the performance of our level-set approach in compar-
ison to a traditional material distribution approach. By
numerical examples, the parametric level-set approach
is validated through comparison with traditional ma-
terial distribution based methods. While the paramet-
ric level-set approach leads to similar optimal designs,
the present study reveals no general improvements of
the convergence of the optimization process and of the
robustness of the nonlinear flow analyses when com-
pared to the traditional material distribution approach.
Instead, our numerical experiment suggests that a con-
tinuation method operating on the volume constraint is
needed to achieve optimal designs at higher Reynolds
numbers.

Keywords Generalized shape optimization ·
Topology optimization · Lattice Boltzmann
method · Adjoint sensitivity analysis ·
Low Reynolds number flow

1 Introduction

The goal of this study is to investigate approaches to
improve the performance of computational optimiza-
tion methods for the design of incompressible fluidic
systems with complex geometries, ranging in physical
dimensions from Micro-Electro-Mechanical Systems
(MEMS) to large scale external flows. Recently the
authors have shown (Pingen et al. 2007a; Evgrafov
et al. 2006) that the Lattice Boltzmann Method (LBM)
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can be successfully employed for solving topology op-
timization problems in fluid mechanics and provide
an interesting alternative to methods based on finite
element Navier-Stokes solvers (see, e.g., Borrvall and
Petersson 2003; Gersborg-Hansen et al. 2005; Aage
et al. 2008). The LBM-based approach to flow topology
optimization has been benchmarked against numerical
examples previously solved by Borrvall and Petersson
(2003) using a Navier-Stokes Finite Element Method
(NS-FEM). Our numerical studies have not revealed
any distinct advantages or disadvantages of the LBM
scheme over the NS-FEM approach. In both cases, the
layout of the flow domain is described by a material dis-
tribution approach relaxed via porous material models.

However, we have observed that both the LBM and
NS-FEM optimization schemes suffer from a slow con-
vergence of the optimization process and robustness
issues at larger Reynolds numbers. While the general
layout is obtained with a low number of optimization
steps, finding the final shape is typically a slow process.
A possible cause for the slow convergence is the “local”
nature and large number of design variables in the “on-
off” boundary representation of the traditional mater-
ial distribution based approach. Here, a “local” design
variable is one that affects only few (in the extreme
case only one) elements or nodes in the discretized
flow model. This local nature of the design variables
drives the optimization of flow boundaries slowly, as
most design variables only have a minimal effect on the
objective.

At higher Reynolds numbers, the porous material in
flow channels can lead to a premature onset of flow
instabilities, thus leading to non-convergence of the
flow solver, which in turn leads to non-convergence of
the optimization process. Such a case is illustrated in
Fig. 1 for a pipe-bend at RE = 400.

In the present work, we study whether we can im-
prove convergence as well as versatility of topology op-

Velocity Norm Design

Fig. 1 Design for a pipe bend at RE = 400 on a 50 × 50 lattice
after 13 iterations

timization methods for fluidic systems by employing a
level-set method. Level-set functions were originally in-
troduced by Osher and Sethian (1988) for flame propa-
gation problems in multi-phase flows. The development
of level-set functions for fluid interface representation
has been reviewed in detail by Sethian and Smerenka
(2003). In addition to being used for fluid–solid in-
terface tracking in fluid dynamics, level-sets have also
been applied to combustion, image enhancement, and
computer vision (see, e.g., Sethian 1999; Sethian and
Smerenka 2003). The primary idea behind the level-
set method is to introduce a function Φ(x, t) and define
the interface Γ between two material domains A and B
(e.g. fluid and solid) by the ‘zero-level-set’ (Φ(x, t) = 0):





Φ(x, t) < 0 if x ∈ Ω (A),

Φ(x, t) = 0 if x ∈ ∂Ω = Γ,

Φ(x, t) > 0 if x ∈ Ω (B),

(1)

Here, Ω (A) represents material domain A, Ω (B) repre-
sents material domain B. The evolution of the level-set
function Φ in the context of optimization is traditionally
governed by a set of Hamilton-Jacobi (HJ) Equations
(Φt + H (∇xΦ) = 0) (Osher and Sethian 1988). The
optimization algorithm controls the velocity with which
the zero-levelset is propagated. Alternatively to the
HJ approach, a parametric approach can be applied,
where the level-set function is discretized by Radial
Basis Functions (RBFs) and the resulting parameters
are directly treated as optimization variables. This para-
metric approach is used in the present work and will be
discussed in detail in Section 2.

Considering general PDE problems (e.g. for fluid or
structural problems) the level-set function Φ can be
utilized to represent boundaries and has been applied
for both shape and topology optimization (e.g. Sethian
and Wiegemann 2000, Wang et al. 2003, Allaire et al.
2004; 2005, Burger and Osher 2005, Wang and Wang
2005, and Mohammadi and Pironneau 2008). Tradition-
ally, body-fitted meshes coupled with a boundary pa-
rameterization through, e.g., splines (Fig. 2a), are used
for shape optimization problems. Fixed meshes coupled
with material distribution based geometry representa-
tion (Fig. 2c) are most commonly used for topology
optimization. The boundaries defined through a level-
set representation (Fig. 2b) can be mapped into the
PDE solver via both body-fitted and fixed meshes. The
boundaries can be represented explicitly via body-fitted
meshes in combination with remeshing or mesh adapta-
tion. Alternatively, the boundaries can be represented
on fixed meshes via the material distribution approach
or alternative immersed boundary methods. For the
material distribution approach, the global level-set
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Fig. 2 Illustration of flow
boundary representations
including the use of a 3D
level-set function for a 2D
boundary (a–c)

On Off

a) Parameterization b) Level Set Representation c) Material Distribution

a

b
h

function (non-local design variables) is thus mapped
into local densities/inverse porosities of a so-called
Ersatz material.

As the level-set boundary representation decou-
ples the material description from the discretization
of the underlying partial differential equations, the
same level-set model can be applied to distinctly dif-
ferent numerical schemes. Here, we study the perfor-
mance of our parametric level-set model for the lattice
Boltzmann method. The smooth level-set geometry can
be represented in the LBM either through the use of a
porosity model (Spaid and Phelan 1997), leading to a
material distribution like topology optimization frame-
work, or through the use of the interpolation bounce-
back boundary condition (see Bouzidi et al. 2001),
resulting in a generalized shape optimization scheme.
In this work, the material distribution approach is stud-
ied in a framework initially implemented for fluidic
topology optimization by the authors (Waidmann 2007;
Pingen et al. 2007b).

Possible advantages of using a level-set description
of the fluid–solid interface rather than a traditional
element-wise material distribution are the non-local
impact of the design variables, the decoupling of the
material description from the flow field discretization
similar to the geometry projection method for shape
optimization by Norato et al. (2004), and smooth design
boundaries throughout the optimization process. The
decoupling of the material description from the flow
field discretization also provides flexibility in the res-
olution of the boundary geometry and the number of
design variables used. Further, the smooth boundaries
obtained with a level-set approach are expected to be of
benefit for higher Reynolds number flow optimization,
where non-smooth boundaries may cause the prema-
ture onset of unsteady flow as illustrated in Fig. 1.

For structural optimization, Sethian and Wiegemann
(2000), Allaire et al. (2004, 2005), and Wang et al.
(2003) have applied the HJ-level-set method to shape
and topology optimization. The evolving contour of the
structure during the optimization process is described
by using a fixed Eulerian mesh and immersed boundary

techniques. Xia et al. (2006) further introduced a semi-
Lagrange scheme in order to improve the efficiency
of the HJ-level-set method during the optimization
process. Wang and Wang (2005), Wei and Wang (2006),
and Luo et al. (2008) used RBFs to discretize the
classical HJ-level-set function and thus transform the
original time dependent initial value problem into an
interpolation problem (parametric level-set method).
de Ruiter and van Keulen (2004) developed a paramet-
ric level-set method that does not involve the solution
of the HJ-equation and applied it to structural topology
optimization problems.

For fluid optimization with level-sets, only limited
work has been done thus far. Cunha (2004) used para-
metric level-sets for shape optimization, finding shapes
that re-produce a given velocity field for a stationary,
viscous, incompressible fluid, using both Stokes and
Navier-Stokes flow models. This approach has been
applied by Terrel and Long (2006) to fluidic topol-
ogy optimization problems to improve the Boolean
“0-1” nature of the optimal solution for minimum-
dispersion problems. In their work, Terrel and Long
have used a simulated annealing optimization strategy.
Waidmann (2007) and Pingen et al. (2007b) combined
a parametric level-set method with both a hydrody-
namic lattice Boltzmann method and an incompressible
Navier-Stokes flow model to optimize the layout of 2D
flow domains. This approach is adopted in the present
study. Duan et al. (2008) applied a slightly modified
HJ-level-set method, a variational-level-set approach,
to solve fluid shape optimization problems for Stokes
and Navier-Stokes flows using gradient based methods.
Mohammadi and Pironneau (2008) employed the HJ-
level-set method for global shape optimization of aero-
dynamic design applications using a 2D potential flow
model.

In the current work, we study the benefits and disad-
vantages of a parametric level-set approach for mate-
rial distribution based topology optimization of fluids.
In our level-set optimization framework the level-set
function is essentially used to describe the material
distribution with non-local parameters independent of
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the fluid mesh and allows both merging and creation of
obstacles. The flow is predicted by the hydrodynamic
lattice Boltzmann method. First, the parametric level-
set approach is introduced in Section 2, followed by a
brief overview of topology optimization of fluids with
the lattice Boltzmann method in Section 3. Finally, the
parametric level-set method is applied to two topology
optimization problems, a dual inlet, dual outlet flow
channel design in Section 4.1 and a pipe bend for higher
Reynolds number flows in Section 4.2.

2 Parametric level-set approach

In this study, a parametric level-set approach is used
in combination with a gradient-based topology opti-
mization framework for fluids. Our approach allows
the generation and removal of new design features and
utilizes the potential advantages of level-set methods
(smooth boundaries, decoupling of material description
from flow field discretization, and ‘non-local’ design
variables). This approach is similar to the paramet-
ric level-set methods for structural material distribu-
tion based topology optimization introduced by Wang
and Wang (2005), Wei and Wang (2006), Luo et al.
(2008), and de Ruiter and van Keulen (2004), using
radial basis functions φ j to parameterize the level-set
function Φ. Specifically, Wang and Wang (2005) and
Wei and Wang (2006) have used multi-quadric and
inverse multi-quadric basis functions, Luo et al. (2008)
compactly supported Wendland basis functions, and
de Ruiter and van Keulen (2004) Gaussian probability
distribution functions as basis functions.

In the present approach, the following multi-quadric
RBF is used:

φ j = s j −
√

(x − x j)2 + (y − y j)2 + c2. (2)

Here the design variables s j are initialized at every
basis point j as illustrated in Fig. 3, c is a constant,
and x, y are Cartesian coordinates spanning a given two
dimensional design domain. The RBF (2) is a function
of a single design variable that defines the height of the
basis function (a cone). Multiple design variables can
be used for each RBF to add additional flexibility, such
as the cone angle, but are not studied in this work.

In general, the multi-quadric RBFs (2) are globally
supported, meaning that each RBF φ j influences the
level-set function Φ throughout the entire design do-
main. By limiting the range of the design variables
smin ≤ s ≤ smax and considering only the largest RBFs
at each point to reduce the computational burden, the
RBFs become locally supported. However, the support
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Fig. 3 Overview of the parametric level-set procedure

is adjustable and does not depend on the discretization
of the fluid mesh.

The details of the mapping

s j &→ pi(φ j(s j)), (3)

from design variables s j to a local material description
through the use of basis functions φ j and the level-set
function Φ is illustrated in Fig. 3. Here, the local ma-
terial description represents the inverse porosity pi in
the design domain (fluid (pi =0), solid (pi =1)). Analo-
gous to material distribution based approaches for flow
problems, the computational domain is subdivided into
nele elements. The level-set function Φ is then evaluated
at each element center by the maximum of all basis
functions (φ j)i

Φ(xi, yi) = max
j

(φ j)i for j = 1, . . . , nφ; i = 1, . . . , nele

(4)
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where xi, yi denote the element centers and nφ is the
total number of RBFs. Thus, the level-set function Φ

is the envelope of the RBF φ distribution. However,
the resulting level-set function Φ is not differentiable
and thus not suited for gradient based optimization.
Alternatively, the maximum of all j locally evaluated
RBFs (φ j)i is approximated through the use of, for
example, the mth-norm of the local basis function
values φ j,

Φ(xi, yi) =




nφ∑

j=1

[(
φ j

)
i + ∆φ

]m




( 1

m )

− ∆φ. (5)

both smoothing the resulting level-set function, and
increasing the area of influence of each design variable.
Since the mth-norm approximation requires positive
values of (φ j)i, we use a shift ∆φ such that the minimal
φ j value is always equal to or greater than zero. To
reduce the error caused by the shift value, ∆φ is taken
as the absolute value of the smallest φ j value occurring
throughout the computational domain. Further, best
results for the mth-norm were obtained for 70 ≤ m ≤ 90
(Waidmann 2007) and a value of m = 90 is used in the
present work. This approach differs from the work by
Wang and Wang (2005), Wei and Wang (2006), and
de Ruiter and van Keulen (2004), who in essence use
m = 1 in (5) to determine Φ.

In order to reduce the computational burden for
determining the local level-set function values Φ(xi, yi),
one can sample only over a subset of the basis functions
φ j. For example, only the largest values of the basis
functions φ j are considered to approximate the local
maximum (5). In this study, the largest 10% of the
local RBF values are considered. While this shortcut
is not guaranteed to be differentiable, in our numeri-
cal experiments we have not observed any noticeable
deterioration of the convergence of the optimization
process when compared to using the differentiable ap-
proximation (5). The mapping from the basis functions
φ j to the global level-set function Φ for both an exact
and approximated envelope of the level-set function
are shown in Fig. 4.

Given the local level-set value Φ(xi, yi), a smoothed
Heaviside function (shown in Fig. 5) is used to map the
level-set function into a porosity value Φ(xi, yi) → pi

such that:

pi(Φ) = 1 − H(Φ(xi, yi)) (6)

where H is the smoothed Heaviside function,

H(Φ) =






0 if Φ(xi, yi) < −χ ,

h(Φ) if − χ ≤ Φ(xi, yi) ≤ χ ,

1 if Φ(xi, yi) > χ .

(7)
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Fig. 4 Illustration of exact and approximated maximum in 1D

The corresponding derivatives of p with respect to the
level-set function Φ vanish when Φ < −χ and Φ > χ .
The function h is defined as (see Osher and Fedkiw
2003; Sethian and Smerenka 2003),

h = 1
2

[
1 + Φ

χ
+ 1

π
sin

(
πΦ

χ

)]
, (8)

where the parameter χ defines a band Φb = 2χ within
which the Heaviside step function is smoothed. A wider
band increases the smoothing of the Heaviside func-
tion but leads to a more fuzzy representation of the
interface with an increase of intermediate porosity val-
ues. On the other hand, a narrow band yields a more
crisp representation of the interface (closer to a “0-
1” solution) but very few non-zero design sensitivities.
This negatively affects the convergence of the gradient
based optimization algorithms. In the extreme case,
using the exact Heaviside function results in a non-
differentiable mapping precluding the use of gradient-
based mathematical programming algorithms.

The overall scheme described here leads to the
following procedure when the design variables s j are

Level−Set Boundary

Smoothed
Heaviside

1

0

p

Porous Boundary Representation
2  ∆χ

Fig. 5 Porous representation of the boundary
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iteratively updated by the optimization algorithm. For a
given level-set function Φ, the resulting inverse porosi-
ties pi are determined. Then, the governing equations
and the adjoint sensitivity equations are solved to eval-
uate design criteria and their derivatives. Based on
this information the optimization algorithm updates the
vector of design variables s j, which yields a modified
level-set function Φ. This process, illustrated in Fig. 6,
is repeated until design convergence is obtained.

Compared to classical level-set approaches, where
the optimization algorithm, the governing equations,
and the level-set function are tightly coupled via the
HJ-equation, the use of a parametric level-set approach
allows employing mature mathematical programming
schemes and can be easily integrated in existing topol-
ogy optimization software. Furthermore, the para-
metric level-set approach introduced here allows the
generation of new inclusions, made possible by the
smoothing in the mapping (7–8) and by initializing
level-set values within the smoothing bandwidth −χ <

Φi < χ . Thus, the present approach combines charac-
teristics of topology optimization with those of shape
optimization: generation of flow topologies/geometries
and smooth boundaries. We refer to Fig. 12a for
an example illustrating the generation of new design
features.

2.1 Level-set sensitivity analysis

Based on (3) the derivative of the inverse porosities pi

with respect to the design variables s j can be split into a
product of three partial derivatives yielding,

∂pi

∂s j
= ∂pi

∂Φi︸︷︷︸
c.

· ∂Φi

∂φ j︸︷︷︸
b .

· ∂φ j

∂s j︸︷︷︸
a.

(9)

in component notation, with Φi = Φ(xi, yi) for clarity.
The partial derivatives a. of the radial basis functions
φ (2) with respect to the design variables s j, b . of the
level-set function Φi (5) with respect to the basis func-

tions φ j, and c. of the inverse porosity pi with respect to
the level-set function Φi are computed as follows:

∂φ j

∂s j
= 1, (10)

∂Φi

∂φ j
=

[(
φ j

)
i + ∆φ

Φi + ∆φ

](m−1)

, (11)

∂pi

∂Φi
= −δ(Φi) =






0 if Φi < −χ

− ∂h(Φi)
∂Φi

if − χ ≤ Φi ≤ χ

0 if Φi > χ

(12)

with

∂h(Φi)

∂Φi
= 1

2χ

[
1 + 1

2π
cos

(
πΦi

χ

)]
. (13)

3 Topology optimization of fluids

The parametric level-set based topology optimization
problem is cast into a generic nonlinear program of the
following form:

min
s

F (s, f(s)),

s.t.

{
s, subject to design constraints,

f, solves the governing equations for a given s,

(14)

where F is a particular performance (objective) func-
tional, s is the vector of design variables, and f is the cor-
responding state vector. In the current study, the loss of
total pressure or pressure drop PD between fluid inlets
and fluid outlets is considered as the objective F and is
defined as:

F = PD =
∫

in

[
P + ρ

2
|u|2

]
−

∫

out

[
P + ρ

2
|u|2

]
, (15)

where P is the static pressure, ρ is the density, and u is
the flow velocity.

Fig. 6 Overview of the
present parametric level-set
approach
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The only constraint used in this study is a volume
constraint, serving a dual purpose. First, the volume
constraint limits the amount of fluid in the design
domain, prescribing that at most a given fraction of
the design domain, γF , is allowed to be occupied by
fluid and the remainder must be solid. Second, the
level-set approach to describe the material distribution
does not lead to a “0-1” material distribution per se,
and the volume constraint is utilized to encourage the
desired “0-1” optimal solutions by reducing the amount
of intermediate porosities in the design domain. The
volume constraint is written as follows:

γF ≤
∑

i

(1 − pκ
i ), (16)

where κ is a polynomial shaping introduced to encour-
age “0 − 1” optimal solutions analogous to the porosity
relation for the lattice Boltzmann method introduced
in the following section. The properties of the shaping
factor κ have been discussed in the authors’ recent work
(Pingen et al. 2008). For high Reynolds number flows,
it is important to implement the volume constraint as
a penalty to the objective function in order to prevent
flow blockage as discussed in Section 4.2.

For hydrodynamic problems, the flow is typically
modeled by the Navier-Stokes equations which can
either be directly discretized, commonly by finite vol-
ume or finite element methods, or approximated by
the hydrodynamic lattice Boltzmann method as done
in the present work. When solving the optimization
problem (14), we solve for the design variables s and
the state variables f are defined as implicit functions
of the design variables. To permit a continuous transi-
tion from fluid to solid and vice versa, the governing
hydrodynamic equations (Navier-Stokes or hydrody-
namic lattice Boltzmann), are augmented. For topology
optimization of fluids, a Brinkman penalization (Angot
et al. 1999) is generally used to enforce the boundary
conditions at the fluid–solid interface. This was done
first by Borrvall and Petersson (2003), modifying the
Stokes equation with a Brinkman term to model the
flow through porous media (Brinkman 1947). Similarly,
the authors (Pingen et al. 2007a) have applied the
porosity model introduced by Spaid and Phelan (1997)
for LBM topology optimization purposes. The resulting
optimization problem (14) can then be solved with any
large-scale gradient-based optimization algorithm. In
this study, we use GCMMA by Svanberg (1995), a
sequential convex approximation-based algorithm.

The following section introduces the lattice
Boltzmann method and its application to topology op-
timization, including a brief discussion of the cor-
responding LBM sensitivity analysis.

3.1 Topology optimization with the lattice Boltzmann
method

In recent years, the lattice Boltzmann method has be-
come a popular alternative to conventional, Navier-
Stokes based computational methods for a variety of
problems in fluid dynamics (see, e.g., Yu et al. 2003,
Succi 2001, and Chen and Doolen 1998). The hydrody-
namic LBM approximates the Navier-Stokes equations
and is based on the discretized Boltzmann equation,
constituting a two step computational process:

Collision:

f̃α(xi, t) = fα(xi, t) − 1
τ

[
fα (xi, t) − f eq

α (xi, t)
]
, (17)

Propagation:

fα(xi + δteα, t + δt) = f̃α(xi, t). (18)

In (17) and (18), eα is the velocity vector, fα is the
distribution function associated with the corresponding
velocity eα , xi represents the location in physical space,
eαδt is the lattice spacing, δt is the time step, and
τ = λ/δt is the dimensionless relaxation time. For the
current study, the two-dimensional 9-velocity model,
D2Q9, is used.

For low Mach number flow conditions, the equilib-
rium distribution function f eq in (17) can be derived by
a Taylor series expansion of the Maxwell–Boltzmann
equilibrium distribution:

f eq
α = wαρ

[
1 + 3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]
, (19)

where ρ represents the macroscopic density, the vector
u is the macroscopic velocity, and wα are lattice weights
that depend on the lattice geometry. The macroscopic
parameters, such as density, velocity, pressure, and vis-
cosity are evaluated by taking statistical moments of the
distribution function f .

The porosity model of Spaid and Phelan (1997) can
be used to augment the LBM to solve the Brinkman
equations for porous flow through a minor modification
of the collision step (17). The macroscopic velocity is
rescaled during the collision step (17) for all lattice
nodes occupied by the porous medium. We observe
(Pingen et al. 2008) that the rate of convergence of the
optimization algorithms is rather sensitive to the way
velocities are scaled, and we obtain good results with
the following polynomial scaling:

ũ(t, xi) = (1 − p(Φi)
κ) u(t, xi), (20)

where p(Φi) represents the inverse porosity in the
domain and ũ(t, xi) is substituted into the equilibrium
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distribution function (19) instead of u. This porosity
model permits a smooth transformation from fluid sites
(p(Φi) = 0) into solid sites (p(Φi) = 1) as needed for
topology optimization. Best results were obtained for
κ ( 3 (Pingen et al. 2008).

In this study we consider only steady-state flow
problems which are described by the solution of the
following fixed-point problem:

R(f, p) = M(f, p) − f = 0, (21)

where R denotes the residual vector. Here, the operator
M performs one collision (17) and one propagation (18)
step, advancing the flow to the next time step.

The derivatives of the performance functional F are
computed analytically by the adjoint method, owing to
the large number of design variables. The derivative
of the objective function F with respect to the design
variables s can be written as follows:

dF

ds j
= ∂F

∂s j
−

[(
∂R
∂f

)−t
∂F

∂f

]t
∂R
∂pi

∂pi

∂s j
. (22)

where f is the state vector at steady-state, ∂R/∂f is
the Jacobian of the LBM fixed-point problem (21),
and ∂pi/∂s j is the derivative of the level-set mapping
from design variables s j to material distribution pi as
introduced in Section 2.1.

4 Examples

To investigate the effectiveness of the parametric level-
set approach for topology optimization of fluids, the
approach is first compared to a standard material distri-
bution based solution for a dual-inlet dual-outlet design
problem shown in Fig. 7. Then the dependency of
the ‘optimal’ design on algorithmic parameters and on
the initial design is studied. Finally, in Section 4.2, the
parametric level-set approach is applied to the optimal

Fig. 7 Two inlet, two outlet
optimization problem design
domain

Design Domain

0.4 0.40.4

0.4

RE = 1

P

V

Design Domain

V

P

design of a pipe bend at intermediate Reynolds num-
bers (400 ≤ RE ≤ 1000).

The level-set approach depends on four sets of ad-
justable parameters. These parameters are shown in
the 1D level-set illustration in Fig. 8 and include the
number of RBFs φ j and design variables s j used, the
maximum design variable step length for each iteration
∆smax, the range of design variable values smin ≤ s ≤
smax, and the bandwidth Φb = 2χ for which the level-set
function is mapped into the LBM inverse porosities pi.

Initially these parameters were chosen analogous to
the work by Waidmann (2007): The RBFs φ j can vary
between −5 ! φ j ! 5 by limiting the design variables:
smin = −5 ≤ s j ≤ 5 = smax (chosen rather arbitrarily).
Analogous to Osher and Fedkiw (2003) the level-set
bandwidth Φb = 2χ was chosen as Φb = 1.5, leading
to an inverse permeability increase from p = 0 at Φ =
−0.75 to p = 1 at Φ = 0.75. Our experience is that this
range results in a relatively clear object boundary while
providing sufficiently strong sensitivities as discussed
in Section 2.1. Finally, the optimizer step length ∆smax

was set as ∆smax = 0.005(smax − smin) which is equal to
0.05 for the previously defined design variable bounds.
This step length is equivalent to the optimizer step
length used for material distribution based topology
optimization in the authors’ previous studies (Evgrafov
et al. 2006; Pingen et al. 2007a).

It should be noted that the presented results are an
introductory study to understand and study the useful-
ness of the parametric level-set approach for fluids and
the results were obtained with a MATLAB implemen-
tation of the level-set model and the LBM solver.

i=1 ∆

∆ maxs    

#j

smax

smin

pΦ 
    

i i

Φ 
   

b

s j φ j

Lattice Nodes: i

Level−Set Basis Functions: j

s

Fig. 8 Illustration of the user-defined parameters in the level-set
setup
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4.1 Level-set validation

To demonstrate the viability of the parametric level-
set method as an alternative to the traditional material
distribution based scheme for flow problems, the two
inlet, two outlet example shown in Fig. 7 is used. The
design domain has two inlets (top and bottom) with
prescribed velocities and two optional outlets (left and
right) with prescribed pressure. The objective is to
minimize the total pressure drop across the domain for
a given maximum fluid volume of γF = 50% at RE = 1
with respect to the inlet width.

First, in Fig. 9 the results for the parametric level-
set approach with the lattice Boltzmann method are
compared with the traditional material distribution ap-
proach using the same number of design variables s j

on a 41 × 41 mesh. The results have a similar topology
after 100 iterations, at which point the material distribu-
tion approach is converged to its final solution. The LS
approach appears to have converged as well, but sud-
denly develops a new local minima between iterations
500 to 600, resulting in an almost 50% improvement of
the objective value as shown in Fig. 9c. This ability of
the LS approach to improve the square symmetric (hor-
izontal and vertical symmetry) design to an improved
optimal solution of lower symmetry has been observed
throughout this study and is attributed to the non-
local nature of the design variables. However, the LS
results are problem and parameter specific in that the
LS approach leads to three different optimal solutions:
square symmetry, horizontal symmetry, and diagonal
symmetry depending on different parameter settings
and initial designs as shown in Sections 4.1.1 and 4.1.2.
The local nature of the design variables for the material
distribution approach leads to a much stronger local
minima, preventing optimal solutions of lower symme-
try from the initial conditions. To overcome the local
minima of a square symmetric solution for the material
distribution approach, we have randomly perturbed the
initial design variables by up to 10% of the design
variable range smax − smin, however, without success.
Finally, the porosity distribution plots in Fig. 9 show
that both approaches (LS and material distribution)
lead to “0-1” optimal solutions with slightly more in-
termediate porosities occurring along the boundary for
the LS approach. These added intermediate porosities
in the LS approach are due to the fuzziness introduced
by the level-set bandwidth Φb .

The convergence of the optimization problem for the
LS and material distribution approaches is difficult to
compare. First, both approaches lead to topologically
different solutions. While the LS approach requires
significantly more iterations to obtain a converged final

P P PP

VV

V V

Iteration: 1 Iteration: 1

Iteration: 100Iteration: 100

Iteration: 1000 Iteration: 1000
Objective: 0.5006Objective: 0.2876

Material DistributionParametric LS
a) Lattice Boltzmann b) Lattice Boltzmann

c) Convergence Comparison

O
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tiv

e

Iterations

Porosity Distribution

1

0

Fig. 9 Comparison of boundary contour plots, porosity distribu-
tion, and design convergence for parametric level-set and tradi-
tional material distribution for the LBM flow solver (a–c)
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result, the resulting design is significantly improved.
Second, the objective value for the LS approach shows
a more pronounced oscillatory behavior than the one
for the material distribution approach. This is illus-
trated in Fig. 10, plotting the objective value of the
final 100 iterations for LS and material distribution
approaches. While the objective values differ in both
methods, both oscillations are plotted on a y-axis span-
ning a change in objective of ∆Ob j = 0.001. The rather
large oscillations of the LS approach are caused by the
strong nonlinearity introduced by the mapping (8) of
the level set function onto the material distribution.
These oscillations can be mitigated by a. increasing
the bandwidth Φb , which increases the blurring of the
fluid–solid boundaries, and b. allowing for subcycling
of the GCMMA algorithm, which increases the com-
putational burden. Due to these reasons and in order
to avoid premature termination of the optimization
process, we do not apply a strict mathematical opti-
mization criterion but stop the optimization process
after a predefined large number of iterations (usually
1000).

In the introduction, we stated the expectation that
the decoupling of material description and flow field
discretization and the smooth design boundaries of the
level-set approach would lead to larger, non-local sensi-
tivities, which can better drive the optimization process
towards an optimal solution. Our observation that the
results do not show an improved convergence speed for
the LS approach may be explained by the fact that the
level-set function Φ only actively impacts the design
over a small bandwidth Φb while the design variables
in the material distribution based approach are always
active. Thus, the level-set function Φ only produces de-
sign sensitivities within the bandwidth Φb . To analyze
this effect further, the sensitivities for the design ob-
jective (dPD/ds j) for the material distribution based
and parametric level-set based topology optimization
process are compared at different optimization steps
as shown in Fig. 11. The results show that the level-set
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Fig. 10 Comparison of convergence for parametric LS and ma-
terial distribution based optimizations during the final 100 design
iterations (Iterations 900–1000)
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optimization process: a level-set, and b material distribution ap-
proach at three optimizer iterations (1, 25, 100)

sensitivities are larger for the initial flow state, but not
for all iterations. While the parametric level-set method
can in theory lead to non-local sensitivities, in practice
the flow state is only sensitive to changes of design vari-
ables along the level-set front as shown for iterations 25
and 100 in Fig. 11. The material distribution approach
also leads to sensitivities which are primarily located
along the flow boundary, however, some sensitivities
can be found outside the boundary region. Thus, as the
optimization progresses, the level-set approach allows
only a slow and step-wise movement of the existing
boundary, limited by the optimizer step length ∆smax,
while changes beyond the boundary can occur in mate-
rial distribution based optimization. The result suggests
that the parameter level-set approach suffers from a
similar limitation in advancing the level-set front as
the traditional method based on the solution of the
Hamilton-Jacobi equation where the CFL condition
hampers the optimization process. In a detailed para-
meter study performed by Pingen (2008), it is shown
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that in particular the design variable step length ∆smax

has a significant impact on problem convergence while
the level-set range smin ≤ s ≤ smax and the bandwidth
Φb = 2χ have only a relatively small impact.

4.1.1 Level-set initial design

To determine the impact of the initial design on the
optimization results, in particular with respect to the
ability to obtain non-symmetric solutions, 3 different
initial conditions are studied as shown in Fig. 12. The
uniform level-set initial condition (Fig. 12a) maps into a
square symmetric (and approximately uniform) inverse
porosity. Alternatively, we study two initial inverse
porosity patterns with circular patches of solid mate-
rial (Fig. 12b, c). The circular patterns are generated
by initiating all but a few select design variables s j

at negative values. The first of the circular patterns
(Fig. 12b) introduces several widely spaced cones with
diagonal symmetry (“coarse-grained” circular pattern

with diagonal symmetry), while the second pattern uses
25 cones with square symmetry (“fine-grained” circular
pattern with square symmetry).

It is observed that while the initial designs with
square symmetry lead to a result that is horizontally
symmetric as shown in Fig. 12a, c, the initial design with
diagonal symmetry leads to a diagonally symmetric
design as shown in Fig. 12b. This shows that for the
current problem, the final solution is highly sensitive to
the initial conditions and tends to adopt the symmetry
of the initial designs. Incidentally, the objective values
are almost equivalent for all designs in the present
case. This study illustrates the strong effect that the
choice of initial conditions can have on the final de-
sign solution and a test of multiple initial conditions is
strongly recommended to identify locally optimal solu-
tions. Additionally, Fig. 12 illustrates the potential of
the applied parametric level-set approach to create new
geometric features. While the optimization processes
displayed in Fig. 12b and c require only the modification
and merging of existing features, the optimization in

Fig. 12 Comparison of
level-set functions for
different initial designs:
a square symmetric (and
approximately uniform),
b “coarse-grained” circular
pattern with diagonal
symmetry, and
c “fine-grained” circular
pattern with square symmetry
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Fig. 12a includes the generation of several geometric
features between the initial and final design states.

Figure 13 shows the effect of initiating the traditional
material distribution based optimization approach with
the “coarse-grained” circular pattern with diagonal
symmetry initial design and the “fine-grained” circular
pattern with square symmetry, respectively. The results
show that using the diagonal circular pattern leads to a
design analogous to the LS design in Fig. 12b, while the
square circular pattern initial condition converges to a
local-minimum with square symmetry.

4.1.2 Number of level-set basis functions

One of the key features of the parametric level-set
approach for fluidic topology optimization is the de-
coupling of the material description from the flow field
discretization. Thus far, using a 41 × 41 LBM mesh and
a 41 × 41 mesh of RBFs φ j, this decoupling has not been
explicitly utilized. In this section, the effect of reducing
the number of RBFs φ j and the corresponding design
variables s j, while maintaining a constant 41 × 41 LBM
mesh for the flow analysis, is studied. Figure 14 shows
designs for 41 × 41, 37 × 37, 33 × 33, 29 × 29, 25 × 25,
21 × 21, 17 × 17, 13 × 13, and 9 × 9 RBFs φ j. The pri-
mary importance of this study is the observation that
only the smallest set of radial basis functions φ j on a
9 × 9 mesh shows signs of not being able to generate
sufficiently refined boundaries. Thus, the ability to re-
duce the number of design variables while obtaining
comparable optimal designs is promising for the studied
problem. While the reduction of the number of design
variables did not lead to improved optimizer conver-
gence with the GCMMA, a reduced number of design
variables enables the use of alternative and specialized
optimization algorithms.

Square Symmetry

Obj: 0.5361

Circular Pattern withCircular Pattern with
"Coarse−Grained"

Diagonal Symmetry

"Fine−Grained"

Obj: 0.2779

Fig. 13 Material distribution results using an initial design of a
course-grained circular pattern with diagonal symmetry and a
fine-grained circular pattern with square symmetry

f)e)
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a) c)b)

Basis F.: 41x41 Basis F.: 37x37 Basis F.: 33x33
Obj.: 0.2862Obj.: 0.5807Obj.: 0.5942

Obj.: 0.5479
Basis F.: 17x17

g)
Obj.: 0.7407

i)

Basis F.: 9x9

h)

Basis F.: 13x13
Obj.: 0.5431

Fig. 14 Comparison of optimal designs for a decreasing number
of level-set basis functions φ j using 400 design iterations (a–i)

Finally, it is interesting to note that after 400 iter-
ations, only two RBF meshes (33 × 33 and 29 × 29),
lead to optimal designs that are not square symmetric.
A horizontally symmetric design is obtained for the
33 × 33 mesh and a diagonally symmetric design is ob-
tained for the 29 × 29 mesh, both with nearly identical
objective values.

4.2 High Reynolds number study

In the authors’ introductory work on fluidic topol-
ogy optimization with the lattice Boltzmann method
(Pingen et al. 2007a; Evgrafov et al. 2006) a basic pipe-
bend problem introduced by Borrvall and Petersson
(2003) was solved and is shown in Fig. 15. The ob-
jective for this problem is to minimize pressure drop
between inlet and outlet, subject to a 25% fluid vol-
ume constraint. It was shown that the curvature of
the pipe bend increases for larger Reynolds numbers
as shown in Fig. 16 due to competing physical effects:
momentum loss due to shear stress and turning of the
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Fig. 15 Pipe bend design domain with inlet and outlet conditions
(Pingen et al. 2007a)

flow. These previous studies were limited to flows with
RE ≤ 100. For RE > 100 designs with unsteady flows
were generated, preventing the optimization algorithm
to converge. However, unsteady flow is generally not
expected until Reynolds numbers of RE ≈ 1000 for
pipe bends. This flow unsteadiness was triggered by
areas of intermediate porosity appearing within the
flow channel throughout the optimization. The study
of higher Reynolds number pipe-bends in this work
was motivated by the smooth boundaries obtained with
the level-set approach and the inherent restriction of
areas with intermediate densities to the flow boundaries
along the level-set front. The no-slip condition leads to
slow velocities within the boundary region and thus no
flow instabilities are expected for the pipe-bend within
the considered Reynolds number range.

While studying the solution of optimal design prob-
lems for higher Reynolds number pipe bends with
the parametric level-set approach, we observed that
both the traditional material and level-set approaches
suffered from triggering instationary flow solutions at
intermediate design states. The improved smoothness
of the boundaries and the confinement of porous areas
of the level-set approach proved insufficient to avoid

RE=1 RE=10 RE=100

Fig. 16 Pipe bend optimization results for Reynolds numbers
between 0.1 and 100 (Pingen et al. 2007a)

RE=400 RE=800 RE=1000
Obj. = 7.9 Obj. = 22.7 Obj. = 32.8

Fig. 17 Level-set pipe bend optimization results for Reynolds
numbers between 400 and 1000

this phenomenon. However, it was found that a key
component to enable pipe-bend optimizations at higher
Reynolds numbers is the gradual enforcement of the
volume constraint (16) in order to prevent blockage
of the flow channel. Here, a penalty based volume
constraint defined as follows, is used,

Penalty =
∑

i

(1 − pκ
i − γF),

and added to the pressure drop PD design objective,

F = PD + αPenalty. (23)

This penalty formulation is enforced in the GCMMA
algorithm by Svanberg (1995), and a penalty parameter
α = 100 was used for the current problem.

Figures 17 and 18 show optimized designs for pipe-
bends with Reynolds numbers ranging from 400 to 1000
using the parametric level-set formulation with uniform
initialization and the traditional material distribution
approach, respectively. The circular pattern initial con-
ditions proved non-optimal for the pipe-bend opti-
mization problem as they showed a tendency towards
slowly converging multi-channel designs. The results in
Figs. 17 and 18 show that the curvature of the pipe-bend
continues to increase with increasing Reynolds number,
as would be expected. Small differences between the
designs, such as an overall improved boundary smooth-
ness and small improvements in the objective value
of the final designs, advocate the level-set approach.

RE=800 RE=1000RE=400
Obj. = 24.0Obj. = 8.1 Obj. = 35.0

Fig. 18 Traditional material-distribution pipe bend optimization
results for Reynolds numbers between 400 and 1000
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However, these differences are small and depend on
specific level-set parameter settings and initialization.
General conclusion cannot be drawn from these re-
sults. The optimal design of pipe-bends at even higher
Reynolds numbers is currently not feasible due to the
unsteady nature of those flows and the limitation of the
current sensitivity analysis to steady-state flows.

5 Conclusions

We have studied a parametric level-set approach for
flow topology optimization predicting the flow with
a hydrodynamic lattice Boltzmann method. Following
an Ersatz material approach, the level-set function
is mapped into a material distribution. In the LBM
analysis, the boundary conditions along the fluid–solid
interface are enforced by a Brinkman approach using
a porosity model. This study was motivated by a slow
convergence of the optimization process and premature
onset of instationary flows for higher Reynolds number
flow problems.

The parametric level-set approach allows for decou-
pling of material description and flow field discretiza-
tion, smooth design boundaries, and overall added
versatility by linking design variables to local material
properties through the use of a level-set function. The
parametric level-set approach leads to similar optimal
designs when compared to the traditional approach
based on an element-wise discretization of the material
distribution. Our numerical studies suggest that the
parametric level-set mapping can be used to effectively
reduce the number of design variables while maintain-
ing similar optimized designs. However, our numerical
experiments do not indicate that the level-set approach
alleviates the problem of slow convergence of the opti-
mization process.

While the parametric level-set approach can be ap-
plied to the solution of higher Reynolds number flow
optimization problems, it has been shown that the key
component for the solution of such problems is a grad-
ual enforcing of the fluid volume constraint. Using a
penalty formulation for the fluidic topology optimiza-
tion framework has enabled an increase of the solvable
flow regime from RE=100 to RE=1000 for the 2D
pipe-bend. In the vicinity of RE=1000, the flow in the
pipe-bend becomes unsteady and optimization is infea-
sible with the current steady-state flow model. Whether
the potential improvement in boundary smoothness
corresponding to the level-set representation leads to
advantages remains to be seen for problems where
the Reynolds number is further increased such that
boundary layer effects become more significant. How-

ever, it should be noted at this point that the level-
set function is mapped into a material distribution,
resulting in a porous boundary layer, which possibly
negates some of the benefits of the smooth level-set
boundaries. Alternatively, the level-set function can
be mapped into a direct boundary description such as
the LBM interpolation boundary condition. This can
potentially lead to a geometric topology optimization
framework, merging benefits from shape optimization
(exact/improved boundary representation) and topol-
ogy optimization (generation of new topologies) into a
single optimization tool, a topic that is currently being
explored by the authors.
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