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Abstract

In this paper we analyze decompositions of reversible nearly uncoupled Markov
chains into rapidly mixing subchains. We state upper bounds on the 2nd eigenvalue
for restriction and stochastic complementation chains of reversible Markov chains,
as well as a relation between them. We illustrate the obtained bounds analytically
for bunkbed graphs, and furthermore apply them to restricted Markov chains that
arise when analyzing conformation dynamics of a small biomolecule.
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1 Introduction

Markov chains are a popular tool to model the behavior of complex systems
like computer networks or biomolecules, and form also the basis of Markov
chain Monte Carlo methods like the Metropolis-Hastings sampler.

In many applications so-called nearly uncoupled Markov chains arise that are
rapidly mixing within certain parts of the state space while transitions be-
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tween these parts occur rarely. Such behavior is well-known in biomolecular
simulations, which, in a broader context than Markov chains, is referred to
as metastable or conformation dynamics. The rare transitions between con-
formations (or metastable sets) pose a big problem, since simulations often
get trapped within a conformation. Molecular simulations by Markov chains
are typically carried out in a continuous state space, yet by analyzing the
outcome, discretization inherits a nearly uncoupled structure to a finite state
space.

For finite state spaces a nearly uncoupled Markov chain is often said to consist
of weakly coupled subsets containing strongly coupled states. A subset of
strongly coupled states then corresponds to a metastable set in the above
description of metastable dynamics.

An analytical as well as an algorithmic approach to take advantage of the
nearly uncoupled structure is uncoupling, where one decomposes the state
space into metastable sets and then defines uncoupled Markov chains on each
of its metastable sets. These newly defined Markov chains resemble in many
aspects the original chain. For the continuous state space of a biomolecule,
uncoupling refers to the process of defining rapidly mixing Markov chains on
each conformation.

Uncoupling is often complemented by a coupling step. In an uncoupling-
coupling technique restricted (rapidly mixing) Markov chains are coupled to-
gether by a (k × k)-coupling matrix. A main characteristic of an uncoupling-
coupling technique is that subchains and coupling matrix together still contain
all the information to extract the stationary distribution of the original Mar-
kov chain.

For general non-reversible Markov chains the concept of uncoupling-coupling
has been worked out by Meyer by means of stochastic complementation [?,?,?,?].
Stochastic complements are a natural way to define uncoupled Markov chains,
which inherit most of the structure of the original chain. Yet, for algorithmic
purposes the main drawback of stochastic complements is that they become
computationally expensive for larger state spaces.

For reversible Markov chains stochastic complements can be replaced by re-
striction chains. Restriction chains, in contrast to stochastic complements, do
not necessarily inherit irreducibility. Nevertheless, restriction can be a valu-
able theoretical tool and has been used, e.g., for studying convergence rate
analysis [?] or improving log-Sobolev inequalities [?].

What makes uncoupling by restriction so attractive, is that it can be applied
with ease to state spaces of any size, either discrete or continuous. Moreover,
if the nearly uncoupled Markov chain under consideration is associated to
a Metropolis-Hastings sampler, restriction gives rise to restricted sampling.
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Build upon this observation and techniques from conformation dynamics of
biomolecules [?,?,?], an uncoupling-coupling technique has been developed by
one of the authors, which serves as a generalized Markov chain Monte Carlo
method [?,?].

The efficiency of applying an uncoupling-coupling technique to a nearly un-
coupled Markov chain essentially depends on the second eigenvalues of the
resulting subchains being bounded far away from 1. The main theorems pre-
sented in this paper provide bounds on this spectral gap. The theorems may
help to better understand the structure and similarities of uncoupled chains
to the original Markov chain and thus shed some light on the usefulness and
applicability of uncoupling-coupling techniques. In practice, the eigenvalue
bounds are almost sharp in some situations, but fail on others to be close to
the actual spectral gap. We discuss both cases in Sect. 4.

Overview. We start Sect. 2 with introducing some basic facts and notation
concerning Markov chains in Sect. 2.1, and then focus on nearly uncoupled
Markov chains in Sect. 2.2. Next we outline two different uncoupling-coupling
schemes, namely stochastic complementation in Sect. 2.3 and Markov chain
restriction in Sect. 2.4. In Sect. 3 we present the main theorems on eigenvalue
bounds, which are then illustrated in Sect. 4 by examples from graph theory
and biomolecular conformation dynamics.

2 Uncoupling-Coupling Schemes

The underlying idea of uncoupling-coupling techniques is to decompose the
state space S of a given Markov chain P into disjoint subsets S1, S2, . . . , Sk,
and define Markov chains on them whose behavior is related to that of the
original Markov chain. The coupling step provides a way to extract information
about the global behavior of the original Markov chain, which is achieved by
means of a (k × k)-coupling matrix. The coupling matrix together with the
k subchains can be regarded as a reduced description of P that still contains
the full information about P’s stationary distribution.

Uncoupling-coupling techniques are encountered in such diverse tasks as im-
proved convergence rate analysis [?], the construction of rapidly mixing chains
for extended Markov chain Monte Carlo methods [?,?], or in an approximate
way in aggregation-disaggregation techniques [?].
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2.1 Preliminaries

Throughout this paper we consider finite homogeneous Markov chains (for a
formal treatment of terms and well-known facts about Markov chains we re-
fer to [?]). Let P be a stochastic (n × n)-transition matrix associated with a
Markov chain over a finite set S = {s1, s2, . . . , sn} of states si. The spectral
structure of stochastic matrices is characterized in the Perron-Frobenius the-
ory. If P is stochastic, λ = 1 is an eigenvalue and its spectrum is contained in
the unit circle. If in addition P is irreducible, the Perron root λ = 1 is simple
and there is a strictly positive left-eigenvector to it. By normalization this
yields into a unique stationary distribution π = (π1, π2, . . . , πn), that satisfies

πP = π, π > 0, and πe = 1,

where e := (1, 1, . . . , 1)T is a vector of size n.

The pair (P, π) is said to be reversible, if the detailed balance condition

πipij = πjpji (1)

holds for all 1 ≤ i, j ≤ n. A probability vector π that satisfies (1) is always
a stationary distribution of P, whereas the reverse need not to be true. If (1)
holds P itself as well as its associated Markov chain is called reversible.

A reversible stochastic matrix P is similar to a symmetric one. More precisely,
if (P, π) is reversible then

P(sym) := DPD−1, with D :=


√

π1 0
. . .

0
√

πn

 , (2)

is symmetric. Therefore, all eigenvalues of a reversible stochastic matrix are
real, located in the interval [−1, 1], and λ = 1 is a simple eigenvalue.

2.2 Nearly Uncoupled Markov Chains

An irreducible Markov chain P is said to be nearly uncoupled, if there exists
a decomposition of the state space S into k disjoint subsets S1, S2, . . . Sk, such
that the subsets are weakly coupled among each other, whereas the states
within each subset are strongly coupled. In other words, a realization of P is
slowly mixing on S, but rapidly mixing within each Si. The subsets Si are
then called metastable w.r.t. P. For a nearly uncoupled Markov chain there
exists a permutation of the states si such that the transition matrix can be
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written in block form

P = P̃ + E =


P11 E12 · · · E1k

E21 P22
. . .

...
...

. . . . . . Ek−1,k

Ek1 · · · Ek,k−1 Pkk

 , (3)

where entries in E are small, and each Pii possesses good mixing properties.
A suitable choice for our purpose to measure the smallness of E is the infinity
norm ‖E‖∞, which is equivalent to the maximal absolute row sum.

For ‖E‖∞ = 0 the Markov chain is uncoupled into k sets and thus becomes
reducible. If we assume all diagonal blocks Pii being irreducible, P possesses,
according to Frobenius-Perron theory, a k-fold dominant eigenvalue λ = 1.
Furthermore, with each Pii being rapidly mixing, all other eigenvalues are
bounded away from 1 resulting in a large spectral gap.

Now assume that ‖E‖∞ = ε is small and P is irreducible. Regarding ε as a
perturbation parameter, continuity of eigenvalues suggests that the spectra
of a regular nearly uncoupled Markov chain must have in addition to the
dominant eigenvalue λ = 1 further k − 1 eigenvalues close to 1. Vice versa,
such a cluster of k eigenvalues that is separated to the rest of the spectrum by
a spectral gap, indicates a nearly uncoupled Markov chain with k metastable
sets. A perturbation analysis of this behavior can be found in [?,?].

It is well known that the subdominant eigenvalue of a regular Markov chain
is an indicator of its mixing properties. Thus, a subdominant eigenvalue close
to 1 in a nearly uncoupled Markov chain indicates slow mixing, which, e.g.,
often leads for Metropolis-Hastings algorithms to poor convergence for most
expectation values. At this point, uncoupling according to the partition in (3)
becomes interesting, in the hope that the uncoupled chains will posses rapid
mixing properties.

In practice, the question of whether a given P is nearly uncoupled or not and
how to permute it into block-diagonal form may not been known in advance.
For this nontrivial algorithmic task, spectral approaches that first identify a
spectral gap (which is related to the number of metastable sets) and then ex-
ploit the structure of dominant eigenvectors to identify a suitable permutation
has been worked out [?,?,?]. In the following we assume a nearly uncoupled
Markov chain to be in block-diagonal form as in (3), whether this being the
natural order or a permutation of states after metastable sets has been iden-
tified.
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2.3 Stochastic Complementation

Uncoupling by means of stochastic complements can be applied to the whole
class of irreducible stochastic matrices, not necessarily restricted to reversible
ones. The following definition is proposed by Meyer in [?]:

Definition 1 Let P be an irreducible stochastic (n×n)-matrix with a partition

P =


P11 P12 · · · P1k

P21 P22 · · · P2k
...

...
. . .

...
Pk1 Pk2 · · · Pkk

 (4)

in which all diagonal blocks are square. Denote by Pi′, 1 ≤ i ≤ k, the principal
block submatrix obtained by deleting the i-th block row and the i-th block column
in P. Furthermore let Pi∗ and P∗i be the i-th block row and i-th block column,
respectively, in which Pii is deleted, i.e.,

Pi∗ = (Pi1 Pi2 · · · Pi,i−1 Pi,i+1 · · ·Pik)

and

P∗i =



P1i
...

Pi−1,i

Pi+1,i
...

Pki


.

Then the inverse of (I−Pi′) does exist and the matrix

Sii = Pii + Pi∗(I−Pi′)
−1P∗i (5)

is called the stochastic complement of Pii.

Stochastic complementation provides a neat interpretation: Let P be parti-
tioned according to a given partition of the state space S, say S = S1 ∪ S2 ∪
· · · ∪ Sk. Then it can be shown that stochastic complements of an irreducible
stochastic matrix are themselves stochastic and irreducible ([?], Theorem 2.3),
and the matrix S defined by (5),

S =


S11 0 · · · 0

0 S22
. . .

...
...

. . . . . . 0
0 · · · 0 Skk

 ,

is a (reducible) stochastic (n× n)-matrix. If sij is an entry within a diagonal
block, say Sll, then sij is determined by the probabilities in P, namely it is the
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sum of the one-step transition probability pij and the probability to leave Sl

from i and reenter it in j. Thus, transition probabilities in Sll can be obtained
by keeping track of a realization of the Markov chain associated with P and
masking out every step which is not in Sl.

The following theorem describes the coupling step (see again [?] for more
details):

Theorem 2 Let P be an irreducible stochastic matrix partitioned as in Defi-
nition 1 with the (unique) stationary distribution π partitioned accordingly:

π = (π(1), π(2), . . . ,π(k)).

If s(i) is the stationary distribution of the stochastic complement Sii, then

s(i) =
π(i)

π(i)e
,

which is equivalent to

π = (π(1), π(2), . . . ,π(k)) = (ξ1s
(1), ξ2s

(2), . . . , ξks
(k)),

with ξi :=
∑

h π
(i)
h . The scalars ξi are called the coupling factors. The coupling

vector

ξ = (ξ1, ξ2, . . . , ξk)

is the (unique) stationary distribution of the irreducible and stochastic (k×k)-
coupling matrix C = (cij), whose entries are defined by

cij = s(i)Pije. (6)

Moreover,

‖P− S‖∞ = 2 max
i

‖Pi∗‖∞

holds.

If one is interested in computing the stationary distribution of P, Theorem 2
says that it is sufficient to compute for each i = 1, . . . , k the restricted sta-
tionary distribution s(i) from Sii together with its coupling factor ξi. Yet,
computing Sii includes inversion of (I − Pi′), which in practice often makes
such an approach expensive if not impossible for very large matrices (see [?]
for ways to reduce the computational cost). This problem is circumvented in
so-called inexact aggregation-disaggregation techniques [?,?] by approximat-
ing stochastic complements for the price of computing an approximation of
π. From this point of view, the uncoupling-coupling structure of Theorem 2
is considered as an exact aggregation-disaggregation technique.

7



2.4 Restriction

For reversible Markov chains stochastic complements can be replaced by re-
striction chains, which are way easier to compute but still share much of the
characteristics of stochastic complements.

Definition 3 Let P be a stochastic matrix, not necessarily irreducible, parti-
tioned as in (4), and let S = S1 ∪ S2 ∪ · · · ∪ Sk be the associated partition of
the state space. Then, for each i = 1, . . . , k,

Rii = Pii + diag (ei −Piiei)

is called the restriction of P to the subset Si, where ei = (1, 1, . . . , 1) is a
vector of size |Si|, and

R =


R11 0 · · · 0

0 R22
. . .

...
...

. . . . . . 0
0 · · · 0 Rkk

 (7)

is called the restriction matrix.

In other words, R is obtained from P by setting all off-diagonal blocks in P
to zero and adding the sum of the deleted entries of the i-th row to pii.

The following theorem summarizes in analogy to Theorem 2 some facts about
R:

Theorem 4 Let P be an irreducible and reversible stochastic matrix parti-
tioned as in Definition 1. Furthermore, let all Pii be irreducible (substochastic)
matrices. Then,

(a) all Rii are irreducible,
(b) R is stochastic with a k-fold dominant eigenvalue 1,
(c) and for each i = 1, . . . , k the unique stationary distribution r(i) of the

restriction Rii is identical to s(i) of Sii from Theorem 2.

Proof. Irreducibility is inherited from Pii to Rii, so (a) holds, and since R is
uncoupled into k blocks, (b) follows. For (c), note that if rml 6= pml then, by
construction of R, we have l = m or rml = rlm = 0. Therefore the detailed
balance condition for P still holds for R and r(i) is obtained by normalization
of π(i), which is the way s(i) is defined in Theorem 2. Furthermore r(i) is unique
since Rii is irreducible.
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Since r(i) ≡ s(i), this means that the coupling procedure described in The-
orem 2 also applies to restriction chains. Given the coupling vector ξ =
(ξ1, ξ2, . . . , ξk) (e.g., by means of the coupling matrix C defined in (6)) we
can write the stationary distribution of P as

π = (π(1), π(2), . . . ,π(k)) = (ξ1r
(1), ξ2r

(2), . . . , ξkr
(k)).

Hereby, the straightforward setup of Rii provides a convenient way to com-
pute the restricted stationary distribution r(i). Off-diagonal blocks of P are
only needed to compute entries of the coupling matrix C.

Restriction chains arise naturally in the Metropolis-Hastings sampler when the
underlying reversible Markov chain is restricted to some region of the state
space. For a realization of the underlying Markov chain restriction means to
reject all proposal steps that exit from the subset Si in which the process
was started. This small modification directly implements a sampler for the
restriction Rii.

This becomes of special interest, if the Rii’s are restrictions of a nearly un-
coupled Markov chain to its metastable (or strongly coupled) subsets. Then,
the idea is that each Rii is rapidly mixing, i.e., sampling from the Rii’s may
be orders of magnitude faster than for P.

Restricted sampling alone does not directly provide the necessary coupling
vector ξ = (ξ1, . . . , ξk) and also raises the question of how to decompose the
state space. Yet, it is possible to overcome these problems by embedding a
Metropolis-Hastings sampler into a hierarchical annealing structure. For a de-
tailed presentation of this approach we refer to the Uncoupling-coupling Monte
Carlo method presented in [?,?]. In Sect. 4, we analyze for a small biomolecule
a nearly uncoupled Monte Carlo Markov chain and illustrate hereby the initial
step of Uncoupling-coupling Monte Carlo.

3 Bounds on Subdominant Eigenvalues

Uncoupling, either by stochastic complementation or restriction, is of special
interest for a nearly uncoupled Markov chain. From now on we restrict our
considerations to reversible matrices, which also allows us to order the real
eigenvalues of a reversible stochastic (n× n)-matrix by

1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1.

If necessary for clarification, we also use the notation λi(P) to denote the i-th
eigenvalue of P.
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The main goal for uncoupling a nearly uncoupled Markov chain P is to obtain
rapidly mixing subchains Rii or Sii, for i = 1, . . . , k. Hereby, a reasonable
criterion for rapid mixing is that the spectral gap between 1 and λ2 of each
subchain is large. For R and S this means that the spectral gap 1− λk+1(R)
and 1− λk+1(S) has to be large, respectively.

For P being irreducible and nearly uncoupled with k loosely coupled compo-
nents, λk(P)−λk+1(P) has a large spectral gap. By uncoupling, the eigenvalues
become λi = 1 for i = 1, . . . , k, and λk+1 may also increase towards 1. Yet, for
good metastable decompositions λk+1 should still be bounded away from 1.

Theorem 2 already states that ‖P − S‖∞ = 2 maxi ‖Pi∗‖∞ holds. Obviously,
the same equality holds for the restricted matrix R, so that, if P is given in
the form stated in (3), we have

‖P− S‖∞ = ‖P−R‖∞ = 2‖E‖∞.

This gives rise to the assumption that eigenvalues of P, R, and S are indeed
close to each other for ‖E‖∞ being small. We will specify this relationship in
the following, especially the impact of uncoupling on the subdominant eigen-
value λk+1.

Similarity between reversible and symmetric matrices enables us to use Weyls’
inequalities ([?], III.2, S.62f) to relate subdominant eigenvalues of R and S to
P.

Theorem 5 (Weyls’ inequalities) Let A and B be symmetric
(n× n)-matrices with ordered eigenvalues λ1(A) ≥ · · · ≥ λn(A) and λ1(B) ≥
· · · ≥ λn(B), respectively. Then, for j = 1, . . . , n,

λj(A + B) ≤ λi(A) + λj−i+1(B) for i ≤ j,

λj(A + B) ≥ λi(A) + λj−i+n(B) for i ≥ j.

If we put i = j in the above inequalities, we immediately obtain

Corollary 6 For each j = 1, 2, . . . , n,

λj(A) + λn(B) ≤ λj(A + B) ≤ λj(A) + λ1(B)

holds.

This corollary enables us to state bounds on the eigenvalues of R.
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Theorem 7 Let P be a reversible stochastic matrix partitioned according to (3)
and R the restricted matrix, as defined in (7). Then

λj(R) ≤ λj(P) + 2‖E‖∞ (8)

holds for each j = 1, . . . , n.

Proof. Denote by E(diag) the diagonal matrix containing the i-th row sum of
E in the i-th diagonal entry, so that

R = P + E(diag) − E.

The matrices P and R are reversible and symmetrized by the same diagonal
matrix D, see (2) and Theorem 4. If we refer to symmetric matrices by the
superscript (sym), we have

R(sym) = D(P + E(diag) − E)D−1

= DPD−1 + DE(diag)D−1 −DED−1

= D(sym) + E(diag) − E(sym),

considering that DE(diag)D−1 = E(diag) and that DED−1 must be symmetric
to be consistent with the equation. Remind the fact that the spectral radius
of a matrix is bounded by every induced matrix norm (like ‖ · ‖∞ is) and use
Corollary 6 to get

λ1(E
(diag) − E(sym)) ≤ λ1(E

(diag)) + λ1(−E(sym))

= λ1(E
(diag)) + λ1(−E)

≤ ‖E(diag)‖∞ + ‖ − E‖∞ = 2‖E‖∞.

Therefore we have

λj(R) = λj(R
(sym))

≤ λj(P
(sym)) + λ1(E

(diag) − E(sym))

= λj(P) + λ1(E
(diag) − E(sym)) ≤ λj(P) + 2‖E‖∞.

We have shown that the subdominant eigenvalue of any diagonal block in R
will be smaller than the k-th eigenvalue of P plus twice the infinity norm of E.
Instead of proving an analogous result for the eigenvalues of S, which would
be straightforward, we show a relationship between the eigenvalues of S and
R and deduce the inequality from there. As a tool we need the well known
Geršgorins Theorem ([?], VIII.6.3, S. 244):
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Theorem 8 (Geršgorins Theorem) Let A be an (n × n)-matrix with en-
tries aij ∈ C and define the Geršgorin discs by

Gi = {z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aij|} , for 1 ≤ i ≤ n.

Then all eigenvalues of A are contained in
⋃Gi, the union of the Geršgorin

discs.

Proposition 9 Let P = P̃ + E be an irreducible, stochastic and reversible
(n × n)-matrix partitioned as in (3). If S is the matrix of the corresponding
stochastic complements and R the restriction matrix, then

λj(S) ≤ λj(R) ≤ λj(S) + 2‖E‖∞

holds for all j = 1, . . . , n.

Proof. For the proof assume that S will inherit reversibility from P. We will
show this fact afterwards. Set U := S− P̃ and V := R− S, then the entries
in V are

vij =

−uij ≤ 0 , for i 6= j,

ei − uii , for i = j,

where ei is the i−th row sum of E and uij an entry in U. The row sums of
U and E are equal because both can be converted into a stochastic matrix by
adding P̃. It follows that

∑n
j=1 vij = 0 and therefore

0 ≤ vii =
n∑

j=1
j 6=i

|vij|,

for all 1 ≤ i ≤ n. Applying Geršgorins Theorem shows that an eigenvalue of
V can not be negative. Further we have

‖V‖∞ = 2 max
i

vii = 2 max
i

n∑
j=1
j 6=i

uij ≤ 2‖U‖∞ = 2‖E‖∞.

Under the assumption that S is reversible it follows from Theorem 5 that

λk(R) = λk(S + V) ≥ λk(S) + λn(V) ≥ λk(S)

and
λk(R) = λk(S + V) ≤ λk(S) + λ1(V) ≤ λk(S) + 2‖E‖∞.

Combining Theorem 7 and Proposition 9

λj(S) ≤ λj(P) + 2‖E‖∞ (9)
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follows immediately. Thus the same inequality holds for stochastic comple-
ments and restrictions, but stochastic complementation will always be better
or equal in lowering the subdominant eigenvalue. On the other hand, if ‖E‖∞
is small the difference between the spectra of S and R will be small too.

In order to complete the proof of Theorem 7, we still have to show that S
inherits reversibility from P. This is done by the following proposition, where
we also prove reversibility of the coupling matrix.

Proposition 10 Let P be an irreducible and reversible stochastic matrix which
is partitioned as in Definition 1, then the following holds:

(a) Each stochastic complement Sii, 1 ≤ i ≤ k, is reversible.
(b) The coupling matrix C defined in Theorem 2 is reversible.

Proof. (a) As P is reversible,

P(sym) := DPD−1, with D := diag(
√

π),

is a symmetric matrix. If π = (π(1), π(2), . . . ,π(k)) is partitioned according to

P and Dl := diag(
√

π(l)) then

P(sym) =


D1P11D

−1
1 D1P12D

−1
2 · · · D1P1kD

−1
k

D2P21D
−1
1 D2P22D

−1
2 · · · D2P2kD

−1
k

...
...

. . .
...

DkPk1D
−1
1 DkPk2D

−1
2 · · · DkPkkD

−1
k

 . (10)

Let Sll be an arbitrary stochastic complement of size (r × r) with station-
ary distribution s(l). Reversibility of Sll is defined via the detailed balance
condition (1), which we verify by showing that

D̃lSllD̃
−1
l , with D̃l = diag(

√
s(l)),

is a symmetric matrix.

Theorem 2 states that s(l) = ξ−1
l π(l) with a scalar coupling factor ξl, so we

have D̃l = ξ
− 1

2
l Dl and therefore

D̃lSllD̃
−1
l = DlSllD

−1
l = DlPllD

−1
l + DlPl∗(I−Pl′)

−1P∗lD
−1
l .

The first term on the right hand side is symmetric, because it is a diagonal
block of P(sym). Thus it remains to show the symmetry of the rightmost ad-
dend.
Denote with Dl′ the principal submatrix of D that is produced by deleting
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the rows and columns belonging to π(l), i.e.,

Dl′ = diag(D1, . . . ,Dl−1,Dl+1, . . . ,Dk).

Further define P
(sym)
l∗ , P

(sym)
∗l , and P

(sym)
l′ from P(sym) the same way we de-

fined Pl∗, P∗l, and Pl′ from P in Def. 1. Note that they are submatrices of a
symmetric matrix but not symmetric themselves (P

(sym)
l∗ and P

(sym)
∗l are not

even square). Then we have

DlPl∗(I−Pl′)
−1P∗lD

−1
l = DlPl∗D

−1
l′ Dl′(I−Pl′)

−1D−1
l′ Dl′P∗lD

−1
l

= P
(sym)
l∗ Dl′(I−Pl′)

−1D−1
l′ P

(sym)
∗l

= P
(sym)
l∗ (I−P

(sym)
l′ )−1P

(sym)
∗l =: U.

Clearly, as the inverse of a symmetric matrix, V := (I−P
(sym)
l )−1 is symmetric.

Let denote the entries of the matrices U = (uij), V = (vij), and P(sym) =

(p
(sym)
ij ). What remains to show is that uij = uji holds for i, j = 1, . . . , n.

To that end, let I be the sorted set containing all row indices of P(sym),
except the ones belonging to the l-th block row. There will be n− r indices in
I = {k1, k2, . . . , kn−r} and

uij =
n−r∑
s=1

p
(sym)
kiks

n−r∑
t=1

vstp
(sym)
ktkj

=
n−r∑
t=1

p
(sym)
ktkj

n−r∑
s=1

vstp
(sym)
kiks

=
n−r∑
t=1

p
(sym)
kjkt

n−r∑
s=1

vtsp
(sym)
kski

= uji.

With U being symmetric, we have actually shown that D̃lSllD̃
−1
l , as sum of

two symmetric matrices, is also symmetric. As already stated, this is equiva-
lent to the reversibility of Sll w.r.t. π(l).

(b) If P is reversible then D2P is symmetric. For an entry cij of the coupling
matrix C we have

ξicij = ξis
(i)Pije = π(i)Pije

= π(i)D−2
i D2

i Pije

= eTD2
i Pije.

D2
i Pij = D2

jPji follows from the symmetry of D2P, so that
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ξicij = eTD2
jPjie

= π(j)Pjie = ξjcji,

which is the detailed balance condition of C w.r.t. ξ.

We have shown bounds on subdominant eigenvalues of Markov chains pro-
duced by uncoupling. These bounds will provide reasonable information about
the spectra of the uncoupled chains, if applied to a nearly uncoupled Markov
chain in the sense of section 2.2, that is , if ‖E‖∞ is small. In that case, un-
coupled chains are indeed rapidly mixing. This thread is reversible. Jerrum
et al. [?] have shown that using the structure of nearly uncoupled Markov
chains allows to state upper bounds on the subdominant eigenvalue of a Mar-
kov chain, when upper bounds are known for the subdominant eigenvalues
of the restriction chains and the coupling matrix. By this means, uncoupling
can be used to prove mixing properties for complicated Markov chains, via
decomposing it into simpler ones [?,?].

4 Examples

4.1 Random Walk on Bunkbed Graphs

We first consider an analytically tractable example from graph theory, the
class of so-called bunkbed graphs (see, e.g., [?]). Given any graph G = (V, E),
its associated bunkbed graph G2 = (V2, E2) is defined by

V2 = V × {0, 1}

and

E2 = {〈(u, i), (v, i)〉 : 〈(u, v)〉 ∈ E, i ∈ {0, 1}} ∪ {〈(u, 0), (u, 1)〉 : u ∈ V }.

In other words, G2 is the Cartesian product of the complete graph K2 and G,
which is obtained by placing a copy of G above G and connecting each edge
in G with its corresponding edge in the copy. Let G = (gij) and P be the
adjacency matrices of G and G2, respectively. Assuming that G is connected,
we can then define a weakly coupled random walk on its bunkbed graph by
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setting weights on the edges of G by

gij =


1−ε
d∗+1

if i is adjacent to j,

0 if i is not adjacent to j,

(1− ε)(1− di

d∗+1
) if i = j,

(11)

where ε ∈ (0, 1), di is the degree of the vertex i in G and d∗ is the maximum
degree over the vertices in G; and additionally applying the weight ε to all
vertices connecting the base graph with its copy. In other words, we construct
the adjacency matrix P on the bunkbed graph by

P =
(
G εI
εI G

)
, (12)

which by definition is symmetric, stochastic, and irreducible. Now, if we un-
couple P into its two identical blocks in (12), the special structure of P allows
to give analytic expressions for the eigenvalues of P, S, and R in terms of the
eigenvalues of G.

Proposition 11 Let P be an irreducible stochastic matrix as given in (12),
with ε > 0 and an irreducible submatrix G. If λ is a k-fold eigenvalue of G,
then:

(a) λ + ε, λ− ε are k-fold eigenvalues of P,
(b) λ + ε is a 2k-fold eigenvalue of R,
(c) and λ + ε2(1− λ)−1 is a 2k-fold eigenvalue of S.

Proof. Statement (b) is obvious, because Rii = G+εI, i ∈ {1, 2}, which shifts
the eigenvalues of G by ε.

Use (b) to prove (a) by choosing an eigenvector v1 6= 0 for R11 to the eigen-
value λ + ε, so that R11v1 = (λ + ε)v1. From R11 = R22 it follows that
(v1, v1)

T and (v1, −v1)
T are eigenvectors of R to λ + ε.

Observe that

R = P−
(
0 εI
εI 0

)
+
(
εI 0
0 εI

)
.

Multiplying this equations with (v1, v1)
T and (v1, −v1)

T from the right gives

P
(
v1

v1

)
= (λ + ε)

(
v1

v1

)
and

P
(

v1

−v1

)
= (λ− ε)

(
v1

−v1

)
,

respectively, which is statement (a). Finally

Sii = G + εI(I−G)−1εI = G + ε2(I−G)−1,

16



P =



a a a 0 ε 0 0 0
a a 0 a 0 ε 0 0
a 0 a a 0 0 ε 0
0 a a a 0 0 0 ε
ε 0 0 0 a a a 0
0 ε 0 0 a a 0 a
0 0 ε 0 a 0 a a
0 0 0 ε 0 a a a


Fig. 1. Left: G2 is a bunkbed construction of the 2-dimensional hypercube H2. Right:
if the weights on G2 are chosen according to (11) the resulting stochastic matrix is
P with a = (1− ε)/3.

for i ∈ {1, 2}, so if v is an eigenvector to G and λ we obtain

Siiv =

(
λ +

ε2

1− λ

)
v. (13)

As an example take G = Hd, the d-dimensional hypercube, G = Hd the
weighted adjacency matrix as proposed in (11), and P the weighted adjacency
matrix on the bunkbed graph G2, as given by (12), see Fig. ??. It is well-known

that the eigenvalues of Hd are (1 − ε)(1 − 2(k−1)
d+1

) with multiplicity
(

d
k−1

)
for

1 ≤ k ≤ d + 1 (e.g. [?]). Therefore, due to Proposition 11, we have

λ1(P) = (1− ε) + ε = 1,

λ2(P) = (1− ε)− ε = 1− 2ε,

λ3(P) = (1− ε)
(
1− 2

d + 1

)
− 2ε = 1− 2

1− ε

d + 1
,

as long as ε < 1
d+2

(otherwise λ3(P) overtakes λ2(P)). Uncoupling of P shifts
λ2 to 1 while λ3 keeps bounded away from 1 with

λ3(S) ≤ λ3(R) ≤ λ3(P) + 2ε

by Eqs. (8) and (9). Proposition 11 allows to calculate these eigenvalues ex-
plicitly, leading to

λ3(R) = λ3(P),

λ3(S) = λ3(P)− ε

(
1− ε(d + 1)

2(1− ε) + ε(d + 1)

)
.

Thus, the given approximation deviates from the exact results by 2ε and 2ε +
ε(1− ε(d+1)

2(1−ε)+ε(d+1)
).
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Fig. 2. Left: The trialanine molecule shown in ball-and-stick representation. The
overall structure of trialanine is primarily determined by the two torsion angles Φ
and Ψ. Right: Plotting Φ versus Ψ results in a so-called Ramachandran plot. The
discretization boxes are plotted with different edge lines indicating the different
metastable sets they were allocated to.

The analysis can be taken further by showing that λ2(P) > λ3(R)+2ε is equiv-
alent to d < 1

2ε
− 3

2
, which is a straightforward calculation. For example, take

ε = 0.01, then the approximation indicates better subdominant eigenvalues in
the diagonal blocks of R and S as long as d < 48.

4.2 Metastable Sets of Trialanine

Restricted Markov chains can be a useful tool for biomolecular simulations. As
an example we consider trialanine, a small peptide composed of three alanine
amino acid residues. The structural and dynamical properties of trialanine are
primarily determined by the two torsion angles Φ and Ψ as shown in Fig. ??.
Exploration of the high-dimensional continuous state space can be done by
means of Uncoupling-coupling Monte Carlo [?,?], which hierarchically decom-
poses the state space into metastable sets. We herein only illustrate the initial
uncoupling step, which starts with a high-temperature Markov chain Monte
Carlo simulation. More precisely, we used the Hybrid Monte Carlo method [?],
a popular method in this field that combines the benefits of molecular dynam-
ics with the statistical accuracy of Markov chain Monte Carlo. We sampled
105 steps at a temperature of 650K and stored the torsion angles for each sim-
ulation step. Discretization of each torsion angle domain D =] − 180 ◦, 180 ◦]
into 7 equidistant intervals resulted in 26 non-empty boxes in D2, see Fig. ??.
On these boxes we set up a transition matrix P = pij, receiving the transi-
tion probabilities by counting the number of transitions between them during
simulation. Reversibility can be inherited to P by counting each transition
between box i and j as a transition between box j and i too. This approach
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is justified, because we can think of P as of a discretization of a reversible
continuous Markov operator governing the dynamics of the molecule [?,?].
Therefore, if Bij denotes the number of transitions between box i and box j,
and Bi the number of data points in box i, the transition probability between
box i and box j is given by

pij =
Bij + Bji

Bi

.

The first eigenvalues of the resulting (26× 26) transition matrix are

j 1 2 3 4 5

λj(P) 1 0.9952 0.9941 0.5692 0.1425
· · · ,

indicating a slow mixing Markov chain with three metastable sets. As al-
ready pointed out at the end of Sect. 2.2, identification of metastable sets for
given P is not a trivial task. As dynamical cluster algorithm we used a spec-
tral approach, which analyzes the structure of dominant eigenvectors [?,?,?].
Identified metastable sets are indicated by different line styles in Fig. ??. A
corresponding permutation of the transition matrix confirms the computation
in that it reveals an obvious block dominant structure, see Fig. ??. The maxi-
mum row sum over entries outside these blocks is 0.0417, so that we can bound
the effect of uncoupling on the subdominant eigenvalue by

λ4(R) ≤ λ4(P) + 2 · 0.0417 = 0.6526.

This means, that restriction to the three metastable sets will result in three
Markov chains whose subdominant eigenvalues are significantly bounded away
from 1. Calculating the subdominant eigenvalues of the restrictions Rii for
i = 1, . . . , 3 shows that λ4(R) ≤ 0.6526 is indeed a useful bound:
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0 5 10 15 20 25
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−2

−1

0

Fig. 3. Left: The permuted transition matrix P clearly has a block dominant struc-
ture. Right: In the resulting restricted matrix R all off-diagonal entries are set to
zero. The intensity of the boxes is chosen due to the logarithmic scale on the far
right.
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λ2(R11) λ2(R22) λ2(R33)

0.1376 0.1482 0.5855
.

Figure ?? illustrates an interesting effect that takes place if we choose a finer
discretization of the torsions angles. This might create boxes which cover only
a few data points. A transition from one of these boxes to another metastable
set induces a large transition probability from the box into the subset. In
the permuted transition matrix this leads to large entries outside the diag-
onal blocks, while the metastable structure is still preserved and uncoupling
still lowers the subdominant eigenvalue, although we cannot predict this by
Theorem 7.

For a closer consideration of this effect, we construct a (3 × 3) stochastic
matrix. Let ε > 0 and

P =


1

1+ε
ε

1+ε
0

1
2

0 1
2

0 ε
1+ε

1
1+ε

 , (14)

which is a reversible stochastic matrix with state space S = {s1, s2, s3} and
stationary distribution

π =
1

2 + 4ε
(1 + ε, 2ε, 1 + ε). (15)

The eigenvalues of P are given by

λ1(P) = 1, λ2(P) =
1

1 + ε
, and λ3(P) = − ε

1 + ε
.

−180 −90 0 90 180
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Ψ
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]
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180
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Ψ
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]

Fig. 4. Left: A refined discretization produces boxes with large transition probabil-
ities to other metastable sets. Here each torsion angle is discretized in 15 intervals.
Boxes with a transition probability to another metastable set of 0.25 and larger
are marked dark. Right: A close up illustrates the cause of this effect. The arrows
connect subsequent sample points in the realization of the Markov chain.
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As ε tends to zero, λ2(P) tends to 1, thus indicating a slow mixing Markov
chain. There is no possible partition that avoids the entry 0.5 outside the diag-
onal blocks, so that our eigenvalue bounds will provide no further information.
Yet, if we restrict along the partition indicated in (??) we get

R =


1

1+ε
ε

1+ε
0

1
2

1
2

0

0 0 1

 ,

with eigenvalues

λ1(R) = 1, λ2(R) = 1, and λ3(R) =
1− ε

2(1 + ε)
.

For ε close to zero, λ3(R) is close to 0.5, which shows that the two uncoupled
chains are fast mixing. We can understand this effect by examining the under-
lying dynamics of the given Markov chain. Since the state s2 makes transitions
between s1 and s3 likely if it is reached, we call s2 a transition state. But if
ε is close to zero, the probability to be in the transition state is close to zero
too, as we can see from the stationary distribution (??). So metastability is
preserved, because the transition state is rarely reached in a realization of the
Markov chain.
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almost invariant aggregates in reversible nearly uncoupled Markov chains.
Lin. Alg. Appl., 315:39–59, 2000.

[5] P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation
dynamics. ZIB-Report 03-19, Konrad-Zuse-Zentrum, Berlin, 2003.

[6] A. Fischer. An Uncoupling-Coupling Method for Markov Chain Monte Carlo
Simulations with an Application to Biomolecules. PhD thesis, Freie Universität
Berlin, 2003.

21
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